
Industry-Scale Duplicate Detection

Melanie Weis1 Felix Naumann1

Ulrich Jehle2 Jens Lufter2 Holger Schuster2

1Hasso-Plattner-Institut
Potsdam, Germany

firstname.lastname
@hpi.uni-potsdam.de

2SCHUFA Holding AG
Wiesbaden, Germany

firstname.lastname
@schufa.de

ABSTRACT
Duplicate detection is the process of identifying multiple
representations of a same real-world object in a data source.
Duplicate detection is a problem of critical importance in
many applications, including customer relationship manage-
ment, personal information management, or data mining.

In this paper, we present how a research prototype, namely
DogmatiX, which was designed to detect duplicates in hier-
archical XML data, was successfully extended and applied
on a large scale industrial relational database in coopera-
tion with Schufa Holding AG. Schufa’s main business line is
to store and retrieve credit histories of over 60 million in-
dividuals. Here, correctly identifying duplicates is critical
both for individuals and companies: On the one hand, an
incorrectly identified duplicate potentially results in a false
negative credit history for an individual, who will then not
be granted credit anymore. On the other hand, it is essential
for companies that Schufa detects duplicates of a person that
deliberately tries to create a new identity in the database in
order to have a clean credit history.

Besides the quality of duplicate detection, i.e., its effec-
tiveness, scalability cannot be neglected, because of the con-
siderable size of the database. We describe our solution
to coping with both problems and present a comprehensive
evaluation based on large volumes of real-world data.

1. DUPLICATE DETECTION AT SCHUFA
Duplicate detection is the process of detecting all cases

of multiple representations of same real-world objects, i.e.,
duplicates in a data source. This problem has been widely
examined in the research literature (see survey [9]), and sev-
eral specialized commercial tools [1, 2, 3] perform duplicate
detection especially on customer data. The efforts placed
into duplicate detection are motivated by the impact du-
plicates have in many applications. A typical example is
customer relationship management, where a company looses
money by sending multiple catalogs to the same person, who
in turn is annoyed, lowering customer satisfaction. Another

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

application is data mining, where correct input data is essen-
tial to produce useful reports that form the basis of decision
mechanisms.

The duplicate detection problem has two aspects: First,
the multiple representations are usually not identical but
contain differences, such as misspellings, changed addresses,
or missing values. This makes it difficult to detect these
duplicates, so methods effectively detecting duplicates are
not trivial to design. Usually, some similarity measure and
a threshold are used to compare two records and make a de-
cision. Second, duplicate detection is a very expensive oper-
ation, as it requires the comparison of every possible pair of
duplicates using the typically complex similarity measure.
Clearly, scalability is crucial for deduplication of large vol-
umes of data, i.e., for industry-scale duplicate detection.

In this paper, we present how we addressed the problems
of effectiveness and scalability for an industry scenario in
cooperation with Schufa Holding AG. Schufa Holding AG,
as an innovative credit service provider, enables and accel-
erates credit reporting. To its contract partners, such as
banks, savings institutions, trade companies, and related
industries, Schufa grants a safe loan extension. To the con-
sumer Schufa means a comfortable and cost-saving way of
borrowing. As the market leader for credit information ser-
vices in Germany, Schufa Holding AG has the largest nation-
wide data pool with 497 million data sets for the evaluation
of the current payment behavior of 64 million adult indi-
viduals. The information stored about individuals is sparse
and for instance includes information on a person’s name,
current address, birth date, and credit history. Due to ex-
tensive privacy protection laws, German citizens do not have
a global ID, such as a social security number, to ease iden-
tification. Hence, duplicate detection is necessary.

Currently, duplicates in the Schufa database are detected
in two different processes. The first process controls data en-
try by checking whether similar tuples already exist in the
database before inserting it as a new person. The second
process is triggered by incoming queries. When for instance
a bank issues a query for a new customer, the queried entity
is compared to persons in the database. If multiple similar
persons are found in the database, an expert at Schufa de-
cides which person in the search result corresponds to the
query. If the user decides that several results match the
query, the different representations, i.e., the duplicates, are
fused into a single representation.

In contrast to Schufa’s current duplicate detection ap-
proaches based on ad-hoc search of duplicates at runtime,
the goal addressed in this paper is to perform batch dupli-

1253

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

cate detection on the entire database, independent of other,
often time critical business processes. This proactive and
systematic search of duplicates aims at further improving
data quality, so effectiveness is the primary focus.
Contribution. We present our solution to the batch dupli-
cate detection problem on the Schufa database. Our solution
for effective duplicate detection is based on DogmatiX [14],
a domain-independent algorithm initially proposed for XML
duplicate detection. We adapted DogmatiX to the relational
scenario and extended it to further include domain knowl-
edge in the form of rules. To efficiently detect duplicates,
we employed the multi-pass Sorted Neighborhood Method
(SNM) [10] with the improvement of a key definition process
with effectiveness guarantees (compared to the effectiveness
obtained when performing all pairwise comparisons). We
evaluated our methods on large real-world data sets, consist-
ing of samples of the Schufa database ranging from 100,000
to 10 million customer records. The results show that our
methods are very effective in detecting duplicate persons,
while being scalable to large amounts of data.
Structure. We first present an overview of the duplicate
detection process we devised for Schufa in Sec. 2. In Sec. 3
and Sec. 4, we show how we extended two components of
DogmatiX, namely description selection and duplicate clas-
sification. Sec. 5 describes how we adapted the sorted neigh-
borhood method to improve scalability and effectiveness.
An extensive evaluation is presented in Sec. 6. We briefly
discuss related work in Sec. 7 and conclude in Sec. 8.

2. A 10,000 KM PERSPECTIVE
Essentially, our goal is to detect duplicates in the database

at Schufa. The system is capable of detecting duplicates in
several types of objects including persons, addresses, con-
tracts, birth locations, etc. However, the work presented
here primarily focuses on detecting duplicate persons, due
to the extensive use of domain-knowledge. In order to detect
duplicate persons, we follow the steps below:

1. Description selection: Among 162 attributes avail-
able for a given person, we select attributes that are
representative of a person, e.g., surname and first name
and dismiss irrelevant attributes such as the tuple time
stamp. We employ schema-based and instance-based
heuristics to automate the process before refining the
selection using domain knowledge. Details are de-
scribed in Sec. 3.

2. Comparison profile definition: Using the repre-
sentative attributes, we define a classifier to classify
pairs of persons as duplicates or non-duplicates. In
fact, our classifier performs a more fine-grained dis-
tinction of duplicates, yielding a total of 11 classes (10
duplicate classes and 1 non-duplicate class). We call
this classifier a comparison profile that itself consists
of several classifiers. Sec. 4 covers comparison profile
definition.

3. Key definitions: The next step is to define keys that
serve as input to the next phase, i.e., the SNM. Our
key definitions are deducted from the comparison pro-
file and actually allow to provide effectiveness guaran-
tees for the SNM, a problem previous research did not
address. We provide details in Sec. 5.2.

4. SNM: Using our key definitions, we apply multiple
passes of the SNM. Because the comparison profile
consists of several classifiers, different strategies defin-
ing when which classifier is applied are conceivable.
We present two strategies in Sec. 5.3.

Example. The process described above is in principal ap-
plicable to any domain, however, in the context of the Schufa
project, we focus on the domain of detecting duplicate per-
sons in the Schufa database. To illustrate this domain and
to support the discussion throughout this paper, consider
the following example.

Person

Firstname

Surname

Birthdate

Address

Street

City

Contract

CID

Partner

History

Event

Date

1

N

1

1

N N

(a) UML diagram of entities and relationships

MustermannMichael3

29.03.1907DoeJonathan2

29.03.1970DoeJohn1

BirthdateSurnameFirstnamePID

Person

3Foreign Bank789

2National Bank of

New Zealand

456

1NZ Bank123

PIDPartnerCID

Contract

12301.01.1993Update

Student

to Pro

12329.03.1988Open

CIDDateEvent

History

3KleinstadtDorfstrasse

567

2ChristchurchLarge Place 2

1ChristchurchLarge Place 2

1AucklandMain Street 1

PIDCityStreet

Address

(b) Example of relational data

Figure 1: Example showing relationships and at-
tributes of four object types Person, Address, Con-
tract, and History (a) as well as a corresponding
relational data (b).

Example 1. Fig. 1(a) shows four types of objects, their
attributes, and their hierarchical relationships: a person has
attributes firstname, surname, and birthdate. A person may
have addresses and contracts as children. Addresses have
attributes street and city whereas contracts consist of a part-
ner and a contract ID (CID). Contracts have a children type
that stores the history of a contract, e.g., when a contract is
created or dissolved. Fig. 1(b) shows how three persons and
related objects may be represented in a relational database.
Please note that both the schema and the data do not corre-
spond to the actual Schufa database. Nevertheless, it reflects
the main types of objects that our solution focuses on.

1254

3. DESCRIPTION SELECTION
Description selection deals with the problem of identify-

ing information relevant to duplicate detection. We refer to
object representations that are subject to duplicate detec-
tion as candidates. Attributes representing informative data
about a candidate are called descriptions. For description se-
lection, we first used schema-based heuristics adapted from
DogmatiX, before we additionally applied instance based
heuristics and domain-knowledge.

3.1 Description Selection with DogmatiX
For description selection at Schufa, we used and adapted

several schema-based heuristics and conditions, which we
proposed for DogmatiX [14], an algorithm and framework
to detect duplicates in XML. We briefly summarize them
here.

DogmatiX semi-automatically selects descriptions for a
given candidate type using heuristics and conditions based
on an XML Schema. The heuristics use the hierarchical
XML structure to select close descendants or ancestors as
descriptions, based on the following intuition: When detect-
ing duplicates for instance among persons, considering their
name and addresses is potentially useful whereas their con-
tract history does not clearly distinguish person candidates
because it is very usual that a contract is created, changed,
and closed. We observed that the farther from the candidate
elements are defined in the hierarchy, the less relevant they
are to that candidate. Therefore, the heuristics select only
close elements as descriptions. Conditions are used to refine
the selection of a heuristic, pruning XML elements based
on data type, content model, and cardinality as defined by
XML Schema attributes minOccurs and maxOccurs.

3.2 Schema-Based Description Selection
Because the Schufa database is a relational database, not

all methods for XML description selection described in [14]
apply. Whereas the heuristics on descendants are still valid,
the content model condition and the cardinality condition
are no longer necessary. On the other hand, we can prune
attributes that represent a foreign key, because the same
information is already stored in the referenced attribute.
Consequently, when considering the relational schema of the
Schufa database for description selection, our methods re-
duce to the proximity heuristic, information on data type
constraints, and information about foreign key constraints.

Example 2. For person candidates, assume we apply the
following schema-based description selection:

1. The proximity heuristic prunes descendants not being
children, e.g., all attributes of the credit history.

2. The data type condition prunes all attributes not hav-
ing string data type, e.g., the Birthdate.

3. Foreign key attributes are pruned, e.g., Contract.PID.

The resulting set of descriptions for persons in Fig. 1(c) in-
cludes attributes Person.Firstname, Person.Surname, Con-
tract.Partner, Address.Street, and Address.City.

However, using the data type condition (2) actually prunes
significant attributes. Indeed, if we consider our example,
both Birthdate and CID, which for instance corresponds to
a bank account number, are pruned although they represent

very informative information about a person. On the other
hand, the Schufa database contains numerous fields for in-
ternal or legal purposes that are of string data type and do
not describe the actual candidate.

Clearly, the data type condition is not applicable in the
Schufa scenario, where numerical data represents a signif-
icant amount of descriptive information. However, by not
applying any condition 135 of 162 attributes are selected by
the heuristic. These include many non-descriptive attributes
and the amount of attributes is too high to be efficiently
processed when classifying candidate pairs as duplicates or
non-duplicates as described in Sec. 4.4.1. To avoid these
problems, we consider data characteristics to further distin-
guish descriptive and non-descriptive attributes.

3.3 Instance-Based Description Selection
For every attribute of every table, we collect both the

frequency distribution of attribute values and NULL values
and the relevance of each attribute value according to its
IDF. We prune attributes based on the intuition that de-
scriptive attributes contain values that discern the majority
of tuples, i.e., that contain many attribute values all having
a low frequency. From the 162 initial attributes, the fol-
lowing techniques pruned 62%. Formally, an attribute was
pruned from the description selection if:

• Only one distinct value exists.

• More than 95% of all values are equal (e.g., NULL,
country = “Germany”).

• The IDF distribution shows at least one of the follow-
ing characteristics:

– The average IDF is low, i.e., less than half of the
maximum possible IDF.

– The IDF strongly varies depending on the at-
tribute value, i.e., the standard deviation exceeds
20% of the average IDF value.

3.4 Domain-Knowledge
We presented this selection to experts who modified it

based on their domain knowledge: Of the pruned attributes,
only very few were added back to the description selection
based on domain knowledge. For instance, the gender at-
tribute has two possible values, so the average IDF is low and
the attribute was pruned. However, the gender attribute al-
lows to specify that any male person cannot be a duplicate
of a female person. Therefore, we included gender in a per-
son’s description.

A common case of attributes not automatically removed
from the description selection are attributes storing dates
that are used for internal processes, e.g., the date when a
tuple must be deleted according to German law. These at-
tributes have characteristics of a descriptive attribute, i.e.,
no NULL values, a large number of distinct values that do
not occur often and therefore have a high IDF. However,
these attributes are not useful in identifying a person, so all
attributes storing dates, except the birth-date, were manu-
ally pruned from the description selection.

The final description selection for person candidates of
the Schufa database consists of 9 attributes from 4 tables.
Due to confidentiality concerns, more details on the final
selection cannot be disclosed.

1255

4. DUPLICATE CLASSIFICATION
Using our selection of descriptions, we can now compare

candidates and decide whether they are duplicates or not.
We refer to this process as duplicate classification, or classi-
fication for short.

4.1 Comparison Profiles
Within the Schufa project, we classify pairs of candidates

as duplicates or non-duplicates based on a profile. A pro-
file is defined as a global classifier that is in turn based
on a sequence of k base classifiers. These base-classifiers
include similarity-based classifiers, denoted as δ≈(c, c′), and
rule-based classifiers. We distinguish two types of rule-based
classifiers: Negative classifiers, denoted as δ−(c, c′), classify
a pair of candidates as non-duplicates if a predicate returns
true, and unknown otherwise. Unknown is represented by
the class identifier −1. On the other hand, positive classi-
fiers, denoted as δ+(c, c′), classify a pair of candidates as
duplicates if a predicate returns true, and unknown other-
wise.

Applying the base-classifiers in the order defined by the
profile to a pair of candidates results in a final classification
of that pair. To each of the k base-classifiers there is a cor-
responding class, identified by an integer c, 0 ≤ i ≤ k. This
range is split up as follows between classifiers: If the pred-
icate of a negative classifier holds true, the pair is always
assigned to belong to Class 0. That is, Class 0 represents
non-duplicates. If the predicate of a positive or similarity-
based classifier at position 0 ≤ i < k holds true, the can-
didate pair is assigned to belong to that Class c = i + 1.
Profiles are defined in such a way that the higher position
i and thus c is, the more likely it is that the pairs classified
into that class are actually duplicates. That is, Class c = k,
or Class k for short, is the class of sure duplicates.

Fig. 2 depicts how a comparison profile classifies a can-
didate pair. It takes as input two candidates c and c′ and
applies these candidates to a sequence of classifiers. If the
first classifier, which is a positive classifier in this example,
determines that c and c′ are duplicates, the duplicate pair
is assigned to Class k, which is the highest value and re-
flects that c and c′ are most likely duplicates. If the positive
classifier does not determine that c and c′ are duplicates, it
returns unknown (-1) and gives the pair to the next classi-
fier in the sequence. The final result of a comparison pro-
file is therefore the classification of the first classifier not
returning unknown. If after the last base-classifier the clas-
sification is still unknown, the candidate pair is classified as
non-duplicates (Class 0).

Profile

(c,c‘) (c,c‘) (c,c‘) (c,c‘)…
-1 -1 -1

k 0 2 1

-1

c and c‘

duplicates

in Class k

c and c‘

in Class 0

(not duplicates)

c and c‘

duplicates

in Class 2

c and c‘

duplicates

in Class 1

c and c‘

in Class 0
-1

candidates

c,c‘

(c,c‘)

k-2

c and c‘

duplicates

in Class k-2

Figure 2: Sample duplicate detection profile.

Clearly, the order in which base-classifiers are set in a
profile influences the classification result. This observation

will become relevant when discussing methods to improve
efficiency in Sec. 5.

In the following sections we describe the principles un-
derlying the classifiers that constitute the standard profile
developed for Schufa duplicate detection. This profile clas-
sifies a pair of candidates into one of 11 classes. It aims
solely at obtaining high effectiveness of batch-duplicate de-
tection, and does not consider the functional background
that may have caused the duplicate and that potentially re-
quires different processing of the duplicate. For instance,
duplicates due to a change of address and duplicates due to
a change of last name are potentially classified into the same
class by the standard profile, as long as the likelihood that
they are duplicates is similar. Opposed to that, we plan to
define specialized profiles that serve a specific purpose, e.g.,
that are specifically developed to detect duplicates caused
by a change in the surname. The standard profile is very
effective for batch duplicate detection, whereas specialized
profiles are useful for instance to pipe the detected dupli-
cates to different processes for consolidation.

4.2 Negative Classifiers
A negative classifier classifies pairs of candidates as non-

duplicates if a given predicate p holds true. The definition of
p is based on domain-knowledge. Formally, if p is the given
predicate, then

δ
−(c, c′) =

{
0 if p

−1 otherwise

In total, the standard profile includes five negative clas-
sifiers. Negative classifiers can improve both effectiveness
and efficiency. To improve effectiveness a negative classifier
prunes pairs that are similar enough to likely be classified
as duplicates by a positive classifier later in the profile, but
that cannot be duplicates based on domain-knowledge.

Example 3. When the address of a newly inserted person
is unknown, a dummy address is used: street = ‘UNKNOWN

ADDRESS’ and city = ‘UNKNOWN’. When comparing two per-
sons where the address is unknown, the addresses seem equal,
which adds to the similarity of the two persons. If the per-
sons have some other data in common, e.g., the common
surname ‘Smith’, their similarity easily exceeds the simi-
larity threshold and the pair is falsely classified as a dupli-
cate. To avoid such cases, we add a negative classifier to
the profile, where predicate p holds if two candidates have
an unknown address as their only address.

Negative classifiers improve efficiency by pruning candi-
date pairs that are unlikely to result in a duplicate. Not
computing more complex similarities of such pairs signifi-
cantly improves performance.

Example 4. It is highly unlikely that two persons with
different gender are duplicates, so we define a negative clas-
sifier that classifies candidate pairs as non-duplicates if the
gender values of the two candidates differ. Because roughly
half of all persons are male, and the other half female, this
reduces the number of more complex classifications by half.

Note that the examples above are used for illustration and
do not exactly correspond to the real-word classifiers of the
actual Schufa standard profile.

1256

4.3 Positive Classifiers
Another constituent of a profile are positive classifiers,

which classify candidate pairs as duplicates based on a pred-
icate p:

δ
+(c, c′) =

{
c if p (c is position i + 1 in profile)
−1 otherwise

Many positive classifiers are modeled after typical transi-
tions in a person’s life, similar to the following example.

Example 5. Jane Smith, born on December, 12th, 1978
and living in Queenstown marries John Doe represented in
Fig. 1. She changes her surname to Doe, and moves in
with her husband to their new home in Christchurch. She
reports the address change under her new surname to her
bank, which in turn reports the change to Schufa. However,
the address change notification does not include her date of
birth, so the following new person is added to the Schufa
database: Jane Doe, birthdate unknown, has a former ad-
dress in Queenstown and a current address at Large Place 2
in Christchurch. For a similarity-based classifier, it is al-
most impossible to detect this duplicate, because the most
distinctive attributes, surname and birthdate are either con-
tradictory or missing. To detect such duplicates, we can de-
fine a predicate that classifies two candidates as duplicates if
(i) their first name matches, (ii) the data originates from the
office reporting address changes, and (iii) some former ad-
dress of the person matches the current address of the “old”
tuple. Note that Schufa maintains a history of all reported
addresses of a person.

In total we defined nine positive classifiers for the standard
profile. Each of these classifiers returns a different integer
c, 0 < c ≤ k, reflecting how confident we are that the clas-
sifier correctly identifies duplicates. Ideally, the higher c is,
the more likely the pairs classified by that positive classifier
are duplicates. Experiments show that the order we chose
for our classifiers is adequate.

4.4 Similarity-Based Classifiers
Finally, the standard profile includes similarity-based clas-

sifiers whose definition is based on the domain-independent
DogmatiX classifier we briefly summarize next.

4.4.1 DogmatiX Classifier
To detect duplicates, DogmatiX computes a similarity

score for a pair of candidates. Generally, if the similarity
of two candidates c and c′, given by sim(c, c′) is above a
predefined threshold θ, the pair is classified as a duplicate,
otherwise it is classified as a non-duplicate. Formally,

δ(c, c′) =

{
1 if sim(c, c′) > θ

0 otherwise

where 1 represents a duplicate and 0 a non-duplicate.
To compute the similarity sim(c, c′) of two candidates,

the DogmatiX similarity measure compares descriptions of
same type and aggregates the results of every description
type to a total similarity. When comparing descriptions,
the following aspects are considered:

• Data similarity: A secondary similarity measure cal-
culates the textual similarity of description values and
thus identifies descriptions that are considered equal.

• Data relevance: To reflect the fact that descriptions
do not all have the same importance in describing a
candidate, different description values are assigned dif-
ferent weights.

• Contradictory vs. missing data: When two candi-
dates both have a description of same type with non-
similar values, this value is considered as contradictory
and reduces the similarity, whereas a missing descrip-
tion of that type or an empty value does not reduce
the two candidates’ similarity.

These three aspects are combined in the DogmatiX similar-
ity measures as follows: Intuitively, sim(c, c′) captures the
weight of similar descriptions relative to the weight of similar
plus contradictory descriptions. Similar descriptions are de-
termined based on edit distance; weights are computed using
a soft version of the inverse document frequency (IDF) [5],
which considers similar strings as equal when computing the
IDF of a value.

4.4.2 Similarity Measure Template
The DogmatiX similarity measure uses special functions

to implement the different aspects that the similarity mea-
sure considers. To define a similarity measure for Schufa, we
vary these functions so in this section, we provide a generic
similarity measure template of which the DogmatiX similar-
ity measure is a particular instance of.

Formally, let D(c) = {d1, d2, . . . , dn} be the set of descrip-
tions of candidate c, w(·) be a weight function, descSim(·)
be a similarity function used to compute the similarity of
description values, type(d) be a function returning the de-
scription type of description d, and θdesc be a threshold for
description similarity. Then, the set D≈ of similar descrip-
tions and the set D 6= of contradictory descriptions are de-
fined as

D
≈(D(c), D(c′)) = {(d, d

′)|descSim(d, d
′) > θdesc

∧type(d) = type(d′)}

D
6=(D(c), D(c′)) = {(d, d

′)|d, d
′ contradictory

∧type(d) = type(d′)}

The definition of contradictory descriptions requires both
descriptions to not be similar to any other description, to
be of same type, and to optionally comply to a given predi-
cate pcontra, which for DogmatiX for instance requires both
description values to not be null. Formally, if

¬∃di|sim(di, d
′) > θ ∧ ¬∃d′

j |sim(d, d′
j) > θ

∧ type(di) = type(d) = type(d′
j) = type(d′)

∧ pcontra

⇒ d, d′ contradictory

Using these definitions, the final similarity is defined as

sim(c, c′) =
w(D≈(c, c′))

w(D≈(c, c′)) + w(D 6=)(c, c′)
(1)

Example 6. In the example of Fig. 1(c), assume our
candidates are the persons John Doe and Jonathan Doe,
which we label p1 and p2. Throughout this paper, we assume
these are duplicates. After description selection as described
in Example 2, we obtain

D(p1) = {John, Doe, NZ Bank, Main Street 1,

Auckland, Large Place 2, Christchurch}

1257

Measure Similarity Relevance Missing descriptions Children F-measure

SchufaSim1 equality unit weight no influence no 45%
SchufaSim2 equality unit weight reduce similarity no 61%
SchufaSim3 edit distance for descriptions, unit weight reduce similarity yes 63%

containment for children
SchufaSim4 edit distance for descriptions, IDF reduce similarity yes 64%

containment for children
DogmatiX edit distance for all descriptions soft IDF no influence yes n.a.

Table 1: Different similarity measures characterized along four dimensions and their f-measure on Dsmall.

D(p2) = {Jonathan, Doe, National Bank of New

Zealand, Large Place 2, Christchurch}

From these, we obtain

D
≈(D(p1), D(p2)) = {(Doe, Doe),

(Large Place 2, Large Place 2),

(Christchurch, Christchurch)},

That is, surname, street, and city attributes are similar be-
tween p1 and p2. This leaves us with the following contra-
dictory information:

D
6=(D(p1), D(p2)) = {(John, Jonathan), (NZ Bank,

National Bank of New Zealand)}

The remaining street and city provided for p1 are not con-
sidered as contradictory because no non-matched streets and
cities exist between D(p1) and D(p2). That is, we consider
these as information missing in the representation of p2,
which is not considered during similarity computation. The
final similarity equals sim(p1, p2) = 3

3+2
= 0.6, assuming

unit weight for all descriptions.

4.4.3 Similarity Measurement for Schufa
In principal, we can use a classifier based on the DogmatiX

similarity measure for duplicate detection at Schufa. How-
ever, preliminary experiments showed that it is too slow for
the large volume of data we consider, mainly due to the com-
putation of the edit distance for all descriptions and due to
the use of the expensive soft-IDF. In consequence, we define
several different similarity measures and test these on Sch-
ufa data. In devising the similarity measures, we follow the
three dimensions presented in Sec. 4.4.1, i.e., data similar-
ity, data relevance, and missing vs. contradictory data. We
additionally consider whether a similarity measure consid-
ers descriptions from child tables or not. Tab. 1 summarizes
how selected similarity measures consider these dimensions.

We applied the different similarity measures on a sam-
ple of the Schufa database where all duplicates have been
detected manually (see DSmall in Sec. 6.1) and measured
their effectiveness. Tab. 1 shows the maximum f-measure
obtained by the different similarity measures. Intuitively,
the higher the f-measure, the better the effectiveness ob-
tained by a similarity measure. Note that whenever the edit
distance is used as secondary similarity measure, the thresh-
old is set to θdesc = 0.7, based on experience.

Among all similarity measures we tested and of which
SchufaSim1 to SchufaSim4 are examples, SchufaSim4 per-
forms best. Consequently, we choose SchufaSim4 as sim-
ilarity measure sim(·) for similarity-based classification at
Schufa, which is formally defined as

δ
≈(c, c′) =

{
c if sim(c, c′) > θ, c is position i + 1
−1 otherwise

Note that opposed to the DogmatiX classifier, above clas-
sifier returns -1 for pairs not classified as duplicates, i.e., it
classifies them as unknown and not as non-duplicates. Us-
ing this definition, similarity-based classifiers can be put at
any position in the classifier sequence defining a comparison
profile.

5. SCALABILITY
Duplicate classification, as discussed in the previous sec-

tion, is in principle applied to every possible pair of candi-
dates. However, this is practically infeasible for large data

sets: N tuples in the person table would require N×(N−1)
2

pairwise comparisons. This means roughly 2048×1012 pair-
wise comparisons for the 64 million persons stored in the
Schufa database, which does not terminate in reasonable
time. Therefore, we devise a strategy to prune a significant
number of classifications.

Our method is based on the Sorted Neighborhood Method
(SNM) [10], which prunes a large number of comparisons
and thus potentially misses some true duplicates. However,
as effectiveness remains the primary concern at Schufa, we
propose a new method to determine the keys for SNM to
minimize this effect.

5.1 Sorted Neighborhood Method
The SNM consists of three phases:

1. Generate a key for every candidate.

2. Sort candidates according to the lexicographical order
of their key values.

3. Perform pairwise classifications: Given a window of
fixed size w that slides over the sorted sequence of
candidates, compare candidates that fall in the same
window, i.e., compare the last candidate entering the
window with all other candidates already in the win-
dow.

Clearly, the smaller the window size w is, the less pairwise
comparisons are performed. However, maintaining high ef-
fectiveness is critical and essentially depends on the key defi-
nition and the window size. The key is ideally defined in such
a way that duplicates are sorted close to each other. The
window size defines how distant duplicates are allowed to be
to still be detected. These problems have been considered
before, yielding the multi-pass SNM and the use of transi-
tive closure over duplicate pairs [11]. The multi-pass SNM
uses different keys in each pass. This way, different orders

1258

allow comparisons of different pairs over multiple runs, and
more duplicates are potentially detected. Using the transi-
tive closure of pairs detected in one run and pairs detected in
several runs allows to reduce the window size, because even
candidates not lying in the same window can be classified
as duplicates based on transitivity.

�����

����

�����

����

�����

������

��
�
�
��
�
�
	

�
�

���

�

��

	

��	������� 	

��	�������

��������

��� �������������

��
�
�
��
�
�
	

�
�

����
�������
�����

Figure 3: Runtime improvement.

To see how runtime improved when using the SNM on a
large sample of the Schufa database (DLarge in Sec. 6.1),
consider Fig. 3 that shows runtimes of different implemen-
tations using a logarithmic scale. Our first attempt to pro-
cess DLarge was to actually compare all candidate pairs.
The first implementation basically used a DBMS as a data
store and we added indexes to improve query processing.
We started to run duplicate detection and based on the
number of processed pairs, we extrapolated that comparing
all candidate pairs would take 1500 days, which is clearly
no acceptable runtime. By optimizing our programm, e.g.,
by reducing the communication with the database and the
amount of exchanged data and by materializing views, we
were able to reduce expected runtime to 300 days. By using
the SNM with a window size w = 50, our first implementa-
tion ran for 25 hours and could be improved to 2.5 hours by
adequately configuring the database and optimizing the in-
teraction between our prototype and the database. Clearly,
the use of the SNM significantly improves scalability but
adequate database configuration is also necessary.

5.2 Keys to Maximize Effectiveness
Using the SNM improves efficiency, but it potentially re-

duces effectiveness. Indeed, when defining a key for the
SNM it is essential that this key sorts duplicates close to
each other. In general, we do not know in advance which
candidates are duplicates, so the key definition is at best an
approximation of the ideal key. However, using a profile as
defined in Sec. 4, we actually can predict most candidates
that are potentially duplicates.

• Positive classifiers: When defining a key that sorts du-
plicates according to the predicate of a positive classi-
fier, it is guaranteed that duplicates are sorted next to
each other.

• Similarity-based classifiers: Depending on the similar-
ity measure, we can derive positive classifiers that iden-
tify candidate pairs with similarity > 0. These pairs
are potential duplicates (depending on threshold θ).
We can then define keys for the derived positive clas-
sifiers as described above.

• Negative classifiers: A negative rule defines when two
candidates cannot be a duplicate, so by negating that

rule, we obtain a rule that identifies potential dupli-
cates. Because this rule cannot be used to directly
classify a pair as a duplicate (e.g., based only on equal
gender) we combine it with positive classifiers or with
similarity-based classifiers subsequently applied in the
comparison profile.

Example 7. Consider a positive classifier that is based
on the following predicate P1: If the surname and the day
and month of the birthdate of two candidates are exactly
equal, they are classified to be duplicates. To guarantee that
duplicates are sorted next to each other, we define a key
consisting of the surname, the day of birth, and the month
of birth. All candidates that are duplicates according to that
predicate are then sorted next to each other. P1 for instance
detects the duplicates shown in Fig. 1(c), which have the
same key Doe2903.

In the example above, all candidates with the same key
are actually duplicates. In practice, such an ideal key cannot
be defined for every predicate. In general, candidates with
equal key are only potentially duplicates and, vice versa,
duplicates do not necessarily have equal keys. For duplicate
detection at Schufa we defined 11 distinct key definitions.
As depicted in Fig. 4, these definitions include (i) Keys that
correspond to exactly one predicate (keyn−1 and keyn),(ii)
Keys that correspond to more than one predicate (key3),and
(iii) Keys that correspond to only a part of one predicate,
the other parts being covered by other keys (key1 and key2).

Profile

(c,c‘) (c,c‘) (c,c‘) (c,c‘)…
-1 -1 -1

k 0 2 1

-1

c and c‘

duplicates

in Class k

c and c‘

in Class 0

(not duplicates)

c and c‘

duplicates

in Class 2

c and c‘

duplicates

in Class 1

c and c‘

in Class 0-1

candidates

c,c‘

(c,c‘)

k-2

c and c‘

duplicates

in Class k-2

key1 key2 keynkey3 keyn-1

Figure 4: Variants of rule-based key definitions.

Example 8. In addition to the predicate given in Exam-
ple 7, assume further positive base-classifiers that use the
following predicates:

• P2: Two persons are duplicates if their last names are
equal and if one first name is equal to the first name
or the middle name of the other person.

• P3: Two persons are duplicates if their surname and
their month of birth are equal.

The key provided in Example 7, which concatenates sur-
name, year of birth, and month of birth neither corresponds
to P2 nor to P3, because it is too specialized. However, a
key consisting of the last name fits all three predicates. Fi-
nally, for P2, we reflect the containment of the first name
by defining two keys for the predicate. The first key always
includes the first token of a first name, and the other one
the second token of a first name.

1259

Based on the fact that (sets of) keys are defined for (sets
of) base classifiers, some obvious opportunities to improve
comparison runtime in one pass of multi-pass SNM arise.
We describe these in the next section.

5.3 Multi-Pass Variants
The multi-pass SNM applies the SNM method once for

every key. We defined 11 keys for the standard profile, so
our multi-pass SNM performs 11 runs. Because keys are de-
fined for specific base classifiers, it may be beneficial to not
compare candidates using the complete profile in every run,
but to apply only those base classifiers that correspond to
the key used in a run. Based on this observation, we distin-
guish two strategies: a rule-based strategy and a profile-based
strategy. Both strategies are illustrated in Fig. 5.

The rule-based strategy (Fig. 5(a) shows two runs) applies
only part of the profile for duplicate classification in one run,
and combines the result in a post-processing step. More
specifically, the run using keyi uses only the base classifiers
for which keyi has been defined. For instance, the run using
the order given by keyn of Fig. 4 compares persons based
only on the positive classifier returning 1. This comparison
strategy potentially detects a pair more than once over sev-
eral runs, but with different classification results, or finds a
pair once but with a non-maximal classification result. As a
consequence, all detected pairs need to be reevaluated using
the complete profile in order to obtain the correct classifica-
tion.

Compute result of profile for duplicates

duplicates

of class

duplicates

of class

p p p

of class

k-1

of class

k-2

(c,c‘) (c,c‘)

SNM SNM

key1 key2

duplicates

of class

0 i < k

(c,c‘) =

{ c,c‘), c,c‘),…}

SNM

key1

(a) Rule-based strategy (b) Profile-based strategy

Figure 5: Comparison strategies.

Example 9. The duplicate of John Doe represented in
Fig. 1 can be detected both by a positive classifier δ1 based
on P1 and that classifies duplicates into class i , and a pos-
itive classifier δ2 based on P2 that classifies duplicates into
class j. Because P1 is stricter in its classification than P2,
we assume i > j. If we perform two runs where only δ1 and
δ2 are applied, respectively, we obtain two possible classifi-
cations of the John Doe duplicate and have to determine in
a post-processing step that the final result is i.

Another overhead of this method is that the configuration of
duplicate detection becomes more difficult: not only do we
have to specify keys, but for every key, we need to provide
a different classifier.

The profile-bases strategy (Fig. 5(b) shows one run) does
not require the post-processing and the configuration over-
head described for the rule-based strategy. Indeed, it com-
pares candidate pairs using the entire standard profile, no

matter the key being used. This way, the correct classifica-
tion result is directly computed. However, the classification
step is more complex because 11 instead of one classifier are
applied, which may compromise runtime.

Determining which strategy is best is not trivial. The
runtime of the profile-based strategy depends on the distri-
bution of duplicates over the different base classifiers. For
instance, if the majority of duplicates is detected by the first
base classifier, all remaining base classifier are rarely used,
which represents an advantage compared to the rule-based
classifier that uses all classifiers in different runs. On the
other hand, if the majority of duplicates is detected by base
classifiers at the end of the sequence, the rule-based strat-
egy potentially terminates faster. Experiments show that
the rule-based strategy is more efficient and does not com-
promise effectiveness in our Schufa scenario.

6. EVALUATION
We now evaluate the methods presented throughout this

paper both in terms of effectiveness and in terms of scala-
bility, based on large volumes of real-world data.

6.1 Data Sets and Setup
To evaluate our methods, we use two samples of data col-

lected at Schufa.

1. DSmall consists of data about 100,000 randomly se-
lected persons, including their addresses, contracts,
etc. In this sample, all duplicate pairs1 have been iden-
tified manually through the existing search processes
at Schufa. Therefore, we can measure both recall and
precision on this sample, which we use to evaluate the
different classifiers.

2. DLarge consists of data about 10,000,000 randomly se-
lected persons. In this sample, many duplicate pairs
have already been identified manually, but some dupli-
cates remain undiscovered because the corresponding
person is not queried. Hence, an evaluation of effec-
tiveness on this data set requires a manual evaluation
of the result to determine precision, and recall can only
be calculated based on the number of known dupli-
cates. We use this data set to validate the standard
profile and to evaluate scalability.

Prior to actual duplicate detection, we performed data
standardization, which consisted in removing special char-
acters from string attributes.

We wrote our prototype in Java 1.5 and used IBM DB2
v.8.2 as DBMS. The Java heap size was set to 1.3 GB. We
ran our experiments on a PC with 4GB main memory and
an Intel Core Duo 6400 CPU with 2.13 GHz. The operating
system installed is Windows XP Pro version 2002 with SP2.

6.2 Effectiveness
Our first series of experiments concentrates on effective-

ness. We measure effectiveness using recall, precision, and
f-measure. Recall measures the fraction of correctly found
duplicates, relative to all known duplicates in the data set.
Precision, on the other hand, measures the fraction of cor-
rectly found duplicates, relative to all found duplicates. The
f-measure is the harmonic mean of recall and precision. Ide-
ally, all metrics return 100%, but in practice, an algorithm
1actual number cannot be disclosed

1260

finds some false duplicates, and further does not find all
duplicates in the data source. Therefore, the goal is to max-
imize recall and precision (and thus f-measure) to obtain
high effectiveness overall.

Experiment 1. From our incremental similarity measure
design described in Sec. 4.4, we concluded that SchufaSim4
is the best similarity measure. We now show how adding
positive and negative classifiers improves effectiveness. The
selection of the best positive and negative classifiers results
from a similar strategy than the determination of the best
similarity measure.
Methodology. We compare the effectiveness of the follow-
ing profiles on DSmall: First, we apply a profile solely con-
sisting of SchufaSim4 and output duplicate pairs, their sim-
ilarity as computed by the similarity measure, and whether
they are a known duplicate or not. We then evaluate a pro-
file consisting of SchufaSim4 and negative classifiers, called
NC. The generated output is similar to the output of Sch-
ufaSim4. Finally, we combine SchufaSim4, negative classi-
fiers, and positive classifiers to a profile called PC. Dupli-
cate pairs detected by positive classifiers are assigned the
result of the positive classifier. For each of the three pro-
files, we sort the detected duplicate pairs in descending order
of their similarity / classification result and compute recall
and precision over the sorted list of pairs. We set the sim-
ilarity threshold to θ = 0.3 and the edit distance threshold
to θdesc = 0.7 (based on experience). Fig. 6 shows the re-
sulting recall-precision curves. The maximum f-measure of
the different profiles is 64%, 76%, and 86%, respectively.

���

���

���

���

����

�
��
��
��
�
�
	

�
�

�	
������ �� ��

��

���

���

���

���

���

���

�� ��� ��� ��� ��� ����

�
��
��
��
�
�
	

�
�

�����	
��

Figure 6: Effectiveness on DSmall of different com-
parison profiles.

Discussion. In Fig. 6, we see that SchufaSim4 reaches a
recall of 80%. However, precision steadily drops for recall
values higher than 40%. When using negative classifiers,
we see that precision is significantly improved compared to
SchufaSim4. Recall is slightly improved an now reaches 83%
for the following reason: When applying a negative classi-
fier that prunes pairs with different genders, we exclude the
gender attribute from the description processed by the simi-
larity measure, because it will be equal for any pair anyway.
This alters the result of SchufaSim4, and in the depicted case
yields a slightly higher recall. When additionally adding
positive classifiers to the profile, the precision is again signif-
icantly improved, but recall is comparable to the experiment
using SchufaSim4 and negative classifiers because no addi-
tional duplicates are found. This essentially means that the
positive classifiers reorder pairs in such a way that false pos-
itives are sorted after most true positives. As a consequence,

the standard profile has a precision of 100% for recall val-
ues of up to 72%. Essentially, we steadily improved overall
effectiveness by subsequently adding negative and positive
classifiers to the classifier using SchufaSim4. The final pro-
file, which we use as standard profile at Schufa, reaches a
maximum f-measure of 86% on DSmall.

Experiment 2. We now evaluate the effectiveness of the
standard profile determined in the previous experiment on
DLarge.
Methodology. On DSmall, we actually performed all pair-
wise comparisons to evaluate the different profiles. For the
larger data set DLarge, this is no longer feasible (see Fig. 3),
so we use multi-pass SNM with all 11 keys that we defined
to fit the standard profile. The window size is set to 50, and
we measure effectiveness for both the profile-based strategy
and the rule-based strategy. Because not all duplicates are
known in DLarge, we compute recall based on the number of
known duplicates. To evaluate precision, we randomly sam-
pled 100 duplicates of each duplicate class, which we label
from 1 to 10, 10 being the class with sure duplicates2. Three
experts then decided for each pair in the sample whether it
is an actual duplicate or not. For the classes with high du-
plicate confidence (c ≥ 6), the experts were already satisfied
with the corresponding classifier after 20 to 40 pairs. For
all remaining classes, all 100 pairs were manually processed.
Because the experts used the actual DB at Schufa, and not
the snapshot we used for our experiments, some person tu-
ples were already deleted, either because they were recog-
nized as duplicates and merged in the three months lying
between our database snapshot and manual evaluation, or
because deletion constraints due to Schufa policy applied.
Because pairs where one person was deleted could not be
clearly classified as duplicates or non-duplicates by the ex-
perts, we removed them from the sample and computed the
precision on the reduced sample. The recall and precision
obtained for each class is depicted in Fig. 7 and the recall-
precision curves for both comparison strategies are depicted
in Fig. 8. Cumulated over all classes, our standard profile
achieves a maximum f-measure of 66% with 53% recall and
90% precision.

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

	
�
����

��

����

����

�
��
��
��
�
�
	

	�
�
��
��
	
�
�

�������� �����

�
�

�
�
�

	
�
�

	
�
�

�
�
�

�

�
�

�
�

�
�

�
�
�

�
��
�

�
�

�
�

�
� �
�
�

��

���

���

���

�
��
��
��
�
�
	

	�
�
��
��
	
�
�

��������������	�����

Figure 7: Effectiveness per class on DLarge.

Discussion. In Fig. 7, we observe that the profile behaves
as expected: classes with high classification result (c ≥ 6)
have a very high precision, which means that we can trust
their classification and we can consider the pairs they classify

2We do not report the actual classification result ranging
from 1 to 15, because this would disclose confidential infor-
mation on the order of positive and negative base classifiers.

1261

as sure duplicates. Actually, these classifiers alone already
detect 47% of all detected pairs. Class 7 does not contain
any pair because the pairs it considers as duplicates are al-
ready detected by the classes applied first (10, 9, and 8).
Consequently, we remove the corresponding classifier from
the standard profile. For c < 6, we observe that the pre-
cision of each class (except for Class 2) drops. From this
behavior, we conclude that the order in which the classifiers
are specified in the standard profile is adequate. In future
work, an interesting question is whether we can find an order
of base-classifiers that orders the classifiers in decreasing or-
der of their precision. This is not as simple as switching the
classifiers for Class 2 and Class 3, and Class 6 and Class 7.
Indeed, classifiers serve as filters to classifiers coming later
in the sequence, in the sense that they potentially classify
pairs as false positives (reducing their own precision) that
would otherwise be found by a subsequent classifier, which
would lower its precision if the order was changed.

���

���

���

���

����

�
��
��
��
�
�
	

�
�

�	
��������������� �����
���������������

��

���

���

���

���

���

���

�� ��� ��� ��� ��� ����

�
��
��
��
�
�
	

�
�

�����	
��

Figure 8: Comp. strategy effectiveness on DLarge.

In Fig. 8, we see that both comparison strategies obtain
comparable effectiveness. The recall reached by the rule-
based strategy, which applies only the base-classifiers for
which the key of the corresponding run was designed, is only
slightly lower than the recall of the profile-based strategy.
In Experiment 5, we see that the rule-based strategy is more
efficient than the profile-based strategy, so we can conclude
that the profile-based strategy is the most suited.

Compared to the effectiveness on DSmall, we obtain a
lower recall on DLarge. We evaluated our standard profile
on a sample of DLarge consisting only of known duplicates,
and observed that the profile is in principle capable of find-
ing 85% of known duplicates. The lower recall measured
for both comparison strategies is explained by the fact that
we do not perform all pairwise comparisons using the SNM
and we therefore miss some duplicates when using a window
size of 50, although we defined suited keys. To counter this
effect, we plan to use variable window size in the future.

Experiment 3. Despite a moderate recall, the overall ef-
fectiveness is acceptable due to the high precision, which is
the basis for subsequent automatic processing of duplicates.
We now evaluate how beneficial our approach is for Schufa.
Methodology. Using the same methodology as in the pre-
vious experiment, we compare the number of known dupli-
cates that we found per class to the number of additional
duplicates found per class, as depicted in Fig. 9.
Discussion. For every class, some duplicates are known,
so current duplicate detection methods at Schufa are able
to find these duplicates. However, these methods require a

�
��
�
��
��
�
�
��
�
�
	

��
��
�

���������	
���� ���

���		�����������	
����

�
��
�
��
��
�
�
��
�
�
	

��
��
�

�	���

���
����	���

Figure 9: Number of known duplicates found vs.
number of all duplicates found on DLarge.

query for a duplicated person to detect the duplicate. Our
batch duplicate detection approach allows to find these du-
plicates systematically without necessitating a query. This
way, a substantial amount of duplicates can additionally be
detected per class, as Fig. 9 shows (also for Class 5, al-
though the absolute number of duplicates in that class is
small). Clearly, using such a systematic duplicate detection
approach helps to further improve the already high data
quality of the Schufa database.

Experiment 4. Having evaluated the different classifiers
of the standard profile, we now evaluate the key definitions
we devised for the base classifiers, and study how duplicates
are distributed over the different SNM runs.
Methodology. For each of the 11 keys we defined for the
standard profile, we perform a SNM run with window size
50. Fig. 10 shows the distribution of classification results
over each run and thus key using a profile-based comparison
strategy. We obtain a similar distribution when using the
rule-based strategy, omitted here for brevity.

�������
���������

�
��
�
��
��
�
�
��
�
�
	

��
��
�

�������

������	

������

�������

�������

������
�������
�������

�
�
�
��

�
�
�
�	

�
�
�
�

�
�
�
��

�
�
�
��

�
�
�
�

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��
�

�
�
�
��
�

�
��
�
��
��
�
�
��
�
�
	

��
��
�

��

Figure 10: #duplicates per key and class on DLarge.

Discussion. The results for the profile-based strategy in
Fig. 10 show that each class, except for Class 5, finds dupli-
cates in each run. However, the number of duplicates found
per class varies with the key being used. This is explained
by the fact that keys are defined for specific classifiers. Es-
sentially, keys with low ID (e.g, Key 1 and Key 2) match
classifiers returning a high class (e.g., Class 10 and Class 9)3.
This trend appears in Fig. 10, where the back left corner and
the front right corner cumulate high frequencies for the re-
spective keys and classes. The two exceptions to this trend

3The true matching between classes and keys is confidential.

1262

are the number of pairs found for Key 9, Class 9 and for
Key 1, Class 1. Because the distribution of the rule-based
strategy is almost equal to the distribution of the profile-
based strategy, we explain these exceptions by the fact that
the detected duplicates can be detected by both the classifier
for which the key was designed (the only one being applied
by the rule based strategy) and the classifier yielding the
final classification.

In summary, experiments show that the standard profile
is effective in detecting duplicates at Schufa. The individual
classifiers of the standard profile are defined in an adequate
order to satisfy the assumption that classifiers applied first
are more sure of their classification. Finally, the rule-based
strategy obtains almost the same result as the profile-based
strategy but requires less time, as we see next.

6.3 Scalability
Effectiveness was the primary concern at Schufa, however,

scalability is relevant, too.

Experiment 5. In Sec. 5, we presented two comparison
strategies. In this experiment, we compare the overall run-
time of both strategies.
Methodology. We measure the runtime of the multi-pass
SNM over DLarge using all 11 keys for both comparison
strategies. The window size is set to w = 50. Fig. 11 reports
the results.

����

����

�����

�����

��
�
�
�
��
��
	

�
�
	
��
�

�
��

���	
��	������	�� ������	
��	������	��

�

����

����

����

��
�
�
�
��
��
	

�
�
	
��
�

�
��

��

Figure 11: Comp. strategy runtime on DLarge.

Discussion. Fig. 11 shows that every run of the rule-
based strategy is faster than the corresponding run using
the profile-based strategy. Hence, the rule-base strategy is
more efficient than the profile-based strategy. We explain
this by the reduction of the classifier’s complexity and by
the fact that the overhead required to compute the correct
classification result for a duplicate is negligible. We further
observe that the runtime of runs may significantly differ.
One reason for this behavior are negative classifiers, which
we still consider in the rule-based strategy. These act as fil-
ters and reduce the input of base classifiers appearing later
in the sequence. For instance, a negative filter applied be-
tween the classifiers for which Key 6 is designed and the
classifiers for which Key 7 is designed reduces the number
of pairs the classifiers corresponding to Key 7 have to con-
sider, which improves the runtime of the run using Key 7
compared to the run using Key 6.

Experiment 6. The last experiment aims at showing how
our duplicate detection method scales and shows that it is
not only applicable to DSmall or DLarge, but also applies to
the complete Schufa database.

Methodology. We vary the data set size from information
about 2 million persons to information about 10 million per-
sons in increments of 2 million. To obtain these data sets,
we sample DLarge. For each dataset size, we measure the
runtime of preprocessing and the runtime of pairwise com-
parisons over one SNM run that uses Key 7. We report the
results in Fig. 12. Note that both key generation and key
sorting are decoupled from the actual duplicate detection
process because the goal is to perform these asynchronously
and incrementally. The preprocessing time shown in Fig. 12
therefore includes only the time to fetch all necessary data
from the database into main-memory (which includes can-
didate IDs, descriptions, IDF weight) with the support of
a DBMS. For 10 million persons, key generation takes 30
seconds and sorting takes between 3 and five minutes.

�����

�����

�����

�����

��
�
��
�
�
�	
�

�

�����	
����� �����
���	
����� �
��
�������	
�����

�

����

�����

�����

�����

� � � � � ��

��
�
��
�
�
�	
�

�

������

�����
��
�	��������

Figure 12: Scalability of Schufa duplicate detection.

Discussion. The comparison phase scales linearly with
the number of processed candidates N . This is in accord
with the complexity of the SNM comparison phase, which is
O(wN). We further observe that the preprocessing time per
candidate decreases with increasing number of candidates.
This phase makes heavy use of DBMS features and optimiza-
tions, so it is difficult to further interpret the result without
knowing the internals of the DBMS. Nevertheless, the lin-
ear behavior together with the runtimes of Experiment 5
for processing 10 million persons allow us to estimate the
runtime of processing 70 million persons (complete Schufa
database) to 4.7 days on a one-processor PC, using w = 50
and a rule-based strategy. As hardware at Schufa is more
advanced, runtime should further improve there.

7. RELATED WORK
Schufa has evaluated some commercial tools for duplicate

detection and decided that these did not fit their require-
ment, either due to unsatisfactory effectiveness or scalabil-
ity. Therefore, Schufa decided to build their own solution
based on up to date research.

There is a large body of research literature on duplicate
detection (see survey in [9]) but we only briefly discuss so-
lutions for industry-scale duplicate detection here.

Our prototype extends techniques we developed for Dog-
matiX [14] and allows efficient and effective duplicate detec-
tion. Our prototype is extensible and may use alternative
methods for classification [7, 8, 12] and comparison strat-
egy [4, 6, 15]. Our choice for extending DogmatiX was mo-
tivated by previous research of ours that showed that Dog-
matiX is best suited in terms of effectiveness in scenarios
similar to the Schufa scenario [13].

1263

A very interesting approach that may be used to fur-
ther improve our classifier is [8], where rules and similarity
measure parameters are first learned and expressed in SQL
queries and then combined to obtain a close to optimal rule
operator tree, with respect to effectiveness. The drawback
of this approach in our context is that the operator trees
potentially result in queries that take a long time to exe-
cute over all pairs, and applying the queries on candidates
selected for comparison by the SNM results in a large com-
munication overhead with the database.

A complementary approach to our comparison strategy is
proposed in [15], where the window size of the SNM varies
at runtime. This solution is very appealing in our context,
because key values occur with different frequencies. For in-
stance, a key consisting of the surname and the firstname
requires a large window size when persons with equal fre-
quent names are compared (e.g., thousands of John Smith’s
are sorted next to each other and all have equal key). On
the other hand, when the keys sorted next to each other
strongly differ, the window size can be kept small.

Clearly, many techniques can further improve duplicate
detection but nevertheless, the current system is already
very effective and scalable.

8. CONCLUSION AND OUTLOOK
We presented a solution to duplicate detection, which was

specifically developed for a batch duplicate detection process
at Schufa Holding AG. This solution is complementary to
the already existing duplicate detection processes based on
duplicate search at runtime.

Our solution to effectively detect duplicates extends Dog-
matiX, initially developed to detect duplicates in XML, in
two ways: First, we extended description selection by ap-
plying instance-based heuristics for automatic description
selection and a subsequent manual refinement of the selec-
tion based on domain knowledge. The other extension to
DogmatiX is a profile that consists of a sequence of domain-
dependent rule-based classifiers and a similarity-based clas-
sifier. The standard profile classifies pairs of candidates in
one of 11 classes. Experiments over a large fraction of the
Schufa database show that the standard profile is effective in
detecting duplicates, reaching 90% precision for 53% recall
when time is critical, and reaching up to 85% recall with
adequate window sizes and more time.

To improve efficiency with minimal impact on effective-
ness, we devised key definitions tailored to the classification
rules of the standard profile. These key definitions guaran-
tee that if candidates are classified as duplicate by a positive
rule, the key corresponding to that rule will sort them close
together. By coupling key definitions with classifiers, we fur-
ther reduced classification complexity by using only those
classifiers that correspond to the key used in a run. This
rule-based strategy significantly improves runtime whereas
it does not significantly degrade effectiveness. Using a rule-
based strategy, duplicate detection over 10 million persons
represented in the Schufa database terminates after 15 hours
on an off-the-shelf PC, which is deemed acceptable.

The prototypical implementation of the methods we de-
scribed in this paper yields satisfactory effectiveness and
scalability and is currently in the process of being integrated
in the actual system at Schufa. At the same time, we are de-
vising methods to further improve duplicate detection: To
improve effectiveness and to facilitate post-processing, we

will define specialized profiles that can be used in addition to
the standard profile to classify duplicate pairs based on the
reason this duplicate may have entered the database, e.g.,
an unreported address change or a change in surname. Dif-
ferent reasons require different post-processing, which may
be more easily automated using specialized profiles.

Acknowledgements. This project is funded by the Schufa
Holding AG and we thank the experts who manually classi-
fied duplicates and the Insiders employees who are migrating
the prototype into the actual Schufa system.

9. REFERENCES
[1] FUZZY! Double by FUZZY! Informatik AG. Details

at http://www.fazi.de/.

[2] IBM Entity Analytic Solutions (EAS). Details at
http://www-306.ibm.com/software/data/db2/eas/.

[3] Trillium software system. Details at
http://www.trilliumsoftware.com/de/content/

products/index.asp.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
Conference on Very Large Databases (VLDB), Hong
Kong, China, 2002.

[5] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
information retrieval. ACM Press / Addison-Wesley,
1999.

[6] I. Bhattacharya and L. Getoor. Iterative record
linkage for cleaning and integration. SIGMOD
Workshop on Research Issues on Data Mining and
Knowledge Discovery (DMKD), 2004.

[7] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
Conference on Knowledge Discovery and Data Mining
(KDD), Washington, DC, 2003.

[8] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching
queries. In Conference on Very Large Databases
(VLDB), 2007.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1), 2007.

[10] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In Conference on
Management of Data (SIGMOD), San Jose, CA, 1995.

[11] M. A. Hernández and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1), 1998.

[12] D. V. Kalashnikov and S. Mehrotra.
Domain-independent data cleaning via analysis of
entity-relationship graph. ACM Trans. Database Syst.,
31(2), 2006.

[13] M. Weis. Duplicate detection in XML. WiKu Verlag,
2008.

[14] M. Weis and F. Naumann. DogmatiX tracks down
duplicates in XML. In Conference on the Management
of Data (SIGMOD), Baltimore, MD, 2005.

[15] S. Yan, D. Lee, M.-Y. Kan, and C. L. Giles. Adaptive
sorted neighborhood methods for efficient record
linkage. In Joint Conference on Digital Libraries
(JCDL), 2007.

1264

