
A Comparative Evaluation of Name-Matching Algorithms

L. Karl Branting
LiveWire Logic, Inc.

2700 Gateway Centre Blvd., Ste. 900
Morrisville, NC 27650, USA

karl.branting@livewirelogic.com

ABSTRACT
Name matching—recognizing when two different strings are
likely to denote the same entity—is an important task in many
legal information systems, such as case-management systems. The
naming conventions peculiar to legal cases limit the effectiveness
of generic approximate string-matching algorithms in this task.
This paper proposes a three-stage framework for name matching,
identifies how each stage in the framework addresses the naming
variations that typically arise in legal cases, describes several
alternative approaches to each stage, and evaluates the
performance of various combinations of the alternatives on a
representative collection of names drawn from a United States
District Court case management system. The best tradeoff
between accuracy and efficiency in this collection was achieved
by algorithms that standardize capitalization, spacing, and
punctuation; filter redundant terms; index using an abstraction
function that is both order-insensitive and tolerant of small
numbers of omissions or additions; and compare names in a
symmetrical, word-by-word fashion.

1. INTRODUCTION

An important task in many legal information systems is name
matching, recognizing when two different strings are intended to
denote the same entity. Many government agencies and private-
sector companies are required by law to compare names on
documents, such as passports and credit cards, to watch lists of
suspected terrorists and their supporters [1]. In legal case
management systems (LCMSs), name matching is important in
performing searches and in detecting redundant entries. In judicial
case management systems, such as the United States federal court
system’s CM/ECF system [2], name matching is needed in
detecting potential conflicts of interest. Conflicts of interest can
arise when an attorney has a personal stake in the outcome of a
case or if a judge has any connection to a case that might affect
the judge’s objectivity. For example, United States federal judges
are required to disqualify, or “recuse,” themselves “in any
proceeding in which [their] impartiality might reasonably be
questioned,” such as when a judge “has a personal bias or
prejudice concerning a party, or personal knowledge of disputed

evidentiary facts concerning the proceeding …” or if a relative of
the judge has a financial interest in the controversy [3].

Potential conflicts of interest can be detected by comparing the
contents of a conflict file—which contains names of entities that
could give rise to potential conflicts—to the names of the parties
and attorneys in cases that are candidates for assignment to the
attorney or judge. If there is a match between an entry in the
conflict file and a party or attorney in a case, the potential conflict
can be flagged and the case reassigned. The effectiveness of this
scheme depends on the accuracy with which names in a conflict
file can be recognized as denoting the same entity as a name
occurring in the party or attorney field of a case record.

Unfortunately, errors and stylistic inconsistencies can lead a
single legal entity to be designated by multiple distinct
expressions. For example, expressions denoting a single entity
may differ in word order, spelling, spacing, punctuation, and use
of abbreviations or organizational terms (such as “LLP” or “Ltd”).
A direct comparison of names occurring in conflict files with
names in case files may therefore fail to detect a significant
proportion of potential matches. An effective name-matching
algorithm for legal applications must be capable of recognizing
that two expressions potentially designate the same entity
notwithstanding naming variations typical of the application.

In view of the importance of name matching, one might expect
there to be a substantial literature concerning appropriate
algorithms for this task. Surprisingly, however, name-matching
algorithms are generally proprietary and therefore not available
for independent evaluation, comparison, or improvement. There is
an extensive literature on the general problem of sequence
matching, much of it directed to text retrieval, spelling correction,
and computational molecular biology [4,5]. However, these
general-purpose sequence-matching algorithms were designed to
overcome typographical or genetic transcription errors rather than
the naming variations peculiar to legal cases. Intuitively, one
would expect that algorithms capable of exploiting knowledge of
typical naming variations could achieve higher efficiency and
accuracy than general-purpose matching algorithms.

This paper analyzes the name-matching task as it arises in
LCMSs, identifies the naming variations characteristic of LCMSs,
proposes a three-stage framework for performing the name-
matching task that exploits knowledge of these characteristic
variations, describes several alternative approaches to each stage,
and evaluates the performance of various combinations of the
alternatives on a collection of names drawn from a United States
District Court LCMS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICAIL ’03, June 24-28, 2003, Edinburgh, Scotland, UK.
Copyright 2003 ACM 1-58113-747-8. $5.00.

224

2. THE NAME-MATCHING TASK
The information-processing requirements of the name-matching
task are as follows:

Given:

• A pattern string

• A collection of target strings

Do:

• Find each target that matches the pattern well enough
that there is significant likelihood that the pattern and
target denote the same entity.

In conflict detection, each pattern is an entry in a conflict file, and
the target strings consist of the names of parties, attorneys, and
law firms associated with a case.

A target string returned by a name-matching algorithm is termed a
match or a positive. If the match does in fact denote the same
entity as the pattern, the match is a true positive, whereas if the
match does not denote the same entity as the pattern it is a false
positive. A target string that is not a match is a negative. A false
negative is an unmatched target string that denotes the same entity
as the pattern, and a true negative is an unmatched target string
that does not.

Two distinct types of evaluation criteria for name matching can be
distinguished: match accuracy and computational efficiency.
Match accuracy is a function of two complementary measures of
performance:

• Precision, the proportion of matching target strings that
denote the same entity as the pattern, and

• Recall, the proportion of entities denoting the same
entity as the pattern that were matched.

Precision is equal to |true positives| /(|true positives| + |false
positives|), that is, the proportion of actual matches that should in
fact have been matched. Recall is equal to |true positives| / (|true
positives| + |false negatives|), that is, the proportion of targets that
should have been matched that were in fact matched.

There is a tradeoff between recall and precision. If every target is
matched, recall will be 100%, but precision may be very low.
Conversely, if only identical strings are matched, precision will be
100%, but recall may be very low. The most desirable algorithm is
one that optimizes this tradeoff, i.e., making recall as high as
possible without sacrificing precision. To express this
optimization, recall and precision can be combined into a single
measure of overall performance, such as the F-measure [6]. If
recall and precision are weighted equally, the F-measure is the
harmonic mean of recall and precision:

RP
PR

F
+

= 2

where P is precision and R is recall.

The potential size of LCMS databases places a practical upper
bound on the computational cost of name-matching algorithms. A
single, incremental change to a conflict file (or case database)

requires a number of comparisons proportionate to the size of the
database (or, respectively, conflict file). However, judicial LCMSs
are typically required to perform a conflict-detection screening for
the entire conflict file and case database. This can potentially
entail a very large number of comparisons. For example, one U.S.
Federal District Court LCMS studied by the author had 12,890
conflict-file entries and 268,104 strings occurring in cases. A
usable name-matching algorithm must be capable of comparing
files of this size in (at most) minutes; other demands on LCMS
hardware make day-long computations unacceptable.

3. NAME MATCHING AS METRIC-SPACE
PROXIMITY QUERYING

The name-matching task is an instance of the more general task of
proximity querying in metric spaces. A metric space consists of a
universe � of objects on which is defined a distance function

d: � × � → �

that satisfies the triangle inequality. Fulfilling a proximity query
with query q and range r requires retrieving every element e of a
database for which the distance d(q,e) < r. Proximity queries in
metric spaces arise in a wide range of domains, including
molecular biology, multimedia, pattern recognition, chemical
databases, and spell correction [7].

Many metric spaces have straightforward representations as vector
spaces in which geometric distance corresponds to similarity
under the metric. In such cases, spatial access methods, such as k-
d trees, are well-suited for proximity queries (provided that the
number of dimensions is not too high) [8]. However, in many
domains there is no obvious vector space representation that is
proximity-preserving, that is, that preserves the similarity ordering
in the original metric space. Development of proximity query
methods for such metric spaces is an active research area.

In general, metric-space proximity query methods involve creation
of an indexing structure based on a set of k elements selected as
pivots [7]. The elements of the database are partitioned into
equivalence classes based on distance to each of the pivots. A
query q is satisfied by determining the distance from q to each
pivot, then using the triangle inequality to select equivalence sets
that are guaranteed to include all elements within distance r of q
(as well as potentially other elements as well). The distance
between q and each element of the equivalence sets is then
calculated to determine which of the candidate elements is
actually within distance r [7]. The computational expense of
constructing the index is typically proportional to the cost of
calculating the distance between a pair of elements times kn,
where n is the number of elements in the database

The name-matching task as it occurs in many LCMSs is
characterized by a relatively expensive distance calculation. As
described in Section 4, the equivalence criteria for pairs of names
includes a number of complex, domain-specific rules. Moreover,
queries can involve large numbers of both texts and patterns and
are sometimes limited to a very short execution time. As a result,
metric-space indexing schemes that require applying the distance
calculation kn times to build an index can be prohibitively
expensive in such systems.

225

When pivot-based indices are too costly to construct, an
alternative approach is to partition the database into equivalence
classes using an abstraction method that is much cheaper than
calculating the distance to k pivots. For example, in the two-stage
retrieval methods developed for analogical reasoning systems,
such as MAC/FAC, labeled graphs are abstracted into bags of
labels. The expensive subgraph-isomorphism similarity metric is
calculated only on those candidates sharing the highest proportion
of labels with the query [9]. This approach, in which the
candidates for match with a query q are those elements in the
same equivalence class as q, will be referred to as non-pivot
indexing.

The next section describes the categories of orthographic
variations characteristic of names occurring in legal case
management systems. Section 5 proposes a three-stage model that
performs non-pivot indexing using computationally inexpensive
methods to abstract strings into equivalence classes of strings that
are likely to be equivalent with respect to the variations described
in Section 4.

4. A TAXONOMY OF NAME VARIATIONS

The difficulty of the name-matching task, and the requirements for
an effective algorithm to perform this task, depend on the type and
degree of name variations typical in the collection to which the
name-matching algorithm is applied. To determine the name
variations typical of LCMSs, an informal analysis was performed
of a United States federal district court database containing
41,711 name occurrences.

Nine primary categories of variations were apparent within this
database:

1. Punctuation, e.g., “Owens Corning” vs. “Owens-
Corning”; “IBM” vs. “I.B.M.”

2. Capitalization, e.g., “citibank” vs. “Citibank”; “SMITH”
vs. “Smith”

3. Spacing, e.g., “J.C. Penny” vs. “J. C. Penny”

4. Qualifiers, e.g., “Jim Jones” vs. “Jim Jones d.b.a. Jones
Enterprises”

5. Organizational terms, e.g., “corporation” vs.
“incorporated”

6. Abbreviations, e.g., “cooperative” vs. “coop”; “General
Motors” vs. “GM”

7. Misspellings:

a. Omissions, e.g. “Collin” vs. “Colin”

b. Additions, e.g., “McDonald” vs.
“MacDonald”

c. Substitutions, e.g., “Smyth” vs. “Smith”

d. Letter reversals, e.g., “Peirce” vs. “Pierce”

8. Word omissions, e.g., “National Electrical Benefit Fund
and its Trustees” vs. “National Electrical Benefit Fund”

9. Word permutations, e.g., “State of Missouri District
Attorney” vs. “District Attorney, State of Missouri”

While it is impossible to determine precisely the relative
frequency of these variations without a systematic analysis of
errors occurring in a representative collection of LCMSs, informal
inspection of the district court database suggests that word
omissions and variations in capitalization, punctuation, spacing,
abbreviations, and organizational terms are relatively common.
Word permutations are somewhat less common, and misspellings
and qualifier variations are relatively rare.

Recognizing the similarity between pairs of expressions is
computationally straightforward for some of the variations. For
example, the similarity between a string representing a correctly
spelled word and a string with minor spelling errors can be
recognized using standard dynamic programming techniques to
determine the minimum edit distance between the strings [10].
However, these techniques are ill-suited to variations in
organizational terms, qualifiers, word omissions, and differences
in word order.

5. ALGORITHMS FOR NAME MATCHING

This section distinguishes three stages in the name-matching
process, identifies the stages at which each of the nine naming
variations described above can be addressed, and distinguishes
alternative design options for each of the stages.

5.1 Stages of Name Matching

Three distinct stages can be distinguished in the name-matching
task: normalization, indexing, and similarity assessment.

Normalization is the process of transforming pattern and target
strings into a standard form by eliminating inessential textual
variations that can prevent matching. Normalization operations
include adopting a standard convention for capitalization (e.g., all
uppercase or all lowercase), punctuation (e.g., removing all
punctuation), and stop-word filtering (e.g., removing
uninformative, common words, such as “the” and “LLC”).

Indexing is the process of selecting a set of candidates from the
targets for comparison with the pattern. The simplest indexing
method is exhaustive retrieval, that is, selection of the entire set of
targets for comparison with the pattern. Alternatively, each string
can be abstracted into a simplified representation that can be used
to index strings through a hash table, decision tree, or other
retrieval mechanism. The motivation for abstraction is that
multiple similar strings may have the same abstraction. If the
abstraction of a pattern is used to index target strings with the
same abstraction, only a small number of comparisons will be
needed for each pattern. This approach can reduce the number of
comparisons without compromising accuracy if pairs of strings
intended to denote the same entity usually have the same
abstraction.

Exhaustive retrieval is too slow for any but the smallest target
sets. In the example mentioned above, a direct comparison
between each of 12,890 conflict-file entries and 268,104 case
strings would require 3,455,860,560 comparisons. Even if each
individual comparison were very fast, the entire process would be
unacceptably slow.

226

Similarity Assessment is the process of determining whether
there is sufficient similarity between a normalized pattern and a
normalized target to indicate a significant probability that the
target designates the same entity as the pattern. Approaches to
comparison can differ in granularity—whether the comparison is
word-by-word or on the entire string—and match criterion.
Possible match criteria include string equality, a sub-string
relationship between the pattern and the target, and approximate
matching, which consists of determining whether the edit distance
between the pattern and target is less than a given mismatch
threshold. The edit distance between two strings consists of the
number of insertions, deletions, or substitutions required to make
the pattern equal to the target. Testing for string equality or sub-
string matching is relatively efficient. The approximate matching
task is inherently more computationally expensive than exact
matching, with the time complexity of the dynamic programming
algorithm proportional to the product of the lengths of the strings
being compared [4].

5.2 Name Variations Addressed at Each Stage

The first five sources of variation enumerated in Section 3—
punctuation, capitalization, spacing, qualifiers, and organizational
terms—can all be addressed by normalization. No normalization
scheme is likely to be entirely infallible, however, for two reasons.
First, corporate names sometimes consist entirely of
organizational terms or stop-words that in other contexts can
cause mismatches. For example, if a company were named “U.S.
Association of Corporations,” all the words in the company’s
name would be filtered if “U.S.”, “Association”, “of”, and
“Corporation” were all stop words, resulting in an unmatchable
null string. If one or more of the terms were excluded from the
stop list, however, some matches might not be detected, e.g.,
“Smith Corporation” might fail to match “Smith Incorporated” if
“Corporation” or “Incorporated” were not on the stop list.
Second, irregular spacing in some acronyms can make them
indistinguishable from stop words, e.g., if “American Tomato
Originators Network” were abbreviated “ATON”, extra spaces
could generate “A TO N” and “AT ON,” which appear to contain
stop words (“A,” “TO,” and “ON”). Tables of common corporate
names (e.g., “AT&T”) can reduce, but not eliminate, this problem

The 6th source of variations—abbreviations—can be addressed
during normalization or during similarity assessment by using a
table of abbreviations to recognize the equivalence between
abbreviated and unabbreviated forms.

The 7th variation source—misspellings—can be addressed by
approximate matching, a technique specifically developed to
recognize omissions, additions, and substitutions. As discussed
below, approximate matching can easily be extended to
transpositions of adjacent letters.

Word omissions, the 8th source of variations, can be addressed by
a word-by-word similarity-assessment procedure under which a
pattern matches a target if each word of the pattern matches a
unique word in the target. As discussed below, this similarity
assessment can be either symmetrical, meaning that every word in
the string with the fewest words must match a word in the other
string, or asymmetrical, meaning that every word in the pattern

must match a unique word in the target (but not necessarily the
converse).

Symmetrical matching seems desirable, but might give rise to the
danger of false positives from extraneous text in the party or
attorney fields of cases. For example, if “Attorney” appeared as
an attorney field in a case and matching were symmetrical, every
conflict record containing the words “Attorney” would be
matched (unless “Attorney” were a stop word). One could argue
that quality control is, in general, much easier in conflict files than
in case files and that it is therefore more important to match every
part of a conflict record than to match every part of a case record.
This argument suggests that an asymmetrical match policy would
be preferable. On the other hand, the possibility that attorneys and
judges might include nonessential text in conflict-file entries
suggests that asymmetrical matching risks false negatives. In a
system that can filter recurring false-positives, it may be better to
err on the side of false positives rather than false negatives, that is,
to weigh recall more heavily than precision. The experiments
below evaluate the relative performance of symmetrical and
asymmetrical matching.

Word-by-word similarity assessment can also address the 9th
source of variations—word permutations—if the similarity-
assessment procedure does not constrain words to appear in the
same position in pattern and target.

5.3 Design Options for Each Stage

A variety of algorithms representing different combinations of
design options for normalization, indexing, and similarity
assessment are possible. The following algorithms were
implemented in the evaluation described in Section 6:

Exact-Match. The exact-match algorithm is intended as a
benchmark for name-matching speed. The only normalization is
conversion to upper case, removal of all punctuation, and
normalization of spaces, which consists of trimming beginning
and ending white space, replacing multiple successive spaces, and
removing spaces in abbreviations, e.g., replacement of “I.B. M.”
with “I.B.M.”. Candidates are indexed by hashing on the
normalized string, and similarity assessment consists of testing for
string equality. The processing time for exact-match represents a
lower bound on the time required for a reasonable job of
matching.

Palmer. Doug Palmer, a U.S. District Court system administrator,
implemented a modification of the exact-match algorithm
intended to improve efficiency. In Palmer’s modification,
normalization consists of capitalization, punctuation removal, and
removal of stop-words. Indexing is by hashing on an abstraction
formed by removing vowels, double letters, and terminal “s”’s.
There is no further similarity assessment after retrieval, i.e., every
retrieved candidate is assumed to be a match.

Palmer’s normalization and abstraction often yields an empty
string. A policy issue concerns how strings with an empty
abstraction should be treated. One approach is to treat every target
with an empty abstraction as a candidate for matching with every
pattern with an empty abstraction. Alternatively, strings with
empty abstractions can be treated as matching nothing. Empirical
evaluation indicated that the former approach leads to large

227

numbers of spurious candidates. As a result, the latter policy was
used in the experiment described below.

All the remaining algorithms use identical normalization,
consisting of capitalization, removal of all punctuation, space
normalization, and removal of stop-words. Each of the algorithms
uses a different combination of choices for abstraction,
granularity, symmetry, and similarity assessment.

Abstraction. Four options for abstraction were implemented. In
each abstraction method, target strings were stored in a hash-table
entry indexed by each string’s abstraction. Since multiple strings
can have the same abstraction, the hash table entries consisted of
lists of target strings.1

Soundex is a phonetic encoding developed by the U.S.
Bureau of Census and used to index all individuals
listed in the U.S. census records starting in 1880 [12].
Soundex encodes each string as the first letter of the
string followed by 3 numbers representing the phonetic
categories of the next 3 consonants, if any, in the
string.2

Unordered-sounds. A limitation of Soundex is that the
abstraction it produces is dependent on word order. As a
result, permutations of identical words have different
Soundex encodings. For example, “Social Services
Dept., State of Alaska” has a Soundex encoding of
S243, whereas the encoding of “State of Alaska Social
Services Dept.” is S331. Unordered-sounds is a variant
of Soundex whose encoding is independent of word
order. Specifically, Unordered-sounds encodes a
multiple-word string in 19 bits that indicate the category
of sounds that occur in the 1st, 2nd, or 3rd positions of
any words. The first 7 bits indicate whether any word in
the string starts with the corresponding one of
Soundex's 6 categories of letters or with a letter
disregarded by Soundex (A, E, I, O, U, H, W, Y). The
next 12 flags indicate whether a letter in any of the 6

1 Not tested in this experiment, but worth considering, is lexical

vector-space indexing [11] applied to names represented as a
bags of string abstractions. For example, each name could be
indexed as a bag of tokens produced by applying Soundex to
each word in the name. This approach might increase recall,
although it would significantly increase retrieval time.

2 The categories of consonants are:

1) B,P,F,V

2) C,S,K,G,J,Q,X,Z

3) D,T

4) L

5) M,N

6) R

Vowels are ignored and adjacent letters from the same category
are represented with a single digit. For example, “Washington”
would be encoded as “W252”: W is the first letter, 2 for the S, 5
for the N, 2 for the G, and the remaining letters disregarded.

categories occurs in the second or third position of any
word.

Nsoundex. Unordered-sounds has the disadvantage that
an omission or addition of a single word can cause two
strings to have different encodings if any of the first 3
sounds of the word occur in a different position in some
other word. Nsoundex is a variant on Soundex intended
to address Soundex’s order sensitivity without
introducing Unordered-sounds’ sensitivity to extra
words. Nsoundex removes stop words and sorts the
remaining words alphabetically before applying
Soundex. An extra target word will prevent indexing
only if the extra word starts with a letter earlier in the
alphabet than the first word in the pattern.

Redundant is similar to Nsoundex except that each
string is redundantly indexed by both the first and last
words in the sorted, normalized, stop-word-free string.
If the similarity-assessment procedure uses approximate
matching, the Soundex of the first and last words are
used as indices for the string; if string equality is used
for similarity assessment, the words themselves are used
as indices. Redundant is less sensitive to omitted or
extra words than Nsoundex but incurs the added cost of
indexing every string twice.

Granularity and Symmetry. Three approaches to granularity
and symmetry were implemented:

Entire-string consists of similarity assessment of the
entire pattern with the entire target, after stop words
have been filtered from both.

Word-by-word consists of splitting the normalized
pattern and target strings into individual words. Word-
by-word comparison can be symmetrical or
asymmetrical.

Asymmetrical. After stop-words are removed
from both lists of words, each pattern word is
compared to every target word in turn until a
word is found that satisfies the applicable
similarity assessment criterion (discussed
infra) or which exactly matches the standard
abbreviation of the pattern word. The
abbreviation table is based on the
abbreviations found in The Bluebook: A
Uniform System of Citation [13] and The
Chicago Manual of Style [14]. Each target
word is permitted to match only a single
pattern word, and isolated letters (such as
initials in names) are required to match
exactly. Under this approach, the pattern
“John Jones” would match target “John Q.
Jones”, but pattern “John Q. Jones” would
match neither “John Jones” nor “John A.
Jones”.

Symmetrical matching succeeds if every
string in the shorter name matches a string in
the longer name, regardless of order. Under

228

this approach, the pattern “John Jones” would
match target “John Q. Jones”, and pattern
“John Q. Jones” would match “John Jones”.
However, “John A. Jones” would not match
“John Q. Jones”.

Similarity-Assessment Criterion. Two similarity-assessment
criteria were used in the test described below:

String equality.

Approximate match. Dynamic programming was used
for approximate matching with a modification so that a
separate penalty could be assigned for reversals of pairs
of adjacent letters. The motivation for this modification
is that letter reversals are a common typing mistake. In
all experiments, a penalty of 1.0 was assigned to
insertions, deletions, and substitutions, and a penalty of
0.6 was assigned to letter reversals. The mismatch
threshold was set at 15% of the number of letters in the
pattern when used in word-by-word matching, meaning
that a match would succeed in a word of at least 7 letters
if there were a single insertion, deletion, or substitution,
and a word of 5 letters or more would match if there
were a single reversal of a pair of adjacent letters. In
entire-string similarity assessment, however, the
mismatch threshold was set to 10% of the number of
letters in the pattern.

Each combination of choices for abstraction, granularity,
symmetry, and similarity assessment constitutes a distinct name-
matching algorithm. Each algorithm is identified below by an
acronym consisting of a concatenation of the first letter of the
name of the algorithm’s abstraction method, granularity,
symmetry, and similarity assessment criterion. For example,
Soundex abstraction combined with Word-by-word granularity,
Asymmetrical matching, and Approximate matching is denoted
“SWAA.”

Suppose that SWAA were called with pattern “Jones
Environmental Systems and Service Corporation” and a set of
targets that includes “Jones Env. Servces Systems, Inc.” The
corresponding normalized strings would be “JONES
ENVIRONMENTAL SYSTEMS SERVICE CORPORATION”
and “JONES ENV SERVCES SYSTEMS INC”, respectively. The
target string “JONES ENV SERVCES SYSTEMS INC” would be
indexed by its Soundex encoding of J525. The pattern also has a
Soundex encoding of J525, so the target would be retrieved for
matching. The first pattern word, “JONES”, matches the first
target word perfectly. The second pattern word,
“ENVIRONMENTAL” doesn’t match any word in the target, but
its abbreviation, “ENV”, matches the second word of the target.
The third pattern word, “SYSTEMS”, matches the fourth target
word. The fourth pattern word, “SERVICE”, is an approximate
match to “SERVCES”, with an edit distance of 1 deletion and 1
addition. Finally, “CORPORATION” is a stop word that does not
need to be matched. The pattern therefore matches the target. Note
that the difference in word order is irrelevant for the matching
performed by SWAA and that words in the target but not in the
pattern are simply ignored.

6. EXPERIMENTAL EVALUTION

6.1 Procedure
To identify the best combination of design options, the
performance of Exact-Match, Palmer, NEA (Nsoundex, entire-
word comparison, approximate-match), RWSE (Redundant, word-
by-word symmetrical, exact), RWSA (Redundant, word-by-word
symmetrical, approximate), and every combination of {Nsoundex,
Soundex, Unordered} × {word-by-word symmetrical, word-by-
word asymmetrical} × {exact-match, approximate} was evaluated
on a static copy of a U.S. District Court database containing
41,711 records for cases assigned to 20 judges. Unfortunately, this
database did not include actual conflict files. An artificial conflict
file was therefore created for each of 20 judges by randomly
selecting 700-800 entries from the case records for each judge.
This resulted in a total of 15,478 conflict file entries.

The testing procedure copied each judge’s conflict records into
one array and the party and attorney fields of all cases assigned to
that judge into a second array. Each algorithm in turn was called
to determine the matches between the two arrays. The execution
of the algorithm was timed, the total number of matches counted,
and matches between non-identical strings stored in a match file
for that algorithm (since matching identical strings is trivial and is
performed equally well by all algorithms, these matches were not
included in the calculation of precision, recall, and F-measure).

After every algorithm was tested, the match files for all algorithms
were merged and recorded in a file called approx-matches,
containing all non-identical strings returned as a match by any
algorithm. For each algorithm, the elements of approx-matches
not found by that algorithm were written into that algorithm’s
miss-file.

To estimate true and false positives and false negatives, the
approx-matches file was manually edited to tag its entries as true
or false positives. The contents of each algorithm’s miss-file were
compared to approx-matches to determine that algorithm’s true
and false positives and apparent false negatives (i.e., matches not
found by the algorithm that were found by some other algorithm).
Only the apparent false negatives could be determined under this
procedure because there was no oracle to determine whether there
were any targets that should have been matched but were missed
by all of the algorithms.

6.2 Results

Figure 1 sets forth the F-measure of each algorithm. The highest
F-measure was obtained by the two algorithms that used
redundant indexing: RWSA and RWSE (i.e., redundant, word-by-
word symmetric, and approximate or exact, respectively). RWSA
had higher recall, but lower precision, than RWSE. In general,
algorithms that used word-by-word, symmetrical similarity
assessment outperformed equivalent algorithms that used
asymmetrical or entire-word similarity assessment. Approximate
matching yielded much higher recall, but lower precision, than
string equality, leading to little difference in F-measure between
approximate and exact matching. Exact-match had the lowest F-
measure because of its low recall.

229

Figure 2 shows the computation time of the same set of
algorithms, normalized by the computation time of exact-match
(i.e., the computation time of each algorithm was divided by the
computation time of exact match).3 The slowest algorithm was
RWSA, because it performs many more similarity assessments
than the algorithms with non-redundant indexing. The next
slowest algorithm was NEA, illustrating the high computational
cost of entire-word approximate matching.4 RWSE had almost
the same accuracy as RWSA but was more than four times as fast.

6.3 Discussion

The most striking aspect of the results set forth in Figures 1 and 2
is that the algorithms with redundant indexing had much higher
recall—and therefore much higher F-measure—than any
algorithms with non-redundant indexing. The likely explanation
for this phenomenon is that every partition of a metric space into
two or more equivalence classes places some pairs of points
separated by less than any arbitrary distance r into separate
classes. As a result, no non-pivot indexing method that uses only

3 The actual run time for exact-match, running in interpreted Perl

on an elderly, multi-user Sun, was approximately 5 seconds. On
more modern machines, the run time for files of comparable size
should be considerably lower.

4 As mentioned above, the computational complexity of the
dynamic programming algorithm for approximate matching
through is proportionate to the product of the lengths of the two
strings being compared [4]. Pair-wise approximate matching
between partitions of two strings is therefore much faster than
approximate matching between the entire strings.

one abstraction method—and therefore only one partition of the
metric space—can have perfect recall.

It is entirely possible, however, for there to be a pair of partitions
of a given metric space such that every pair of elements closer
than some threshold r share some equivalence class. For example,
Figure 3 represents schematically universe U containing query q
and elements e1 and e2, both of which are within distance r of q.
Abstraction 1 generates a partition under which q and e1 are in
the same equivalence class but q and e2 are not. Abstraction 2
generates a partition in which the converse is the case. Neither
abstraction is sufficient in itself for perfect recall, but the union of
both equivalence classes containing q also contains both e1 and
e2.

The redundant indexing methods, RWSE and RWSA, each use
two independent abstraction methods that produce two
independent partitions of the target strings. Taking candidates
from both equivalence classes of which a pattern is a member—
that is, selecting targets that are identical to the pattern under
either abstraction—greatly reduces the probability of missing a
target that matches the pattern. These results strongly suggest that
high recall in non-pivot metric spaces requires multiple,
independent abstractions.

7. SUMMARY

The most accurate name-matching algorithm for name matching
in a given LCMS depends on the relationship between the choices
attorneys and judges make in expressing their potential conflicts
and the conventions governing party and attorney names in case
captions in that LCMS. If there is a high degree of consistency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
m

ea
su

re

1

Figure 1. F-measure of match algorithms.

RWSA
RWSE
exact_match
Palmer
NWSE
NWAE
SWSE
UWAE
NWAA
NWSA
NEA
UWAA
SWAA
SWSA
UWSA
UWSE
SWAE

230

between conflict records and case records, matching is
straightforward. To the extent that there are variations, matching
algorithms can be expected to achieve satisfactory precision and
recall only to the extent that they embody matching techniques
that compensate for those variations.

The results of the empirical evaluation suggest that, in databases
with name variations similar to those occurring in the U.S.
District Court database, name-matching accuracy is maximized by
matching algorithms with the following characteristics:

• Normalization by capitalization, removal of all
punctuation, space-normalization, abbreviation-
replacement, and stop-word removal.

• Indexing using an abstraction function that is order-
insensitive and tolerant of small numbers of omissions
or additions in the strings being matched. Redundant
indexing appears to achieve these goals better than
Nsoundex, Soundex, or Unordered-sounds.

• Symmetrical, word-by-word similarity assessment.

• If time is not critical and recall is much more important
than precision, approximate matching should be used. If
time is critical or recall is no more important than
precision, string equality should be used instead.

RWSE and RWSA had the highest F-measures on the U.S.
District Court database, and RWSE (unlike RWSA) was relatively
fast, i.e., only about 13 times slower than exact-match. In view of
these experimental results, RWSE was adopted as the name-
matching algorithm in CM/ECF in early 2002.

The experimental results are tentative because of two factors: (1)
uncertainty concerning the typicality of the name variations
occurring in the U.S. district court database that was the source of
the data used in the evaluation and (2) the absence of a definitive
list of false negatives, i.e., target strings that should have matched
the pattern but which were matched by no algorithm. A more
conclusive evaluation of the relative accuracy of alternative name-
matching algorithms must await the collection of more data on
name variations from a representative sampling of LCMSs.
Creation of publicly available datasets, in the spirit of the UCI
machine-learning data repository [15] would significantly advance
the development of name-matching algorithms by permitting
replicable evaluation of alternative algorithms.

ACKNOWLEDGMENTS

The research described in this paper was performed while the
author was a United States Supreme Court Judicial Fellow at the
Administrative Office of U.S. Courts. However, the views
expressed in this paper are those of the author and do not
necessarily reflect the views of the Judicial Conference or the
Administrative Office of U.S. Courts.

q e1 e2

abstraction 1

Figure 3. Solid boxes represent the equivalence classes generated by
abstraction 1, while the dashed boxes are those generated by abstraction 2.
Query q is in the same equivalence class as e1 under abstraction 1 and the same
as e2 under abstraction 2.

U

0

5

10

15

20

25

30

35

40

45

50

co
m

pu
ta

tio
n

tim
e/

 e
xa

ct
-m

at
ch

 ti
m

e

Figure 2. Computation time of match algorithms.

RWSA
RWSE
exact_match
Palmer
NWSE
NWAE
SWSE
UWAE
NWAA
NWSA
NEA
UWAA
SWAA
SWSA
UWSA
UWSE
SWAE

abstraction 2
231

8. REFERENCES

[1] S. Milstein, Taming the Task of Checking for Terrorists’
Names, The New York Times, C4, Monday, December 30,
2002.

[2] Judicial Conference of the United States, Electronic Case
Files in the Federal Courts: A Preliminary Examination of
Goals, Issues, and the Road Ahead, Administrative Office of
the U.S. Courts (March 1997).

[3] 28 USCS § 455. Canon 3 of the American Bar Association's
Model Code of Judicial Conduct (1990) sets forth a similar
standard.

[4] D. Gusfield, Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology, Cambridge
University Press (1997).

[5] J. Setubal and J. Meidanis, Introduction to Computational
Molecular Biology, PWS Publishing Co. (1997).

[6] C. van Rijsbergen, Information Retrieval. London:
Butterworths, 2nd Edition (1979).

[7] E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. Marroquín,
Searching in metric spaces, ACM Computing Surveys,
33(3):273-321 (2001).

[8] V. Faede and O. Guenther, Multidimensional access
methods. ACM Computing Surveys, 30(2):170-231 (1992).

[9] K. Forbus, D. Gentner, and K. Law, MAC/FAC: A model of
Similarity-based Retrieval. Cognitive Science, 19(2):141-205
(1995).

[10] P. Sellers, The theory and computation of evolutionary
distances: pattern recognition. Journal of Algorithms, 1:359-
373 (1980).

[11] C. Manning & H. Schütze, Foundations of Statistical
Natural Language Processing. The MIT Press (1999).

[12] For an introduction to Soundex, see The Soundex Indexing
System, National Archives and Records Administration,
http://www.nara.gov/genealogy/coding.html.

[13] Harvard Law Review Association, 17th Edition (2000).

[14] University of Chicago Press, 13th Edition (1982).

[15] C. Blake and C. Merz, UCI Repository of machine learning
databases [http://www.ics.uci.edu/
~mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer
Science.

232

