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ABSTRACT 
Name matching—recognizing when two different strings are 
likely to denote the same entity—is an important task in many 
legal information systems, such as case-management systems. The 
naming conventions peculiar to legal cases limit the effectiveness 
of generic approximate string-matching algorithms in this task. 
This paper proposes a three-stage framework for name matching, 
identifies how each stage in the framework addresses the naming 
variations that typically arise in legal cases, describes several 
alternative approaches to each stage, and evaluates the 
performance of various combinations of the alternatives on a 
representative collection of names drawn from a United States 
District Court case management system. The best tradeoff 
between accuracy and efficiency in this collection was achieved 
by algorithms that standardize capitalization, spacing, and 
punctuation; filter redundant terms; index using an abstraction 
function that is both order-insensitive and tolerant of small 
numbers of omissions or additions; and compare names in a 
symmetrical, word-by-word fashion. 

1. INTRODUCTION 
 

An important task in many legal information systems is name 
matching, recognizing when two different strings are intended to 
denote the same entity. Many government agencies and private-
sector companies are required by law to compare names on 
documents, such as passports and credit cards, to watch lists of 
suspected terrorists and their supporters [1]. In legal case 
management systems (LCMSs), name matching is important in 
performing searches and in detecting redundant entries. In judicial 
case management systems, such as the United States federal court 
system’s CM/ECF system [2], name matching is needed in 
detecting potential conflicts of interest. Conflicts of interest can 
arise when an attorney has a personal stake in the outcome of a 
case or if a judge has any connection to a case that might affect 
the judge’s objectivity. For example, United States federal judges 
are required to disqualify, or “recuse,” themselves “in any 
proceeding in which [their] impartiality might reasonably be 
questioned,” such as when a judge “has a personal bias or 
prejudice concerning a party, or personal knowledge of disputed 

evidentiary facts concerning the proceeding …” or if a relative of 
the judge has a financial interest in the controversy [3].   

Potential conflicts of interest can be detected by comparing the 
contents of a conflict file—which contains names of entities that 
could give rise to potential conflicts—to the names of the parties 
and attorneys in cases that are candidates for assignment to the 
attorney or judge. If there is a match between an entry in the 
conflict file and a party or attorney in a case, the potential conflict 
can be flagged and the case reassigned. The effectiveness of this 
scheme depends on the accuracy with which names in a conflict 
file can be recognized as denoting the same entity as a name 
occurring in the party or attorney field of a case record. 

Unfortunately, errors and stylistic inconsistencies can lead a 
single legal entity to be designated by multiple distinct 
expressions. For example, expressions denoting a single entity 
may differ in word order, spelling, spacing, punctuation, and use 
of abbreviations or organizational terms (such as “LLP” or “Ltd”). 
A direct comparison of names occurring in conflict files with 
names in case files may therefore fail to detect a significant 
proportion of potential matches. An effective name-matching 
algorithm for legal applications must be capable of recognizing 
that two expressions potentially designate the same entity 
notwithstanding naming variations typical of the application. 

In view of the importance of name matching, one might expect 
there to be a substantial literature concerning appropriate 
algorithms for this task. Surprisingly, however, name-matching 
algorithms are generally proprietary and therefore not available 
for independent evaluation, comparison, or improvement. There is 
an extensive literature on the general problem of sequence 
matching, much of it directed to text retrieval, spelling correction, 
and computational molecular biology [4,5].  However, these 
general-purpose sequence-matching algorithms were designed to 
overcome typographical or genetic transcription errors rather than 
the naming variations peculiar to legal cases. Intuitively, one 
would expect that algorithms capable of exploiting knowledge of 
typical naming variations could achieve higher efficiency and 
accuracy than general-purpose matching algorithms. 

This paper analyzes the name-matching task as it arises in 
LCMSs, identifies the naming variations characteristic of LCMSs, 
proposes a three-stage framework for performing the name-
matching task that exploits knowledge of these characteristic 
variations, describes several alternative approaches to each stage, 
and evaluates the performance of various combinations of the 
alternatives on a collection of names drawn from a United States 
District Court LCMS.  
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2. THE NAME-MATCHING TASK  
The information-processing requirements of the name-matching 
task are as follows:  

Given: 

• A pattern string 

• A collection of target strings 

Do: 

• Find each target that matches the pattern well enough 
that there is significant likelihood that the pattern and 
target denote the same entity. 

 

In conflict detection, each pattern is an entry in a conflict file, and 
the target strings consist of the names of parties, attorneys, and 
law firms associated with a case. 

A target string returned by a name-matching algorithm is termed a 
match or a positive. If the match does in fact denote the same 
entity as the pattern, the match is a true positive, whereas if the 
match does not denote the same entity as the pattern it is a false 
positive. A target string that is not a match is a negative. A false 
negative is an unmatched target string that denotes the same entity 
as the pattern, and a true negative is an unmatched target string 
that does not.  

Two distinct types of evaluation criteria for name matching can be 
distinguished: match accuracy and computational efficiency. 
Match accuracy is a function of two complementary measures of 
performance:  

• Precision, the proportion of matching target strings that 
denote the same entity as the pattern, and 

• Recall, the proportion of entities denoting the same 
entity as the pattern that were matched.  

Precision is equal to |true positives| /(|true positives| + |false 
positives|), that is, the proportion of actual matches that should in 
fact have been matched. Recall is equal to |true positives| / (|true 
positives| + |false negatives|), that is, the proportion of targets that 
should have been matched that were in fact matched.  

There is a tradeoff between recall and precision. If every target is 
matched, recall will be 100%, but precision may be very low. 
Conversely, if only identical strings are matched, precision will be 
100%, but recall may be very low. The most desirable algorithm is 
one that optimizes this tradeoff, i.e., making recall as high as 
possible without sacrificing precision. To express this 
optimization, recall and precision can be combined into a single 
measure of overall performance, such as the F-measure [6].  If 
recall and precision are weighted equally, the F-measure is the 
harmonic mean of recall and precision: 

RP
PR

F
+

= 2
 

where P is precision and R is recall. 

The potential size of LCMS databases places a practical upper 
bound on the computational cost of name-matching algorithms. A 
single, incremental change to a conflict file (or case database) 

requires a number of comparisons proportionate to the size of the 
database (or, respectively, conflict file). However, judicial LCMSs 
are typically required to perform a conflict-detection screening for 
the entire conflict file and case database. This can potentially 
entail a very large number of comparisons. For example, one U.S. 
Federal District Court LCMS studied by the author had 12,890 
conflict-file entries and 268,104 strings occurring in cases. A 
usable name-matching algorithm must be capable of comparing 
files of this size in (at most) minutes; other demands on LCMS 
hardware make day-long computations unacceptable. 

 

3. NAME MATCHING AS METRIC-SPACE 
PROXIMITY QUERYING 
 

The name-matching task is an instance of the more general task of 
proximity querying in metric spaces. A metric space consists of a 
universe � of objects on which is defined a distance function  

d: � × � → �  

that satisfies the triangle inequality. Fulfilling a proximity query 
with query q and range r requires retrieving every element e of a 
database for which the distance d(q,e) < r. Proximity queries in 
metric spaces arise in a wide range of domains, including 
molecular biology, multimedia, pattern recognition, chemical 
databases, and spell correction [7]. 

Many metric spaces have straightforward representations as vector 
spaces in which geometric distance corresponds to similarity 
under the metric. In such cases, spatial access methods, such as k-
d trees, are well-suited for proximity queries (provided that the 
number of dimensions is not too high) [8]. However, in many 
domains there is no obvious vector space representation that is 
proximity-preserving, that is, that preserves the similarity ordering 
in the original metric space. Development of proximity query 
methods for such metric spaces is an active research area.  

In general, metric-space proximity query methods involve creation 
of an indexing structure based on a set of k elements selected as 
pivots [7]. The elements of the database are partitioned into 
equivalence classes based on distance to each of the pivots. A 
query q is satisfied by determining the distance from q to each 
pivot, then using the triangle inequality to select equivalence sets 
that are guaranteed to include all elements within distance r of q 
(as well as potentially other elements as well). The distance 
between q and each element of the equivalence sets is then 
calculated to determine which of the candidate elements is 
actually within distance r [7]. The computational expense of 
constructing the index is typically proportional to the cost of 
calculating the distance between a pair of elements times kn, 
where n is the number of elements in the database 

The name-matching task as it occurs in many LCMSs is 
characterized by a relatively expensive distance calculation. As 
described in Section 4, the equivalence criteria for pairs of names 
includes a number of complex, domain-specific rules. Moreover, 
queries can involve large numbers of both texts and patterns and 
are sometimes limited to a very short execution time. As a result, 
metric-space indexing schemes that require applying the distance 
calculation kn times to build an index can be prohibitively 
expensive in such systems.  
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When pivot-based indices are too costly to construct, an 
alternative approach is to partition the database into equivalence 
classes using an abstraction method that is much cheaper than 
calculating the distance to k pivots. For example, in the two-stage 
retrieval methods developed for analogical reasoning systems, 
such as MAC/FAC, labeled graphs are abstracted into bags of 
labels. The expensive subgraph-isomorphism similarity metric is 
calculated only on those candidates sharing the highest proportion 
of labels with the query [9]. This approach, in which the 
candidates for match with a query q are those elements in the 
same equivalence class as q, will be referred to as non-pivot 
indexing. 

The next section describes the categories of orthographic 
variations characteristic of names occurring in legal case 
management systems. Section 5 proposes a three-stage model that 
performs non-pivot indexing using computationally inexpensive 
methods to abstract strings into equivalence classes of strings that 
are likely to be equivalent with respect to the variations described 
in Section 4.  

 

4. A TAXONOMY OF NAME VARIATIONS 
 

The difficulty of the name-matching task, and the requirements for 
an effective algorithm to perform this task, depend on the type and 
degree of name variations typical in the collection to which the 
name-matching algorithm is applied. To determine the name 
variations typical of LCMSs, an informal analysis was performed 
of a United States federal district court database containing 
41,711 name occurrences.  

Nine primary categories of variations were apparent within this 
database: 

1. Punctuation, e.g., “Owens Corning” vs. “Owens-
Corning”; “IBM” vs. “I.B.M.” 

2. Capitalization, e.g., “citibank” vs. “Citibank”; “SMITH” 
vs. “Smith” 

3. Spacing, e.g., “J.C. Penny” vs. “J. C. Penny” 

4. Qualifiers, e.g., “Jim Jones” vs. “Jim Jones d.b.a. Jones 
Enterprises” 

5. Organizational terms, e.g., “corporation” vs. 
“incorporated” 

6. Abbreviations, e.g., “cooperative” vs. “coop”; “General 
Motors” vs. “GM” 

7. Misspellings: 

a. Omissions, e.g. “Collin” vs. “Colin” 

b. Additions, e.g., “McDonald” vs. 
“MacDonald” 

c. Substitutions, e.g., “Smyth” vs. “Smith” 

d. Letter reversals, e.g., “Peirce” vs. “Pierce” 

8. Word omissions, e.g., “National Electrical Benefit Fund 
and its Trustees” vs. “National Electrical Benefit Fund” 

9. Word permutations, e.g., “State of Missouri District 
Attorney” vs. “District Attorney, State of Missouri” 

 

While it is impossible to determine precisely the relative 
frequency of these variations without a systematic analysis of 
errors occurring in a representative collection of LCMSs, informal 
inspection of the district court database suggests that word 
omissions and variations in capitalization, punctuation, spacing, 
abbreviations, and organizational terms are relatively common. 
Word permutations are somewhat less common, and misspellings 
and qualifier variations are relatively rare. 

Recognizing the similarity between pairs of expressions is 
computationally straightforward for some of the variations. For 
example, the similarity between a string representing a correctly 
spelled word and a string with minor spelling errors can be 
recognized using standard dynamic programming techniques to 
determine the minimum edit distance between the strings [10].  
However, these techniques are ill-suited to variations in 
organizational terms, qualifiers, word omissions, and differences 
in word order. 

 

5. ALGORITHMS FOR NAME MATCHING  
 

This section distinguishes three stages in the name-matching 
process, identifies the stages at which each of the nine naming 
variations described above can be addressed, and distinguishes 
alternative design options for each of the stages. 

 

5.1 Stages of Name Matching 
 

Three distinct stages can be distinguished in the name-matching 
task: normalization, indexing, and similarity assessment. 

Normalization is the process of transforming pattern and target 
strings into a standard form by eliminating inessential textual 
variations that can prevent matching. Normalization operations 
include adopting a standard convention for capitalization (e.g., all 
uppercase or all lowercase), punctuation (e.g., removing all 
punctuation), and stop-word filtering (e.g., removing 
uninformative, common words, such as “the” and “LLC”). 

Indexing is the process of selecting a set of candidates from the 
targets for comparison with the pattern. The simplest indexing 
method is exhaustive retrieval, that is, selection of the entire set of 
targets for comparison with the pattern. Alternatively, each string 
can be abstracted into a simplified representation that can be used 
to index strings through a hash table, decision tree, or other 
retrieval mechanism. The motivation for abstraction is that 
multiple similar strings may have the same abstraction. If the 
abstraction of a pattern is used to index target strings with the 
same abstraction, only a small number of comparisons will be 
needed for each pattern. This approach can reduce the number of 
comparisons without compromising accuracy if pairs of strings 
intended to denote the same entity usually have the same 
abstraction.  

Exhaustive retrieval is too slow for any but the smallest target 
sets. In the example mentioned above, a direct comparison 
between each of 12,890 conflict-file entries and 268,104 case 
strings would require 3,455,860,560 comparisons. Even if each 
individual comparison were very fast, the entire process would be 
unacceptably slow. 
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Similarity Assessment is the process of determining whether 
there is sufficient similarity between a normalized pattern and a 
normalized target to indicate a significant probability that the 
target designates the same entity as the pattern. Approaches to 
comparison can differ in granularity—whether the comparison is 
word-by-word or on the entire string—and match criterion. 
Possible match criteria include string equality, a sub-string 
relationship between the pattern and the target, and approximate 
matching, which consists of determining whether the edit distance 
between the pattern and target is less than a given mismatch 
threshold. The edit distance between two strings consists of the 
number of insertions, deletions, or substitutions required to make 
the pattern equal to the target. Testing for string equality or sub-
string matching is relatively efficient. The approximate matching 
task is inherently more computationally expensive than exact 
matching, with the time complexity of the dynamic programming 
algorithm proportional to the product of the lengths of the strings 
being compared [4].  

 

5.2 Name Variations Addressed at Each Stage 
 

The first five sources of variation enumerated in Section 3—
punctuation, capitalization, spacing, qualifiers, and organizational 
terms—can all be addressed by normalization. No normalization 
scheme is likely to be entirely infallible, however, for two reasons. 
First, corporate names sometimes consist entirely of 
organizational terms or stop-words that in other contexts can 
cause mismatches. For example, if a company were named “U.S. 
Association of Corporations,” all the words in the company’s 
name would be filtered if “U.S.”, “Association”, “of”, and 
“Corporation” were all stop words, resulting in an unmatchable 
null string. If one or more of the terms were excluded from the 
stop list, however, some matches might not be detected, e.g., 
“Smith Corporation” might fail to match “Smith Incorporated” if  
“Corporation” or “Incorporated” were not on the stop list. 
Second, irregular spacing in some acronyms can make them 
indistinguishable from stop words, e.g., if “American Tomato 
Originators Network” were abbreviated “ATON”, extra spaces 
could generate “A TO N” and “AT ON,” which appear to contain 
stop words (“A,” “TO,” and “ON”). Tables of common corporate 
names (e.g., “AT&T”) can reduce, but not eliminate, this problem  

The 6th source of variations—abbreviations—can be addressed 
during normalization or during similarity assessment by using a 
table of abbreviations to recognize the equivalence between 
abbreviated and unabbreviated forms.  

The 7th variation source—misspellings—can be addressed by 
approximate matching, a technique specifically developed to 
recognize omissions, additions, and substitutions. As discussed 
below, approximate matching can easily be extended to 
transpositions of adjacent letters.  

Word omissions, the 8th source of variations, can be addressed by 
a word-by-word similarity-assessment procedure under which a 
pattern matches a target if each word of the pattern matches a 
unique word in the target. As discussed below, this similarity 
assessment can be either symmetrical, meaning that every word in 
the string with the fewest words must match a word in the other 
string, or asymmetrical, meaning that every word in the pattern 

must match a unique word in the target (but not necessarily the 
converse). 

Symmetrical matching seems desirable, but might give rise to the 
danger of false positives from extraneous text in the party or 
attorney fields of cases.  For example, if “Attorney” appeared as 
an attorney field in a case and matching were symmetrical, every 
conflict record containing the words “Attorney” would be 
matched (unless “Attorney” were a stop word). One could argue 
that quality control is, in general, much easier in conflict files than 
in case files and that it is therefore more important to match every 
part of a conflict record than to match every part of a case record. 
This argument suggests that an asymmetrical match policy would 
be preferable. On the other hand, the possibility that attorneys and 
judges might include nonessential text in conflict-file entries 
suggests that asymmetrical matching risks false negatives. In a 
system that can filter recurring false-positives, it may be better to 
err on the side of false positives rather than false negatives, that is, 
to weigh recall more heavily than precision. The experiments 
below evaluate the relative performance of symmetrical and 
asymmetrical matching. 

Word-by-word similarity assessment can also address the 9th 
source of variations—word permutations—if the similarity-
assessment procedure does not constrain words to appear in the 
same position in pattern and target. 
 

5.3 Design Options for Each Stage 
 

A variety of algorithms representing different combinations of 
design options for normalization, indexing, and similarity 
assessment are possible. The following algorithms were 
implemented in the evaluation described in Section 6: 

Exact-Match. The exact-match algorithm is intended as a 
benchmark for name-matching speed. The only normalization is 
conversion to upper case, removal of all punctuation, and 
normalization of spaces, which consists of trimming beginning 
and ending white space, replacing multiple successive spaces, and 
removing spaces in abbreviations, e.g., replacement of “I.B. M.” 
with “I.B.M.”. Candidates are indexed by hashing on the 
normalized string, and similarity assessment consists of testing for 
string equality. The processing time for exact-match represents a 
lower bound on the time required for a reasonable job of 
matching.  

Palmer. Doug Palmer, a U.S. District Court system administrator, 
implemented a modification of the exact-match algorithm 
intended to improve efficiency. In Palmer’s modification, 
normalization consists of capitalization, punctuation removal, and 
removal of stop-words. Indexing is by hashing on an abstraction 
formed by removing vowels, double letters, and terminal “s”’s. 
There is no further similarity assessment after retrieval, i.e., every 
retrieved candidate is assumed to be a match. 

Palmer’s normalization and abstraction often yields an empty 
string. A policy issue concerns how strings with an empty 
abstraction should be treated. One approach is to treat every target 
with an empty abstraction as a candidate for matching with every 
pattern with an empty abstraction. Alternatively, strings with 
empty abstractions can be treated as matching nothing. Empirical 
evaluation indicated that the former approach leads to large 
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numbers of spurious candidates. As a result, the latter policy was 
used in the experiment described below. 

All the remaining algorithms use identical normalization, 
consisting of capitalization, removal of all punctuation, space 
normalization, and removal of stop-words. Each of the algorithms 
uses a different combination of choices for abstraction, 
granularity, symmetry, and similarity assessment.  

Abstraction.  Four options for abstraction were implemented. In 
each abstraction method, target strings were stored in a hash-table 
entry indexed by each string’s abstraction. Since multiple strings 
can have the same abstraction, the hash table entries consisted of 
lists of target strings.1 

 

Soundex is a phonetic encoding developed by the U.S. 
Bureau of Census and used to index all individuals 
listed in the U.S. census records starting in 1880 [12].  
Soundex encodes each string as the first letter of the 
string followed by 3 numbers representing the phonetic 
categories of the next 3 consonants, if any, in the 
string.2  

Unordered-sounds. A limitation of Soundex is that the 
abstraction it produces is dependent on word order. As a 
result, permutations of identical words have different 
Soundex encodings. For example, “Social Services 
Dept., State of Alaska” has a Soundex encoding of 
S243, whereas the encoding of “State of Alaska Social 
Services Dept.” is S331. Unordered-sounds is a variant 
of Soundex whose encoding is independent of word 
order. Specifically, Unordered-sounds encodes a 
multiple-word string in 19 bits that indicate the category 
of sounds that occur in the 1st, 2nd, or 3rd positions of 
any words. The first 7 bits indicate whether any word in 
the string starts with the corresponding one of 
Soundex's 6 categories of letters or with a letter 
disregarded by Soundex (A, E, I, O, U, H, W, Y). The 
next 12 flags indicate whether a letter in any of the 6 

                                                                 
1 Not tested in this experiment, but worth considering, is lexical 

vector-space indexing [11] applied to names represented as a 
bags of string abstractions. For example, each name could be 
indexed as a bag of tokens produced by applying Soundex to 
each word in the name. This approach might increase recall, 
although it would significantly increase retrieval time.  

2 The categories of consonants are: 

1) B,P,F,V 

2) C,S,K,G,J,Q,X,Z 

3) D,T 

4) L 

5) M,N 

6) R 

Vowels are ignored and adjacent letters from the same category 
are represented with a single digit. For example, “Washington” 
would be encoded as “W252”: W is the first letter, 2 for the S, 5 
for the N, 2 for the G, and the remaining letters disregarded. 

categories occurs in the second or third position of any 
word.  

Nsoundex. Unordered-sounds has the disadvantage that 
an omission or addition of a single word can cause two 
strings to have different encodings if any of the first 3 
sounds of the word occur in a different position in some 
other word. Nsoundex is a variant on Soundex intended 
to address Soundex’s order sensitivity without 
introducing Unordered-sounds’ sensitivity to extra 
words. Nsoundex removes stop words and sorts the 
remaining words alphabetically before applying 
Soundex. An extra target word will prevent indexing 
only if the extra word starts with a letter earlier in the 
alphabet than the first word in the pattern. 

Redundant is similar to Nsoundex except that each 
string is redundantly indexed by both the first and last 
words in the sorted, normalized, stop-word-free string. 
If the similarity-assessment procedure uses approximate 
matching, the Soundex of the first and last words are 
used as indices for the string; if string equality is used 
for similarity assessment, the words themselves are used 
as indices. Redundant is less sensitive to omitted or 
extra words than Nsoundex but incurs the added cost of 
indexing every string twice. 

 

Granularity and Symmetry. Three approaches to granularity 
and symmetry were implemented: 

 

Entire-string consists of similarity assessment of the 
entire pattern with the entire target, after stop words 
have been filtered from both. 

Word-by-word consists of splitting the normalized 
pattern and target strings into individual words. Word-
by-word comparison can be symmetrical or 
asymmetrical. 

Asymmetrical. After stop-words are removed 
from both lists of words, each pattern word is 
compared to every target word in turn until a 
word is found that satisfies the applicable 
similarity assessment criterion (discussed 
infra) or which exactly matches the standard 
abbreviation of the pattern word. The 
abbreviation table is based on the 
abbreviations found in The Bluebook: A 
Uniform System of Citation [13] and The 
Chicago Manual of Style [14].  Each target 
word is permitted to match only a single 
pattern word, and isolated letters (such as 
initials in names) are required to match 
exactly. Under this approach, the pattern 
“John Jones” would match target “John Q. 
Jones”, but pattern “John Q. Jones” would 
match neither “John Jones” nor “John A. 
Jones”. 

Symmetrical matching succeeds if every 
string in the shorter name matches a string in 
the longer name, regardless of order. Under 
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this approach, the pattern “John Jones” would 
match target “John Q. Jones”, and pattern 
“John Q. Jones” would match “John Jones”. 
However, “John A. Jones” would not match 
“John Q. Jones”. 

 

Similarity-Assessment Criterion. Two similarity-assessment 
criteria were used in the test described below: 

String equality.  

Approximate match. Dynamic programming was used 
for approximate matching with a modification so that a 
separate penalty could be assigned for reversals of pairs 
of adjacent letters. The motivation for this modification 
is that letter reversals are a common typing mistake. In 
all experiments, a penalty of 1.0 was assigned to 
insertions, deletions, and substitutions, and a penalty of 
0.6 was assigned to letter reversals. The mismatch 
threshold was set at 15% of the number of letters in the 
pattern when used in word-by-word matching, meaning 
that a match would succeed in a word of at least 7 letters 
if there were a single insertion, deletion, or substitution, 
and a word of 5 letters or more would match if there 
were a single reversal of a pair of adjacent letters. In 
entire-string similarity assessment, however, the 
mismatch threshold was set to 10% of the number of 
letters in the pattern. 

Each combination of choices for abstraction, granularity, 
symmetry, and similarity assessment constitutes a distinct name-
matching algorithm. Each algorithm is identified below by an 
acronym consisting of a concatenation of the first letter of the 
name of the algorithm’s abstraction method, granularity, 
symmetry, and similarity assessment criterion. For example, 
Soundex abstraction combined with Word-by-word granularity, 
Asymmetrical matching, and Approximate matching is denoted 
“SWAA.” 

Suppose that SWAA were called with pattern “Jones 
Environmental Systems and Service Corporation” and a set of 
targets that includes “Jones Env. Servces Systems, Inc.” The 
corresponding normalized strings would be “JONES 
ENVIRONMENTAL SYSTEMS SERVICE CORPORATION” 
and “JONES ENV SERVCES SYSTEMS INC”, respectively. The 
target string “JONES ENV SERVCES SYSTEMS INC” would be 
indexed by its Soundex encoding of J525. The pattern also has a 
Soundex encoding of J525, so the target would be retrieved for 
matching. The first pattern word, “JONES”, matches the first 
target word perfectly. The second pattern word, 
“ENVIRONMENTAL” doesn’t match any word in the target, but 
its abbreviation, “ENV”, matches the second word of the target. 
The third pattern word, “SYSTEMS”, matches the fourth target 
word. The fourth pattern word, “SERVICE”, is an approximate 
match to “SERVCES”, with an edit distance of 1 deletion and 1 
addition. Finally, “CORPORATION” is a stop word that does not 
need to be matched. The pattern therefore matches the target. Note 
that the difference in word order is irrelevant for the matching 
performed by SWAA and that words in the target but not in the 
pattern are simply ignored. 

 

6. EXPERIMENTAL EVALUTION  
 
6.1 Procedure 
To identify the best combination of design options, the 
performance of Exact-Match, Palmer, NEA (Nsoundex, entire-
word comparison, approximate-match), RWSE (Redundant, word-
by-word symmetrical, exact), RWSA (Redundant, word-by-word 
symmetrical, approximate), and every combination of {Nsoundex, 
Soundex, Unordered} × {word-by-word symmetrical, word-by-
word asymmetrical} × {exact-match, approximate} was evaluated 
on a static copy of a U.S. District Court database containing 
41,711 records for cases assigned to 20 judges. Unfortunately, this 
database did not include actual conflict files. An artificial conflict 
file was therefore created for each of 20 judges by randomly 
selecting 700-800 entries from the case records for each judge. 
This resulted in a total of 15,478 conflict file entries.   

The testing procedure copied each judge’s conflict records into 
one array and the party and attorney fields of all cases assigned to 
that judge into a second array. Each algorithm in turn was called 
to determine the matches between the two arrays. The execution 
of the algorithm was timed, the total number of matches counted, 
and matches between non-identical strings stored in a match file 
for that algorithm (since matching identical strings is trivial and is 
performed equally well by all algorithms, these matches were not 
included in the calculation of precision, recall, and F-measure).  

After every algorithm was tested, the match files for all algorithms 
were merged and recorded in a file called approx-matches, 
containing all non-identical strings returned as a match by any 
algorithm. For each algorithm, the elements of approx-matches 
not found by that algorithm were written into that algorithm’s 
miss-file.  

To estimate true and false positives and false negatives, the 
approx-matches file was manually edited to tag its entries as true 
or false positives. The contents of each algorithm’s miss-file were 
compared to approx-matches to determine that algorithm’s true 
and false positives and apparent false negatives (i.e., matches not 
found by the algorithm that were found by some other algorithm). 
Only the apparent false negatives could be determined under this 
procedure because there was no oracle to determine whether there 
were any targets that should have been matched but were missed 
by all of the algorithms.  

 

6.2 Results 
 

Figure 1 sets forth the F-measure of each algorithm. The highest 
F-measure was obtained by the two algorithms that used 
redundant indexing: RWSA and RWSE (i.e., redundant, word-by-
word symmetric, and approximate or exact, respectively). RWSA 
had higher recall, but lower precision, than RWSE. In general, 
algorithms that used word-by-word, symmetrical similarity 
assessment outperformed equivalent algorithms that used 
asymmetrical or entire-word similarity assessment. Approximate 
matching yielded much higher recall, but lower precision, than 
string equality, leading to little difference in F-measure between 
approximate and exact matching. Exact-match had the lowest F-
measure because of its low recall. 
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Figure 2 shows the computation time of the same set of 
algorithms, normalized by the computation time of exact-match 
(i.e., the computation time of each algorithm was divided by the 
computation time of exact match).3  The slowest algorithm was 
RWSA, because it performs many more similarity assessments 
than the algorithms with non-redundant indexing. The next 
slowest algorithm was NEA, illustrating the high computational 
cost of entire-word approximate matching.4  RWSE had almost 
the same accuracy as RWSA but was more than four times as fast. 

6.3 Discussion 
 

The most striking aspect of the results set forth in Figures 1 and 2 
is that the algorithms with redundant indexing had much higher 
recall—and therefore much higher F-measure—than any 
algorithms with non-redundant indexing. The likely explanation 
for this phenomenon is that every partition of a metric space into 
two or more equivalence classes places some pairs of points 
separated by less than any arbitrary distance r into separate 
classes. As a result, no non-pivot indexing method that uses only 

                                                                 
3 The actual run time for exact-match, running in interpreted Perl 

on an elderly, multi-user Sun, was approximately 5 seconds. On 
more modern machines, the run time for files of comparable size 
should be considerably lower. 

4 As mentioned above, the computational complexity of the 
dynamic programming algorithm for approximate matching 
through is proportionate to the product of the lengths of the two 
strings being compared [4]. Pair-wise approximate matching 
between partitions of two strings is therefore much faster than 
approximate matching between the entire strings. 

one abstraction method—and therefore only one partition of the 
metric space—can have perfect recall.  

It is entirely possible, however, for there to be a pair of partitions 
of a given metric space such that every pair of elements closer 
than some threshold r share some equivalence class. For example, 
Figure 3 represents schematically universe U containing query q 
and elements e1 and e2, both of which are within distance r of q. 
Abstraction 1 generates a partition under which q and e1 are in 
the same equivalence class but q and e2 are not. Abstraction 2 
generates a partition in which the converse is the case. Neither 
abstraction is sufficient in itself for perfect recall, but the union of 
both equivalence classes containing q also contains both e1 and 
e2.  

The redundant indexing methods, RWSE and RWSA, each use 
two independent abstraction methods that produce two 
independent partitions of the target strings. Taking candidates 
from both equivalence classes of which a pattern is a member—
that is, selecting targets that are identical to the pattern under 
either abstraction—greatly reduces the probability of missing a 
target that matches the pattern. These results strongly suggest that 
high recall in non-pivot metric spaces requires multiple, 
independent abstractions. 

  

7. SUMMARY 
 

The most accurate name-matching algorithm for name matching 
in a given LCMS depends on the relationship between the choices 
attorneys and judges make in expressing their potential conflicts 
and the conventions governing party and attorney names in case 
captions in that LCMS. If there is a high degree of consistency 
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between conflict records and case records, matching is 
straightforward. To the extent that there are variations, matching 
algorithms can be expected to achieve satisfactory precision and 
recall only to the extent that they embody matching techniques 
that compensate for those variations.  

The results of the empirical evaluation suggest that, in databases 
with name variations similar to those occurring in the U.S. 
District Court database, name-matching accuracy is maximized by 
matching algorithms with the following characteristics: 

• Normalization by capitalization, removal of all 
punctuation, space-normalization, abbreviation- 
replacement, and stop-word removal. 

• Indexing using an abstraction function that is order-
insensitive and tolerant of small numbers of omissions 
or additions in the strings being matched. Redundant 
indexing appears to achieve these goals better than 
Nsoundex, Soundex, or Unordered-sounds. 

• Symmetrical, word-by-word similarity assessment.  

• If time is not critical and recall is much more important 
than precision, approximate matching should be used. If 
time is critical or recall is no more important than 
precision, string equality should be used instead. 

RWSE and RWSA had the highest F-measures on the U.S. 
District Court database, and RWSE (unlike RWSA) was relatively 
fast, i.e., only about 13 times slower than exact-match. In view of 
these experimental results, RWSE was adopted as the name-
matching algorithm in CM/ECF in early 2002. 

 
The experimental results are tentative because of two factors: (1) 
uncertainty concerning the typicality of the name variations 
occurring in the U.S. district court database that was the source of 
the data used in the evaluation and (2) the absence of a definitive 
list of false negatives, i.e., target strings that should have matched 
the pattern but which were matched by no algorithm. A more 
conclusive evaluation of the relative accuracy of alternative name-
matching algorithms must await the collection of more data on 
name variations from a representative sampling of LCMSs. 
Creation of publicly available datasets, in the spirit of the UCI 
machine-learning data repository [15] would significantly advance 
the development of name-matching algorithms by permitting 
replicable evaluation of alternative algorithms.  
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Figure 3. Solid boxes represent the equivalence classes generated by 
abstraction 1, while the dashed boxes are those generated by abstraction 2. 
Query q is in the same equivalence class as e1 under abstraction 1 and the same 
as e2 under abstraction 2.  
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