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ABSTRACT 
We describe an innovative record matching system called 
ChoiceMaker 2 we developed at ChoiceMaker Technologies 
(CMT).  Firstly, we describe the process by which we use a 
machine learning technique known as maximum entropy 
modeling to tune the system to the problem at hand.  Secondly, 
we describe the ClueMaker™ programming language that is used 
to describe record matching characteristics.  Thirdly, we describe 
our method for testing record matching systems and describe how 
our IDE facilitates this process. 

Categories and Subject Descriptors 
D.3.3 [Data Quality]:  

General Terms 
Algorithms, Standardization, Languages, Verification. 

Keywords 
Record matching, record linkage, merge/purge, object 
consolidation, data quality, maximum entropy, machine learning, 
Java, artificial intelligence, deduplication. 

1. INTRODUCTION 
Approximate record matching is needed in the absence of an 
accurate, always available, unique key. Record-matching tasks 
can be broken down into three main categories: 

• Duplicate record removal or linkage: The same person, 
business, or thing is present more than once in a database. 
Duplicate records are identified and then linked together, 
merged or one is removed (purged). 

• Database linkage: Two databases are linked or merged.  
• Approximate database search: A database is searched for 

records similar to an input record.  
In all of these cases, the core problem is essentially the same: 
given a query record, try to find in a target database the record(s) 
that denote the same thing (e.g., a person or company) as the 
query record. 

1.1 Matching Process Overview 
ChoiceMaker 2 performs record matching as a two-step process. 
This process is illustrated in Figure 1: 

1. Query record. A query record is input. 

2. Blocking. The matching engine searches the target database 
for records that are possible matches to the query record. The 
objective at this stage is to retrieve all possible matches and 
not too many non-matches. 

3. Scoring. The matching engine determines for each possible 
match the probability that it denotes the same thing as the 
query record.  Possible matches are categorized into 
matches, potential matches, and non-matches based on two 
user-defined thresholds. For instance, any record matching 
the query record with a probability higher than the “match 
threshold” is declared a “match”. 

In this paper, we will focus on the scoring stage. 
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Figure 1:  ChoiceMaker Matching Overview 



2. MACHINE LEARNING 
ChoiceMaker’s record matching models are built around a set of 
“clues” (commonly known in the AI literature as “features”), 
which indicate whether a pair of records “match” or “differ”.  
Clues can be arbitrary predicates of the record-pair.  Some sample 
clues for a database of people include: 

• Are the first names the same and are they common, 
uncommon, or rare? 

• Do the last names have the same phoneticization according 
to Soundex [3] or similar techniques? 

• Is the date of birth different? 
These clues are written in ChoiceMaker’s ClueMaker™ 
programming language described in section 3. 

Our Machine Learning (ML) approach constructs a record 
matching model that outputs the probability that a pair of records 
represents the same entity.  The model compares the input record 
with each possibly matching record.  The model is trained on a set 
of pairs of records that have been tagged as a “match”, “differ”, or 
“hold” (unsure).  Although we have experimented with other ML 
techniques, ChoiceMaker currently uses maximum entropy 
modeling (ME) [1] [2] in its production models.  Each clue 
predicts a decision (a “future” in the AI literature) of “match” and 
“differ”.  The ME training process then assigns to each clue a 
weight, which is a positive real number indicating the relative 
predictive strength of the clue.  In ME, at run time the weights of 
all active clues form the probability of match: 
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where MatchProduct is defined as the product of the weights of 
all clues predicting “match” for the pair and DifferProduct is the 
product of the weights of all clues predicting “differ” for the pair. 
Relative to other machine learning techniques, ME has proven to 
be a good choice for this problem because it is fast at run time, is 
relatively easy to explain to clients, and can assign accurate 
weights to multiple overlapping and interacting clues. 
 

3. CLUEMAKER™ PROG. LANGUAGE 
3.1 Why a new programming language? 
The introduction of a new programming language requires strong 
justification as IT departments are understandably hesitant to 
support another language.  We created ClueMaker for the 
following reasons: 

• A set of clues written in ClueMaker is roughly ten times 
shorter than the same set of clues written in Java. 

• Clues written in ClueMaker are more easily understood by 
customers. 

• Since ClueMaker contains many constructs specific to record 
matching it is less error prone than repetitious boilerplate 
code in Java. 

• ClueMaker allows for many code optimizations (such as 
common subexpression elimination and code invariant loop 
motion) that cannot be applied to Java programs because of 

side effects. The performance gain of these optimizations can 
often reach a factor of ten. 

3.2 ChoiceMaker Schemas 
The entities (records) that are to be matched are described by a 
ChoiceMaker ‘schema’, which takes the form of an XML 
document.  The schema defines the name and type of each field.  
It also includes validity predicates which define the valid values 
for each field.  For instance, a first name of “Boy” is not valid, 
and a social security number shouldn’t begin with “000”.  Finally, 
ChoiceMaker schemas can define derived values, so, for example, 
we can produce fields such as “city”, “state”, and “zip code” from 
an incoming unparsed address.   

3.3 ClueMaker and Java 
ClueMaker adds a thin layer of syntax tailored to the record 
matching problem on top of Java.  The ClueMaker compiler 
compiles the ClueMaker code into Java source code, after which a 
Java compiler compiles it into byte code.   

Most of ClueMaker consists of Java expressions.  For example, 
the first expression in Figure 2 defines the clue “mFirstName”.  
The keyword match indicates that the clue predicts “match”.  The 
keyword valid takes a field-name argument and refers to the 
corresponding validity definition of the schema.  This is checked 
on the “firstName” field of the two records being compared, 
which are always referred to as “q” (the input, or “query” record) 
and “m” (the possible match record retrieved from the database).   

The expression “q.firstName == m.firstName” is simply a Java 
expression.  These expressions can be arbitrary Java.  For 
instance, in dLastNameSoundex, we see a call to the Java method 
“soundex” in the Soundex class.   

 
Figure 2:  Sample ClueMaker code 
Consequently, ClueMaker is easily learned by Java programmers.  
The core of each clue consists of actual Java code supplemented 
by various ClueMaker constructs.  Library methods such as 
“Soundex” can be defined in standard Java.  The ClueMaker 
language manual devotes just 25 pages to describing the novel 
features of the language. 

3.4 ClueMaker Features 
ClueMaker contains innovative features which greatly aid 
development of a matching model.  These include: 
• The shorthand forms “same” and “different” which 

simultaneously check validity and whether the fields in 
question are the same or not. 

clue mFirstName { 
  match  valid(q.firstName) && valid(m.firstName) 
                 && q.firstName == m.firstName; 

} 
 
clue dLastNameSoundex { 
  differ valid(q.lastName) && valid(m.lastName)  &&    
               Soundex.soundex(q.lastName) !=  
               Soundex.soundex(m.lastName); 
} 



• A “swap” construct which checks for fields being swapped 
(e.g., first name in the last name field). 

• An ability to work with “stacked data”, schemas which 
permit multiple values for the same field.  For instance, 
many databases allow multiple values for address, names, 
etc. 
 

The talk will include sample code from all of these different 
constructs.   
The enormous productivity gain that ChoiceMaker has seen from 
the introduction of the ClueMaker programming language has 
more than justified the project. 

4. TESTING 
After developing clues in ClueMaker for our record matching 
model and training it on hand-marked data using ME, we are 
ready to test the model on a separate corpus of hand-marked data 
on which the model has not been trained and which CMT 
personnel have not seen.  This testing on unseen data is performed 
on data tagged “match”, “differ” or “unsure” by the client.   
ChoiceMaker recommends that its clients evaluate the system by 
first determining the false-positive and false-negative levels of 
accuracy that they are comfortable with, where a false-positive is 
a record-pair identified as a match by ChoiceMaker which is 
human tagged as “differ” and a false-negative is a pair human 
tagged as “match” which ChoiceMaker identifies as “differ”.  
Different clients may have different relative tolerances for false-
positives and false-negatives.  For instance, in a medical context, 
falsely identifying two individuals as being the same person could 
be disastrous.  On the other hand, in a counter-terrorism situation, 
it may be more important not to miss any possibly matching 
suspects, even at the expense of falsely identifying non-terrorists 
as requiring investigative follow-up. 

Given the client’s stated tolerance for false-positive and false-
negative responses, we then test the model in our ModelMaker 
tool, which determines the “match” and “differ” thresholds (see 
section 1.1) that will yield no more than the desired percentage of 
errors.  The model is then judged on the percentage of record 
pairs that fall between the match and differ thresholds.  Since 
these records will need to be evaluated by hand as to whether they 
are matches or not, the model is judged on how low this 
percentage is. 
This portion of the talk will include a demonstration of 
ChoiceMaker’s ModelMaker IDE, focusing on a suite of screens 
which facilitate the evaluation of record matching models. 
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