Efficiently Filtering RFID Data Streams

Yijian Bai *

TUCLA
bai@cs.ucla.edu

Abstract

RFID holds the promise of real-time identify-
ing, locating, tracking and monitoring phys-
ical objects without line of sight, and can
be used for a wide range of pervasive com-
puting applications. To achieve these goals,
RFID data has to be collected, filtered, and
transformed into semantic application data.
RFID data, however, contains false readings
and duplicates. Such data cannot be used
directly by applications unless they are fil-
tered and cleaned. While RFID data often
arrives quickly and is in high volume, its de-
tection usually demands efficient processing,
especially for those real-time monitoring ap-
plications. Meanwhile, the order preservation
of RFID tag observations are critical for many
applications. In this paper, we propose several
effective methods to filter RFID data, includ-
ing both noise removal and duplicate elimi-
nation. Our performance study demonstrates
the efficiency of our methods.

1 Introduction

RFID (radio frequency identification) technology uses
radio-frequency waves to transfer data between read-
ers and movable tagged objects. Thus it is possible to
create a physically linked world in which every object
can be numbered, identified, cataloged, and tracked.
RFID is automatic and fast, and does not require line
of sight or contact between readers and tagged ob-
jects. With such significant technology advantages,
RFID has been gradually adopted and deployed in a
wide area of applications, such as access control, li-
brary checkin and checkout, document tracking, smart

*Work done while visiting Siemens Corporate Research.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CleanDB, Seoul, Korea, 2006

Fusheng Wang *

Peiya Liu *

! Siemens Corporate Research
{fusheng.wang,peiya.liu} @siemens.com

e /8

P

Figure 1: Pervasive Computing with RFID

box [1], highway tolls, supply chain and logistics, se-
curity, and healthcare [2].

One major problem to be solved in pervasive com-
puting is to identify and track physical objects, and
RFID technology is a perfect fit to solve this. By tag-
ging objects with EPC ! tags that virtually represent
these objects, the identifications and behaviors of ob-
jects can be precisely observed and tracked. RFID
readers can be deployed at different locations and net-
worked together, which provides an RFID-based per-
vasive computing environment. This is illustrated in
Figure 1, where L1 — L6 denote different locations
mounted with readers. Tagged objects moving in this
environment will then be automatically sensed and ob-
served with their identifications, locations and move-
ment paths.

Readers’ observations, however, are raw data and
can contain a lot of duplicate and false readings. Thus
the first step to integrate RFID data into pervasive
computing applications is to filter RFID observations.

RFID data are generated quickly and automatically,
and can be used for real-time monitoring, or accumu-
lated for object tracking. To filter the high volume
real-time RFID data streams, efficient methods are es-
sential, especially for real-time applications.

The filtered RFID data often need to preserve the
original order, i.e., the first observed tagged object will
be output first after filtering. Such order can be criti-
cal for many RFID applications. For example, a nurse
uses a wearable reader to access RFID-tagged medical
items according to medical procedures. The order the
nurse accesses these medical items is critical: wrong
orders may cause a medical error or even lead to fatal

1EPC - Electronic Product Code — is an identification scheme
for universally identifying physical objects, defined by EPC-
Global [3].

result. Thus, the correct ordering of RFID observa-
tions together with a workflow monitoring system will
minimize such errors.

In this paper, we propose effective and efficient algo-
rithms for RFID data filtering, including noise removal
and duplicate elimination.

The paper is organized as follows. We first intro-
duce the background of RFID data filtering in Sec-
tion 2. Then in Section 3 we propose algorithms to
efficiently filter noise from RFID data, including the
problem of order preservation in the output. Next we
discuss algorithms for duplicate merging in Section 4.
Performance study of these methods is discussed in
Section 5, followed by Related Work and Conclusion.

2 Background

Due to the low-power and low-cost constraints of RFID
tags, reliability of RFID readings is of concern in many
circumstances [4, 5]. There are three typical undesired
scenarios: false negative readings, false positive read-
ings and duplicate readings, discussed as follows.

e False negative readings. In this case, RFID tags,
while present to a reader, might not be read by
the reader at all. This can be caused by i) When
multiple tags are to be simultaneously detected,
RF collisions occur and signals interfere with each
other, preventing the reader from identifying any
tags; ii) A tag is not detected due to water or
metal shielding or RF interference.

e False positive readings(or noise). In this case, be-
sides RFID tags to be read, additional unexpected
readings are generated. This can be attributed to
the following reasons. i) RFID tags outside the
normal reading scope of a reader are captured by
the reader. For example, while reading items from
one case, a reader may read items from an adja-
cent case; ii) Unknown reasons from the reader
or environment, for example, one of our readers
periodically sends wrong IDs.

e Duplicate Readings. This can be caused by the
following reasons: i) Tags in the scope of a reader
for a long time (in multiple reading frames) are
read by the reader multiple times; ii) Multiple
readers are installed to cover larger area or dis-
tance, and tags in the overlapped areas are read
by multiple readers; and iii) To enhance reading
accuracy, multiple tags with same EPCs are at-
tached to the same object, thus generate duplicate
readings.

In practice, readings are often performed in mul-
tiple cycles to achieve higher recognition rate [5]. In
this way, false negative readings can be significantly
reduced. Meanwhile, noisy readings (or false positive

readings) generally have a low occurrence rate com-
pared to normal true readings. Thus only those read-
ings that have significant repeats within certain inter-
val are considered to be true readings. This, however,
will further produce much more duplicate readings.

Based on above observations, we develop effective
and efficient RFID data filtering techniques to gener-
ate clean RFID data, which can be further interpreted
and integrated into RFID-based applications. In this
paper, we study two types of filtering: noise is removed
from RFID data (denoising or smoothing), and dupli-
cates are merged into one distinct reading (duplicate
elimination, or merging). We develop algorithms that,
compared to baseline implementations, work more ef-
ficiently while requiring less buffer space for history
storage for both denoising and duplicate elimination.
Furthermore, we discuss the issue of output time or-
dering for denoising and show our method can address
this issue efficiently.

3 Denoising in RFID Data Streams

Based on the discussion above, since multiple read-
ing cycles are performed on tagged objects and noise
readings normally have a low occurrence rate, we pro-
pose sliding window based approaches to solve the
problem. A sliding window is a window with certain
size that moves with time. Suppose the window with
size window_size has a time coordinate of [t;, t; +
window_size], after 7, the coordinate will become [t}
+ 7, t1 + window_size + T].

RFID reading tuples will enter the window and get
expired as time moves. Therefore, the noise readings
are readings with count of distinct tag EPC values be-
low a noise threshold. Denoising essentially performs
the following operations: within any time window with
size of window_size surrounding an RFID reading, if
the count of the readings with same tag EPC values ap-
pears equal to or above threshold, then the observed
EPC value is not noise and needs to be forwarded for
further processing; otherwise the reading is discarded.
Two parameters used here are window_size of a sliding
time window, and a threshold for noise detection.

An RFID observation (reading) is in the form

of: (reader_id, tag id, timestamp), which refers to
the EPC [3] of the RFID reader, the EPC of the tagged
object, and the timestamp of this observation respec-
tively. In the algorithms presented below, the key of
a reading can be usually considered to be the pair
of (reader_id, tag id) in the reading. For the case
where multiple readers are used to observe same tags,
the key will be tag_id.
Baseline Denoising: A Base Approach We
first show a baseline implementation of denoising
as shown in Algorithm 1, which we refer to as
baseline_denoising.

In this algorithm, intuitively, for each incoming

Algorithm 1 Baseline_denoise (params:

window_size, threshold)

1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}

3: INCOMING <« the next reading

4: append INCOMING to the end of WINDOW-
BUFFER

5. EXPIRETIME <« INCOMING.timestamp - win-
dow_size

6: while the head of WINDOWBUFFER is older than
EXPIRETIME do

7 remove the head of WINDOWBUFFER

end while

9: COUNT « count of readings in WINDOW-
BUFFER whose key equals to INCOMING.key

10: if COUNT > threshold then

o

11: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING.key do

12: if R has not been output before then

13: output R

14: set STATE-OF-OUTPUT as true

15: end if

16: end for

17: end if

18: end loop

reading of value R, we perform a full scan of the pre-
ceding sliding time window of size window_size. If R
appears more than threshold times within the win-
dow, we know this is not a noise reading thus we out-
put every R in the window. To ensure a particular
reading is never output more than once, we keep a
state-of-output with each reading in the window
buffer and set it to true once it is output once.

Complexity. Assume on average there are n read-
ings in the sliding window, with k distinct keys. Since
the operations are repeated for each incoming tag read-
ing, we analyze the time cost on a per-reading ba-
sis. The bulk of the time cost is from 4 operations:
inserting the incoming reading into the window, re-
moving expired readings from the window, computing
the count of the readings with the same key, setting
state-of-output and outputting readings of the same
key if threshold condition is satisfied. Since all read-
ings are maintained in the same FIFO (First-In, First-
Out) queue, both insertion of new readings (appending
to the end of queue) and removal of expired readings
(removing from the head of queue) can be considered
constant time (O(1)) operations. (Strictly speaking,
expiration is amortized (O(1)) per incoming reading
here, since on average there is only one expiration per
new arrival, although individual incoming reading may
trigger different number of expirations.) On the other
hand, both counting and setting state-of-output
is performed by linearly scanning the full window.
Counting is always performed for each incoming read-
ing, thus the cost is ©(n). Setting state-of-output

and outputting only occur when threshold condition
is satisfied, thus the cost can be considered to be
bounded by O(n), which leaves the total cost per in-
coming reading to be O(1)+0(1)+0(n)+0(n) = O(n).

Space Cost. The space cost for the base-
line_denoise algorithm is basically the storage for the
sliding window itself, thus ©(n).

It is natural to see that, with some additional space
cost, we can incrementally maintain an extra counter
for each distinct tag EPC value using a hashtable
(which takes ©(k) space), thus reduce the counting
cost for each incoming key value. That is, for each in-
coming reading we increment the counter for the cor-
responding key in the hashtable, and for each expired
reading we decrement the counter for the correspond-
ing key. This reduces counting to an O(1) operation,
although we still can not avoid the O(n) operation of
setting states-of-output and outputting readings.

3.1 Lazy Denoising with Output Order Pre-
serving Using Hashtable

There is one problem in the baseline_denoise algo-
rithm: the output readings may be out of order if
we output immediately upon determining a reading is
non-noise, i.e., a reading observed earlier may be out-
put later. This affects all further RFID data processing
where correct ordering of observations is critical, such
as complex RFID event detections for real-time RFID
applications and RFID data aggregation [6]. For ex-
ample, we may need to detect a certain sequence of
events, A followed by B, if the order is reversed an
alert has to be raised. In this scenario, not preserving
output ordering of tags will result in both false alerts
and false acceptances.

The following example shows how this out-of-order
problem might happen.

Example 1: out-of-order observations. Suppose two
tags are being read at two readers attached to the same
host computer. Each tag is repeated 10 times with
an interval of 100msec, thus the window size here is
1000msec. A reading is considered to be non-noise if
it appears 6 times out of any 1000msec time-window
around it. Assume the two tag keys are 1 and 2, and
the actual readings appear in sequences as shown in
Table 1, where tag 2 arrives 100msec later after tag 1
arrives. The readings of 4, 5, 8, 9 are noise?.

Although tag 1 and tag 2 both have 2 noise readings
in this example, due to different positions of the noise,
ID 2 is actually determined as a non-noise reading first
(at time 700msec), while ID 1 is determined as a non-
noise later (at time 800msec), although tag 1 arrives
earlier than tag 2. Therefore, if we output readings

2This example also illustrates how to set the window_size
parameter for the algorithm. In most cases, this parameter is
dictated by the repeat count of a tag, as well as the interval
between repeats. The other parameter, threshold, however,
will need to be tuned based on error rates.

Time(msec) Tag 1 Reading Tag 2 Reading

100 1
200 4 2
300 1 2
400 1 2
500 5 2
600 1 2
700 1 2%
800 1* 8
900 1 2
1000 1 9
1100 2

Table 1: Arrival Time of Readings for Tag 1 and Tag
2 (* indicates the earliest time point that the reading
can be determined as non-noise)

immediately after we detect them as non-noise, as is
done in the baseline_denoise algorithm, we will then
output readings with their timestamps out of order. If
we represent the output as (id, time), then at time
700msec and 800msec the output for this example is:

Time 700: (2,200) (2,300) (2,400) (2,500) (2,600) (2,700)
Time 800: (1,100) (1,300) (1,400) (1,600) (1,700) (1,800)

Clearly, the reading of tag 1 at time 100msec will be
output later than the reading of tag 2 at time 700mec.
This will present a problem for any algorithm that is
dependent on correct time-ordering of readings.

To solve the out-of-order problem, one solution is,
when a reading is determined as non-noise, mark the
reading as non-noise but not output it yet. The output
happens only if a reading marked as non-noise gets ex-
pired from the window. With the FIFO queue for the
window, it is therefore very efficient to output readings
in their correct order.

Algorithm 2 — Lazy_denoising — incorporates the
above-mentioned improvements. A hashtable of coun-
ters are maintained for each distinct key value R that is
still present in the sliding window, and the correspond-
ing counter is incrementally updated for each incoming
tuple and expiring tuple. At any point of time, if the
count of R in the window is higher than threshold,
we mark all readings of R as non-noise. To ensure the
correct output order, we delay the output of all non-
noise tuples till they expire from the sliding window.
At this point we know for sure all non-noise tuples will
be in order, since the noise readings that have already
expired will never turn to non-noise to affect the order.

Complexity. With incremental counter mainte-
nance using a hashtable, the cost of counting opera-
tion for each incoming reading is reduced from O(n)
to O(1), at the expense of an extra ©(k) space. With
output-on-expire, it guarantees that the output is in
correct time order at no extra time or space cost. The
cost of hashtable maintenance (inserting and removing
keys from the hashtable) is on-average upper-bounded

Algorithm 2 Lazy_denoising (params: window_size,
threshold)
1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}
2: TABLE < empty hashtable {hashtable to map each
key to a counter}

3: loop {loop forever for next incoming reading}
4: INCOMING <« the next reading
5. mark INCOMING as noise
6: append INCOMING to the end of WINDOW-
BUFFER
7: if the counter at TABLE[INCOMING key] does not
exist then
8: store a counter at TABLE[INCOMING key] with
value 1
9: else
10: increment the counter at TA-
BLE[INCOMING key]
11: end if
122 EXPIRETIME « INCOMING.timestamp - win-
dow_size

13: while the head of WINDOWBUFFER is older than
EXPIRETIME do

14: if the head reading is marked as non-noise then

15: output the head of WINDOWBUFFER

16: end if

17: remove the head of WINDOWBUFFER

18: decrement the counter in TABLE for the corre-
sponding key

19: remove the slot in TABLE if the counter for this

key becomes 0

20: end while

21: COUNT — counter

BLE[INCOMING key]

22: if COUNT > threshold then

23: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING .key, by reverse
time order do

value at TA-

24: if R is marked as noise then
25: mark R as non-noise

26: else

27: break the for loop

28: end if

29: end for

30: end if

31: end loop

by O(1) for each incoming reading, and due to repeat-
ing, not every incoming reading will introduce a new
key.

Notice that, in general, if each key is repeated for a
fair amount of time (say 10 times, which is common in
practice), and the noise ratio is small (say 1%), then k
can be considered to be an order of magnitude smaller
than n. As the noise ratio gets higher, the difference
between k and n become smaller. If we assume each
tag is repeated for r times, and overall there is a p
percent chance that a reading is noise, then we have
the relationship that k = n* (2 + p).

Baseline (Ordered). In the experiments section,

a Baseline (Ordered) algorithm is used for compari-
son with Baseline_denoising and Lazy_denoising. This
algorithm is exactly the same as Baseline_denoising
when searching for non-noise readings, as it scans the
full window each time. However, it also tries to output
tuples in order by only outputting a reading when it
expires from the window. The details of this algorithm
are omitted here since it is a straightforward extension
of Baseline_denoising and has exactly the same com-
plexity bounds.

3.2 Eager Denoising: Output Data Early with
Order Preservation

Although output-on-expire is efficient and straightfor-
ward, it does have a negative consequence of intro-
ducing more delay for outputting readings. Instead of
being output on the fly at the time of determination
to be non-noise, a reading will not be output until it
is expired from the sliding window. This could be a
problem if the width of the window is quite long. This
indeed can be improved for situations where a reading
can be output earlier while correct time order can still
be preserved.

In fact, the issue of order disturbance occurs only
if a reading has been output before the change of la-
beling on some earlier reading from noise to non-noise
within the window. Therefore, for a non-noise reading
that we know no other earlier noise reading is present
in the sliding window, we can then safely output it
without the risk of order problems. This technique is
incorporated in Algorithm 3 — Fager_denoise.

Algorithm Fager_denoise (Algorithm 3) improves
over Algorithm Lazy_-denoise (Algorithm 2) by out-
putting non-noise readings more eagerly: as soon as
there is no more noise before the non-noise reading
within the sliding window, the non-noise reading is
output. To achieve this, the algorithm keeps track of
the first noise reading (FIRSTNOISE) inside the win-
dow at all times. Then an invariant is kept at the end
of processing each incoming reading, such that all the
non-noise readings before FIRSTNOISE are output,
and all the non-noise readings after FIRSTNOISE are
not. (In the case of no presence of noise, everything
is output at the end of the processing of the incom-
ing reading). To maintain this invariant, each time
FIRSTNOISE changes — either by expiring the reading
out of the window, or due to setting of non-noise when
its key appearance is more frequent than the threshold
— we output all non-noise readings by time order until
we find the next FIRSTNOISE in the window.

Therefore in this algorithm, in a nutshell, for each
incoming reading and each expiring reading we incre-
mentally update the corresponding counter for each
distinct tag EPC value in the hashtable. Once the
counter for value R is higher than threshold, we set
all readings of R in the window to be non-noise. We
immediately output the non-noise reading of value R

Algorithm 3 Eager_denoise (params: window_size,
threshold)

1: WINDOWBUFFER « empty queue

2: TABLE «+ empty hashtable

3: FIRSTNOISE « null {keep earliest noise in window}
4: loop {loop forever for next incoming reading}

5. INCOMING <« the next reading

6: mark INCOMING as noise

7: if FIRSTNOISE = null then

8: FIRSTNOISE « INCOMING
9:

0

1

end if

append INCOMING to end of WINDOWBUFFER

if the counter at TABLE[INCOMING key] does not

exist then

12: initiate TABLE[INCOMING .key| with counter 1

13: else

14: increment TABLE[INCOMING key]

15: end if

16: EXPIRETIME <« INCOMING.timestamp - win-
dow_size

17: SEARCHFIRST « false

18: while the head of WINDOWBUFFER is older than
EXPIRETIME do

19: if SEARCHFIRST = false A the head reading is
marked as noise then
20: SEARCHFIRST « true
21: FIRSTNOISE «— null
22: else if SEARCHFIRST = true A the head reading
is marked as mon-noise then
23: output the head of WINDOWBUFFER {this is
a non-noise reading after the previous expired
FIRSTNOISE}
24: end if
25: remove the head of WINDOWBUFFER
26: decrement the counter in TABLE for the corre-
sponding key
27: remove the slot in TABLE for 0-counts

28: end while

29: COUNT — counter
BLE[INCOMING key]

30: if COUNT > threshold Vv SEARCHFIRST = true
then {If either the threshold condition is met, or
we need a new FIRSTNOISE, scan the window}

value at TA-

31: for each of the reading R still in WINDOW-
BUFFER according to time order do
32: if COUNT > threshold A R.key = INCOM-
ING.key A R is marked as noise then

33: if SEARCHFIRST = false A R = FIRST-
NOISE then

34: SEARCHFIRST « true

35: FIRSTNOISE «— null

36: end if

37: mark R as non-noise

38: if SEARCHFIRST = true V R.timestamp <
FIRSTNOISE.timestamp then

39: output R {output the newly-determined

non-noise reading, if either the next
FIRSTNOISE is unknown, or it is earlier
than the known FIRSTNOISE}

40: end if

41: else if R is non-noise A SEARCHFIRST = true
then

42: output R {output the existing non-noise

reading, only if the next FIRSTNOISE is not
determined yet}

43: else if SEARCHFIRST = true A R is marked
as noise then

44: SEARCHFIRST « false

45: FIRSTNOISE «— R

46: if COUNT < threshold then

47: break the while loop

48: end if

49: end if

50: end for

51: end if

52: end loop

once we can determine that there are no more noise
readings before this reading in the sliding window.

Complexity. Compared to Lazy_denoise, Fa-
ger_denoise performs one more operation: the mainte-
nance of FIRSTNOISE. An extra linear search on the
window is performed whenever FIRSTNOISE changes,
and the search is obviously less frequent than one time
per incoming reading. Therefore the bound of O(n)
processing time per incoming reading still remains the
same.

4 Duplicate Elimination (Merging)

When noise in the readings is eliminated, dupli-
cate readings for the same tag have to be recog-
nized and only the first (or the earliest) one among
all duplicates should be retained. Our duplicate-
elimination (or merging) algorithms take one pa-
rameter — max._distance. If a reading is within
max_distance in time from the previous reading with
the same key, then this reading is considered a dupli-
cate. Otherwise, it is considered a new reading and is
output.

Algorithm 4 — baseline_merge — performs duplicate
elimination by simply keeping a sliding-window of size
max_distance. For each incoming reading, if there
exists another reading in the window with the same
key, then it is considered a duplicate, otherwise it is
output as a new reading.

Algorithm 4 Baseline_merge (param: maz_distance)

1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}

3: INCOMING « the next reading

4: EXPIRETIME INCOMING.tlmestamp -
maz_distance

5. while the head of WINDOWBUFFER is older than
EXPIRETIME do

6: remove the head of WINDOWBUFFER

7: end while

8: go through WINDOWBUFFER to look for another
reading with the same key as INCOMING

9: if nothing is found then

10: output INCOMING

11: end if

12: append INCOMING to the end of WINDOW-
BUFFER

13: end loop

Complexity In baseline_merge, a linear scan is per-
formed on the full window for each incoming reading,
therefore the time cost is ©(n). The space cost is sim-
ply the window itself in a FIFO queue, at ©(n).

Baseline_merge is intuitive and can be also easily re-
alized in some systems that support the concept of slid-
ing windows. For example, a SQL-based DSMS(Data
Stream Management System) can code baseline_merge
as the following continuous query, assuming a data
stream schema of Readings (key, time):

SELECT key, time
FROM Readings R1

Algorithm 5 Hash_merge (param: max_distance)

1: TABLE < empty hashtable {hashtable to store the
last appearance time for each key}

2: loop {loop forever for next incoming reading}

3: INCOMING <« the next reading

4: if INCOMING.timestamp TA-
BLE[INCOMING key| > maz_distance then

5: output INCOMING

6: end if

7. update TABLE[INCOMING key] to be INCOM-
ING.timestamp

8: end loop

WHERE NOT EXISTS
(SELECT *
FROM Readings R2
OVER(maz_distance milliseconds PRECEDING R1)
WHERE R2.key = key
AND R2.time <> time)

Baseline_merge carries a ©(n) time cost per incom-
ing reading, and a ©(n) space cost, both of which can
be further improved. In fact, it is straightforward to
see that it is not necessary to keep a max_distance win-
dow worth of readings in order to determine whether
an incoming reading is a duplicate. All that needs
to be maintained is a timestamp to indicate the last
time a reading with the same key as the incoming
reading appears. If the distance between the incom-
ing timestamp and the last timestamp is larger than
maz_distance, then we treat it as a new reading and
output it.

Algorithm 5 uses a hashtable to keep the last ap-
pearance timestamp for each distinct key value. For
each incoming reading, its timestamp is compared to
the corresponding entry for this key in the hashtable,
and the reading is determined to be a new tag reading
if the key does not appear in the table, or the time
distance is larger than threshold.

Complexity. Since the hashtable keeps one en-
try per distinct key value, the average space cost is
now O(k), compared to ©(n) of base_merge. Further-
more, the time cost per incoming reading is now re-
duced to O(1) for hashtable lookup, instead of a full
scan of ©(n). The cost of maintaining the hashtable
is less than O(1) on-average for each incoming tuple,
since not every incoming/expiring tuple will cause in-
sertion/deletion of keys from the hashtable.

5 Performance Study

For experiments, a random RFID reading generator
was created, which generates RFID tag reading ac-
cording to a Poisson process. The Poisson process gen-
erates tag readings with random arrival time, while the
arrival time conforms to a Poisson distribution with a
chosen average tag arrival rate. Each generated tag
reading repeats for 10 times, with some chosen noise
level (a certain percentage of the reading are noise).

—=— Baseline_denoise
—e— Baseline_denoise (ordered)

Lazy_denoise (ordered)
—+— Eager_denose (ordered)

10000

1000 |- '/

Average Filtering Delay (msec)

1=}
S
T

| | 1
1

10 100
Average Tag Arrival Speed (per sec)

Figure 2: Noise Elimination: Delay under Different
Arrival Rates

5.1 Performance of Denoising under Different
Arrival Rates

In the first experiment, we study the performance of
the various algorithms under different tag rates. The
random generator is fixed with the following parame-
ters: each tag reading repeats 10 times, with 200 mil-
liseconds gap between the repeats, and a 5 percent of
tag readings are noise. The average tag arrival rates
tested include: 1 tag/sec, 5 tags/sec, 50 tags/sec and
500 tags/sec. (With repeats set to 10/tag, the total
reading arrival rates are 10/sec, 50/sec, 500/sec and
5000/sec, respectively.) Average filtering delay over all
output readings is used to measure the performance of
the algorithms.

In Figure 2, four algorithms are used to filter the
reading to perform denoising. Baseline (Unordered)
corresponds to the Baseline_denoise algorithm pre-
sented above, which performs denoising without any
optimization, and output the readings in incorrect
timestamp order. Baseline (Ordered) is a modified ver-
sion of the Baseline_denoise algorithm, which also per-
forms denoising without any optimization, but outputs
the readings in correct orders by outputting at the time
of expiring from sliding window. Lazy_denoise and Ea-
ger_denoise are exactly as described above, and both
output readings in correct time order.

All four algorithms function correctly to filter out
the noise readings, and the three ordered-output al-
gorithms also proved to maintain the correct order-
ing. Figure 2 shows the performance of the algorithms
in terms of average delay of readings. Baseline (Un-
ordered) works well with low tag rates, because it com-
pletely ignores the output time order issue and there-
fore has the advantage of output immediately on de-
tection. Its performance degrades under high tag rate
situations due to large overhead of linear scanning of
the large sliding window under high rates. Baseline
(Ordered) has the worst performance of all, since it
has no optimization, while it still tries to maintain
the timestamp ordering. Lazy_denoise performs bet-
ter than Baseline (Ordered) under high loads because

—n— Baseline_denoise (unorded)
Lazy_denoise (ordered)
—— Eager_denose (ordered)

1000

Average Filtering Delay (msec)

100

10
Noise Percentage (%)

Figure 3: Noise Elimination: Delay under Different
Noise Percentage

it utilizes hashtables to reduce the overhead. Fa-
ger_denoise has the best performance of all, since it
not only utilizes the hashtable optimization, but also
outputs readings as soon as they are safe to output.
Overall, Eager_denoise has the best performance un-
der all load conditions.

5.2 Performance of Denoising under Different
Noise Ratio

The Baseline (Unordered), Lazy-denoise and Fa-
ger_denoise algorithms are studied for the performance
under different noise ratio. The random generator is
fixed with the following parameters: each tag reading
repeat 10 times, with 200 milliseconds gap between
the repeats, and overall tag arrival rate is 1/second.
Then different noise ratios are tested, including 1%,
5%, 20% and 50%.

Again, from Figure 3, Baseline (Unordered) works
well in terms of performance since it ignores the or-
dering issue and outputs immediately upon detection,
but its output readings are in incorrect time order.
Lazy_denoise has to wait until the readings get ex-
pired from the sliding window, therefore it has the
largest delay. The interesting observation is that, un-
der low noise ratio, Fager_denoise works almost as well
as Baseline (Unordered), although it maintains the
correct output time order. That is because when noise
ratio is low, it is more likely for a non-noise reading
to be output early under FEager_denoise, when there
is no more noise preceding it in the sliding window.
However, as noise ratio gets higher, Fager_denoise gets
closer to Lazy_denoise since there are more and more
noise readings present to prevent early outputting.
Nonetheless, overall Eager_denoise always works bet-
ter than Lazy_denoise.

5.3 Performance of Duplicate Elimination

We study the performance of the two duplicate elim-
ination algorithms (Baseline_merge and Hash_merge)
under different tag arrival rates. The random gen-
erator is fixed with the following parameters: each

100000

10000

1000

100

Average Filtering Delay (msec)

Average Tag Arrival Speed (per sec)

Figure 4: Duplicate Elimination: Delay under Differ-
ent Arrival Rates

tag reading repeat 10 times, with 200 milliseconds
gap between the repeats, and a 0 percent noise (since
here we are testing duplication elimination only, noise
are presumed already removed by previous filtering).
Then the performance is tested under different average
tag arrival rates, including 10 tags/sec, 50 tags/sec,
250 tags/sec and 1000 tags/sec. (With repeats set
to 10/tag, the total reading arrival rates are 100/sec,
500/sec, 2500/sec and 10000/sec, respectively.)

Both algorithms are able to eliminate duplicate
readings and only output the corresponding read-
ing once. However, it is clear from Figure 4 that
Hash_merge is far-superior than the baseline imple-
mentation. The delay is basically negligible even under
an arrival rate of 10,000 readings/sec (1000 tags/sec)
for Hash_-merge, while Baseline_merge starts to cause
large delays after tag rate reaches 500 readings/sec(50
tags/sec).

6 Related Work

RFID data filtering needs to remove noise and dupli-
cate from continuous high volume RFID data streams
generated from RFID readers. Such filtering is essen-
tial to provide accurate data used for RFID-enabled
pervasive applications. While RFID data filtering
is supported in RFID Middleware systems such as
[7, 8, 9], large volume real-time RFID data streams
demand more efficient approaches for filtering these
data.

RFID data processing is a hybrid of event process-
ing and stream processing. Past work on event detec-
tion and processing — such as [10, 11] — is not con-
cerned with processing speed and memory manage-
ment issues, where events are normally generated from
databases and different from events from high-speed
event streams. On the other hand, past work on data
stream processing and continuous query optimization
[12, 13, 14] assumes accurate stream sources and is not
concerned with RFID application-specific issues, such
as the existence of noisy and duplicate readings.

In [15], a probability-based approach is provided to
detect duplicate in web click streams. This approach

can not be applied to RFID data, since accuracy is
among the top priority for RFID data processing.

7 Conclusion

In this paper, we identify the problem of RFID data fil-
tering and develop efficient methods to eliminate noise
and duplicate from RFID observations. Specially, for
noise filtering (denoising or smoothing), we propose
an approach for more efficiently maintaining the orig-
inal time order of observations in the output; and for
duplicate elimination, the approach that we formulate
can minimize memory requirement for history buffer-
ing. We then perform experiments to validate our ap-
proaches through simulated RFID data generator and
demonstrate that our approaches are effective and ef-
ficient. Our approach of data filtering is essential to
provide clean and correct RFID data before they can
be further processed, transformed, and integrated for
RFID-enabled pervasive applications. The techniques
also provide an important reference for building RFID
Middleware [7, 8, 9] where filtering is a critical com-
ponent.

References
[1] M. Lampe and C. Flrkemeier. The Smart Box Appli-

cation Model. In PerCom, 2004.
[2] Siemens to Pilot RFID Bracelets for Health Care.

http://www.infoworld.com/article/04,/07 /23 /HNrfid

implants_1.html, July 2004.
[3] EPC Tag Data Standards Version 1.1. Technical re-

port, EPCGlobal Inc, April 2004.
[4] J. Brusey et. al. Reasoning About Uncertainty in Lo-

cation Identification with RFID. In RUR at IJCAI

August 2003.
[5] H. Vogt. Efficient Object Identification with Passive

RFID Tags. In Pervasive, 2002.
[6] F. Wang and P. Liu. Temporal Management of RFID

Data. In VLDB, 2005.
[7] C. Bornhoevd et. al. Integrating Automatic Data Ac-

quisition with Business Processes - Experiences with

SAP’s Auto-ID Infrastructure. In VLDB, 2004.
[8] Oracle Sensor Edge Server. http://www.oracle.com

/technology /products/iaswe/edge_server.
[9] Sybase RFID Solutions. http://www.sybase.com/rfid,

2005.
[10] S. Chakravarthy et. al. Composite Events for Active

Databases: Semantics, Contexts and Detection. In

VLDB, 1994.
[11] N. H. Gehani et. al. Composite Event Specification

in Active Databases: Model & Implementation. In

VLDB, 1992.
[12] R. Motwani et. al. Query processing, approximation,

and resource management in a data stream manage-

ment system. In CIDR, 2003.
[13] Sam Madden et. al. Continuously adaptive continuous

queries over streams. In SIGMOD, 2002.
[14] D. Abadi et. al. Aurora: A new model and architec-

ture for data stream management. VLDB Journal,

12(2), 2003.
[15] A.Metwally et. al. Duplicate Detection in Click

Streams. In WIWW, 2005.

