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ABSTRACT

Record linkage of millions of individual health records for
ethically-approved research purposes is a computationally
expensive task. Blocking methods are used in record link-
age systems to reduce the number of candidate record com-
parison pairs to a feasible number whilst still maintaining
linkage accuracy. New blocking methods have been imple-
mented recently using high-dimensional indexing or cluster-
ing algorithms.

We compare two new blocking methods, bigram indexing
and canopy clustering with TFIDF (Term Frequency/Inverse
Document Frequency), with two older methods of standard
traditional blocking and sorted neighbourhood blocking. The
results show that recently blocking methods such as bigram
indexing and canopy clustering provide scalable blocking
methods while maintaining or improving upon record link-
age accuracy. There is a potential for large performance
speed-ups and better accuracy to be achieved by these new
blocking methods.
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1.5.3 [Pattern Recognition]: Clustering; H.3.3 [Information
Storage and Retrieval]: Information Storage and Re-
trieval—clustering
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Figure 1: Process diagram of a record linkage system

1. INTRODUCTION

Record linkage techniques are used to link together records
which relate to the same entity (e.g. patient or customer) in
one or more data sets where a unique identifier is not avail-
able. Record linkage is an important initial step in many
research and data mining projects in the biomedical and
other sectors, where it is used to improve data quality and
to assemble longitudinal or other data sets which would not
otherwise be available.

Figure 1 shows the processing view of a standard record
linkage system architecture as implemented in TAILOR [4],
Febrl [2] or AutoMatch [7]. The major challenges in record
linkage are computational complexity and linkage accuracy.
Linking data sets with millions of records can take from
hours to days on modern computing systems. Recent de-
velopments in information retrieval, database systems, ma-
chine learning and data mining have the potential to improve
the efficiency and accuracy of record linkage system compo-
nents. These developments include efficient blocking meth-
ods, adaptive distance metrics for evaluation of record pair
similarity and learning methods for the classification task
of deciding whether a record pair is a match, non-match or
possible match.

As potentially each record in one data set has to be com-
pared to all records in a second data set, the number of
record pair comparisons grows quadratically with the num-
ber of records to be matched. This approach is computation-



ally infeasible for large data sets. To reduce the huge number
of possible record pair comparisons, traditional record link-
age techniques work in a blocking fashion, i.e. they use a
record attribute (or sub-set of attributes) to split the data
sets into blocks. Record pairs for detailed comparison are
then generated from all the records in the same block (i.e.
records with the same value in a blocking attribute). Such
detailed comparison functions include approximate string
comparisons for names and addresses, and date or age com-
parisons (e.g. for date of birth) [1].

In this paper, we focus on comparing the speed and accuracy
of new blocking methods with established blocking method
implementations. The performance bottleneck in a record
linkage system is usually the evaluation of a similarity mea-
sure between pairs of records. The choice of a good blocking
method can greatly reduce the number of record pair eval-
uations to be performed and so achieve significant perfor-
mance speed-ups. We consider alternative clustering meth-
ods for forming blocks in the record linkage process. Re-
cent work by McCallum, Nigam and Unger[11], Cohen and
Richman[3], and others [9] have proposed the use of high-
dimensional similarity indexing to improve the efficiency of
blocking methods. The similarity of blocking to clustering
has previously been observed [3, 11].

We compare Standard Blocking [8], the Sorted Neighbour-
hood method [6], Bigram Indezing [1] and Canopy Cluster-
ing with TFIDF [11]. This paper’s contribution is to empir-
ically compare the speed-up and accuracy (sensitivity and
specificity) performance of these blocking methods. Block-
ing methods directly affect sensitivity (if record pairs of true
matches are not in the same block, they will not be compared
and can never be matched) and indirectly affect specificity
(as a better reduction ratio of the number of record pair com-
parisons allows more computationally intensive comparators
to be employed).

Our particular purpose is record linkage of public health
records for ethically-approved research purposes. For this
linkage accuracy is of critical importance in avoiding the in-
troduction of unnecessary noise into the linkage results. This
is needed to enable the reliable testing of the public health
hypotheses addressed in the research projects. We note that
linkage accuracy in other applications, such as mail-merge,
bibliographic matching and web-site source integration, is
desirable but not as critical. A decision model incorporat-
ing costs for a record linkage system has been proposed by
Verykios et al [12].

This paper is structured as follows. In the next section we
describe the details of the four blocking methods under in-
vestigation. Section 3 presents the experimental protocol,
evaluation metrics and data sets, and in Section 4 we dis-
cuss the results of various experiments. Conclusions and
future work are then presented in Section 5.

2. BLOCKING METHODS

2.1 Standard Blocking

The Standard Blocking (SB) method clusters records into
blocks where they share the identical blocking key [8]. A
blocking key is defined to be composed from the record at-
tributes in each data set. An example of a blocking key is

the first four characters of a surname attribute. A blocking
key can also be composed of more than than one attribute,
for example, a postcode attribute could be combined with
an age category attribute.

There is a cost-benefit trade-off to be considered in choos-
ing the blocking keys [10]. If the resulting blocks contain a
large number of records, then more record pairs than neces-
sary will be generated, leading to an inefficiently large num-
ber of comparisons. For example, using a gender attribute
as blocking key puts all the available records into two very
large blocks. On the other hand, if the blocks of records
are too small, then true record pairs may be missed, there-
fore reducing linkage accuracy (sensitivity). For example,
blocking on a social security number (SSN) attribute leads
to almost as many small blocks as there are individuals in
the data sets. Errors in the SSN may also mean true record
pair matches are not included in the same blocks.

A further consideration in the choice of blocking keys is
the error characteristics of the record attributes used. To
achieve good linkage accuracy, it is preferable to use the least
error-prone attributes available. Multiple blocking keys are
also used as a way to mitigate the effects of errors in block-
ing keys. Several passes (iterations) with different blocking
keys are performed (for example in AutoMatch), resulting in
different blocks and different record pair comparisons. Mul-
tiple passes improve linkage accuracy but efficient imple-
mentation and tuning of the multiple blocks and multiple
sets of record comparisons can be dfficult to achieve.

Another strategy used to reduce the effects of spelling and
transcription errors [4] in record attributes used as block-
ing keys (typically name and address attributes) is to use
phonetic encodings.

Assuming two data sets with n records each are to be linked,
and the blocking method resulted in b blocks (all of the
same size containing n/b records), the resulting number of

record pair comparisons is O(%) [4]. This is of course the
ideal case, hardly ever achievable with real data. Thus, the
number of record pair comparisons can be dominated by the
the largest block.

2.2 Sorted Neighbourhood

The Sorted Neighbourhood (SN) method [6] sorts the records
based on a sorting key and then moves a window of fixed
size w sequentially over the sorted records. Records within
the window are then paired with each other and included
in the candidate record pair list. The use of the window
limits the number of possible record pair comparisons for
each record to 2w — 1. The resulting total number of record
pair comparisons (assuming two data sets with n records
each) of the sorted neighbourhood method is O(wn) [4].

Similar to standard blocking, it is advantageous to do several
passes (iterations) with different sorting keys and a smaller
window size than one pass only with a large window size [5].

One problem with the sorted neighbourhood method arises
if a number of records larger than the window size have the
same value in a sorting key. For example, having a sorting
key surname, hundreds of records can have a value of ’smith’,



Blocking method, Number of blocks,
parameter n = 9974

Standard Blocking, | =1 26

Standard Blocking, | = 3 1941
Standard Blocking, [ = 6 5664
Bigram Indexing, ¢t = 0.2 23695
Bigram Indexing, t = 0.6 48786
Bigram Indexing, ¢t = 0.9 5663

Table 1: Number of blocks produced by Standard
Blocking and Bigram Indexing with n = 9974. [ is the
length of the blocking key values, and t the bigram
threshold.

and if the window size is small not all records with a surname
value ’smith’ will be compared.

2.3 Bigram Indexing

The Bigram Indexing (BI) method [1] as implemented in
the Febrl [2] record linkage system allows for fuzzy blocking.
The basic idea is that the blocking key values are converted
into a list of bigrams (sub-strings containing two characters)
and sub-lists of all possible permutations will be built using
a threshold (between 0.0 and 1.0). The resulting bigram
lists are sorted and inserted into an inverted index, which
will be used to retrieve the corresponding record numbers
in a block.

For example, a blocking key value ’baxter’ will result in a
bigram list (“ba’,’az’,’zt’,’te’,’er’). With a threshold of 0.8
the following sub-lists of length 4 (calculated as the length of
the bigram list times the threshold: 5 x 0.8) will be inserted
into the inverted index:

(’az’, 7It;7 7t€7, ’67’”)
(}ba)’ 7xt7’ ’te 77 }67‘7)
(’ba’,’ax’, ’te’, ’er’)
(’ba’,’ax’,’zt’, er’)
(’ba ’} 7a/$’) ’$t7) )te ’)

All record numbers which contain the blocking key value
"bazter’ will be inserted into five blocks, thus increasing the
number of record pair comparisons compared to standard
blocking.

The number of sub-lists created for a blocking key value both
depends on the length of the value and the threshold. The
lower the threshold the shorter the sub-lists, but also the
more sub-lists there will be per blocking key value, resulting
in more (smaller blocks) in the inverted index.

In the information retrieval field, bigram indexing has been
found to be robust to small typographical errors in docu-
ments [3].

Like standard blocking, the number of record pair compar-
isons with two data sets with n records each, b blocks all

containing the same number of records is O("—:) [4]. How-
ever, as discussed above the number of blocks b will much
larger in bigram indexing. This is demonstrated for a par-

ticular data set in Table 1.

2.4 Canopy Clustering with TFIDF

Canopy Clustering with TFIDF (Term Frequency/Inverse
Document Frequency) forms blocks of records based on those
records placed in the same canopy cluster. A canopy cluster
is formed by choosing a record at random from a candi-
date set of records (initially, all records) and then putting
in its cluster all the records within a certain loose thresh-
old distance of it. The record chosen at random and any
records within a certain tight threshold distance of it are
then removed from the candidate set of records. We use the
TFIDF distance metric, where bigrams are used as tokens.
The algorithm and details are found in [3, 11].

The number of record pair comparisons resulting from canopy

clustering is O(@) [11] where n is the number of records in
each of the two data sets, ¢ is the number of canopies and f
is the average number of canopies a record belongs to. The
threshold parameter should be set so that f is small and
c is large, in order to reduce the amount of computation.
However, if f is too small, then the method will not be able
to detect typographical errors.

3. DATA SETS AND EVALUATION
METRICS

3.1 Linkage Software

We use Febrl [2] as a flexible, modular testbed [1]. Febrl
(version 0.2) implements standard blocking and bigram in-
dexing. We implemented sorted neighbourhood and canopy
clustering with TFIDF. Written in the object-oriented script-
ing language Python and published as open source software,
Febrl is an ideal platform to implement new algorithms and
techniques for all aspects of data cleaning, standardisation
and record linkage.

3.2 Data Sets and Blocking Fields

We used DBGen [5] to artificially generate mailing list data
containing surnames, given names and other attributes. The
results of the experiments are dependent on the error char-
acteristics of this data source, which are documented else-
where [6]. The DBGen default parameters were used, which
specify uniformly sized clusters. We choose the number of
clusters to be half the number of records, which results
in most records having a single duplicate. However some
records will have more than one other record with a true
match and some will have no duplicates.

The blocking key in Febrl was specified to be the surname
attribute truncated to 4 characters concatenated with the
given name attribute truncated to 4 characters. Note that
not all names in the data sets are 4 characters long and so the
actual length of the blocking key is variable with a maximum
length of 8 characters. We parameterise the blocking key
by its length, so that the values can be truncated to 1, 3
or 6 characters. As an example a surname value ’‘bazter’
and given name ’rohan’ will result in a blocking key value
’baxtroha’.

Febrl is configured so that no standardisation or cleaning
is performed on the input data sets, rather the values gen-
erated by DBGen are directly used to form the blocking
indexes.

3.3 Evaluation Metrics



We added an evaluation module to Febrl to calculate three
performance metrics for blocking methods [4]. These meth-
ods require that the true identity information for record
pairs is available in the test data sets. The first metric is
the reduction ratio (RR), which is defined as: RR = 1— v,
where s is the number of record pairs produced by a block-
ing method for comparison and N is the number of possible
record pairs in the entire data sets (assuming we link two
data sets with n records each N = n xn). RR is the relative
reduction in the number of record pairs to be compared.

RR does not measure the time taken for a particular imple-
mentation of a blocking algorithm. The time taken for two
methods with the same RR could vary considerably. Some
methods may require a sort, which for large data sets is a
time consuming operation [13].

The second metric is the pairs completeness (PC) metric
which is defined as PC = ;—1‘1{4, where sps is the number of
true match record pairs in the set of record pairs produced
for comparison by the blocking method and Ny, is the total

number of true match record pairs in the entire data.

The third metric is the F' score, which combines RR and
PC via a harmonic mean, F'score = %. It captures
the trade-off between the pairs completeness and reduction

ratio metrics.

We focus on RR and PC| rather than precision and recall of
the overall linkage results, because that allows direct evalu-
ation of the indexing methods without possible confounding
of results with the comparison and decision methods.

4., EXPERIMENTAL RESULTS

We considered standard blocking with the blocking key val-
ues truncated to 1, 3 and 6 characters, denoted B-1, B-3 and
B-6 in the graphs. For the sorted neighbourhood method,
we used windows with w = 5,10 and 20, denoted by W-5,
W-10 and W-20 in the graphs. For the standard block-
ing and the sorted neighbourhood methods Figure 2 shows
the pairs completeness results, Figure 3 the reduction ratio
results and Figure 4 the F score results.

These results show trends similar to those produced by TAI-
LOR [4] under a similar experimental framework. Standard
blocking trades off pairs completeness with reduction ra-
tio performance as the number of blocks b increases. More
smaller blocks results in less comparisons but more true
match pairs are missed.

The sorted neighbourhood method avoids the extremes in
performance of standard blocking and its behaviour changes
predictably as the window size w in increased. With larger
windows, pairs completeness results improve, but the reduc-
tion ratio decreases.

For bigram indexing and canopy clustering with TFIDF Fig-
ure 5 shows the pairs completeness results, Figure 6 the re-
duction ratio results and Figure 7 the F score results.

Both bigram indexing and canopy clustering outperform the
two earlier blocking methods with the right parameter set-
tings. The increased performance is very significant. For
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Data set | Canopy cluster | Canopy cluster
size n average size maximum size
1013 1.9 9
1983 2.3 21
5084 3.9 65
9974 5.9 157

Table 2: Canopy cluster average and maximum sizes
for different data set size n and loose threshold = 1.5

example, pairs completeness with the two earlier methods
had a maximum of about 0.96, whereas the maximum for
canopy clustering with TFIDF (with optimal parameter set-
tings) is 0.98. For the data set with n = 9974 records, that
amounts to missing (0.98 — 0.96) x 9974 = 200 (2%) true
matches at the end of the blocking component of record
linkage.

Bigram indexing performs best with a threshold parameter
of t = 0.3. This results in blocks made of 3 bigrams for these
data sets.

Canopy clustering performs best with the loose threshold
set to 1.5. A loose threshold of 1.0 leads to a very poor
reduction ratio and huge run times. Canopy clustering re-
duction ratio drops slightly for the data set with n = 9974
records. We looked more closely at what causes this degra-
dation by tracking the size of the canopy clusters produced
for loose threshold of 1.5. This is shown in Table 2. For a
fixed threshold, the cluster size is growing, leading to more
record pairs being generated.

Canopy clustering is the only stochastic blocking method
discussed here and so its results will vary from run to run.
We ran each experiment ten times and produce the average.
The standard deviation of the ten results for any of the three
metrics considered was never larger than 0.002. This shows
the variation between canopy clustering runs does not affect
the ranking of the results.

5. CONCLUSIONS AND FUTURE WORK

This paper describes work in progress. We wish to con-
sider other promising fast indexing methods. One class of
candidates is vector subspace mapping [9]. Recent work by
Jin, Li and Mehrotra [9] have applied one of these methods,
Fastmap, to record linkage. An empirical and theoretical
comparison of Fastmap and other vector subspace mapping
methods with the methods discussed in this paper is of in-
terest.

The experimental comparisons should be extended to non-
DB(Gen data sets to investigate dependencies on data sources
and their error characteristics. The indexing methods should
also then be extended to non-name and address attributes,
such as dates and postcodes. Implementation issues for in-
dexing methods and effects on the run time will also be
considered in further work.

The main contribution of this paper has been the direct eval-
uation of reduction ratio and pairs completeness for some di-
verse indexing methods on artificial data sets from a widely
used database generator.
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