
Key Concepts in the ChoiceMaker 2
Record Matching System

Andrew Borthwick
ChoiceMaker Technologies, Inc.

646-336-4442

aborthwick@choicemaker.com

Martin Buechi
ChoiceMaker Technologies, Inc.

71 W. 23rd St., Suite 515
New York, NY 10010

646-336-4443

mbuechi@choicemaker.com

Arthur Goldberg
ChoiceMaker Technologies, Inc. and

New York University
Computer Science Department

251 Mercer, Room 409
New York, NY 10012

212-998-3014
agoldberg@choicemaker.com

ABSTRACT
We describe an innovative record matching system called
ChoiceMaker 2 we developed at ChoiceMaker Technologies
(CMT). Firstly, we describe the process by which we use a
machine learning technique known as maximum entropy
modeling to tune the system to the problem at hand. Secondly,
we describe the ClueMaker™ programming language that is used
to describe record matching characteristics. Thirdly, we describe
our method for testing record matching systems and describe how
our IDE facilitates this process.

Categories and Subject Descriptors
D.3.3 [Data Quality]:

General Terms
Algorithms, Standardization, Languages, Verification.

Keywords
Record matching, record linkage, merge/purge, object
consolidation, data quality, maximum entropy, machine learning,
Java, artificial intelligence, deduplication.

1. INTRODUCTION
Approximate record matching is needed in the absence of an
accurate, always available, unique key. Record-matching tasks
can be broken down into three main categories:

• Duplicate record removal or linkage: The same person,
business, or thing is present more than once in a database.
Duplicate records are identified and then linked together,
merged or one is removed (purged).

• Database linkage: Two databases are linked or merged.
• Approximate database search: A database is searched for

records similar to an input record.
In all of these cases, the core problem is essentially the same:
given a query record, try to find in a target database the record(s)
that denote the same thing (e.g., a person or company) as the
query record.

1.1 Matching Process Overview
ChoiceMaker 2 performs record matching as a two-step process.
This process is illustrated in Figure 1:

1. Query record. A query record is input.

2. Blocking. The matching engine searches the target database
for records that are possible matches to the query record. The
objective at this stage is to retrieve all possible matches and
not too many non-matches.

3. Scoring. The matching engine determines for each possible
match the probability that it denotes the same thing as the
query record. Possible matches are categorized into
matches, potential matches, and non-matches based on two
user-defined thresholds. For instance, any record matching
the query record with a probability higher than the “match
threshold” is declared a “match”.

In this paper, we will focus on the scoring stage.

Blocking

Scoring

Query record

Many possible matches

Not matching records Potentially matching records Matching records

Figure 1: ChoiceMaker Matching Overview

2. MACHINE LEARNING
ChoiceMaker’s record matching models are built around a set of
“clues” (commonly known in the AI literature as “features”),
which indicate whether a pair of records “match” or “differ”.
Clues can be arbitrary predicates of the record-pair. Some sample
clues for a database of people include:

• Are the first names the same and are they common,
uncommon, or rare?

• Do the last names have the same phoneticization according
to Soundex [3] or similar techniques?

• Is the date of birth different?
These clues are written in ChoiceMaker’s ClueMaker™
programming language described in section 3.

Our Machine Learning (ML) approach constructs a record
matching model that outputs the probability that a pair of records
represents the same entity. The model compares the input record
with each possibly matching record. The model is trained on a set
of pairs of records that have been tagged as a “match”, “differ”, or
“hold” (unsure). Although we have experimented with other ML
techniques, ChoiceMaker currently uses maximum entropy
modeling (ME) [1] [2] in its production models. Each clue
predicts a decision (a “future” in the AI literature) of “match” and
“differ”. The ME training process then assigns to each clue a
weight, which is a positive real number indicating the relative
predictive strength of the clue. In ME, at run time the weights of
all active clues form the probability of match:

uctDifferProdctMatchProdu

ctMatchProdu
yProbabilit

+
=

where MatchProduct is defined as the product of the weights of
all clues predicting “match” for the pair and DifferProduct is the
product of the weights of all clues predicting “differ” for the pair.
Relative to other machine learning techniques, ME has proven to
be a good choice for this problem because it is fast at run time, is
relatively easy to explain to clients, and can assign accurate
weights to multiple overlapping and interacting clues.

3. CLUEMAKER™ PROG. LANGUAGE
3.1 Why a new programming language?
The introduction of a new programming language requires strong
justification as IT departments are understandably hesitant to
support another language. We created ClueMaker for the
following reasons:

• A set of clues written in ClueMaker is roughly ten times
shorter than the same set of clues written in Java.

• Clues written in ClueMaker are more easily understood by
customers.

• Since ClueMaker contains many constructs specific to record
matching it is less error prone than repetitious boilerplate
code in Java.

• ClueMaker allows for many code optimizations (such as
common subexpression elimination and code invariant loop
motion) that cannot be applied to Java programs because of

side effects. The performance gain of these optimizations can
often reach a factor of ten.

3.2 ChoiceMaker Schemas
The entities (records) that are to be matched are described by a
ChoiceMaker ‘schema’, which takes the form of an XML
document. The schema defines the name and type of each field.
It also includes validity predicates which define the valid values
for each field. For instance, a first name of “Boy” is not valid,
and a social security number shouldn’t begin with “000”. Finally,
ChoiceMaker schemas can define derived values, so, for example,
we can produce fields such as “city”, “state”, and “zip code” from
an incoming unparsed address.

3.3 ClueMaker and Java
ClueMaker adds a thin layer of syntax tailored to the record
matching problem on top of Java. The ClueMaker compiler
compiles the ClueMaker code into Java source code, after which a
Java compiler compiles it into byte code.

Most of ClueMaker consists of Java expressions. For example,
the first expression in Figure 2 defines the clue “mFirstName”.
The keyword match indicates that the clue predicts “match”. The
keyword valid takes a field-name argument and refers to the
corresponding validity definition of the schema. This is checked
on the “firstName” field of the two records being compared,
which are always referred to as “q” (the input, or “query” record)
and “m” (the possible match record retrieved from the database).

The expression “q.firstName == m.firstName” is simply a Java
expression. These expressions can be arbitrary Java. For
instance, in dLastNameSoundex, we see a call to the Java method
“soundex” in the Soundex class.

Figure 2: Sample ClueMaker code
Consequently, ClueMaker is easily learned by Java programmers.
The core of each clue consists of actual Java code supplemented
by various ClueMaker constructs. Library methods such as
“Soundex” can be defined in standard Java. The ClueMaker
language manual devotes just 25 pages to describing the novel
features of the language.

3.4 ClueMaker Features
ClueMaker contains innovative features which greatly aid
development of a matching model. These include:
• The shorthand forms “same” and “different” which

simultaneously check validity and whether the fields in
question are the same or not.

clue mFirstName {
 match valid(q.firstName) && valid(m.firstName)
 && q.firstName == m.firstName;

}

clue dLastNameSoundex {
 differ valid(q.lastName) && valid(m.lastName) &&
 Soundex.soundex(q.lastName) !=
 Soundex.soundex(m.lastName);
}

• A “swap” construct which checks for fields being swapped
(e.g., first name in the last name field).

• An ability to work with “stacked data”, schemas which
permit multiple values for the same field. For instance,
many databases allow multiple values for address, names,
etc.

The talk will include sample code from all of these different
constructs.
The enormous productivity gain that ChoiceMaker has seen from
the introduction of the ClueMaker programming language has
more than justified the project.

4. TESTING
After developing clues in ClueMaker for our record matching
model and training it on hand-marked data using ME, we are
ready to test the model on a separate corpus of hand-marked data
on which the model has not been trained and which CMT
personnel have not seen. This testing on unseen data is performed
on data tagged “match”, “differ” or “unsure” by the client.
ChoiceMaker recommends that its clients evaluate the system by
first determining the false-positive and false-negative levels of
accuracy that they are comfortable with, where a false-positive is
a record-pair identified as a match by ChoiceMaker which is
human tagged as “differ” and a false-negative is a pair human
tagged as “match” which ChoiceMaker identifies as “differ”.
Different clients may have different relative tolerances for false-
positives and false-negatives. For instance, in a medical context,
falsely identifying two individuals as being the same person could
be disastrous. On the other hand, in a counter-terrorism situation,
it may be more important not to miss any possibly matching
suspects, even at the expense of falsely identifying non-terrorists
as requiring investigative follow-up.

Given the client’s stated tolerance for false-positive and false-
negative responses, we then test the model in our ModelMaker
tool, which determines the “match” and “differ” thresholds (see
section 1.1) that will yield no more than the desired percentage of
errors. The model is then judged on the percentage of record
pairs that fall between the match and differ thresholds. Since
these records will need to be evaluated by hand as to whether they
are matches or not, the model is judged on how low this
percentage is.
This portion of the talk will include a demonstration of
ChoiceMaker’s ModelMaker IDE, focusing on a suite of screens
which facilitate the evaluation of record matching models.

5. ACKNOWLEDGMENTS
This work was supported, in part, by National Science Foundation
SBIR grants DMI-0060675 and DMI-0216213. Adam Winkel
contributed to the design of ClueMaker. Members of the NYU
Programming Language and Database seminars provided valuable
feedback on an early draft of ClueMaker.

6. REFERENCES
[1] Berger, A., Della Pietra, S. A., and Della Pietra, V. J., A

Maximum Entropy Approach to Natural Language Processing
Computational Linguistics, vol. 22, pp. 39-71, 1996.

[2] Borthwick, A., A Maximum Entropy Approach to Named
Entity Recognition 1999. New York University.

[3] Knuth, D. The Art of Computer Programming, Addison-
Wesley, 1998.

