Fuzzy Joins Using MapReduce

Foto N. Afrati #!, Anish Das Sarma *?, David Menestrina **, Aditya Parameswaran ™, Jeffrey D. Ullman °

# National Technical University Athens *Google, Inc. TStanford University

1‘Q’S{afrati, anish.dassarma, dmenest}@gmail.com

Abstract—Fuzzy/similarity joins have been widely studied in
the research community and extensively used in real-world
applications. This paper proposes and evaluates several algo-
rithms for finding all pairs of elements from an input set that
meet a similarity threshold. The computation model is a single
MapReduce job. Because we allow only one MapReduce round,
the Reduce function must be designed so a given output pair
is produced by only one task; for many algorithms, satisfying
this condition is one of the biggest challenges. We break the
cost of an algorithm into three components: the execution
cost of the mappers, the execution cost of the reducers, and
the communication cost from the mappers to reducers. The
algorithms are presented first in terms of Hamming distance,
but extensions to edit distance and Jaccard distance are shown
as well. We find that there are many different approaches to the
similarity-join problem using MapReduce, and none dominates
the others when both communication and reducer costs are
considered. Our cost analyses enable applications to pick the
optimal algorithm based on their communication, memory, and
cluster requirements.

I. INTRODUCTION

MapReduce is a popular and powerful framework for par-
allel data analytics. A number of research efforts in recent
times have been focused on making the MapReduce paradigm
easier to use, including layering a declarative language over
MapReduce [1, 2, 3], dealing with data skew [4, 5], and
finding efficient MapReduce counterparts of traditional algo-
rithms such as graph algorithms [4, 6, 7, 8] and joins [9].
In what follows, we assume the reader is familiar with how
MapReduce works. A tutorial can be found in [10].

MapReduce gives us the ability to leverage many machines
working in parallel, thereby letting us process and analyze data
sets that are orders of magnitude larger. However, being able
to use MapReduce for some of the traditionally sequential
algorithms without sending the entire data set to every re-
ducer is not a straightforward task. In the typical MapReduce
environment — racks of commodity computers connected by
gigabit Ethernet — communication is a significant cost. Thus,
replication of data at many processors needs to be avoided to
the extent possible. In particular, figuring out which records
need to be processed together at the same reducer for a given
algorithm is especially tricky. In addition, in order to compare
two MapReduce algorithms, one needs to reason about many
system parameters all at once, including network latency,
processor speeds, number of reducers, main memory size, and
others, making theoretical analysis difficult.

The goal of this paper is to look at a nontrivial problem—
fuzzy joins— on MapReduce. We shall define the problem
formally in Section III, but intuitively, given a set of records
we are interested in finding all pairs of records that are

45fadityagp,ullman}@cs.stanford.edu

within some distance from each other according to some
distance measure. There are many ways to apply MapReduce
to this problem, but all except the most trivial (and gener-
ally least efficient) algorithm requires replication of data at
many reducers. Moreover, we find that there is a tradeoff
between communication cost and processing cost, and there
are at least five significantly different approaches that belong
to the “skyline”; i.e., none dominates another. One of the
trickiest aspects of this problem is avoiding duplicate outputs
from different reducers, and we develop a general technique
involving lexicographic orderings of several types to solve this
problem for each of our algorithms.

Fuzzy joins arise in many applications, including entity
resolution, collaborative filtering, and clustering, for example.
We consider a number of distance measures, but concentrate
on Hamming distance because it is in a sense the simplest
measure and lets us offer the clearest view of the various
algorithmic approaches. We then show how to apply the same
ideas to edit distance and Jaccard distance as well.

Our focus, in this paper, is to provide a theoretical analysis
of various MapReduce-based similarity join algorithms, and
compare them in terms of various parameters, including map
and reduce costs, number of reducers, and communication
cost. We present a suite of algorithms that span the spectrum of
tradeoffs between each of these parameters, thereby enabling
an application to determine the most suitable algorithm based
on our analysis.

II. RELATED WORK

MapReduce Versions of Algorithms: Much recent re-
search on MapReduce has focused on developing MapReduce
versions of standard algorithms. Lattanzi et. al. [6] develop
approximate versions of graph algorithms based on filtering
(a form of sampling) that run in a small number of MapRe-
duce rounds. Other work has considered counting triangles
(which is useful for computing clustering coefficients in social
network graphs) [4], joins [9], evaluating joins with skewness
considerations [3], matching advertisers to users while obeying
capacity constraints [8] and approximation algorithms for
max-cover [7], minimum spanning trees [11] and flow-shop
scheduling [12].

Models of Computation: Recent work [11] has suggested
a model of computation for MapReduce that is inspired by the
PRAM model. This model, denoted MRC, enforces a limited
amount of storage per processor, as well as a limited number of
processors. While this model has counterparts for each of the
costs that we consider, it is less explicit about the various costs,
namely map cost, communication cost (or shuffle/network



cost) and reduce cost. We focus on computation on a certain
number of reducers, quantifying the amount of computation in
each stage of the MapReduce job. Note that all our algorithms
run in a single MapReduce job. Moreover, note that the amount
of storage needed per reducer is nothing but a proxy for our
communication cost split evenly over the number of reducers.
Our analysis is more along the lines of Afrati et. al. [13].

An alternative model is the one recently proposed in [3],
where the model used is leveraged to answer conjunctive
queries. They include possible communication between map-
pers to deal with data skew, which we do not consider, since
it is not in the basic MapReduce model. In addition, they
ignore the computation cost at the reducers, while we explicitly
consider all costs. Their primary emphasis is on reducing the
number of rounds.

Fuzzy Joins: There are two approaches to fuzzy or set-
similarity joins that have been considered in the past. One ap-
proach uses approximate matching techniques such as locality-
sensitive hashing [14], which work especially well for low
similarity thresholds. The other approach is exact matching
techniques. These have the additional desirable property of
always returning the correct output. In this paper, we focus on
exact matching techniques.

There has been some recent work on fuzzy joins using
MapReduce [15, 16]. Vernica et al. [15] tries to identify
similar records based on the Jaccard similarity of sets, using
the length/prefix-based methods of Chaudhuri et. al. [17],
combined with the positional and suffix filtering techniques
of Xiao et al. [18], and then parallelizes these techniques. The
problem of Jaccard similarity of sets is effectively reduced
to the problem of overlap of sorted strings. This approach to
Jaccard similarity is known to be good when the similarity
threshold is high. Experiments in [15] have shown that on
some real data the PPJoin+ algorithm [18] can be efficiently
parallelized. We compare this algorithm with ours in more
detail in Section VII, after the details of our algorithms are
explained.

Baraglia et. al. [16] show improvements over the Ver-
nica [15] approach using a two-MapReduce-phase approach of
indexing the prefix of every record, and computing the similar-
ity of only those records that share a token in their prefix (as
opposed to the Vernica [15] approach which broadcasts copies
of the document for every token in the prefix.) This approach
is inspired by an earlier one proposed in Elsayed et. al. [19].
We, on the other hand, use a single MapReduce phase, since
the setup time for a MapReduce job is known to be costly.

The two papers mentioned above present one technique each
that is optimized for one similarity function, only for the case
where the universal set of tokens is large, and only when
the similarity threshold large as well (enabling the pruning
optimizations). See Section VII where we analyze algorithms
based on the [18] in the same terms as the algorithms we
propose.

We perform a more principled analysis of algorithms, ap-
plicable to a number of distance measures, comparing them
in terms of various parameters, including map and reduce
costs, number of reducers, communication cost. In fact, we
present a suite of novel algorithms that span the spectrum of
tradeoffs between each of these parameters, thereby enabling

an application to determine the most suitable algorithm based
on our analysis.

Finally, a recent paper [20] studies the problem of perform-
ing arbitrary theta-joins in a single map-reduce step. The main
idea in the paper is to distribute the pairwise comparison of
every tuple uniformly across a given set of reducers. Our focus,
on the other hand, is to minimize the number of pairwise
comparisons performed by explicitly looking at the fuzzy join
criterion, i.e., only compare pairs of tuples that may be in the
result.

III. PROBLEM DEFINITION

We start by formally introducing the problem we address
in this paper, and enumerating the various parameters used to
analyze each algorithm.

A. Fuzzy Join

Let D be the domain of all possible records.

Definition 3.1 (Similarity Function): A similarity function
is a function Sim : D x D — R.

Some examples of similarity functions are:

1) Strings: Some well-known string similarity measures
include edit-distance, Jaro-Winkler, and other functions
from the commonly used string similarity package Sec-
ondString [21]. For deduplication, string similarity mea-
sures often include a table of “transformations” between
strings like “Bob” is the same as “Robert”, “Blvd.” and
“Boulevard” are the same.

2) Sets: The most commonly used set-similarity measures
include Jaccard, and other intersection-based similari-
ties.

3) Numeric: A simple example of numeric similarity is the
difference between two numbers.

Definition 3.2 (Fuzzy-Join Predicate): A fuzzy-join predi-

cate F' = (Sim, 7) is defined by a similarity function Sim
and a threshold 7. The result of applying F' to a set of records
SCDis F(R) = {(z,y) | z,y € R,Sim(z,y) > 7}. For
(z,y) € F(R) we say F(z,y) = 1.
Thus a fuzzy-join is stated using a distance measure used to
define the similarity, where we are required to find all pairs
(z,y) with a distance of at most some pre-specified threshold.
We wish to find algorithms that can efficiently return all the
(z,y) € F(R) using MapReduce.

B. Costs of Map-Reduce Algorithms

For each map-reduce algorithm, we consider the following
costs:
« Total map or preprocessing cost across all input records
(M).
o Total communication cost (C') of passing data from the
mappers to the reducers.
o Total computation cost of all reducers (R).
These costs are expressed in terms of the following parameters.

o The input dataset S and its size |S].

o The threshold defining the similarity function, which we
shall normally express as a maximum distance d.

o Properties of the input data elements, especially the
length of strings when the input is a set of strings, but



also other parameters such as the alphabet size for edit
distance.
o The number of reducers K.

With the exception of the “naive algorithm” to be discussed
in Example 3.4, what we refer to as the “number of reducers”
K is really the number of keys and their associated lists of
values, i.e., the maximum possible number of Reduce tasks.
These key-list pairs must each be fed to a Reduce task, but
the actual number of Reduce tasks may be less than K. The
total execution time of the reducers does not depend on how
many keys each Reduce tasks gets. In practice, because there
is overhead associated with each Reduce task, we would want
to use a number of Reduce tasks that is only a small multiple
of the number of compute nodes available.

The number of mappers is never considered. We assume
that the algorithm uses as many mappers as is appropriate to
handle the input. Since the mappers typically operate on one
input element at a time, the total map cost is not really affected
by the number of mappers, although if we use too few, then
the finishing time of the entire job will be unnecessarily high.

C. (M, C, R)-map-reducible algorithms

Next we define the notion of (M, C, R)-map-reducible
algorithms, which allows us to compare different map-reduce
algorithms for fuzzy joins.

Definition 3.3: Given a dataset S, a join predicate F' is
(M, C, R)-map-reducible if there is a one-to-many mapping
G from D to a domain D' = {1,..., K} (where K is the
number of reducers to be used) such that the following holds.

D) If F(z,y) =1, then G(z) N G(y) # 0.

2) Computing G(r;) for all r; € S takes O(M) time.

3) The total communication cost ), s |G(ri)| < C.

4) Finding all pairs (x, y) at each reducer ¢ where i € G(z),

i € G(y), and F(x,y) = 1 takes O(R) time.

Item 1 in the definition implies that every pair of similar
records are hashed to at least one reducer in common. The
remaining three items describe the three cost measures by
which we evaluate algorithms. Item 2 represents the total
preprocessing cost at the mappers. Note that computation of
G for a given 7; is independent of any other r; € S. (i.e., the
mappers do not know which other records are present in S.

Item 3 gives the total amount of data transferred to the
reducers. It is referred to as total communication cost in [9].
It represents the total amount of network resources needed for
the computation.

Item 4 is the total processing time at the reducers. Some-
times, we have to compare each pair of elements sent to the
same reducer, but there are algorithms that allow us to avoid
many of these comparisons. In addition, it is necessary to
make sure that each pair of similar inputs is produced by
only one reducer. Often, this requirement is met easily, but
in some cases the computation needed to avoid duplicates is
significant. When the computation is implemented on a remote
commercial web site M 4 C + R is proportional to the rent
the user has to pay for the resources.

An algorithm that evaluates F' over MapReduce, with costs
M,C and R, is as good or better than one that can be
represented with costs (M’,C’, R") provided M’ = Q(M),
¢’ = Q(C), and R' = Q(R). Our overall goal is to find

MapReduce procedures along a skyline of (M, C, R) for each
of the important fuzzy-join predicates.

Example 3.4: Let us begin with an example algorithm that
we shall refer to as the Naive Algorithm. This algorithm works
for any type of data and any similarity function. We shall
assume that the similarity test takes unit time; if that is not
the case, then the reducer cost must be multiplied by whatever
time the similarity test takes.

Suppose our input is a set S of elements of some type. We
shall arrange our K reducers in a triangle so that every pair of
elements of S appears at exactly one reducer and is compared
there. To form the triangle, each reducer is identified by a
pair (4,7) such that 0 < i < j < J for some constant .J. The
number of reducers is K = (J‘QH) = J(J+1)/2. Note that J
is proportional to VK.

Members of the input set S are hashed to J buckets from
0...J—1. An element that hashes to 7 is sent by its mapper to
all reducers whose identifying pair is (¢, j) or (4, 7) for some j.
Note that each string is sent to exactly J reducers, since only
one of reducers (,7) and (j,4) actually exists (unless ¢ = 7,
in which case they are the same reducer anyway). Thus, the
cost for all the mappers as well as the communication cost is
O(S|7) = O(ISIVEK).

Each reducer compares each pair of elements it receives.
Assuming that the hash function distributes elements evenly,
we may assume each reducer receives approximately the same
number of elements. The total number of elements sent to
the K reducers is J|S|, so each reducer has |S|J/K =
2|S|/(J+1) elements. The work done at each reducer involves
comparing (2|‘S|/ (‘]+1)) pairs of elements, so the work per
reducer is O(|S |% /K). As there are K reducers, the total
reducer cost is O(|S|?). In summary:*

Number of reducers = K
Total map cost and communication, M = C = [S|VK
Total reducer cost, R = |S|?

That is, the Naive Algorithm is a (|S|VK, |S|VK, |S|?)-map-
reducible algorithm.

In the following subsections, we offer a variety of more
sophisticated algorithms that have all costs, M, C, and R,
below |S|%. In Appendix A we prove that any algorithm
that compares all sets of elements at some reducer must
have a reduce cost at least |S|?. However, note that some
of our algorithms, notably “Ball-Hashing-1" (Section IV-A)
and “Anchor Points” (Section IV-D) use reducers that compare
only a subset of the pairs of elements they receive.

D. Simplifications

In the rest of this paper, we focus on finding algorithms for
the following fuzzy join predicates.

o Hamming Distance, in Section IV.

o Edit Distance, in Section V.
o Jaccard Distance, in Section VI.

*Here, and throughout, we omit the big-oh expression when describing
counts of map cost, reducer cost, and communication cost.



There are a number of simplifications to the model that we
shall make for the sake of easy exposition. We summarize
them here.

e As in Example 3.4, we assume that the input set S is
random and that no element appears more than once.
As an important consequence, when we hash inputs and
send them to reducers, each reducer receives the average
number of elements. Note that this number may be more
than |S|/K, since input elements typically need to be
sent to more than one reducer.

o We assume that input elements can have simple opera-
tions performed on them in unit time. These operations
include copying (communication), comparing, and hash-
ing.

o All algorithms are assumed to have a map phase that oper-
ates independently on input elements. We shall therefore
often state the map cost on a per-element basis. To get
the total map cost M, we may simply multiply by |S|.

o There are several different ways we could estimate the
costs associated with each algorithm. We have chosen
to compute the average cost, on the assumption that
each reducer receives the same amount of data. This
assumption is realistic if data is distributed by a random
mechanism (typically hashing). Since we are comparing
algorithms, the particular assumptions about input are less
important than the fact that we use the same assumptions
for each algorithm.

IV. HAMMING DISTANCE

In this section we analyze algorithms for similarity join
based on Hamming Distance:

Given a set S of b-bit strings, and an integer 0 <
d < b, find the set

{(s1,52) | HD(s1,52) < d}

where HD(s1, s2) denotes the Hamming distance
(the number of positions in which the two strings
disagree) between s; and ss.
We use B(b,d) to denote the number of b-bit strings that
can be obtained by flipping the value of at most d bits of any
given b-bit string. That is:

so.0=3 ()

k=0

Therefore, B(b,d) is roughly b?/d!, assuming d is much
smaller than b. When b is clear from the context, we shall just
use B(d) to denote the expression above, and call it the “ball
of radius d.”

Below, we present each algorithm and consider the map-cost
M, the number K of reducers used, the total communication
between mappers and reducers C, and the total processing cost
R on the reducers. Table I summarizes these parameters for
each of the algorithms. Note that the Naive Algorithm is the
approach of Example 3.4 applied to Hamming distance.

Observe that in many, but not all, algorithms, M = C, since
the job of the mappers is simply to distribute the input among
the reducers. However, there are algorithms where M > C'
because the mappers do more complex work.

Recall from Section III-D that copying, comparing, or
moving a b-bit string can be done in unit time, and we do
not include a factor b in running times simply to account for
the lengths of strings. However, in several algorithms to be
discussed, we need to do something with each bit of a string.
In that case, we do properly include a factor b in running
times.

A. Ball-Hashing Algorithms

First, we consider two different algorithm that each use
n = 2° reducers, one for each possible b-bit string.” These
algorithms use a similar idea of hashing balls around any input
string:

Ball-hashing Algo-1: In this algorithm, there is one reducer
for each of the n possible strings of length b. The mappers
send each string s to all b-bit strings at a distance of at most
d from it. Thus the map-cost is B(d) per input element. To be
precise, from the string s the mapper generates the key-value
pair (s, —1) and all key-value pairs (¢, s) such that ¢ # s is in
the ball of raduis d around s.

Each of the n reducers then checks if the string s corre-
sponding to that reducer is one of its input strings. Note that
this test is fast, since —1 will be the first element on the list
associated with key s if s is in &, and —1 will not appear
otherwise. Call a reducer that received the —1 active. Each of
the (at most |S|) active reducers outputs all pairs consisting
of s and one of the other strings that hashed to this reducer.

The total number of strings sent to all the reducers is
|S|B(d). Since there are m reducers, the average number
of strings received by a reducer is |S|B(d)/n. Recall that
we perform our analyses assuming all reducers receive the
average amount of data. Thus, the total work done by all |S]
active reducers is |S|>B(d)/n. We shall omit the (typically
negligible) term n that accounts for the cost of each reducer
deciding whether or not it is active. In summary:

Number of reducers =n
Total map cost and communication, M = C' = (|S|B(d)
Total reducer cost, R = |S|*B(d)/n

As stated, each pair {s, ¢} is produced twice, once from the
reducer for s and once from the reducer for ¢. If we order
strings, say lexicographically, we can inhibit producing the
pair {s,t} at the reducer for s if ¢ preceeds s in the order.

Ball-hashing Algo-2: Again we use one reducer for each of
the n bit strings of length b. However, in this algorithm, we
hash to a reducer only those strings of distance d/2 or less.
In this algorithm, all n reducers are “active.” The reason is
that each reducer not only has to compare the string to which

TThat may well be a huge number of reducers. However, we should
remember that for all the algorithms discussed except the Naive Algorithm,
a “reducer” is a single key and its associated value list, not a Reduce
task or a compute-node. It is permissible, and indeed necessary in certain
circumstances, to execute more than one reducer at a single compute node.

THere and elsewhere, we use fractions like d/2 that may not be an integer
as if they were rounded up to an integer. That is, to simplify notation, we
omit the ceiling function in places where it is obviously needed.



Algorithm Map-cost Per Element #Reducers Communication (C) Processing (R)
Naive J (approx. VK) K (arbitrary) |SIVK |S|?
Ball-hashing-1 B(d) |S|B(d) [SI?B(d)/n
Ball-hashing-2 B(d/2) |S|B(d/2)) IS12(B(d/2))%b/n
T T
Splitting d+1 (d+ 1)na+t (d+1)|S| (d+1)|S|?/nd+T
. b2
Hamming Code b2 log b n/(b+1) bj|38(\2d> s ISl
Anchor Points min (B(2d), %) B S| B |S|B(d)/n
TABLE I

SUMMARY OF THE MAP COST PER INPUT ELEMENT, NUMBER OF REDUCERS, COMMUNICATION COMPLEXITY, AND THE TOTAL REDUCER COST FOR
VARIOUS HAMMING-DISTANCE JOIN ALGORITHMS. ALL EXPRESSIONS OMIT A BIG-OH; I.E., THEY ARE ORDER-OF-MAGNITUDE.

it corresponds (its key) with all the other strings that arrive
at the reducer, but it must compare all the strings that arrive
there with each other. As a result, each pair at distance d or
less is produced by many reducers, and we need to inhibit the
output at all but one of these to avoid duplicates.

Example 4.1: Suppose strings s and ¢ have Hamming dis-
tance exactly d. Then there are ( d72) reducers that will be
distance d/2 from both s and ¢; these reducers corresponding
to each of the strings that are formed by flipping exactly half
the bits in which s and ¢ differ.

To begin, the mappers send each string s to the reducer for
each input string at a distance at most d/2 from s. Thus the
map-cost is B(d/2) per input string. The average number of
strings received by a reducer is |S|B(d/2)/n. Each pair of
these strings must be compared, so the total number of pairs
compared at all the reducers is |S|? (B(d/2))2/n. A pair {s,t}
is output by the reducer if and only if this reducer corresponds
to a string u that is lexicographically first among all the strings
that are distance at most d/2 from both s and ¢.

It is not hard to examine s and ¢ and compute that lexico-
graphically first string. In particular, it can be done in time
O(b), where as usual, b is the length of strings. Here is how
to find the lexicographically first intermediate.

Suppose s and ¢ are at distance e < d. Starting with s,
we can change 1’s to 0’s, from the left, at positions where
s and t disagree. We can change up to d/2 of these to get
the intermediate u. However, if e < d, then we have another
option. We can change up to (d —e)/2 1’s to 0’s in positions
where s and ¢ both have 1. These positions are then changed
back to 1’s when we go from u to ¢t. Thus, to construct u
from s, scan s from the left. If we encounter a 1 where ¢
has a 0, change that 1 to a 0. If we encounter a 1 where ¢
is also 1, change the 1 to a 0 provided we have not already
encountered (d—e)/2 positions where both s and ¢ are 1. Stop
when we have changed d/2 1’s to 0’s. The resulting string is
the lexicographically first « that is distance at most d/2 from
both s and ¢.

Example 4.2: Let

s =101101001100

t =101001101001
and let d = 6. Since s and ¢ have distance 4, we have ¢ = 4
and (d — e)/2 = 1. That is, we can flip one 1 that s and ¢
share in common.

Start scanning s from the left. The first position has 1, and
t agrees. So we change that 1 to 0 and we have exhausted our
budget of 1’s that may be flipped even though s and ¢ agree.
Thus, we cannot flip the 1 in position 3. However, in position
4, s has 1 and ¢ has 0, so we flip that 1. It is not until the 10th
position that we encounter another 1 in s where ¢ has 0. Thus,
u is constructed from s by replacing 1’s by 0’s in positions 1,

4, and 10. That is, v = 001001001000. Note that ¢ is distance
d/2 = 3 from u. We obtain ¢ from u by flipping positions 1,
7, and 12.

Number of reducers = n
Total map cost and communication M = C' = |S|B(d/2)
Total reducer cost, R = \S|2(B(d/2))2b/n

B. Splitting Algorithm

In the splitting algorithm the b-bit strings are divided into
(d + 1) equal-length substrings.8 Note that if HD(s,t) < d,
then at least one of the (d + 1) corresponding substrings of s
and ¢ match exactly. For each of the d+ 1 substrings of length
b/(d+1), we have a family of reducers that correspond to the
20/(d+1) possible values of that substring. If string s consists of
substrings s1ss - - - S4.+1, then a copy of s is sent to the reducer
in the 7th family that corresponds to s;. More precisely, a key-
value pair is created where the key is (4,s;) and the value is
5. Note that the number of reducers is (d + 1)20/(¢+1),

Each reducer compares all the strings it receives to find
those pairs at distance at most d. We shall assume that the
work done by each reducer is proportional to the square of
the number of strings received, although there are locality-
sensitive hashing techniques (see [10]) that can reduce this
cost. On our assumption that the work of the reducers is
equal, each reducer receives |S|/2%(?+1) strings, and so
does work O(|S|?/22/(4+1)) " Since the number of reduc-
ers is (d + 1)2(4+1) the total work of the reducers is
O((d+1)|S|?/2%/(4+1)), Since n = 2°, we can simplify these
expressions by replacing 20/(4+1) by pl/(d+1),

A final point is that we again need to avoid outputting the
same pair more than once. However, the solution is simple in
this case. When a reducer in the ith family finds that s and
t are at distance d or less, it checks that there is no j < i
for in which s and ¢ are also equal in their jth substrings. If
there is no such j, then the pair {s,t} is sent to the output.
In summary:

Number of reducers = (d + 1)n*/(¢+1)
Total map cost and communication, M = C = (d + 1)|S]

Total reducer cost, R = (d 4 1)|S|?/n!/(@+D

The algorithm above can be further refined by applying “re-
cursive” splitting as in the Hamming-distance search algorithm
presented in [18]

81f d + 1 does not divide b evenly, then some of the last pieces will be
one shorter than the first pieces. In our discussion we shall assume an equal
division.



C. Hamming Codes

As an introduction to the algorithm called Anchor-Points,
let us consider a very special case, where d = 1 and b is one
less than a power of 2. In this case, there is a subset of the
binary strings of length b called a Hamming code [22] with
several unusual properties:

1) The number of strings in the Hamming code is n/b + 1.

2) Every string of length b is either in the Hamming code
or at distance 1 from a unique member of the Hamming
code.

3) Given a string s of length b, we can find efficiently
whether s is in the code or, if not, which member of
the code is at distance 1. The time required to make this
determination is O(blogb).

We can find strings at distance 1 in an input set S by using
n/(b+ 1) reducers, each corresponding to one member of the
Hamming code. Any pair at distance 1 either consists of a
codeword (member of the Hamming code) and another word
at distance 1, or it consists of two non-codewords, s and ¢. In
the latter case, s will be distance 1 from a unique codeword,
and ¢ will be distance 2 from the same codeword. We therefore
require the mappers to send to each reducer all the strings in
S at distance up to 2 from its codeword.

The mappers take each input string s and determine whether
it is in the code. If so, s is sent to the reducer for s. If not,
then the mapper finds the string ¢ in the code at distance 1
from s and sends s to the reducer for ¢. Then, the mapper
flips, in turn, each bit of s other than the one that turns s into
t. These b — 1 strings are the other strings at distance 1 from
s. For each of these strings ¢, find the codeword at distance 1
from ¢ and send s to the reducer for that codeword.

Note that the work done by the mapper for each input
string is O(b? logb). The reason is that there are b strings (s
and its neighbors at distance 1) for which we must determine
the nearest codeword, and that determination takes O(blog b)
time. On the other hand, the communication is only b, since
each string is sent to b reducers.

The reducer for code word s first builds an index of received
words, so it can look them up in O(1) time. It then checks
whether it has received s. If s was received, then it outputs
all pairs consisting of s and one of the other received strings
at distance 1. Also, for each string ¢ at distance 1 from s that
was received, the reducer finds all strings u at distance 1 from
t that were received, and outputs the pair {¢,u}, provided ¢
precedes u lexicographically. Note that the pair {¢,u} will
be discovered twice, once at the reducer for the codeword at
distance 1 from ¢ and once at the reducer for the codeword at
distance 1 from u. We therefore need to avoid emitting this
pair twice. On the other hand, pairs containing a codeword
are discovered only at the reducer for that codeword, and thus
must be output regardless of which is lexicographically first.

On our assumption that each reducer receives an average
number of strings, a reducer receives b|S|/n strings at distance
1 from its codeword and (g)|8 |/n strings at distance 2. The
index of strings received, lets us test the presence of any given
string in O(1) time. Thus, a reducer requires O(b) time to
determine which of the strings at distance 1 from its codeword
are present, since it must flip each bit in turn and do a lookup
in the index. Then, for each of the b|S|/n strings at distance

1 from the codeword, it does a similar task by flipping each
of the b — 1 bits in turn that do not lead to the codeword
and testing membership of the resulting string. Thus, the total
work done at each reducer is O(b%|S|/n). In summary:

Number of reducers =n/(b+ 1)
Total map cost, M = b*log b|S|

Total communication, C' = b|S]|
2

Total reducer cost, R =
b+1

S|

D. Anchor-Points Algorithm

The Anchor-Points algorithm generalizes the method of
Section IV-C to the extent possible. In place of the Hamming
code, it uses a set A of anchor points such that all b-
bit strings are within d-bits from at least one anchor point.
Since one anchor point can only “cover” B(d) strings, the
minimum number of anchor points we need is n/B(d). A set
of anchor points meeting this bound is called a perfect code.
Unfortunately, there are very few perfect codes; the Hamming
codes are almost the only example. We discuss perfect codes in
Appendix C. On the other hand, we can find anchor-point sets
with not too many more strings than the theoretical minimum,
as we shall show in Section IV-D1. Thus, in our presentation
of the Anchor-Points algorithm we shall take n/B(d) as the
size | A| of the set.

Let us assume that each mapper has available to it the set A,
indexed so we can test membership of a string in A in O(1)
time. Since the number of anchor points is small for large d,
this assumption is reasonable, although strictly speaking we
should add a term |.A| times the number of mappers to the
total communication cost to account for sending copies of .4
to each mapper. There is a reducer for each anchor point.

The mappers send each string s in S to every anchor point
at a distance of at most 2d from s. There are two ways we
can identify those anchor points for a string s.

1) We can generate from s all those strings at distance at
most 2d and test their membership in .A. The work of
doing so is clearly O(B(2d)) per input string, since we
have an index to make each membership test in O(1)
time.

2) We can consider all anchor points and compare them
with s to see if they are at distance 2d or less from
s. This approach takes time O(].A[) = O(n/B(d)) per
Input string.

In [23] these are called the “query expansion” and “linear
scan” approaches. Their third approach, “table expansion,” is
not useful in the Map phase of a MapReduce algorithm. Since
either approach could be more efficient, depending on |.A4], b,
and d, we shall take the map cost per input string to be the
minimum.

There is one more detail regarding the mappers that is
essential to assure that pairs are not output more than once. We
need to assign a unique home reducer to each string in S. The
home reducer for s is the one that corresponds to the closest
anchor point to s, and in case of ties the lexicographically first
such anchor point. The mapper that handles s, while searching




for nearby anchor points, determines the home for s, and when
it sends s to that reducer, it tags s with the label “home.”
Note that if s and ¢ are at distance at most d, then ¢ will
surely be sent to the home reducer of s, and vice-versa. We
can avoid generating {s,t} twice by requiring not only that
each pair generated by a reducer involve at least one string
of which it is the home, but by insisting that the home string
lexicographically precede the non-home string.

For the communication cost, observe that each of the |S]
input strings is sent to all the anchor points in the ball of
radius 2d around the string. The probability that a given string
is an anchor string is |.A|/n. Since we assume |A| = n/B(d),
this probability is 1/B(d), and the expected number of points
to which we send an input string is B(2d)/B(d). Thus, the
communication cost is |S|B(2d)/B(d).

The number of reducers is n/B(d). The number of strings
sent to reducers by all the mappers is |S|B(2d); this figure
is also the communication cost. Thus, the average number of
strings per reducer is |S|B(d)B(2d)/n. Of these the expected
number of strings of which the reducer is the home is
|S|B(d)/n.

However, we do not have to compare all pairs of these
strings. We need only consider the strings s for which this
reducer is home and, for each s, all strings ¢ of distance at most
d from s. The expected number of strings s is |S|B(d)/n, as
mentioned above. The number of possible strings ¢ at distance
up to d from s is B(d). Each of these must be looked up in the
index to see whether they are present at the reducer. If present
and lexicographically after s, the pair {s,¢} is emitted. The
total work at each reducer is thus |S|(B (d))2 /m. Since there
are n/B(d) reducers, the total work at all reducers is |S|B(d).
In summary:

Number of reducers = n/B(d)

Total map cost, M = |S| (min(B(Qd), %))

Total communication, C' = |S|B(2d)/B(d)
Total reducer cost, R = |S|B(d)/n

1) Finding Good Sets of Anchor Points: A simple ran-
domized algorithm can be used to find a covering set of
anchor points with around ”Blf(’i)” points. In case of a “perfect
covering”, we would need ﬁ anchor points, so the number
of points found by the randomized algorithm is more by at
most a logarithmic factor. Proofs of these observations can be

found in the appendix.

E. Comparison of Algorithms via an Example

Example 4.3: Recall that the key parameters for each of
the algorithms were summarized in Table I. The functions
given there omit constant factors, so they cannot be treated
as absolutes, but only as expressions of how these paramaters
grow as the data size grows. Nevertheless, it is interesting to
use these expressions and see how the algorithms compare
for a concrete example. We choose b = 20, so n = 22° or
about one million. We shall use d = 4, so B(d) = 6226,
B(d/2) = 211, and B(2d) = 263,980. We also take |S| to

be 100,000. For the naive algorithm, where the number of
reducers is not fixed, we take K = 10,000.

Table II shows the values for the various costs. It is
interesting to note that no algorithm dominates another. That
is, in order of communication cost, the preference order of the
algorithms is Splitting, Anchor, Naive, Ball-2, Ball-1, while for
reducer cost, the preference order is Ball-1, Ball-2, Anchor,
Splitting, Naive. Using these two orders, the only possible
domanances are that Splitting and Anchor are better than
Naive. However, Naive does have the ability to adjust the
number of reducers, and it is easy to see that with K = 1
(i.e., run the entire algorithm on a single processor), the
communication cost for Naive would be only 10°. That cost
is less than the communication cost for any of the other
algorithms, including Splitting and Anchor.

V. EDIT DISTANCE

Given a set of edit operations on strings, with associated
costs, the edit distance between a pair of strings is defined as
the least-cost path from one string to the other:

Definition 5.1 (Edit Distance): Consider a space of edit op-
erations £ and an associated weight function w : £ — N. The
edit distance between two strings s; and sy of lengths b; and
by is e(s1, s2) if and only if:

1) There is a sequence ey, ..., e of operations transform-

ing s1 to sy with total cost Zle w(e;) = e(sy1,82)

2) No sequence of operations gives a total cost less than

e(s1, $2).

We consider the edit operations of insertion and deletion of
a character at an position, where each of these operations is
of unit cost. This is the most common case of edit distance.

In the remainder of this section, we study map-reducability
of edit distance. We start by giving a generic mapping that
shows how our techniques for Hamming distance can be
applied for edit distance (Section V-A). It turns out that the
naive, ball-hashing-1, and ball-hashing-2 algorithms carry over
directly, as we state in Section V-B. The splitting algorithm
and the anchor-points algorithm need some technical modifica-
tions, and are considered in Section V-D and V-F respectively.
We also discuss another algorithm called the subsequence
algorithm which is not interesting in the case of Hamming
distance in section V-C. All our results on edit distance are
summarized in Table III.

A. Counting the Number of Edits

For insertion and deletion with unit cost, the following is
well known:

Property 5.2: The edit distance between strings s; and so
of lengths b; and by is given by e(s1,s2) = (b + be — 21),
where [ is the length of the longest common subsequence of
s1 and ss.

In what follows, we assume that there is a predefined bound
on the maximum length of a string and a fixed alphabet of size
q, so the space of possible strings is finite. We define three
kinds of balls of radius d around a string s of length I:

« Balls that result from s by performing at most d deletions
or insertions; the size of such a ball is denoted B,(d, ().



Algorithm Map-cost Per Element | #Reducers | Communication (C') | Processing (R)

Naive 100 10% 107 1010

Ball-hashing-1 6226 10° 6.2 x 107 6.2 x 108

Ball-hashing-2 211 10° 2.1 x 107 4.5 x 108

Splitting 5 80 5 x 10° 6.3 x 108

Anchor Points 160 160 4.2 x 10° 6.2 x 10
TABLE II

VALUES OF EXPRESSIONS FROM TABLE I WHEN b = 20, d = 4, |S| = 10°, AND K = 10%.

« Balls that result from s by performing at most d deletions;
we denote their size by B! (d, ).

« Balls that result from s by performing at most d inser-
tions; we denote their size by B"*(d, ), since, as we
shall see, the size of this ball depends only on the length
of s and not on the particular symbols comprising s.

Unlike the case of Hamming distance, when we deal with
edit distance, the sizes of balls B and B depend on the
particular string s, not just its length. That is why we included
the string s as a subscript in those cases. (When the string s
is understood, we shall omit the subscript s, and if the length
l is also understood, we shall omit that argument.)

Example 5.3: Consider the strings 000 and 010 with a
binary alphabet and d = 1. The length is [ = 3 is both cases.
However Bdsl(1,3) = 2, since the only possible strings that
can result from 000 after up to one deletion are 000 and 00.
Also, Bgf(l)(l,?)) = 4, since any of the strings 010, 01, 11, or
10 can result from up to one deletion.

When we delete up to d positions of a string of length
I, we cannot get more than Zf:o (i) different strings. Note
that this expression is what we called B(d) in Section IV.
Typically, some of these deletions will yield the same string,
as we saw in Example 5.3. nevertheless, the upper bound
Bdel(d,l) < Z?:o (f) will serve. To be exact, the number
of ways we can delete depends on the number of runs (a
run is a maximal sequence of identical symbols) a string has.
The number of ways we can make one deletion from a string
equals the number of runs it has. That is why, in Example 5.3,
when s = 000, a string with only one run, we could only
produce one string, 00, by deletion. However, with s = 010, a
string with three runs, a single deletion can produce the three
different strings 10, 00, and O1.

It turns out that B*(d, 1) is independent of the string; its
size is given by

B (d,1) = iZ (l o fj)qf‘(q 1)

i —
2 7=0 J

For B(d,l) we can give a tight upper bound, which we shall
use as the size of a ball when needed in the algorithms that

follow:
B(d,1) < (l Z d) q‘q*

Both these formulas are proven in Appendix E.

Next we consider turning all our Hamming-distance algo-
rithms into algorithms for edit distance. Most of the ideas for
Hamming distance carry over, now that we have defined a
notion of a ball for strings with the edit-distance operations.
If strings have widely varying lengths, then we define disjoint
sets of reducers, each set collecting strings of length within
d of a certain number and break the problem into disjoint
problems each with smaller input.

B. Ball-hashing-1, Ball-hashing-2

The ball-hashing algo-1 depends only on the fact that there
is a finite set of domain elements at distance d from a specific
element and there is an algorithm for computing the specific
distance. So, the algorithm itself carries over as is. The part
that concerns not outputting the same string twice can also be
implemented here, since we can again define a lexicographic
order on the input strings. The analysis of the algorithm is
different only as concerns the size of the balls. Now the
balls may be of different sizes since the size depends on the
string that corresponds to each reducer. Thus the performance
measures of this algorithm will be given in terms of the upper
bound on the size of the balls: B(d) = ("}%)¢? > B(d, 1),
where [ is the size of any string whereas b is the maximum size
of an input string. Besides this change the counting remains
the same as in the Hamming distance case.

For the same reason the ball-hashing algo-2 could remain
the same (with the balls being again of different sizes) if we
didn’t care about outputting the same pair more than once.
Thus, we have to explain how we avoid this in the case of edit
distance. Observe that if we have two strings at edit distance
less than or equal to d then they will both be included in
the reducers which correspond to all their longest common
subsequences. The reducer that finally will output the pair
{s,t} is the subsequence chosen as follows:

1) Choose which of s and ¢ precedes the other; say it is s.
2) Find the common subsequence of s and ¢, of the correct
length, that is leftmost in s. Given the two strings of
length up to b we can find this particular common
subsequence in time O(bd) as explained in Appendix F.

Thus in the cost measures, the only difference (besides the
difference as regards the size of the balls that was pointed out
for the ball-hashing algo-1 above) with the Hamming distance
algorithm is that the reducers processing cost is multiplied by
d.

C. Subsequence Algorithm

Define a k-subsequence for a string to be any subsequence
of length %k found within the string. Suppose all strings are of
length b. (Our techniques can be adapted easily for the case
where strings are of varying length, see Section V-E.) We index
all (b— %)-subsequences of any input string. We claim that at
least one of the subsequences will appear intact in any string
of edit distance d from a particular string. We can prove this
claim as follows: Suppose the length of a longest common
subsequence is /g then we have that 2b — 2y < d; i.e., [y >
b— %. Hence if none of the subsequences is common between
the strings, then the length of a longest common subsequence
will be less than b — %, leading to a contradiction.

We can now analyze the subsequence algorithm based on
creation of all subsequences as described above. In this case
the number of the reducers is ¢°~%/2, which is the maximum



possible number of subsequences. (If we have fewer subse-
quences, we need fewer reducers.) The total communication
cost is C = |S| (b_b'g>, because we need to consider all
(b - d/2)—subsequencés of each string, and their number is
(,.”4)- The map-cost per element is the same (, °,). The pro-
cessing cost in the reducers is calculated as follows: We have
q"~%/? reducers, hence each reducer contains |S|(, "4)q%/?~"
elements. Hence the total processing cost in the reducers is
(remember we have an extra cost bd per pair to avoid including
the same pair twice in the output):

b \? b \?
S|2( d> qd72bbdqb7d/2 _ |82( d> qd/szbd
The algorithm to let a reducer decide whether or not to output
a discovered pair, so that each pair is output only once, is
again the algorithm explained in Appendix F.

For Hamming distance we didn’t include an algorithm based
on subsequences because it will be always beaten by the Ball-
hashing algorithm-1.

D. Splitting Algorithm

We assume all strings are of equal length. (See Section V-E.)
Thus if strings s and ¢ have edit distance d, we go from s to
t by deleting d/2 characters and inserting d/2. This will use
d positions of string s (we can imagine that we insert first
to s and then delete — it is easy to see that we never delete
what we have inserted). Thus at least one substring of length
b/(d + 1) will appear intact in both.

Thus we hash according to substrings of length b/(d + 1).
There are ¢*/(“*1) such substrings. Hence we have ¢/ (4+1) =
n'/(4+1) reducers. The map-cost is equal to the number of
substrings in each string which is b — b/(d + 1). Each string
is hashed to b — b/(d + 1) reducers, hence communication
cost is equal to |S|(b — b/(d + 1)). Each reducer receives
(b—0b/(d+1))g"@+1)|S|/n strings on average because there
are ¢"—(0=0/(d+1) gtrings which begin with the given shingle
and if we move the string to all its possible b — b/(d + 1)
positions inside a string of length b then we get that all the
strings that contain at least once the specific substring are
(b—0b/(d+1))g"(4*+1) and after canonicalization we get the
result. Thus the work in all the reducers is ¢*/ (1) ((b—b/(d+
1)@/ @S| /n)2 = (b — b/(d + 1))2|S |2 /n25/d+1),

How do we avoid including the same pair twice in the
output? Again we compute for each pair {s,t} the leftmost
shingle in the lexicographically preceding string. The algo-
rithm is similar with the algorithm for subsequence only
simpler and its cost is O(b) per pair. Thus the total work in
the reducers is b(b — b/(d + 1))?|S|? /n?=3/(d+1),

E. Datasets with Strings of Varying Length

In the two algorithms described above, the subsequence and
the splitting algorithm, we gave the details for the case where
all strings in the dataset are of equal length. We discuss briefly
below the modifications for those algorithms when there are
strings of varying length.

Now each reducer is characterized by two parameters, one
corresponding to the length of the string under considera-
tion and one to the substring (or subsequence respectively,

depending which of the two algorithms we are modifying).
The same argument that set the suitable length for sub-
string (or subsequence) works again, only now we have
ly + Iy instead of 2b. However the mapper considers only
one string and it should decide on the basis that it does not
know the other string, hence it does not know one of [y
or lo. But the bucketing into classes of lengths helps here.
In particular we do the following: We construct intervals
[0,2d], [d, 3d], [2d, 4d], [3d, 5d], . .., [jd, (j + 1)d], where the
last interval [jd, (j + 1)d] is such that the string of maximum
length in the dataset falls in this interval. The hash is a pair
(i,7), where ¢ takes the values of the interval the length of
the string belongs to (i.e., two values) and j is one of the
substrings (or subsequences) of appropriate length L. L is
calculated based on the length of the string and in particular
on the interval this length belongs. For interval [kd, (k 4 2)d],
L is set to the same value as the case of equal length if we
replace b by kd. The algorithm that allows us not to produce
the same pair twice in the output works here without additional
complications.

Now the map-cost remains the same, but for the other three
costs, we need to sum up for each different interval by setting
for each interval the value for b equal to kd (for the k-th
interval). The resulting costs will be lower than the costs in
the case all strings were of equal length equal to the maximum
length in the dataset. If the strings in the dataset are such that
in each interval we have a constant number of strings (say 10)
then the communication cost and the processing cost in the
reducers are both equal to |S| and the number of reducers is
equal to the number of intervals multiplied by a small constant
which is roughly again equal to |S].

F. Anchor-Points Algorithms

Before describing the anchor-points algorithm, we show a
connection between the generic edit distance described above
and the edit distance using only deletions as operations (called
edit distance by deletion):

Proposition 5.4: If the edit distance from u to v is less than
d, and the edit distance by deletion from wu to ¢ (the anchor
point) is less than d, then the edit distance by deletion from
v to ¢ is less than 2d.

Proof: Suppose a longest common subsequence of » and
v is w and suppose that the distance from w to u is d; by
deletion and the distance from w to v is ds by deletion. It is
easy to see that dy + dy = dist(u,v) < d. A way to derive ¢
from v is by deleting ds to get w then inserting d; to get u and
deleting ds < d to get c. Thus, in the worst case, we need to
delete all the d; insertions and also do all the ds + d3 deletions
in order to get ¢ from v. Thus the distance by deletion from
v to c is less than d; + ds + d3 < 2d. [ |
The above result allows us to use strings such as c¢ above as
anchors. We know that the anchor point is a string that can be
reached by deletions only (as show in the claim above). We
say that an anchor “covers” all strings formed from it by up
to d insertions. If all strings are covered, and we send every
string to all anchors that it can reach by up to 2d deletions,
then all pairs of strings at edit-distance at most d will be sent
to a at least one common anchor.



In analogy with the Hamming distance, we can compute
the anchor point in two ways, either by generating all strings
at distance by deletion at most 2d from the given string (that
will cost B?!(2d)) or by considering all anchor points and
check which is at distance at most 2d from it (that will cost
%W Thus the map-cost per element is the minimum of
the two costs. The total number of reducers is B+(2d) The

total communication cost is |S|B9!(2d). Notice that we only
need to use the size of the ball that results by deletions and
this reduces the communication cost considerably. The total
reducer cost is |S|B™*(2d). Since the size of the ball that is
produced by insertions only and the size of the ball that is
produced by both deletions and insertions are the same order,
in the table we will use B(d) for B*(d) but we will keep
B?!(d) since it is much smaller. When we compute the costs,
whenever the B* appears in the denominator it actually gives
an upper bound because according to what we also explain in
the subsection below using again the Hungarian argument the
number of anchor points is expected to be a bit larger than
that.

1) Finding Good Sets of Anchor Points: Here we can
again apply a Hungarian argument as in Section IV-D1. The
calculations remain the same but notice that now we are
considering a ball around a point that results from deletions
only hence the final result is:

nlogn
T = BI(d)

We have summarized the results on edit distance in Table III.

VI. JACCARD SIMILARITY

Finally, we briefly consider the Jaccard similarity measure:
Given two sets S1, S, the jaccard similarity is given by J; o =

igiggﬂ The Jaccard distance between the same sets is dj =
1 _ ‘SﬂTSzl

|S1US2] . - .
We present a brief description for Jaccard distance here,

with details in the appendix. The algorithms we propose for
Jaccard distance are essentially the edit-distance algorithms
applied to the sorted string representation of sets that comes
from Chaudhuri et al. [17] and Xiao et al. [18].

VII. ANALYSIS OF SORTED-STRING ALGORITHMS

In this section we analyze the performance of the algorithm
proposed by Xiao et al. [18] in terms that best approximate
the analyses we did for our proposed edit-distance algorithms.
The conclusion is that for large universal sets, [18] is very
good, but not so if the universal set is small. Recall that this
algorithm uses sorted strings to represent sets.

Suppose that the limit on edit distance of these strings is
d, and all strings are of length b. Let ¢ be the size of the
universal set, i.e., the size of the alphabet from which strings
are constructed. The reducers correspond to the symbols
representing an element of a set. Thus, there are ¢ reducers. A
string s is sent to d 4 1 reducers, those that correspond to the
symbols appearing in the first d + 1 positions of s. However,
attached to s is an integer indicating the position in which the
symbol appears.

If there are ¢ reducers, then the average reducer receives
|S|(d + 1)/q strings. It does not have to compare all pairs

of received strings; only those where the positions of the
symbol associated with that reducer sum to at most d + 2 are
compared. However, that effect only cuts down the number of
comparisons by a factor of 2 on the average. Thus, the total
work of the reducers is O(|S|?d?/q?). If we compare with the
estimates in Table I we see that this expression has a low
value when g is large, but is higher than the costs associated
with our proposed algorithms if ¢ is small.

Unfortunately, there is another factor that makes this anal-
ysis of [18] too low, but for which we cannot offer an exact
modification. Since the strings are sorted, the earliest symbols
in the order can be expected to appear preferentially in the
prefixes of strings. To what extent this is true depends on
details of the population of strings that we cannot characterize
easily. However, we do not expect the assumption of uniform
distribution of data to reducers will hold. Rather, the reducers
corresponding to early symbols in the order will get larger
sets of strings to compare. Since the cost of comparisons is
quadratic in the number of strings a reducer receives, this effect
can be significant and argues against the algorithms based on
[18].

Interestingly, the approach of [18] can be used for edit
distance as well as Jaccard distance. In that case, the strings
are not sorted, so the skew in the populations of strings at
the reducers does not necessarily occur (but could still be
present if certain characters were more popular, as “e” might
be expected to occur more frequently than “z” in English
text). However, edit-distance applications tend to have a small
alphabet size, in which case the algorithms we propose would
be preferable. In particular, our algorithms generate many
more reducers than there are characters. Thus, even if there is
skew, we have ample opportunity to group large numbers of
“reducers” (i.e., key/value-list pairs) into a smaller number of
Reduce tasks, or allow each reducer to be a Reduce task and
distribute them evenly to a smaller number of compute nodes.

VIII. CONCLUSIONS

In this paper, we developed techniques for performing
similarity joins in a single map-reduce step. We present
algorithms for similarity joins based on the hamming distance,
edit distance, and jaccard distance measures. We compare
our algorithms based on three components: map cost, reducer
cost, and communication cost. Interestingly, we show that
there are multiple non-dominated algorithms, which enables
applications to pick the most suitable application based on
our cost analysis.

REFERENCES

[1] C. Olston et. al., “Pig latin: a not-so-foreign language for data
processing,” in SIGMOD ’08.

[2] A. Thusoo et. al., “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., August 2009.

[3] P. Koutris and D. Suciu, “Parallel evaluation of conjunctive
queries,” in PODS ’11.

[4] S. Suri and S. Vassilvitskii, “Counting triangles and the curse
of the last reducer,” in WWW ’11.

[5] K. Morton, M. Balazinska, and D. Grossman, ‘“Paratimer: a
progress indicator for mapreduce dags,” in SIGMOD ’10.

[6] S. Lattanzi et. al., “Filtering: a method for solving graph
problems in mapreduce,” in SPAA ’11.



Algorithm Map-cost Per Element #Reducers Communication (C') Processing (R)
Naive J (approx. vV'K) K (arbitrary) |SIVK |S|?
Ball-hashing-1 B(d) n |S|B(d) ISI2B(d)/n
Ball-hashing-2 B(d/2) n |S|B(d/2)) I512(B(d/2))*bd/n
Subsequence (bf%) gv—d4/2? ‘3|(bf%) |$‘2(bf%)2qd/2—bbd
Splitting b—b/(d+1) nl/(d+1) [S|(b—b/(d+1)) | b(b—0b/(d+1))?|S|?/n2~3/(d+])

. - (gdel n n BT (2d)
Anchor Points | min (B4 (2d), Fone (d)) B |S|W |S|B(d)/n

TABLE III

SUMMARY OF THE MAP COST PER INPUT ELEMENT, NUMBER OF REDUCERS, COMMUNICATION COMPLEXITY, AND THE TOTAL REDUCER COST FOR
VARIOUS EDIT-DISTANCE JOIN ALGORITHMS. ALL EXPRESSIONS OMIT A BIG-OH; I.E., THEY ARE ORDER-OF-MAGNITUDE. BY ¢ WE DENOTE THE SIZE
OF THE ALPHABET.

[7] F. Chierichetti, R. Kumar, and A. Tomkins, “Max-cover in map-
reduce,” in WWW ’10.
[8] G. D. F. Morales, A. Gionis, and M. Sozio, “Social content
matching in mapreduce,” PVLDB, vol. 4, no. 7, 2011.
[9] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-
reduce environment,” in EDBT, 2010.
[10] A. Rajaraman and J. D. Ullman,
Massive Datasets. e-book, 2010. [Online].
http://i.stanford.edu/ ullman/mmds/
H. J. Karloff, S. Suri, and S. Vassilvitskii, “A model of compu-
tation for mapreduce,” in SODA ’10.
B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlés, “On
scheduling in map-reduce and flow-shops,” in SPAA '11.
F. N. Afrati and J. D. Ullman, “A new computation model for
cluster computing,” Technical Report, December 2009.
[14] T. Ito, “An implementation of locality sensitive
hashing with mapreduce,” Tech. Rep. [Online]. Available:
http://code.google.com/p/likelike/
R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-
similarity joins using mapreduce,” in SIGMOD ’10.
R. Baraglia, G. D. F. Morales, and C. Lucchese, “Document
similarity self-join with mapreduce,” in ICDM ’10.
S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator
for similarity joins in data cleaning,” in ICDE ’06.
C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity
joins for near duplicate detection,” in WWW 08, 2008.
T. Elsayed, J. J. Lin, and D. W. Oard, “Pairwise document
similarity in large collections with mapreduce,” in ACL "08.
A. Okcan and M. Riedewald, “Processing theta-joins using
mapreduce,” in SIGMOD ’11.
W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of
string distance metrics for name-matching tasks,” in IJCAI "03.
W. W. Peterson and E. J. Weldon, Jr., Error-correcting Codes.
MIT, 1972.
A. X. Liu, K. Shen, and E. Torng, “Large scale hamming
distance query processing,” in ICDE ’11.
A. Tietavainen, “On the nonexistence of perfect codes over finite
fields,” SIAM-J-APPL-MATH, vol. 24, no. 1, Jan. 1973.
M. J. E. Golay, “Notes on digital coding,” Proc. IRE, vol. 37,
1949.
T. S. Baicheva et. al., “Binary and ternary linear quasi-perfect
codes with small dimensions,” IEEE Transactions on Informa-
tion Theory, vol. 54, no. 9, 2008.
J. W. Hunt and M. D. Mcllroy, “An algorithm for differential
file comparison,” Technical Report, June 1976.

Mining  of
Available:

(11]
[12]

(13]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

(27]

APPENDIX

A. A Lower Bound for Naive Algorithms

We can show that the algorithm described in Section III-C
is, to within a constant factor, the best we can do without some
way of avoiding comparing all pairs of strings at the reducers.
Suppose that there are K reducers, and each one receives x
strings. Since all (l‘;‘) pairs of strings must be compared, and

each reducer is only capable of comparing the (;) pairs of

strings that it has received, we must have

0)<(2)

It follows easily that z = Q(|S|/VK). Thus, (3) =
Q(|S|?/K). The latter expression is the work performed at
each reducer. As there are K reducers, we have the total reduce
cost R = Q(|S]?).

B. Hamming Codes: details

In Section IV-C we mentioned the properties of Hamming
codes. Here we give a short introduction to the Hamming
codes, how they are constructed and how the decoding is done.
For any r € N a Hamming code exists of distance b = 2" — 1.
It is a linear perfect code. We start by considering an r X b
parity-check matrix H: The columns of H consist of all non-
zero vectors of length 7 (in any order). The set of all codewords
of length b are given by all vectors v such that H - v = 0
mod 2. That is, the set of all codewords is given by:

C={v|H -v=0 mod 2}

It is easy to see that the number of codewords is 2* where
k= (2" —r —1). In fact, we can easily obtain the generator
matrix G whose rows are the basis of the code subspace if
we construct H such that H = [I.|M] where I is the identify
matrix of size r and M is a r x (2" —r — 1) matrix consisting
of all the remaining non-unit vectors. Then, we can construct
G = [MT|Iy»_,_1],a (2" —r —1) x b matrix. The size of the
code, i.e., the number of codewords |C|

|C‘ — 2k — 22T7r71

A perfect code should satisfy the lower bound which indeed
is the case for the code we constructed:

217 22T71

B= - =¥l ¢
1+(0) 1+ -1 cl

The decoding is done as follows: Suppose we want to
decode vector v. Then we multiply v by the matrix H. If
v = c+ e where c a codeword and e a vector with all “0”’s or
with only one “1” and all “0”, then H-v = H-c+H-e = H -e.
Thus the result of the multiplication will be a vector which
will be either zero or will be identical with some column of
H, say the j-th column. Actually j is also the position of the
“1” in e. Thus, we decide that the codeword which is closer
to v is the one which is produced by flipping the j-th position
of v.



The following theorem is a consequence of what we ex-
plained above.

Theorem A.1: For a given r, there is a Hamming code of
length b = 2" — 1 with a r X (2" — 1) = logb X b parity-
check matrix. The most expensive computation of the decoding
algorithm is the multiplication of a vector with H, hence the
processing cost of the decoding is log bx b. This multiplication
creates a vector of length log b which is either all-0 (in which
case the given vector is a codeword itself) or is identical with
one of the columns of H.

Example A.2: As an example take = 3. Then the parity-
1001 1 01

check matrix His: 0 1 0 1 0 1 1 This matrix is
001 0111

a 3 x 7 matrix and creates a code of length 23 —1 = 7.

Suppose we take the vector v = [1101000]. If we multiply
this vector (viewed as a column) by H we get:

H-v=0

Observe that this multiplication is equivalent to adding up
the the first column of H with its second column with its fourth
column (because the “1”s in v appear in the first, second and
fourth position). Thus we conclude that v is a codeword. Now
let us take v’ = [1100000]. Now we need to add the first and
the second column of H getting:

H-v =110

Again the [110] is actually a column vector. Now, we
observe that this vector is identical to the fourth column of
H. Hence the closer codeword to v’ is derived if we flip the
digit in the fourth position of v" and is v = [1101000].

C. Perfect codes

The problem of finding a good set of anchor points under
Hamming distance has been investigated in Coding Theory,
since such sets are also good error-correcting codes. In this
subsection we present what is known and how we can take
advantage of it.

An (n, k, t) binary code is a set of k codewords, which are
(0, 1)-vectors of length n and have the property that the balls
of radius ¢ around each codeword are disjoint. A code (like the
Hamming code in Section IV-C) where its set of codewords
cover the whole space of words is called perfect. A quasi-
perfect code is one in which the balls of radius ¢ centred on
codewords are disjoint and the balls of radius ¢t + 1 cover the
space, possibly with some overlaps.

A complete classification of the parameters for which per-
fect codes over Galois fields [22] exist is available since the
early 1970’s (see e.g., [24]). The nontrivial perfect codes are
very few:

o the Hamming codes (with parameters as in previous
section)

« the binary (23, 2048, 7) Golay code [25] and the ternary
(11, 729, 5) Golay code.

For quasi-perfect codes, we don’t have a complete charac-
terization. However, it appears that, like perfect codes, quasi-
perfect codes exist only for small radii. For covering radius
more than 3 only few non-trivial examples of binary quasi-
perfect codes exist (see e.g., [26]).

D. Finding Good Sets of Anchor Points: Details

Here we provide details for our short discussion in Sec-
tion IV-D1 on finding good sets of anchor points. Suppose we
have = codewords (anchor points), and each string needs to be
within distance d from some anchor point. Say that an anchor
point covers string s if it is within distance d of 5. With n = 2°,
there are (Z) ways of picking = anchor points. Some of these
will fail to satisfy the condition that every string is covered by
some anchor point. Focus on a particular string s. If a selection
of & anchor points fails to cover s, then the selection of anchor
points must be made from the strings outside the ball of radius
d around s. The number of selections of z anchor points that
do not cover s is ("_f (d)). Since there are n possible strings
s, the total number of selections of x anchor points that fail
to cover some string is at most n("ff (d)). As long as this
quantity is strictly less than (Z) then there must be some
selection of = anchor points that covers every string. That is,
we know there is a set of = anchor points that covers every

string provided
n(n—B(d)) - (n) 0
x x

We shall assume that 2 is small compared with n or n— B(d).
If so, then ("_f (d)) is approximately

(n— B(d))"/a!

and (") is approximately n”/z!. On this assumption, Equa-
tion 1 becomes

xlogn > 10gn+mlog(nf B(d))

or 1
ogn
x > g

log nfg(d)
where the logarithms are natural logs.
We shall further assume that B(d) is small compared with

n. If so, then log %@l) is approximately B(d)/n, whereupon

Equation 1 holds as long as

nlogn
B(d)

Thus, the number of anchor points needed is only a little more

(a factor of logn, or b) than what would be needed if there

were a perfect coding (which would have given z = %).
The above argument is only an existence proof. However,

if we double the left side of Equation 1:

(1) <()

then we can be certain that a randomly chosen set of = points
has a 50% probability of covering every point. The above is
satisfied provided = > ”}Bogd?". As long as we pick x to satisfy
the above, we can test random selections of anchor points, and
the expected number of selections we must test is two. In fact,
we could multiply the left side of 1 by 1000, which would only
require that x > % (i.e., a small fraction more than the
minimum z implied by Equation 1 when n is much larger than
1000), and know that a random selection of = points covered

all points with probability .999 without testing.

x >




E. Upper Bounds on B and B for Edit-Distance

The formula for B is somewhat tricky. Let us begin
by considering how many different strings we can obtain by
inserting exactly ¢ symbols from an alphabet of size ¢ into a
string s of length [. Notice that it is never necessary to insert
a symbol x immediately to the left of another z. We could
instead insert the same symbol immediately to the right of a
run of z’s. Thus, if we insert anywhere but at the right end of
s, we should choose from only ¢ — 1 of the ¢ symbols. If we
make this restriction, then every string that results from s by
1 insertions can be constructed in a unique way. To count the
number of these strings, begin by observing that the resulting
string ¢ has [ + 4 positions, of which i are inserted positions.
These positions can be ordered in (l‘:’) ways. However, we
must distinguish between inserted positions at the end of ¢ and
those that have at least one original position to their right.

The string ¢ will have a tail of j inserted positions at the
right end, where ¢ > j > 0. These positions can be filled with
any of the g possible symbols. Positions not in the tail can only
be filled with one of ¢—1 symbols, all symbols of the alphabet
except for the symbol in the position that follows, regardless
of whether the following position is original or inserted. Thus,
the number of possible strings ¢ that can be formed by inserting
i symbols, with j of those symbols in the tail is (lﬁ?)qj(q—
1),

If we sum this count fori =1,2,...,dand j =0,1,...,1,
then we get the expression for B"*:

d i .
BT (d 1) =YY (Z Iy J)(Jj(q - 1)
iz1j=0 v " 7J
Notice that this quantity is always larger than B9!(d,[), and
except for the case ¢ = 2, it is much larger. The largest term of
the sum is (lzd) q%, and as long as d is small compared with 1,
that one term is, to within a constant factor, an approximation
for the whole sum.

The value of Bs(d, 1), involving combinations of insertions
and deletions is naturally larger than B‘*(d,l). However,
since there are always more possible insertions than deletions
on any given string, the order of magnitude of By(d,!) and
B3 (d, 1) are the same. We can get an upper bound on B(d, [)
for any string s by considering d “markers” representing
edit operations interspersed with the [ positions of the string
s. There are (ltld) ways to order the original symbols and
markers.

Markers can be replaced by one of the g symbols of the
alphabet or by “delete.” The effect of the latter is to delete the
following symbol of the string if it was one of the original
symbols. If the following symbol was inserted or another
“delete,” then “delete” has no effect. Note that this policy lets
us obtain any string that can be formed by d or fewer edits.

A marker that is part of the tail of markers at the right end
can be replaced by any of the ¢ alphabet symbols. However, as
discussed above in connection with counting B™s_ a marker
that is followed by an original symbol of s or an inserted
symbol need not be replaced by that same symbol, since a
run of z’s can always be increased by insertions at the right
end. Thus, markers not in the tail can also be replaced in ¢
ways: either “delete” or one of ¢ — 1 alphabet symbols. We
have thus proved that

Proposition A.3: B(d,1) < ("1%)q%q.

F. Finding Leftmost Subsequences

The following is a simple variant of the Hunt-Mcllroy
algorithm [27], which is the one implemented in the UNIX
command diff. Suppose we have two strings s and ¢ with a
common subsequence u of length [. We want to check whether
there is any other subsequence of the same length that is “to
the left” of u with respect to string s. That is, each common
subsequence corresponds to an increasing list of positions in
both s and ¢. We can compare two such sequences of positions
lexicographically, and the first is said to be fo the left. More
formally, if the two sequences are pp,pe,... and q1,q2,-. .,
then the first is to the left of the second if for some 7 > 1, we
have p; = q; for 0 < j <4, while p; < g;.

Example A.4: Let s = acba and t = abca. There are two
longest common subsequences aca and aba. The former is to
the left, since its position list in s is [1, 2, 4] while the position
list for aba in s is [1,3,4].

To find the leftmost subsequence whose length is u, we
construct a matrix M|i, j], where i ranges from 1 up to ||
and j ranges from O up to [¢t| — |u|. The value of M]3, j] is
the leftmost list of positions of s that forms a subsequence of
length ¢ —j with the first ¢ symbols of ¢. The value is undefined
if there is no sequence of positions meeting the requirements.

To start, let M[1,1] be the empty list and M][1,0] be
the leftmost position of s that agrees with position 1 of
t (undefined if no such position exists). For the induction,
suppose we have computed M for first arguments up to ¢, and
let us compute the entries for fist argument ¢ + 1. The list for
MTi+1, ] can be constructed in two possible ways. Assume
the symbol in position ¢z 4+ 1 of ¢ is z.

1) Take the list M][i,j] and concatenate it with the first
position of s after the end of this list that holds z.

2) Take the list M[i, 5 — 1] and do not match x against any
position of s.

Example A.5: Let s = cbacbbbc--- and t = abcabebh--- .
M]6,3] is [1,2,4], since cbc is the leftmost common subse-
quence of length 6—3 = 3 between s and the first six positions
of t. M[6,2] is [1,2,5,8], since cbbe is the leftmost sequence
of length 6 — 2 = 4 between s and the first six positions of .

The seventh position of ¢ holds b. To form M](7,3] we
can either copy M|[6,2] = [1,2,5, 8] or start with M[6,3] =
[1,2,4] and append the leftmost position of s that follows
position 4 (the last position of the list M[6,3]) and holds
b. That position is position 5, so the second option gives
us the list [1,2,4,5]. Since the letter precedes [1,2,5,8]
lexicographically, we set M7, 3] = [1,2,4,5].

Notice that M][i, j] is always identical to or to the left of
MTi, j—1]. For if not, then we could use the first i—j positions
of the list M|é, j — 1] as M[i, j]. Thus, if M, j] is strictly to
the left of the first ¢ — j positions of M[i,j — 1] we always
choose option (1) unless there is no later position of s that
matches z. If the last position of M|i, j] equals the next-to-
last position of M i, 7 — 1] (in which case it is easy to prove
that M i, j] equals the first i — j positions of M i, j — 1]), then
we pick option (1) if and only if the next position of s that
holds symbol z is to the left of the last position of M|, j —1].



After computing M||t|, [t| — |u|], we examine this list. If in
s these positions form subsequence u, then u is the leftmost
subsequence of its length within s, and the reducer doing this
calculation emits the pair {s,¢}. Otherwise, this reducer does
not output this pair, knowing the reducer associated with the
leftmost subsequence will output the pair instead.

The running time of this algorithm on strings of length
b with subsequences of length b — d/2 is O(bd). To argue
the case we must show how to compute each element of M
in O(1) time, since there are only bd/2 elements that must
be computed. That, in turn, requires we set up some data
structures, after which the O(1) work per element claim should
be clear.

a) We must index the symbols of s. There is a list for each
symbol that appears one or more times, and a pointer
a position on the list for each symbol z is accessible
in O(1) time via the index, given z. The total length
of all these lists is |s| = b. For each symbol z, its
pointer indicates the list entry corresponding to the first
unexamined position holding . When we need to find
the first position of s that holds x and is to the right
of some given position p, we find the pointer for = and
advance it down the list until we find a position greater
than p or reach the end of the list (in which case no such
p exists). As the sum of the lengths of the lists is b, these
searches take time O(b) total.

b) We cannot represent M|, j] by the complete list, or
copying lists would become too expensive. However, we
can represent M i, j] by the last position on the list and
a pointer to a place where the first # — 5 — 1 positions
of the list are represented. To copy a list, simply copy
its position and pointer. To append a position p to a list
L and thereby form form M{i, j], store as the value of
MTi, j] the position p and a pointer to a place where L is
represented (in practice, that would always be the entry

G. Jaccard Distance

For this section we assume that the elements of the sets are
drawn from a universe of ¢ distinct elements and that each
element can appear at most once. (Results can be extended
easily for the case where elements may appear multiple times,
up to a maximum cardinality of b.)

1) Mapping Jaccard Distance to Hamming Distance: We
compute the size of the ball of radius d around a set .S Suppose
the threshold on the Jaccard distance is d. Then the Jaccard
similarity threshold is J = 1 — d. Suppose we have a set .S of
size p. Recall we have ¢ distinct elements in our universe. Let
S’ be a set with intersection with S of size 4, i.e., |[SNS'| =
i. Then S’ is at Jaccard distance less than d from S if the
assymetric difference S’ — S is of size at most i/J — p. The
number of different such sets S’ is:

» [i/J—p] g—p
B, =
() % ()
ifi/J —p > 1 and B; is equal to 0 otherwise.
Now the size of the ball is Y_7_| B;.
Below, first we present a simple algorithm and then we

present algorithms that exploit the balls or certain radius

around a point in a similar way as in previous sections for
Hamming and edit distance.

2) Simple algorithm: We pre-define a total order on all
the ¢ elements. We can now represent each set as a string
(over an alphabet of size ¢), by listing its elements in sorted
order. These string representations of sets satisfy the following
salient properties:

1) No character appears more than once in any string.
2) If two characters appear in two different strings, then
they appear in the same order in both strings.

Next we show how the string representations can be exploited
for the similarity join: Consider sorting (or bucketing) the set
of strings based on length. Then, for each string s, we will
compare it with all strings ¢ that follow s in the sorted set of
strings; but we can restrict the set of strings to compare s with
based on the length of s: We only consider strings ¢ that are
not much longer than s, as shown below.

Suppose the required lower bound on the Jaccard similarity
between the original sets is J. Let L(x) denote the length
of any string x. In our approach L(s) < L(t). Since the
intersection of the sets corresponding to s and ¢ have at most
L(s) elements in common, and at least L(¢) elements in the
union, we have an upper bound on their Jaccard similarity:

Jsp < iigﬂ Therefore, we only consider strings ¢ with

L(t) < X2,

Using the bucketing technique described above, we consider
pairs of strings which satisfy the length requirement; this is
achieved by a map-phase that groups strings into buckets,
with each string being mapped to buckets where it must
be compared with other strings. Thereafter, we compare the
strings, and if their intersection is above the required threshold,
we output the pairs.

9Note that this lower bound is appropriately revised if each element may
appear up to b times in each set.



