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Abstract

Data cleaning may involve the acquisition, at
some effort or expense, of high-quality data.
Such data can serve not only to correct indi-
vidual errors, but also to improve the relia-
bility model for data sources. However, there
has been little research into this latter role for
acquired data. In this short paper we define
a new data cleaning model that allows a user
to estimate the value of further data acquisi-
tion in the face of specific business decisions.
As data is acquired, the reliability model of
sources is updated using Bayesian techniques,
thus aiding the user in both developing rea-
sonable probability models for uncertain data
and in improving the quality of that data. Al-
though we do not deal here with the problem
of finding optimal methods for utilizing ex-
ternal data sources, we do show how our for-
malization reduces cleaning to a well-studied
optimization problem.

1 Introduction

When decisions must be made without good informa-
tion, it is critical to know how much the information at
hand can be trusted. To this end, techniques to man-
age and improve data quality have been developed by
the database research community. Data correctness
can be captured with integrity constraints [1], while
data quality and confidence can be captured in prob-
abilistic databases (e.g. [11, 12]). Work on constraint
repair (e.g. [3, 4]) and on purging duplicates (e.g. [5, 9])
supports the automated improvement of data quality,
for example by removing unlikely tuples or identifying
dissimilar representations of the same entity. However,
the problem of connecting data cleaning to the decision
making process it supports has not been studied in any
detail. Similarly, little attention has been focused on
how to develop probabilistic models for data or when
to expend effort or money to acquire good data. We
now introduce a running example to illustrate these
issues and motivate a model of data cleaning driven
by business decisions.

Example 1. Consider a hypothetical telecommuni-
cations service provider, ACME Telecom. ACME is
interested in building a wireless network in Alberta,
which requires the construction of cellular towers. To
see if it can build a network with sufficient capacity,
ACME requires data on the sites available for cellular
towers, and the towers they can support.

ACME has obtained catalogs of possible sites from
two consulting companies, and represents this informa-
tion in the two tables of Figure 1. The tables conform
to the following schema:

site(Locid: int, Towertype: ttype)

Locid is the deed number for a site and ttype gives
the type of towers it can support: “High” for a high-
capacity tower, “Low” for a low-capacity tower, and
“CU” if the site is Currently Unavailable, but may be
able support a cell tower in the future.

The data suggests that one or both lists are of
low quality. To what extent can existing data clean-
ing techniques be applied to ACME’s problem? As
mentioned above, one class of techniques deals with
finding approzimate matches and reconciling entities
across data sources [5, 9]. However, such “record link-
age” problems are not an issue here, as we have as-
sumed that the Locid information is correct. (If this
assumption does not hold, approximate matches might
be used to bring the data to the state shown in the ex-
ample.)

A second class of techniques that might be applied
are constraint repair techniques [3, 4]. To formal-
ize this example as a constraint repair problem, one
might compute the union of Smith and Jones, and
then assert a key constraint from Locid to Towertype
on the resulting table. The data could then be re-
paired by either deleting tuples or modifying values.
Consider applying either approach to Site 121. Cer-
tainly, the key constraint can be repaired by delet-
ing either the Smith or Jones tuple for Site 121, or
by changing a “Low” value to “High”, or vice versa.
However, since there is no evidence to favor any of
these repairs, neither delete-tuple constraint repair nor
attribute-modification repair is likely to help ACME in
this case.

Good repair decisions could be made if the source
instances were enriched with reliability information



Smith

Locid | Towertype Locid JO'T'loeviertype
121 “High” 91 Tow”
128 “Low” 128 “Low”
146 | “CU” 146 | “High”
177 CU 177 ol
199 “Low” 199 Tow”
203 “Low”

Figure 1: Example site data.

giving the probability that a tuple or attribute value
is correct. Such information could be modeled, for ex-
ample, in a probabilistic data model [11, 12]. A critical
question, however, is how this reliability information
would be obtained. What probabilities should be as-
signed to each possible value for ttype for site 1217
Furthermore, how can we assign confidence to our re-
liability estimate to reflect the amount of supporting
data we have seen? Clearly, we must distinguish the
case in which much historical data supports the unre-
liability of Jones from the case where there is little
data available. To help ACME, a data cleaning sys-
tem must have both a strategy to develop a reliability
model, and a way to estimate and adjust the confi-
dence in the model.

Data reliability estimates can be improved by ob-
taining data via external sources. For example, by
obtaining the correct answer for site 121, ACME can
help improve its reliability model. If Smith turns out
to be correct, ACME might assume it is more likely
that Smith is correct on site 146, and if this too turns
out to be the case (or perhaps for several more tuples),
ACME may choose to trust Smith’s value for site 203.

An important trade-off is thus between the expected

improvement in data quality obtained by consulting
external sources and the expense of data acquisition
from these sources. Existing systems offer neither a
way to quantify the expected improvement nor a way
to estimate the value of that improvement. If a cred-
ible source offered ACME a perfect list, how much
should ACME be willing to pay? We argue that this
question can only be answered concretely with a model
of the business decisions faced. To illustrate this point,
we return to our example:
Example 1, continued. ACME has a critical de-
cision to make: Should it build a new network in Al-
berta? There is a fixed overhead of 10,000,000 Cana-
dian dollars for building the network, while once the
network is built there will be a net profit of $100,000
for each high-capacity tower and $50,000 for each low-
capacity tower. Clearly, errors in the data can have
a dramatic impact on the correct choice for this deci-
sion. There is no doubt that ACME can determine the
quality of this data and correct it: it can send a rep-
resentative out to survey each site, and contact each
site owner. But this is at an average cost of $1000 per
record.

How should ACME proceed? Should it ignore the
risk caused by the low quality data and make this deci-
sion before taking any cleaning action? Should it query
a small number of tuples and then decide? Which tu-
ples should be sampled, and from what source? Or
should it sample more than once, dependent on the
results of prior samples? The question of what data to
clean and when is a crucial one for any organization
managing decision-critical data. In general, the data
may impact many decisions, and there may be many
external sources available with which to validate data,
each with a different reliability. We see that even in
this simple example the correct cleaning policy is far
from obvious.

In this work we propose a new data cleaning frame-
work geared towards deciding which external data
to query, based on its impact on business decisions
and its value in updating the data reliability model.
Our framework includes a formal model of external
sources, in which a query on an external source en-
tails a cost. We model organizational decisions as
actions whose rewards are based on queries. This al-
lows us to quantify the benefit of data cleaning actions.
Our model of source reliability includes a parame-
terized data model in which the parameters can be
estimated based on current knowledge, including data
from external sources. A solution to the cleaning prob-
lem will then consist of a sampling policy telling which
external data to query based on the current reliability
estimates and the organization value of data.

In this short paper we concentrate on giving the
formal model, and do not discuss solution techniques.
However, we do indicate how our notion of a cleaning
policy reduces the cleaning problem to a well-studied
problem area, that of Markov Decision Processes [10].

2 Decision-driven Cleaning Framework

In this section we describe a framework for Decision-
driven Cleaning, in the form of a Cleaning Problem,
consisting of the following components:

e a relational signature for the observed data and
true data

e an error model giving a distribution on errors,
possibly with hidden parameters

e a set of data sources that can be queried to
get higher-quality information on the target data,
along with cost and quality information for these
sources

e a set of business decisions with associated reward
functions

A solution to a cleaning problem is an optimal cleaning
policy that decides, for every possible history of source
data sampling, whether to take a sampling action, or
to make a choice for one or more business decisions.



We now discuss each of these elements in detail.

Relational Data Model Our data model is a sim-
ple model for integrated relational data. It consists
of a fixed schema R and a set Src of sources. The
schema R consists of a finite set of relations, a map-
ping att associating with each relation R a set att(R)
of attributes, a mapping Dom associating with each a
in att(R) a domain Dom(a), which can be either infi-
nite (’string’, ’int’, 'real’, etc.) or finite, and a subset
key(R) C att(R) representing a distinguished key of R.

An instance of a relation R is a set of tuples, where
a tuple includes a value in Dom(a) for each a in att(R).
A global instance includes a relation instance for each
relation R in R and each source src in Src. We can
equivalently present a global instance as one set of
tuples, where each tuple ¢ has a source annotation,
src(t) € Src. A global instance is required to have each
of its relation instances satisfy the key constraints.

There is a distinguished source srcy,e representing
the true, or actual, data values. We let GLOB be the
set, of global instances for a given schema. We use Gl to
range over global instances, src to range over sources,
and R to range over relations. We write Gl.src for the
instances with source src in global instance Gl, and
Gl.src(R) for the instance of R in Gl with source src.
Given a source instance I for a relation R we let key(I)
denote the set of key values witnessed.

Data Reliability Framework We first develop a
general model of data quality in which source data
quality models can be computed based on standard
Bayesian reasoning. We then discuss a specific model
which could be used in a concrete setting.

Our error models are probability distributions over
global instances [7, 12]. An alternative would be to
attach probabilities to attribute values [11]. For exam-
ple, consider the tuple for site 121 in the Smith table
of Figure 1. One could explicitly state that there is
an 80% chance that the value of Towertype is actually
‘Low’, a 15% chance that it is ‘CU’, and a 5% chance
that it is ‘High’. However, such a distribution on at-
tribute values can be derived from a distribution on
global instances.

Clearly, a decision maker will not generally know
the probability distribution P on global instances. As
discussed earlier, we seek to support a) uncertainty
about the probability distribution P and b) the abil-
ity to characterize and update that uncertainty. To
do this we adopt a standard Bayesian approach. We
assume that the errors in the observed instance are
generated by some probabilistic process, where the pa-
rameters controlling this process are unknown. For
example, one parameter might represent the accuracy
of data entry clerks at Jones. Given n such hidden
parameters in an application, we let PAR be the prod-
uct space consisting of all n-tuples of hidden parameter
values, and consider PAR as a probability space. Thus,
the values of the hidden parameters control the prob-

ability of global instances, and the parameter values
themselves lie in a probability space.

An error model over a schema R consists of a prob-
ability distribution G(6) on GLOB indexed by an el-
ement 0 in PAR, along with a smooth probability on
PAR, called the prior. For example, in tossing a coin
with an unknown bias, the probability of a head might
be 6, and the prior on # may be a uniform distribution
(representing the case where we have no knowledge of
the bias). For some set S of global instances, and some
0 in PAR, we write P(S | 8) for G(6)(S), the probabil-
ity of seeing the set S of global instances given hidden
parameters 6. Also, we write P(Gl | ) for P({Gl} | 6).

Although we cannot observe the hidden parame-
ters directly, we can gain information about them by
looking at the results of sampling. The updated den-
sity function represents our improved knowledge of the
hidden parameters given the observation of a set S of
global instances:

POSTs(6) = P(par =6 | Gl € S)

This is the posterior distribution on the hidden param-
eter space. For example, in coin tossing, the updated
density function tells us how to adjust our prior as a
result of observing some coin tosses.

Concrete Data Reliability Model We now spe-
cialize our general model to one having independent
tuple-level error probabilities. For simplicity, we con-
sider only schemas in which the domain of every non-
key attribute is finite. Other schemas can be handled
by replacing the uniform distribution over the finite
domain used below by a probability distribution ap-
propriate for the particular domain.

Our error model has the following hidden parame-
ters. The parameter 6% , gives the probability that
the value of attribute a of relation R in source src has
been modified. The parameter 0;:36,,“5 gives the proba-
bility that a tuple has been inserted into relation R of
source src. The parameter ch’De, gives the probability
that a tuple has been deleted from relation R of source
src.

A tuple in the parameter space PAR then contains
a value for each instance of these parameters for every
source src in Src, every relation R in R, and every
attribute a in att(R). The prior distribution on PAR is
a [ distribution, which is known to be convenient for
calculation. In our examples, we generally assume a
uniform distribution over the parameter space as the
prior. However, we could easily accommodate other
priors that represent error information gathered using
historical data or other means.

Now we explain how to compute the probability of
seeing an instance I' of a relation R for source src,
assuming that we are given src, the true instance I for
R, and the hidden parameters 6. For every key value
kv appearing in I, the probability that kv is absent

from I' is F_ . For every key value kv remaining in



I', the probability that the non-key attributes of kv are
set in I’ to particular values is as follows: for a non-key
attribute a, the probability that the value for a in I’
agrees with the value in I is 1 — ¢9§c,a. The probability
that the value for a in I' will be a particular value in
Dom(a) different from the one in I is 6%, /(|Dom(a)|—
1). The probability that k new key values are inserted

into I’ is (‘ﬂ)(ﬁﬁc’lns)k(l — 08 )/l (each tuple in I
leads to a new spurious tuple in I’ with probability
6F ). If k new tuples are to be inserted, the key
values for each of these are chosen randomly from the
initial values in every interval in Dom(key(R)) — I; for
each of these tuples, the non-key value for attribute a
is chosen to be a particular value from Dom(a) with
probability 1/|Dom(a)|.

This calculation gives the probability
P(Gl.srcye(R) = I AGlsrc(R) = I' | 6) for a
source src and an element 6 of PAR. The proba-
bility of a full global instance Gly given 6 is then
obtained by: TlgeRr scesre—{srcme} P (Gl-SrCerue(R) =
Glo.srcirye (R) A Glsre(R) = Glsre(R) | 6)

The model above allows for no correlation between
errors in attributes. We can generalize to broader er-
ror models by fixing a Bayesian Network [13] with un-
known weights, specifying the conditional probability
of one attribute being correct given that another at-
tribute is or is not correct. The use of such networks
for modeling errors is the subject of future work.

Cleaning Model During the data cleaning pro-
cess, a decision maker will sample data sources, pay-
ing to do so. A global instance in our data model
represents the data to be potentially sampled, not the
data already sampled in this process. The data al-
ready sampled is modeled here as a sampling history:
a function SH that maps a source src and a relation R
to a set SH(src, R) of tuples. A tuple in the set either
has a value for each attribute of R, or has a value for
the key attributes and the distinguished value null for
all other attributes. A sampling history SH is consis-
tent with a global instance Gl if, for every relation R
and source src, 1) every tuple in SH(src, R) not con-
taining null also appears in Gl.src(R), and 2) if a tuple
in SH(src, R) does contain null, then no tuple having
the same key appears in Gl.src(R).

We assume that our decision maker begins with
some sampling history, which we refer to as the ini-
tial sample, denoted Init. This would typically contain
all the data from some readily-available sources, and
no data from expensive sources.

Each source src has an associated cost function Cec :
N — Z, where Cs.(n) gives the cost of sampling src
for a group of n tuples. The sampling cost might be
linear in n, or might perhaps reflect that sampling can
be done more cost-efficiently in bulk. Normally we
expect that a user will not be able to sample the actual
data srcyye, but will be able to sample sources where

R R R
the parameters 05 pes O nsy and b5 4, are known

and small.
A sampling action for a source src is a relation, R,
and a set {kvy,...,kv,} of key values of appropriate

type for R. The result of a sampling action is a se-
quence (t1,...,t,) where ¢; is either a tuple for R with
key value kv;, or null, indicating that no tuple with
this value exists in the instance of R.

Example 2. Consider again the ACME example. For
the data from Smith Inc. there is an (unknown) proba-

bility Oigﬂwe,type that the Towertype attribute is correct.

In addition, there is a probability 0%';’,' that a given
true lot was deleted, and a parameter Gﬁ]"s" controlling
how many spurious tuples are inserted. Similarly, for
the data from Jones, we have 633,cype> O, and 6i
parameterizing the probability of an error.

We also assume that we have a correct source, with
a linear cost per tuple of sampling.

Suppose we know from historical data that for each
consulting company between 0 and 1% of the available
lots for the coming year are missed, and between 0 and
.5% of the Locid values correspond to non-existent lots.
Hence we can take a prior distribution on 63¥ and 62,
a uniform distribution on the interval [0,.01], while
taking a prior on 67¥ and 6,5 as a uniform distribu-
tion on [0,.005]. For the rate of modification of the
Towertype attribute, we have no historical data, so we
take these to have a prior that is uniformly distributed
on [0,1].

Suppose that we have sampled our oracle on 100 key
values, and determined that all 100 Locid values for the
Smith data are valid lots, and that for 99 of these the
Smith report has the correct value for Towertype.

Then we can estimate a new posterior distribu-

tion on ASM given this sample data and the ob-

Towertype
served data, with the density of 63}, . now (1 —
SM 99 nSM 1 99
eTowertype) aTowertype/ fo (1 - .'E) z dz.

Business Decisions Associated with a cleaning
problem is a finite set {71 ...7.} of business deci-
sions, where each decision 7 has an associated finite
set Choices(7) of choices. Each decision 7 and choice p
in Choices(7) has associated with it a relational query
Qr,p over the signature R. Evaluating Q-,, on a (true)
instance I gives the outcome if the decision maker
chooses p for decision 7.

In the ACME example, our business decision 7 is
Build, with choices p; =Yes and p, =No. The reward
query associated with Build = Yes is given by @, ,,:

select (100,000 * High.tot + 50,000 % Low.tot -
10,000,000) as Profit
from

(select cnt(x) as tot
Towertype="‘High’) High,
(select 50,000 cnt(x) as tot from Site where
Towertype="Low’) Low

from Site where

The reward query associated with Build = No is
Qr,p, =0.



Cleaning Policies We can now take a cleaning
problem to be a tuple (R,Src, EMOD, C,BD), where
R is a schema, Src a set of sources, EMOD an error
model giving a distribution over global instances of R
for the sources in Src, C' a cost function, and BD a
set of business decisions. A policy for a cleaning prob-
lem is a function deciding, for each sampling history,
either a sampling action, or a choice for one or more
of the business decisions. A policy is a recipe telling
what should be sampled at any state: given an initial
sampling history Init, and a policy A, one can apply A
repeatedly to get a sequence of histories and choices
for business decisions: SH; = Init unioned with the
response of A(Init) on Gl, SHy = SH; unioned with
the response of A(SH;) on Gl, etc. In the process, we
obtain larger and larger sampling histories and some
sequence of choices for business decisions. A policy is
valid if on every global instance Gl it produces a se-
quence such that every business decision 7; : ¢ < r
is decided exactly once. For a valid policy, we can
evaluate its effectiveness on a global instance Gl via
the cumulative reward: if the policy produces sam-
pling actions Sy ...S; when applied on Gl, then the
reward is Xi<,Qr;,»(Gl.srcerue) — X< C;(]S;]), where
p is the choice selected for 7; when running policy A
on Gl and C;(|S;]) is the cost of the j* sample. That
is, the reward is the gain from the business decisions
minus the total cost of sampling.

The goal of cleaning (in our sense) is then to find
the optimal policy for a cleaning problem, given an
initial history Init. This optimal policy maximizes the
expected value of the reward, conditioned on the event
that the global instance is consistent with Init. The op-
timal policy tells the cleaner the “best” data to sample
in a precise sense.

3 Ongoing Work

In our framework, a solution to the cleaning problem is
an optimal strategy for a certain game. Optimization
strategies for more general planning problems, such as
those for Markov Decision Processes (MDPs) [8], are
applicable here. We now very briefly review MDPs
and their application to cleaning.

An MDP describes a game between a player and the
environment in which the player chooses an action and
the environment chooses a resulting state according to
a probability distribution associated with the action.
Each action has an associated reward function, and the
goal of the player is to choose a strategy that maxi-
mizes her expected cumulative reward. It is easy to
translate the cleaning problem here into an MDP: the
states of the MDP are the sampling histories, while ac-
tions are sampling actions and choices for the business
decisions. The rewards for sampling actions are the
negative of the cost of sampling (based on the associ-
ated cost function of the sources), while the rewards for
decision actions are the expected values of the corre-

sponding queries, where the expectation is conditioned
on the information known from the sampling history.
The naive translation will yield a very large MDP (ex-
ponential in the size of the data). Given the fact that
the best algorithms for solving general MDPs (based
on dynamic programming) are quadratic, one cannot
hope to use the straightforward approach in practice.
In ongoing work we are investigating the use of ab-
straction techniques, along the lines of [6, 2], which
may yield a more manageable problem.
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