
Learning-based Entity Resolution with MapReduce

Lars Kolb1 Hanna Köpcke2 Andreas Thor1 Erhard Rahm1,2

1Database Group, 2WDI Lab
University of Leipzig

{kolb,koepcke,thor,rahm}@informatik.uni-leipzig.de

ABSTRACT
Entity resolution is a crucial step for data quality and data
integration. Learning-based approaches show high effective-
ness at the expense of poor efficiency. To reduce the typ-
ically high execution times, we investigate how learning-
based entity resolution can be realized in a cloud infras-
tructure using MapReduce. We propose and evaluate two
efficient MapReduce-based strategies for pair-wise similar-
ity computation and classifier application on the Cartesian
product of two input sources. Our evaluation is based on
real-world datasets and shows the high efficiency and effec-
tiveness of the proposed approaches.

Keywords
MapReduce, Entity resolution, Machine learning, Cartesian
product, Weka

1. INTRODUCTION
Entity resolution (ER) (also known as deduplication, record

linkage, object matching, fuzzy matching, similarity join
processing, reference reconciliation) is the task of identify-
ing objects that refer to the same real-world entity. ER is a
well-studied problem, e.g., see [20] for a recent survey. It is
of critical importance for data quality and data integration,
e.g., to find duplicate customers in enterprise databases or
to match product offers for price comparison portals.

ER for real-world data sets typically requires to apply sev-
eral matchers (e.g., to compare attribute values with some
similarity metrics) on several attributes and combine the
individual similarity values to derive a match decision for
each pair of entities. With a rising number of attributes
and matchers, it becomes a very complex task to manu-
ally specify a reasonable strategy for the combination of
matcher similarities in terms of match quality. Therefore,
current state-of-art approaches employ learning-based ap-
proaches and treat entity resolution as a classification prob-
lem where each pair has to be classified as either match or
non-match. To this end, a suitable classifier is learned using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

labeled examples of matching and non-matching pairs. The
pair-wise similarity values (one for each matcher) serve as
features for the classification.

The high effectiveness of learning-based approaches comes
with poor efficiency. A recent study [19] evaluated several
state-of-the-art entity resolution frameworks. The execution
times for the considered learning-based approaches are in
general significantly worse than for non-learning approaches.
Nearly all learning-based approaches do not scale with larger
input sets and are unable to match sufficiently fast on the
Cartesian product of the input sources. For example, the
largest match task in [19] required to process approx. 168
millions entity pairs and the most effective combined ap-
proaches thereby exceeded the limit of five days. The main
reason for the poor performance is the extremely expensive
computation of similarities that serve as input for the clas-
sifier. For each matcher, the entire Cartesian product, i.e.,
all pairs of input entities, needs to be exploited. As we will
show, the time required for classifier training and applica-
tion is comparatively negligible. This makes it attractive to
combine the use of proven open-source data mining solutions
like Weka [12] or RapidMiner [21] with a parallel pair-wise
similarity computation in a cloud infrastructure.

MapReduce (MR) is a popular programming model for
parallel processing on cloud infrastructures with up to thou-
sands of nodes [9]. The availability of MR distributions such
as Hadoop makes it attractive to investigate its use for the
efficient parallelization of data-intensive tasks. MR has al-
ready been successfully applied to parallelize entity resolu-
tion workflows [22, 23, 18, 17]. However, current approaches
focus on the MR realization of specific matching or blocking
algorithms like PPJoin+ or Sorted Neighborhood.

Our contributions can be summarized as follows:

• We propose two different strategies for the similarity com-
putation and classifier application on the Cartesian prod-
uct of two input sources (Section 3). The first strategy,
MapSide, leverages the existing input partitions and real-
izes the similarity computation solely in the map phase.
The second strategy, ReduceSplit, employs replication of
entities to distribute the Cartesian product evaluation
evenly across all reduce tasks.
• We evaluate our strategies and thereby demonstrate their

efficiency for learning-based entity resolution with MR.
The evaluation is done on a real cloud environment and
uses real-world data (Section 4).

In the next section, we introduce some preliminaries on
MapReduce and learning-based entity resolution. Related
work is reviewed in Section 5 before we conclude.

Figure 1: Schematic overview of example MR program exe-
cution using 1 map process, m=2 map tasks, 2 reduce pro-
cesses, and r=3 reduce tasks. In this example, partitioning
is based on the key’s color only and grouping is done on the
entire key.

2. PRELIMINARIES

2.1 MapReduce
MapReduce (MR) is a programming model designed for

parallel data-intensive computing in cluster environments
with up to thousands of nodes [9]. Data is represented by
key-value pairs and a computation is expressed with two
user defined functions:

map : (keyin, valuein)→ list(keytmp, valuetmp)

reduce : (keytmp, list(valuetmp))→ list(keyout, valueout)

These functions contain sequential code and can be exe-
cuted in parallel on disjoint partitions of the input data. The
map function is called for each input key-value pair whereas
reduce is called for each key keytmp that occurs as map out-
put. Within the reduce function one can access the list of
all corresponding values list(valuetmp).

Besides map and reduce, a MR dataflow relies on three
further functions. First, the function part partitions the map
output and thereby distributes it to the available reduce
tasks. All keys are then sorted with the help of a comparison
function comp. Finally, each reduce task employs a grouping
function group to determine the data chunks for each reduce
function call. Note that each of these functions only operates
on the key of key-value pairs and does not take the values
into account. Keys can have any arbitrary structure and
data type but need to be comparable. The use of extended
(composite) keys and an appropriate choice of part, comp,
and group supports sophisticated partitioning and grouping
behavior and will be utilized in one of our strategies (see
Section 3.2).

For example, the center of Figure 1 shows an example
MR program with two map tasks and three reduce tasks.
The map function is called for each of the four input key-
value pairs (denoted as �) and the map phase emits an
overall of 10 key-value pairs using composite keys (Figure 1
only shows keys for simplicity). Each composite key has a
shape (circle or triangle) and a color (light-gray, dark-gray,
or black). Keys are assigned to three reduce tasks using a
partition function that is only based on a part of the key

Figure 2: Schematic overview of a learning-based entity res-
olution workflow.

(“color”). Finally, the group function employs the entire key
so that the reduce function is called for 5 distinct keys.

The actual execution of an MR program (also known as
job) is realized by an MR framework implementation such
as Hadoop [1]. An MR cluster consists of a set of nodes that
run a fixed number of map and reduce processes. For each
MR job execution, the number of map tasks (m) and reduce
tasks (r) is specified. Note that the partition function part
relies on the number of reduce tasks since it assigns key-value
pairs to the available reduce tasks. Each process can execute
only one task at a time. After a task has finished, another
task is automatically assigned to the released process using
a framework-specific scheduling mechanism. The example
MR program of Figure 1 runs in a cluster with one map
and two reduce processes, i.e., one map task and two reduce
tasks can be processed simultaneously. Hence, the only map
process runs two map tasks and the three reduce tasks are
eventually assigned to two reduce processes.

2.2 Learning-based Entity Resolution
Entity resolution (ER) can be considered as a classifica-

tion problem. For all entity pairs p ∈ R × S of two input
sources R and S, a classifier determines if the entity pair
is either a match or a non-match. State-of-the-art ER ap-
proaches employ machine learning algorithms to train and
apply appropriate classifiers. Machine learning libraries (e.g,
Weka) ship with implementations of many classifiers, e.g.,
Decision Tree (DT) or Support Vector Machines (SVM).
Classifiers usually provide standardized interfaces and thus
allow for an easy integration into ER workflows. Figure 2
shows a schematic overview of such a learning-based ER
workflow that is divided in two phases: classifier training
and classifier application.

The training phase requires training data, i.e., entity pairs
that are annotated whether they represent a match or a
non-match. The manual labeling of training data is very
time consuming and is typically done offline. Each labeled
pair of the training data is annotated with similarity values
computed by k different matchers. Based on these pair-wise
similarity values and the match/non-match label, a classifier
is trained, i.e., a machine learning algorithm generates an

Figure 3: Example dataflow of the MapSide strategy for
m=3 map tasks. The smaller source R is used as additional
input for all map tasks.

internal classification model, e.g., a decision tree.
During the second phase the classifier is applied to all rel-

evant entity pairs. In general, ER exploits the Cartesian
product of R and S, i.e., the classifier is applied to all pos-
sible entity pairs. However, blocking techniques [3] might
be employed to reduce the overall number of classifier invo-
cations by pruning entity pairs that are likely to be a non-
match based on some blocking criteria. The same k matchers
as before are utilized to annotate each pair with similarity
values before classifier invocation. The pair-wise similari-
ties serve as features for the classification and the classifier
returns either match or non-match. The final match result
typically includes matching entity pairs only, i.e., all “miss-
ing” pairs are implicitly considered as non-matches.

3. SIMILARITY COMPUTATION STRATE-
GIES

As our analysis will show, the similarity computation in
the application phase is by far the most time-critical step.
The entire learning phase usually accounts for less than 5%
of the overall run-time due to the fact that the training data
is significantly smaller than the number of pairs in the appli-
cation phase. Furthermore, the second phase is dominated
by the similarity computation (see Section 4.2).

In the following, we therefore focus solely on the efficient
pair-wise similarity computation, i.e., applying k matchers
to all entity pairs. More specifically we concentrate on the
Cartesian product R×S though our approaches can also be
employed in conjunction with blocking, i.e., for a subset of
R× S.

To this end, we propose two strategies that are capable
to efficiently distribute all relevant entity pairs across mul-
tiple tasks and, thus, perform similarity computation and
classifier application in parallel. Both approaches rely on
the fact that for any entity pair both similarity computa-
tion and classifier application are independent from other
entities. The first strategy, MapSide, makes use of the exist-
ing data partitioning during the map phase and implements
similarity computation solely in the map phase. The second
strategy, ReduceSplit, evenly distributes entity pairs across
all available reduce tasks that eventually apply matchers for
similarity computation.

Figure 4: Example dataflow of the ReduceSplit strategy for
m=3 map tasks and r=3 reduce tasks. Source R is split into
x=2 blocks; S in y=3 blocks.

3.1 MapSide
MapSide makes use of the existing data partitioning during

the map phase and implements similarity computation solely
in the map phase. It follows the broadcast join idea [5] that
“broadcasts” the smaller relation to all map tasks. All map
tasks read and buffer the smaller source (R) in memory at
initialization time. In the following, the map tasks operate
only on the larger source (S) and compare the currently
processed entity of S with all buffered entities. Herewith, the
time required for MapReduce-specific data redistribution,
sorting, and grouping can be saved. By splitting the smaller
source in x blocks and executing the basic strategy x times,
MapSide can still be utilized if the smaller source does not
entirely fit into main memory.

Figure 3 shows an example for a small source R (2 entities)
and a larger source S (6 entities). Entities a, b ∈ R are sent
to all map tasks as additional input and compared to all
data partitions of S, i.e., {c, d}, {e, f}, and {g, h}.

3.2 ReduceSplit
The ReduceSplit strategy realizes the similarity computa-

tion during the reduce phase. It targets an even workload
distribution across all reduce tasks, i.e., all reduce tasks
should process the same number of entity pairs. Reduce-
Split follows the idea that both data sources are split into
disjoint blocks, i.e., R is split in x blocks and S is split in y
blocks. All x blocks of R are compared with all y blocks of
S. To this end, ReduceSplit combines composite map out-
put keys with specific partitioning and grouping functions
to ensure that all entity pairs are processed and all reduce
tasks process (nearly) the same number of entity pairs.

During the map phase, ReduceSplit emits y key-value pairs
for each entity of R and x key-value pairs for each entity of
S. The map key consists of the following three elements:

• i = block index of R
• j = block index of S
• entity’s data source (R or S)

For each entity of R, map first assigns a block index i ∈
[0, x− 1]. This can either be done at random or by an enu-
meration scheme. It then outputs y key-value pairs (i.j.R,
entity.R) for j ∈ [0, y − 1]. Analogously, every entity of
S is assigned a fixed block index j and x key-value pairs
(i.j.S, entity.S) are emitted (i ∈ [0, x − 1]). The structure
of the composite key ensures that every entity is compared
to all blocks of the other source.

Since the number of block pairs usually exceeds the num-
ber of reduce tasks r, a partitioning function

part(i, j) = i + j · x mod r

is applied to distribute the processing of block pairs across all
reduce tasks. The partitioning function thereby enumerates
all pairs (i + j · x) and assigns them to the reduce tasks
consecutively (using the modulo function).

The grouping function groups together all map keys shar-
ing the same pair of block indexes. Finally, the keys are
sorted and the reduce function can access the values row-
by-row. Since the source’s name is part of the composite
key, all entities of R appear before all entities of S. The re-
duce function can therefore buffer all entities of R and then
process the following list of entities of S step-by-step, i.e.,
compare one entity of S with all buffered entities of R.

Figure 4 illustrates an example dataflow for the same
sources we have already used in Figure 3. Source R is split
into x=2 blocks and S is divided into y=3 blocks. For ex-
ample, entity a ∈ R is assigned a block index i = 0 and
emitted y=3 times with the following keys: (0.0.R), (0.1.R),
(0.2.R). Entity a is eventually sent to all r=3 reduce tasks
and compared to all y=3 blocks of S, i.e., {c, f}, {e, h} , and
{d, g}.

The main advantage of ReduceSplit over MapSide is that it
does not require that one source (R) fits entirely into main
memory. Any reduce tasks needs to buffer |R|/x entities
only. This benefit comes at the expense of an increased data
replication. The map phase emits |R| · y + |S| · x key-value
pairs whereas MapSide only replicates (the smaller) source R
for each map task, i.e., |R| ·m. For |R| < |S| the number of
blocks x should therefore be minimized to avoid unnecessary
data replication by using the available main memory to full
capacity.

Furthermore, the resulting x · y block pairs should be
evenly distributed across all reduce tasks. Therefore x · y
should be a multiple of r.

4. EVALUATION

4.1 Experimental Setup
We ran our experiments on Amazon EC2 with up to 50

High-CPU Medium instances in EU West location. Each of
these instances runs an Ubuntu 10.04 Server 32-bit OS and
provides 1.7GB memory and 5EC2 compute units (2 virtual
cores)1. Both master daemons for managing the distributed
file system and the execution of MR jobs ran on a dedicated
additional Standard Small instance.

Each node was configured to run at most two map and
reduce tasks in parallel. On each node, we set up Hadoop
0.20.2. We made the following changes to the Hadoop de-
fault configuration: (1) We set the block size of the DFS

1We observed mainly virtual cores of type Intel(R) Xeon(R)
E5410@2.33GHz

Figure 5: Overall execution time for the MapSide strategy
(n=10 nodes, m=100 map tasks) and breakdown into three
categories. The number of employed matchers varies from 1
to 6 (see Figure 6 for detailed match configuration).

to 128MB, (2) disabled DFS block replication, (3) allocated
1GB to each Hadoop daemon and (4) 500MB virtual mem-
ory to each map and reduce task. (5) Task trackers were
allowed to reuse the JVM after task execution for subse-
quent tasks and (6) speculative execution was turned on.
(7) Finally, we increased the sort buffer to 200MB.

We utilized two bibliographic datasets that have already
been used in previous ER evaluations [19]. DBLP contains
about 2,600 entities and the second dataset (Scholar) con-
tains about 64,000 entities. We applied the classifier on each
pair of the Cartesian product DBLP× Scholar (168.1 million
pairs). For the classifiers, we utilized Weka 3.6.4. In partic-
ular, we used a decision tree2 and a SVM3 implementation.

4.2 Time distribution and match quality
In our first experiment, we evaluate the runtime and match

quality for different matcher configurations using our Map-
Side strategy. To this end, we utilize up to six matchers that
operate on two attributes (publication title and authors) and
apply a decision tree and a SVM for classification, respec-
tively. We vary the number of matchers that are applied
before classifier application to illustrate the impact on both
the overall execution time and match quality.

Figure 5 shows the overall execution time along with a
breakdown into similarity computation, classifier applica-
tion, and remaining MR overhead. Obviously, the overall
execution time is clearly dominated by the similarity com-
putation for both classifiers. Depending on the number
of matchers, the similarity computation consumes between
88% (one matcher) and 97% (all six matchers) of the run-
time. In general, we observe a similar behavior for both
classifiers. However the application of the SVM appears to
be slightly faster.

The similarity computation utilizes three similarity mea-
sures (TFIDF, Trigram, Jaccard) and two attributes (title
and authors) leading to 6 different matchers (see caption
of Figure 6). Matchers #1 and #4 are the most expen-
sive since they require an IDF-index4 lookup for each token
(i.e., attribute term). Hence, adding matcher #4 leads to
a higher increase in computation time than adding other
matchers. Furthermore, the length of the author attribute

2weka.classifiers.trees.LMT (default parameters)
3weka.classifiers.functions.LibSVM (linear kernel function)
4The IDF-Index was computed once with MR as a pre-
processing step and is not included in the execution times.
The index is stored in the format produced by Hadoops’s
MapFileOutputFormat and shipped to each node with Ha-
doop’s Distributed Cache.

Figure 6: Average match quality (F-measure) for different
classifiers and numbers of matchers.

is significantly shorter than of the title attribute. This is
especially true for Scholar that suffers from many missing
author attribute values. Therefore, adding matchers #5 and
#6 only slightly increases the execution time in comparison
to matchers #2 and #3.

We also evaluate the resulting match quality in our exper-
iment. Figure 6 depicts the F-Measure that is determined
based on a (manually created) perfect match result. Since
the match quality heavily depends on the quality of training
data, we applied the same evaluation strategy as in [19].
For each classifier and matcher combination, we selected
10 times 500 pairs according to the Ratio strategy with a
threshold of 0.4 and a ratio of 0.4 using TFIDF similarity
and averaged the resulting F-measure over the 10 runs.

The results show that employing multiple matchers gen-
erally increases the overall match quality. This is especially
true if additional matchers operate on different attributes.
For example, F-measure increases by 3% to 4% when adding
matcher #4. On the other hand, adding too many matchers
may deteriorate the match quality due to overfitting (e.g.,
decision tree for 6 matchers). However, the benefit of mul-
tiple matchers underlines the importance of an efficient par-
allel similarity computation.

The decision tree classifier outperforms the SVM by about
2% in F-Measure. On the other hand, the SVM seems to
be more stable against an unfavorably matcher selection.
Slightly better results have been reported for the same data-
set [19], so we expect that match quality can be further in-
creased by tuning the (internal) SVM parameters.

4.3 MapSide vs. ReduceSplit
In a second experiment, we evaluate the efficiency of our

two strategies MapSide and ReduceSplit. We use a fixed
cloud environment consisting of n = 10 nodes and employ
all six matchers.

Figure 7a shows the resulting execution times for the Map-
Side strategy for varying numbers of map tasks m = k · 20
(for 1 ≤ k ≤ 5). A higher number of tasks, of course, in-
creases the MR overhead but reduces computational skew
effects that stem from matching attribute values of different
length and from heterogeneous hardware. Since the similar-
ity computation dominates the overall execution time, com-
putational skew is a serious factor. For example, the overall
execution time could be reduced by 20% when increasing m
from 20 to 100.

For ReduceSplit, we set a fixed the number of map and
reduce tasks (m=20, r=20). This is because ReduceSplit al-
ready deals with computational skew by defining x · y block
pairs that are evenly assigned to the available reduce tasks.
We vary both x and y from 1 to 20 and Figure 7b illustrates

(a) MapSide (b) ReduceSplit

Figure 7: (a) Execution times for MapSide using varying
number m of map tasks. (b) Execution times for ReduceSplit
using different numbers x and y of blocks for the two sources
DBLP and Scholar, respectively.

the resulting execution times for all combinations. In gen-
eral, we make the following three observations. First, for
x · y < r the execution is significantly slow because the clus-
ter is not fully utilized. Second, the experiments prove that
x (the number of blocks of the smaller source DBLP) should
be smaller than y (the number of blocks of the larger source
Scholar). For example, (x=5, y=20) performs better than
(x=20, y=5) because in the latter case the larger dataset
Scholar needs to be replicated 20 times. Third, increasing y
while holding x (x < y) constant usually decreases the exe-
cution time because the influence of computational skew is
diminished. The only exception is (x=10, y=10) and (x=10,
y=15) since the first configuration leads to 100 block pairs
that can be evenly distributed across all r=20 reduce task
whereas the latter suffers from an uneven distribution be-
cause 150 (=number of block pairs) is not a multiple of 20.
We repeated the experiment with x, y ∈ [1, 100]. For larger
x, y values, we observed relatively constant execution times
indicating that load balancing and computational skew as-
pects are more important than the amount of replicas.

The best ReduceSplit configuration (x=5, y=20) in our ex-
periment performs slightly faster than MapSide. However,
setting appropriate values for x and y is a difficult task and
might depend on the number of reduce tasks as well as the
dataset characteristics. We therefore propose to prefer Map-
Side if the smaller dataset fits into memory.

4.4 Scalability
In our last experiment we prove the scalability of our Map-

Side realization of learning-based ER. To this end, we vary
the number of nodes from n=1 to n=50 and set the number
of map tasks to m = 10 · n to diminish computational skew
effects. Figure 8 shows the resulting execution times and
speedup values.

We observe an almost linear speedup for up to 10 nodes.
Furthermore, we still achieve very good speedup values for
up to 50 nodes, e.g., a speedup of 39 for 50 nodes. However,
the speedup increase alleviates for more than 10 nodes. This
is mainly caused by the fact that an increasing number of
map tasks decreases the workload (number of entity compar-
isons) per map task. At the same time, the relative fraction
of the MR overhead for task initialization and task shutdown
is increasing. For example, the average execution time per
map task for n=10 is about 10 minutes whereas for n = 50
it is about 2 minutes while the (absolute) MR overhead per
task remains constant.

Figure 8: Execution times and speedup for all six matchers
using 1 up to 50 nodes.

5. RELATED WORK
Entity resolution is a very active research topic and many

approaches have been proposed and evaluated [20]. Current
state-of-art approaches employ learning techniques to auto-
mate matcher configuration and combination. Prior work
has considered a variety of classifiers [4, 6].

There are only a few approaches that consider parallel en-
tity resolution. The authors of [7] show how the match com-
putation can be parallelized among available cores on a sin-
gle node. Parallel evaluation of the Cartesian product of two
sources is described in [15]. [16] proposes a generic model for
parallel entity matching based on general partitioning strate-
gies that take memory and load balancing requirements into
account. There are also first approaches to employ MR for
ER (e.g., [22, 23, 18, 17]) but we are not aware of any ap-
proaches utilizing MR to speed up learning-based ER. Most
work on distributed learning and data mining [14] is about
specialized approaches to speed up or parallelize individual
learning algorithms. More general approaches are restricted
to shared memory machines [13]. First approaches of scal-
able machine learning algorithms using MR are Mahout [2],
SystemML [11] or [8]. However, much of this work reverts
back to hand-tuned implementations of specific algorithms
on MapReduce or is proprietary.

MR-based similarity computation has recently gained in-
terest for many domains. Example applications include pair-
wise document similarity [10] to identify similar documents,
join computation [5] in relations, and set-similarity joins [22]
for efficient string similarity computation. All approaches
generate one or more signatures (e.g., join attribute values,
tokens, or terms) per object to avoid the computation of
the Cartesian product. MR groups together objects sharing
(at least) one signature and performs similarity computation
within the reduce phase. However, these approaches are not
adequate for the Cartesian product because they would force
one single reduce tasks to perform the entire computation.

6. SUMMARY AND OUTLOOK
We studied how learning-based entity resolution can be

realized efficiently with MapReduce. We thereby identified
that the similarity computation of the Cartesian product is
the dominant factor and proposed two different MapReduce-
based strategies for this task. Our evaluation shows that our
strategies are able to distribute the similarity computation
and classifier application among the available computational

resources and scale with the number of nodes.

In future work, we will extend our approaches to incor-
porate blocking strategies and load balancing approaches to
handle computational skew. Another approach to further
reduce computation time is to analyze the learned model
in order to prune similarity computation for pairs that are
unlikely to match.

7. REFERENCES
[1] Hadoop. http://hadoop.apache.org/mapreduce/.

[2] Mahout. http://mahout.apache.org/.

[3] Baxter et al. A comparison of fast blocking methods
for record linkage. In Workshop Data Cleaning, Record
Linkage, and Object Consolidation, 2003.

[4] Bilenko and Mooney. Adaptive duplicate detection
using learnable string similarity measures. In ACM
SIGKDD, pages 39–48, 2003.

[5] Blanas et al. A comparison of join algorithms for log
processing in mapreduce. In SIGMOD, pages 975–986,
2010.

[6] Chaudhuri et al. Example-driven design of efficient
record matching queries. In VLDB, pages 327–338,
2007.

[7] Christen et al. Febrl - a parallel open source data
linkage system. In PAKDD, pages 638–647, 2004.

[8] Chu et al. Map-reduce for machine learning on
multicore. In NIPS, pages 281–288, 2006.

[9] Dean and Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[10] Elsayed et al. Pairwise Document Similarity in Large
Collections with MapReduce. In ACL, 2008.

[11] Ghoting et al. SystemML: Declarative machine
learning on mapreduce. In ICDE, pages 231–242, 2011.

[12] Hall et al. The weka data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[13] Jin et al. Shared memory parallelization of data
mining algorithms: Techniques, programming
interface, and performance. IEEE Trans. Knowl. Data
Eng., 17(1):71–89, 2005.

[14] Kargupta et al. The distributed data mining
bibliography. URL http://www. csee. umbc. edu/˜
hillol/DDMBIB, 2011.

[15] Kim and Lee. Parallel linkage. In CIKM, pages
283–292, 2007.

[16] Kirsten et al. Data partitioning for parallel entity
matching. In QDB, 2010.

[17] Kolb et al. Multi-pass Sorted Neighborhood Blocking
with MapReduce. CSRD, pages 1–19, 2011.

[18] Kolb et al. Parallel Sorted Neighborhood Blocking
with MapReduce. In BTW, 2011.

[19] Köpcke et al. Evaluation of entity resolution
approaches on real-world match problems. PVLDB,
3(1), 2010.

[20] Köpcke and Rahm. Frameworks for entity matching:
A comparison. Data Knowl. Eng., 69(2), 2010.

[21] Mierswa et al. Yale: Rapid prototyping for complex
data mining tasks. In SIGKDD, pages 935–940, 2006.

[22] Vernica et al. Efficient parallel set-similarity joins
using MapReduce. In SIGMOD, 2010.

[23] Wang et al. MapDupReducer: Detecting near
duplicates over massive datasets. In SIGMOD, 2010.

http://hadoop.apache.org/mapreduce/
http://mahout.apache.org/

	Introduction
	Preliminaries
	MapReduce
	Learning-based Entity Resolution

	Similarity computation strategies
	MapSide
	ReduceSplit

	Evaluation
	Experimental Setup
	Time distribution and match quality
	MapSide vs. ReduceSplit
	Scalability

	Related work
	Summary and Outlook
	References

