
Robust and Efficient Fuzzy Match for Online Data Cleaning
Surajit Chaudhuri Kris Ganjam Venkatesh Ganti Rajeev Motwani

 Microsoft Research Stanford University
{surajitc, krisgan, vganti}@microsoft.com rajeev@cs.stanford.edu

ABSTRACT
To ensure high data quality, data warehouses must validate and
cleanse incoming data tuples from external sources. In many
situations, clean tuples must match acceptable tuples in reference
tables. For example, product name and description fields in a
sales record from a distributor must match the pre-recorded name
and description fields in a product reference relation.

A significant challenge in such a scenario is to implement an
efficient and accurate fuzzy match operation that can effectively
clean an incoming tuple if it fails to match exactly with any tuple
in the reference relation. In this paper, we propose a new
similarity function which overcomes limitations of commonly
used similarity functions, and develop an efficient fuzzy match
algorithm. We demonstrate the effectiveness of our techniques by
evaluating them on real datasets.

1. INTRODUCTION
Decision support analysis on data warehouses influences
important business decisions; therefore, accuracy of such analysis
is crucial. However, data received at the data warehouse from
external sources usually contains errors, e.g., spelling mistakes,
inconsistent conventions across data sources, missing fields.
Consequently, a significant amount of time and money are spent
on data cleaning, the task of detecting and correcting errors in
data. A prudent alternative to the expensive periodic data cleaning
of an entire data warehouse is to avoid the introduction of errors
during the process of adding new data into the warehouse. This
approach requires input tuples to be validated and corrected
before they are loaded. There is much information that can be
used to achieve this goal.

A common technique validates incoming tuples against reference
relations consisting of known-to-be-clean tuples. The reference
relations may be internal to the data warehouse (e.g., customer or
product relations) or obtained from external sources (e.g., valid
address relations from postal departments). An enterprise
maintaining a relation consisting of all its products may ascertain
whether or not a sales record from a distributor describes a valid
product by matching the product attributes (e.g., Part Number and
Description) of the sales record with the Product relation; here,
the Product relation is the reference relation. If the product
attributes in the sales record match exactly with a tuple in the
Product relation, then the described product is likely to be valid.
However, due to errors in sales records, often the input product

tuple does not match exactly with any in the Product relation.
Then, errors in the input product tuple need to be corrected before
it is loaded. The information in the input tuple is still very useful
for identifying the correct reference product tuple, provided the
matching is resilient to errors in the input tuple. We refer to this
error-resilient matching of input tuples against the reference table
as the fuzzy match operation.

Suppose the enterprise wishes to ascertain whether or not the sales
record describes an existing customer by fuzzily matching the
customer attributes of the sales record against the Customer
relation. The reference relation, Customer, contains tuples
describing all current customers. If the fuzzy match returns a
target customer tuple that is either exactly equal or “reasonably
close” to the input customer tuple, then we would have validated
or corrected, respectively, the input tuple. The notion of closeness
between tuples is usually measured by a similarity function. As
shown in Figure 1, if the similarity between an input customer
tuple and its closest reference tuple is higher than some threshold,
then the correct reference tuple is loaded. Otherwise, the input is
routed for further cleaning before considering it as referring to a
new customer. A fuzzy match operation that is resilient to input
errors can effectively prevent the proliferation of fuzzy duplicates
[13] in a relation, i.e., multiple tuples describing the same real
world entity.

Our goal in this paper is to develop a robust and efficient fuzzy
match algorithm, applicable across a wide variety of domains. We
want a solution that provides a strong foundation for adding
domain-specific enhancements. Most data warehouses are built
atop database systems. Consequently, we require besides
robustness and efficiency that the fuzzy match solution is
implemented over standard database systems without assuming
the persistence of complex data structures.

The critical ingredient of a fuzzy match operation is the similarity
function used for comparing tuples. In typical application
domains, the similarity function must definitely handle string-
valued attributes and possibly even numeric attributes. In this
paper, we focus only on string-valued attributes, where defining
similarity and performing fuzzy matching is more challenging.
Given the similarity function and an input tuple, the goal of the
fuzzy match operation is to return the reference tuple—a tuple in
the reference relation—which is closest to the input tuple. An
extension is to return the closest K reference tuples enabling
users, if necessary, to choose one among them as the target, rather

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first�page. To copy
otherwise, or republish, to post on servers or to redistribute� to lists,
requires prior specific permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego��CA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

Figure 1: A Template for using Fuzzy Match

than the closest. A further extension is to only output K or fewer
tuples whose similarity to the input tuple exceeds a user-specified
minimum similarity threshold. This formulation is essentially that
of the nearest neighbor problem, but there the domain is typically
a Euclidean (or other normed) space with well-behaved similarity
functions [11]. In our case, the data are not represented in
“geometric” spaces, and it is hard to map them into one because
the similarity function is relatively complex.

Previous approaches addressing the fuzzy match operation either
adopt proprietary domain-specific functions (e.g., Trillium’s
reference matching operation for the address domain [23]) or use
the string edit distance function for measuring similarity between
tuples [17]. A limitation of the edit distance is illustrated by the
following example. The edit distance function would consider the
input tuple I3 in Table 2 to be closest to R2 in Table 1, even
though we know that the intended target is R1. Edit distance fails
because it considers transforming ‘corporation’ to ‘company’
more expensive than transforming ‘boeing’ to ‘bon.’ However, we
know that ‘boeing’ and ‘98004’ are more informative tokens than
‘corporation’ and so replacing ‘corporation’ with ‘company’
should be considered cheaper than replacing ‘boeing’ with ‘bon’
and ‘98004’ with ‘98014.’ In yet another example, note that the
edit distance considers I4 closer to R3 than to its target R1. This is
because it fails to capture the notion of a token or take into
account the common error of token transposition.

ID Org. Name City State Zipcode
R1 Boeing Company Seattle WA 98004
R2 Bon Corporation Seattle WA 98014
R3 Companions Seattle WA 98024

Id Org. Name City State Zipcode
I1 Beoing Company Seattle WA 98004
I2 Beoing Co. Seattle WA 98004
I3 Boeing Corporation Seattle WA 98004
I4 Company Beoing Seattle NULL 98014

We start by proposing a new fuzzy match similarity (fms) function,
which views a string as a sequence of tokens and recognizes the
varying “importance” of tokens by explicitly associating weights
quantifying their importance. Tuples matching on high weight
tokens are more similar than tuples matching on low weight
tokens. We adopt the successful inverse document frequency
(IDF) weights from the IR literature for quantifying the notion of
token importance; informally, the importance of a token decreases
with its frequency, which is the number of times a token occurs in
the reference relation [3]. Even though the approach of weight
association is common in the IR literature, the effective use of
token weights in combination with data entry errors (e.g., spelling
mistakes, missing values, inconsistent abbreviations) has not been
considered earlier.

Our notion of similarity between two tuples depends on the
minimum cost of “transforming” one tuple into the other through
a sequence of transformation operations (replacement, insertion,
and deletion of tokens) where the cost of each transformation
operation is a function of the weights of tokens involved. For
example, it may be cheaper to replace the token ‘corp’ with

‘corporation’ than to replace ‘corporal’ with ‘corporation’ even
though edit distances suggest otherwise. This notion of similarity
based on transformation cost is similar to edit distance except that
we operate on tokens and explicitly consider their weights.

The goal of the fuzzy match algorithm is to efficiently retrieve the
K reference tuples closest to an input tuple. It is well-known that
efficiently identifying the exact K nearest neighbors even
according to the Euclidean and Hamming norms in high-
dimensional spaces is hard [14]. Since the Hamming norm is a
special case of the edit distance obtained by allowing only
replacements, the identification of the exact closest K matches
according to our fuzzy match similarity—which generalizes edit
distance by incorporating token weights—is essentially hard.
Therefore, we adopt a probabilistic approach where the goal is to
return the closest K reference tuples with high probability. We
pre-process the reference relation to build an index relation, called
the error tolerant index (ETI) relation, for retrieving at run time a
small set of candidate reference tuples, which we then compare
with the input tuple. Our retrieval algorithm is probabilistically
safe because we retrieve (with high probability) a superset of the
K reference tuples closest to the input tuple. It is efficient because
the superset is significantly (often by several orders of magnitude)
smaller than the reference relation. The index relation ETI is
implemented and maintained as a standard relation, and hence our
solution can be deployed even over current operational data
warehouses.

Our main contributions are the following. We propose a new
fuzzy match similarity function that explicitly considers IDF token
weights and input errors while comparing tuples. We propose the
error tolerant index and a probabilistic algorithm for efficiently
retrieving the K reference tuples closest to the input tuple,
according to the fuzzy match similarity function. Finally, we
present a thorough empirical evaluation on real datasets. Our
techniques are extensible to use specialized (possibly domain-
specific) token weight functions instead of the IDF weights.

The rest of the paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we define the new similarity
function. In Section 4, we describe (i) our algorithm to build the
ETI, and (ii) our retrieval algorithm for efficiently identifying the
target reference tuples. In Section 5, we discuss a few extensions
to the algorithm. In Section 6, we discuss a thorough empirical
study on real datasets, and conclude in Section 7.

2. RELATED WORK
Several methods for approximate string matching over
dictionaries or collections of text documents have been proposed
(e.g., [12], [17]). All of the above methods use edit distance as the
similarity function, not considering the crucial aspect of
differences in importance of tokens while measuring similarity.

Approximate string matching methods [e.g., 2, 18] preprocess the
set of dictionary/text strings to build q-gram tables containing
tuples for every string s of length q that occurs as a substring of
some reference text string; the record also consists of the list of
identifiers (or locations) of strings of which s is a substring. The
error tolerant index relation ETI we build from the reference
relation is similar in that we also store q-grams along with the list
of record identifiers in which they appear, but the ETI (i) is
smaller than a full q-gram table because we only select

Table 1: Organization Reference Relation

Table 2: Input Organization Tuples

c o m p a n y

c o r p o r a t i o n

0 0 1 0 1 1 011 1 0 1

(probabilistically) a subset of all q-grams per tuple, and (ii)
encodes column-boundaries specific to relational domains.

The information retrieval community has successfully exploited
inverse document frequency (IDF) weights for differentiating the
importance of tokens or words. However, the IR application
assumes that all input tokens in the query are correct, and does not
deal with errors therein. Only recently, some search engines (e.g.,
Google’s “Did you mean?” feature) are beginning to consider
even simple spelling errors. In the fuzzy match operation, we deal
with tuples containing very few tokens (many times, around 10 or
less) and hence cannot afford to ignore erroneous input tokens, as
they could be crucial for differentiating amongst many thousands
of reference tuples. For example, the erroneous token ‘beoing’ in
the input tuple [beoing corporation, seattle, wa, NULL] is perhaps
the most useful token for identifying the target from among all
corporations in Seattle. Clustering and reference matching
algorithms [e.g., 7, 8, 9] using the cosine similarity metric with
IDF weighting also share the limitation of ignoring erroneous
input tokens. Further, Cohen et al. improve efficiency by choosing
probabilistically a subset of tokens from each document under the
correct input token assumption [9]. In this paper, we propose a
similarity function that does not assume correctness of input
tokens, and further improve efficiency by exploiting the variance
in weights of input tokens.

As discussed earlier, almost all solutions for the nearest neighbor
problem are targeted at data in Euclidean/normed spaces [11] and
hence inapplicable to our setting. There has been some recent
work on general metric spaces [e.g., 5, 19], but their complexity
and performance are not suitable for the high-throughput systems
of interest here. Moreover, many of these solutions cannot be
deployed easily over current data warehouses because they require
specialized index structures (e.g., M-trees, tries) to be persisted.

Some recent techniques addressed the related problem of
eliminating “fuzzy duplicates” in a relation by using a similarity
function and identifying highly similar tuples as duplicates. Some
are based on the use of edit distance [e.g., 13], some on cosine
similarity with IDF weights [e.g., 8], some on learning similarity
functions from training datasets [e.g., 10, 20], and some on the
use of dimension hierarchies [1]. However, all such techniques
are designed for use in an offline setting and do not satisfy the
efficiency requirements of the online fuzzy match operation where
input tuples have to be quickly matched with target reference
tuples before being loaded into the data warehouse. A
complementary use of solutions to both problems is to first clean a
relation by eliminating fuzzy duplicates and then piping further
additions through the fuzzy match operation to prevent
introduction of new fuzzy duplicates.

Several commercial products (e.g., Trillium, Vality, Axciom)
leverage characteristics peculiar to the address domain in their
proprietary algorithms for matching addresses and individual or
organization records. The record linkage literature—a survey can
be found in [24]—also considers the problem of identifying
matching records across relations (consisting mainly of census
records of individuals), and employs a variety of (domain-
specific) similarity functions. In contrast, our goal in this paper is
to develop a domain-independent method.

3. THE SIMILARITY FUNCTION
In this section, we define the fuzzy match similarity (fms) function
for comparing tuples. We start with
a few definitions.

Edit Distance: The edit distance
ed(s1, s2) between two strings s1
and s2 is the minimum number of
character edit operations (delete,
insert, and substitute) required to transform s1 into s2, normalized
by the maximum of the lengths of s1 and s2. For the example
shown in the adjacent figure the edit distance between the strings
‘company’ and ‘corporation’ is 7/11�0.64, and the sequence of
edit operations is shown. Vertical lines indicate either exact
matches (cost is 0) or substitutions (cost is 1). Characters in italics
are deleted or inserted and always have a unit cost.

Reference Relation: Let R[tid, A1,…,An] be a reference relation
where Ai denotes the ith column. We assume that each Ai is a
string-valued attribute (e.g., of type varchar). We also assume that
tid (for tuple identifier) is a key of R. We refer to a tuple whose
tid attribute assumes value r as the tuple r. We use v[i] to denote
the value ai in the tuple v[r, a1,…,an].

Tokenization: Let tok be a tokenization function which splits a
string s into a set of tokens, tok(s), based on a set of delimiters
(say, the white space characters). For example, tok(v[1]) of the
tuple v = [R1, Boeing Company, Seattle, WA, 98004] is {boeing,
company}. Observe that we ignore case while generating tokens.
For tokens generated from attribute values of tuples, we associate
the column property—the column from which a token originates.
For example, the column property of tokens in tok(v[col]) is col.
Consequently, the token ‘madison’ in the name column of a
customer relation is considered different from the token ‘madison’
in the city column. The token set tok(v) is the multiset union of
sets tok(a1),…,tok(an) of tokens from the tuple v[r, a1,…,an]. That
is, if a token t appears in multiple columns, we retain one copy per
column in tok(v), distinguishing each copy by its column
property. We say that a token t is in tok(v) if t is a member of
some tok(ai), for 1 � i � n.

Weight Function: We now adapt the IDF weight function to the
relational domain by treating each tuple as a document of tokens.
The motivation for this definition is clear from the following
example – we expect the weight of token ‘corporation’ in the
organization-name column to be less than that of ‘united’ since
corporation is a frequent token in that column. Let the frequency
of token t in column i, denoted freq(t, i), be the number of tuples v
in R such that tok(v[i]) contains t. The IDF value, IDF(t, i), of a
token t with respect to the ith column in the schema of R is
computed as follows, when freq(t, i) > 0,

),(
||

log),(),(
itfreq

R
itIDFitw ==

For a token t whose frequency in column i is 0, our philosophy is
that t is an erroneous version of some token in the reference tuple.
Since we do not know the token to which it corresponds, we
define the weight w(t, i) to be the average weight of all tokens in
the ith column of relation R. For clarity in presentation, when the
column property of a token is evident from the context, we use
w(t) to denote w(t, i).

3.1 Fuzzy Similarity Function (fms)
Informally, the similarity between an input tuple and a reference
tuple is the cost of transforming the former into the latter—the
less the cost, the higher the similarity. We consider the following
transformation operations: token replacement, token insertion,
and token deletion. Each operation is associated with a cost that
depends on the weight of the token being transformed. We now
describe the cost of each transformation operation. Let u and v be
two tuples with the schema R[A1,…,An]. We will be considering
only the case where u is an input tuple and v is a reference tuple,
and we are interested in transforming u into v.

(i) Token replacement: The cost of replacing a token t1 in
tok(u[i]) by token t2 from tok(v[i]) is ed(t1,t2)�w(t1,i). If t1 and
t2 are from different columns, we define the cost to be infinite.

(ii) Token insertion: The cost of inserting a token t into u[i] is
cins�w(t, i), where the token insertion factor cins is a constant
between 0 and 1.

(iii) Token deletion: The cost of deleting a token t from u[i] is
w(t,i).

Observe that the costs associated with inserting and deleting the
same token may be different. We believe that this asymmetry is
useful, since in many scenarios it is more likely for tokens to be
left out during data entry than it is for spurious tokens to be
inserted. Therefore, absence of tokens is not penalized heavily.

We ignore the tid attribute while comparing tuples. Transforming
u into v requires each column u[i] to be transformed into v[i]
through a sequence of transformation operations, whose cost we
define to be the sum of costs of all operations in the sequence.
The transformation cost tc(u[i], v[i]) is the cost of the minimum
cost transformation sequence for transforming u[i] into v[i]. The
cost tc(u, v) of transforming u into v is the sum over all columns i
of the costs tc(u[i], v[i]) of transforming u[i] into v[i].

�=
i

iviutcvutc])[],[(),(

The minimum transformation cost tc(u[i], v[i]) can be computed
using the dynamic programming algorithm used for edit distance
computation [22].

Consider the input tuple u[Beoing Corporation, Seattle, WA,
98004] in Table 2 and the reference tuple v[Boeing Company,
Seattle, WA, 98004]. The minimum cost transformation of u[1]
into v[1] requires two operations – replacing ‘beoing’ by ‘boeing’
and replacing ‘corporation’ by ‘company’. The function tc(u[1],
v[1]) is the sum of costs of these two operations; assuming unit
weights on all tokens, this is 0.97 by adding 0.33 for replacing
‘beoing’ with ‘boeing’ which are at an edit distance 0.33, and
0.64 for replacing ‘corporation’ with ‘company’ which are at an
edit distance 0.64. In this example, only tc(u[1], v[1]) is nonzero
among column-wise transformation costs.

Definition of fms: We now define the fuzzy match similarity
function fms(u, v) between an input tuple u and a reference tuple v
in terms of the transformation cost tc(u, v). Let w(u) be the sum of
weights of all tokens in the token set tok(u) of the input tuple u.
Similarity between u and v is defined as:

)0.1,
)(

),(
min(1),(

uw
vutc

vufms −=

In the above example involving I3 and R1, w(I3) = 5.0 because
there are five tokens in tok(I1) and the weight of each token is 1.0.
Therefore, fms(I3, R1) = 1 - 0.97/5.0 = 0.806. We define fms
asymmetrically because we believe the cost of transforming a dirty
input tuple into a clean reference tuple is different from the
reverse transformation. Also, in this paper, we only transform
input tuples into clean reference tuples, and never the other way.

3.2 Edit Distance and fms
For a broad subclass of errors, we compare the weight assignment
strategy implicitly adopted by the edit distance ed with that of the
fuzzy match similarity fms, to isolate scenarios when they agree or
disagree on fuzzy match. The comparison also justifies, although
only informally, our belief that fms is the more appropriate choice
in practice.

We consider the subclass of order-preserving errors. Under this
class of errors, an input tuple and its target reference tuple are
consistent in the ordering among tokens after each input token is
mapped to the closest matching reference token, and each input
token is transformed to its counterpart in the reference tuple. Let
u1,…,um be the list of tokens in the input tuple u ordered
according to their position in u. Let v1,…,vm be the similarly
ordered list of tokens in the reference tuple v. In the class of
order-preserving errors, for all i, the input token ui is transformed
to the reference token vi. Let ed(u, v) denote the total (minimum)
number of edit operations for transforming each ui into vi,
normalized by max(L(u), L(v)) where the length L(z) of a tuple z is
the sum of lengths of tokens z1,…,zp in tok(z), i.e., L(z)=�|zi|. We
now rewrite ed(u, v) to highlight the implicit weight assignment to
the ui�vi token-mapping.

�=
i

ii
ii vued

uL
vu

vLuL
uL

vued),(
)(

|)||,max(|
))(),(max(

)(
),((1)

Observe that the ui�vi mapping gets a weight proportional to
max(|ui|, |vi|)/L(u). Therefore, ed implicitly assigns weights to
token mappings in proportion to their lengths, i.e., longer tokens
get higher weights. For example, ‘corporation’ to ‘company’ gets
a higher weight than ‘boeing’ to ‘bon’ thus explaining why ed
matches input tuple I3 (in Table 2) with R2 (in Table 1) instead of
the correct target R1. Extensive empirical evidence from the IR
application suggests the superiority of IDF weights to token
lengths for capturing the notion of token importance [3]. Hence,
we expect fms to be more beneficial than ed in practice.

4. FUZZY MATCH
We first formally define the fuzzy match problem before
describing the algorithm.

The K-Fuzzy Match Problem: Given a reference relation R, a
minimum similarity threshold c (0 < c < 1), the similarity function
f, and an input tuple u, find the set FM(u) of fuzzy matches of at
most K tuples from R such that

(i) fms(u, v) � c, for all v in FM(u)

(ii) fms(u, v) � fms(u, v’) for any v in FM(u) and v’ in R−FM(u)

Observe that by setting the minimum similarity threshold c to be
zero, we can simulate the scenario where a user is interested in all
closest K reference tuples. When more than K−i+1 reference
tuples are tied for the ith, …, Kth (i > 1) best fuzzy matches, we
break ties by choosing an arbitrary subset of the tied reference
tuples such that the total number of returned fuzzy matches is K.

Given an input tuple u, the goal of the fuzzy match algorithm is to
identify the fuzzy matches—the K reference tuples closest to u. A
naïve algorithm scans the reference relation R comparing each
tuple with u. A more efficient approach is to build an “index” on
the reference relation for quickly retrieving a superset of the target
fuzzy matches. Standard index structures like B+-tree indexes
cannot be deployed in this context because they can only be used
for exact or prefix matches on attribute values. Therefore, we
gather, during a pre-processing phase, additional indexing
information for efficiently implementing the fuzzy match
operation. We store the additional information as a standard
database relation, and index this relation using standard B+-trees
to perform fast exact lookups. We refer to this indexed relation as
the error tolerant index (ETI). The challenge is to identify and to
effectively use the information in the indexed relation. Our
solution is based on the insight of deriving from fms an easily
indexable similarity function fmsapx with the following
characteristics. (i) fmsapx upper bounds fms with high probability.
(ii) We can build the error tolerant index (ETI) relation for
efficiently retrieving a small candidate set of reference tuples
whose similarity with the input tuple u, as per fmsapx, is greater
(probabilistically) than the minimum similarity threshold c.
Therefore, with a high probability the similarity as per fms
between any tuple in the candidate set and u is greater than c.
From this candidate set, we return the K reference tuples closest
to u as the fuzzy matches.

In Section 4.1, we define fmsapx. In Section 4.2, we describe the
ETI relation as well as an algorithm for building it. In Section 4.3,
we present an efficient algorithm to process fuzzy matching
queries, and we discuss their resource requirements in Section 4.4.

4.1 Approximation of fms
Our goal in this section is to derive fmsapx an approximation of
fms for which we can build an indexed relation. fmsapx is a pared
down version of fms obtained by (i) ignoring differences in
ordering among tokens in the input and reference tuples, and (ii)
by allowing each input token to match with the “closest” token
from the reference tuple. Since disregarding these two
distinguishing characteristics while comparing tuples can only
increase similarity between tuples, fmsapx is an upper bound of
fms. For example, the tuples [boeing company, seattle, wa,
98004] and [company boeing, seattle, wa, 98004] which differ
only in the ordering among tokens in the first field are considered
identical by fmsapx. In fmsapx, we measure the closeness between
two tokens through the similarity between sets of substrings—
called q-gram sets—of tokens (instead of edit distance between
tokens used in fms). Further, this q-gram set similarity is
estimated well by the commonality between small
probabilistically chosen subsets of the two q-gram sets. This
property can be exploited, like we do later, to build an indexed
relation for fmsapx because for each input tuple we only have to
identify reference tuples whose tokens share a number of chosen
q-grams with the input tuple. We first define the approximation of
the q-gram set similarity between tokens. In Lemma 4.2, we relate
this similarity with the edit distance between tokens using an
“adjustment term” which only depends on the value of q
introduced below.

Q-gram Set: Given a string s and a positive integer q, the set
QGq(s) of q-grams of s is the set of all size q substrings of s. For

example, the 3-gram set QG3(“boeing”) is {boe, oei, ein, ing}.
Because we fix q to be a constant, we use QG(s) to denote QGq(s).

Jaccard Coefficient: The Jaccard coefficient sim(S1, S2) between

two sets S1 and S2 is |21|
|21|

SS
SS

∪
∩ .

Min-hash Similarity: Let U denote the universe of strings over an
alphabet �, and hi:U�N, i = 1,…,H be H hash functions mapping
elements of U uniformly and randomly to the set of natural
numbers N. Let S be a set of strings. The min-hash signature
mh(S) of S is the vector [mh1(S), …, mhH(S)] where the ith
coordinate mhi(S) is defined as)(minarg)(ahSmh i

Sa
i

∈
= . Let I[X]

denote an indicator variable over a boolean X, i.e., I[X] = 1 if X
is true, and 0 otherwise. Then (as shown in [4, 6]),

�
=

==
H

i
ii SmhSmhI

H
SSsimE

1
2121)]()([

1
)],([

Computing the min-hash signature is like throwing darts at a
board and stopping when we hit an element of S. Hence, the
probability that we hit an element in S1�S2 before another
element in S1US2 is equal to sim(S1,S2). We now define token
similarity in terms of the min-hash similarity between their q-gram
sets. Let q and H be positive integers. The min-hash similarity
simmh(t1,t2) between tokens t1 and t2 is:

�
=

==
H

i
iimh tQGmhtQGmhI

H
ttsim

1
2121))](())(([

1
),(

We define the similarity function fmsapx and then show (i) its
expectation is greater than fms, and (ii) the probability of fmsapx
being greater than fms can be made arbitrarily large by choosing
an appropriate min-hash signature size.

Definition of fmsapx: Let u, v be two tuples, and let dq = (1-1/q) be
an adjustment term.

)))(),((
2

()(
)(

1
),(

])[(
])[(qmh

i iutokt
ivtokr

apx drQGtQGsim
q

Maxtw
uw

vufms +⋅= � �
∈ ∈

Consider the tuple I4 in Table 2 and the tuple R1 in 1. Suppose
q=3 and H=2. We use the notation t:w to denote a token with
weight w. Suppose the tokens and their weights in I4 are
company:0.25, beoing:0.5, seattle:1.0, 98004:2.0; their total
weight is 3.75. Suppose their min-hash signatures are [eoi, ing],
[com, pan], [sea, ttl], [980, 004], respectively. The tokens in R1
are boeing, company, seattle, wa, 98004. Suppose their min-hash
signatures are [oei, ing], [com, pan], [sea, ttl], [wa], [980, 004],
respectively. Then, ‘company’ matches with ‘company’, ‘beoing’
with ‘boeing’, ‘seattle’ with ‘seattle’, ‘98004’ with ‘98004’. The
score from matching ‘beoing’ with ‘boeing’ is: w(beoing)*(�*0.5
+ (1-1/3))=w(beoing). Since every other token matches exactly
with a reference token, fmsapx(I4, R1) = 3.75/3.75. In contrast,
fms(I4, R1) will also consider the cost of reconciling differences
in order among tokens between I4 and R1, and the cost of
inserting token ‘wa’. Hence, fms(I4, R1) is less than fmsapx(I4,
R1).

Lemma 4.1: Let 12 log2,0,10 −−≥><< εδεδ H . Then

(i) E[fmsapx(u, v)] � fms(u, v)

(ii) εδ ≤−≤)),()1(),((vufmsvufmsP apx

Sketch of Proof: We require the following definitions.

)),(1()(
)(

1
),(

])[(
])[(

1 rtedMaxtw
uw

vuf
i iutokt

ivtokr
−⋅= � �

∈ ∈

)))(),((
2

()(
)(

1
),(

])[(
])[(2 q

i iutokt
ivtokr

drQGtQGsim
q

Maxtw
uw

vuf +⋅= � �
∈ ∈

Result (i) falls out of the following sequence of observations.

(i) Ignoring the ordering among tokens while measuring f, and
allowing tokens to be replaced by their best matches always
results in over estimating fms. Therefore, f1(u, v) � fms(u, v).

(ii) Edit distance between strings is approximated by the
similarity between the sets of q-grams (Lemma 4.2 below),
and max(|t|, |r|) � |QG(t) U QG(r)|/2. Hence, f2(u, v) � f1(u, v).

(iii) Min-hash similarity between tokens is an unbiased estimator
of the Jaccard coefficient between q-gram sets of tokens.
Therefore, E[fmsapx(u, v)] = f2(u, v) � fms(u, v).

Since E[fmsapx(u, v)] = f2(u, v) � fms(u, v) for all H > 0, splitting
fmsapx(u, v) into the average of H independent functions f1’, …,
fH’ one for each min-hash coordinate such that fi’ has the same
expectation as fmsapx and using Chernoff bounds [16], we have
the following inequality, which yields Result (ii).

2
),(2

2

])[)1([)],()1([
vuHf

eXEXEvufXE
δ

δδ
−

≤−<≤−<

Lemma 4.2 [15]: Let t1, t2 be two tokens, and m = max(|t1|, |t2|).
Let d = (1-1/q)�(1-1/m). Then,

dssed +
∩

≤−
mq

|)QG(s)QG(s|
),(1 21

21

Because the probability P(fmsapx(u, v) � (1-δ)fms(u, v)) can be
increased arbitrarily, we loosely say that fmsapx upper bounds fms.

4.2 The Error Tolerant Index (ETI)
The primary purpose of ETI is to enable, for each input tuple u,
the efficient retrieval of a candidate set S of reference tuples
whose similarity with u is greater than the minimum similarity
threshold c. Recall from the definition of fmsapx that fmsapx(u, v) is
measured by comparing min-hash signatures of tokens in tok(u)
and tok(v). Therefore, for determining the candidate set, we need
to efficiently identify for each token t in tok(u), a set of reference
tuples sharing min-hash q-grams with that of t. Consider the
example input tuple [Beoing Company, Seattle, WA, 98004]
shown in Figure 2. The topmost row in the figure lists tokens in
the input tuple, the next row lists q-gram signatures of each token,
and the lowest row lists sets (S1 through S9) of tids of reference
tuples with tokens whose min-hash signatures contain the
corresponding q-gram. For example, the set S1 U S2 is the set of
tids of reference tuples containing a token in the Org. Name
column that shares a min-hash q-gram with ‘beoing’. Extending
this behavior to q-gram signatures of all tokens, the union of all
Si’s contains the candidate set S. In order to identify such sets of
tids, we store in ETI each q-gram s along with the list of all tids of
reference tuples with tokens whose min-hash signatures contain s.

We now formally describe the ETI and its construction. Let R be
the reference relation, and H the size of the min-hash signature.
ETI is a relation with the following schema: [QGram, Coordinate,
Column, Frequency, Tid-list] such that each tuple e in ETI has the
following semantics. e[Tid-list] is a list of tids of all reference

tuples containing at least one token t in the field e[Column] whose
e[Coordinate]-th min-hash coordinate is e[QGram]. e[Frequency]
is the number of tids in e[Tid-list]. Constructing a tuple [s, j, i,
frequency, tid-list] in ETI requires that we know the list of all
reference tuple tids containing ith column tokens with s as their jth
min-hash coordinate. The obvious method of computing all ETI
tuples in main-memory by scanning and processing each reference
tuple is not scalable because the combined size of all tid-lists is
usually larger than the amount of available main memory. To
build the ETI efficiently, we leverage the underlying database
system by first building a temporary relation called the pre-ETI
with sufficient information and then construct the ETI relation
from the pre-ETI using SQL queries.

The schema of the pre-ETI is: [QGram, Coordinate, Column,
Tid]. We scan the reference relation R processing each tuple v as
follows. We tokenize v, and for each ith column token t in tok(v),
we determine its min-hash signature mh(t) of size H. We insert
into the pre-ETI a row [q, j, i, r] for the jth min-hash coordinate in
mh(t). For example, if the size-2 signature of the token ‘company’
belonging to column 1 of the tuple R1 is [com, pan], then we
insert the rows [com, 1, 1, R1], [pan, 1, 1, R1] into the pre-ETI. In
practice, we can batch such insertions.

Q-gram Coordinate Column Frequency Tid-list

oei

ing

com

pan

bon

orp

ati

sea

ttl

wa

980

004

014

024

1

2

1

2

1

1

2

1

2

1

1

2

2

2

1

1

1

1

1

1

1

2

2

3

4

4

4

4

1

1

2

2

1

1

1

3

3

3

3

1

1

1

{R1}

{R1}

{R1,R3}

{R1,R3}

{R2}

{R2}

{R2}

{R1,R2,R3}

{R1,R2,R3}

{R1,R2,R3}

{R1,R2,R3}

{R1}

{R2}

{R3}

All tuples required to compute any one ETI tuple occur together
in the result of the ETI-query: “select QGram, Coordinate,
Column, Tid from pre-ETI order by QGram, Coordinate, Column,
Tid.” We scan the result of the ETI-query, and for a group of
tuples corresponding to the q-gram s which occurs as the jth min-
hash coordinate of (multiple) tokens in the ith column, we insert
the tuple [s, j, i, freq(s, j, i), tid-list] in ETI, where freq(s, j, i) is

Beoing Company Seattle WA 98004

Figure 2: Candidate set generation

Table 3: An Example ETI Relation

[eoi, ing] [com, pan] [sea, ttl] [wa] [980, 004]

S1 S2 S3 S4 S5 S6 S7 S8 S9

the size of the group, and tid-list the list of all tids in the group. q-
grams whose frequencies are above a large threshold, called the
stop q-gram threshold (set to 10000 in our implementation), are
considered stop tokens. For such q-grams, we insert a NULL
value in the tid-list column. Finally, we build a clustered index on
the [QGram, Coordinate, Column] attribute combination of the
ETI relation so that queries looking up ETI on [QGram,
Coordinate, Column] combinations are answered efficiently.

An example ETI relation for the reference relation in Table 1 with
q=3 and H=2 is shown in Table 3. If the length of a token is less
than q, then we assume that its min-hash signature consists of the
token itself. The tuple [R1, Boeing Company, Seattle, WA,
98004] in Table 1 with min-hash signatures {[oei, ing], [com,
pan], [sea, ttl], [wa], [980, 004]} for its tokens, respectively, has
the tid R1 in the tid-lists of each of these q-grams.

4.3 Query Processing
In this section, we describe the algorithm for processing fuzzy
match queries—queries asking for K fuzzy matches of an input
tuple u whose similarities (as per fms) with u are above a
minimum similarity threshold c. The goal is to reduce the number
of lookups against the reference relation by effectively using the
ETI. We first describe the basic algorithm, which fetches tid-lists
by looking up ETI of all q-grams in min-hash signatures of all
tokens in u. We then introduce an optimization called optimistic
short circuiting, which exploits differences in token weights and
the requirement to fetch only the K closest tuples to significantly
reduce the number of ETI lookups. For efficient lookups, we
assume that the reference relation R is indexed on the Tid
attribute, and the ETI relation is indexed on the [QGram,
Coordinate, Column] attribute combination.

4.3.1 Basic Algorithm
The basic algorithm for processing the fuzzy match query given
an input tuple u is as follows. For each token t in tok(u), we
compute its IDF weight w(t), which requires the frequency of t.
We can store these frequencies in the ETI and fetch them by
issuing a SQL query per token. However, we assume for now that
frequencies of tokens can be quickly looked up from a main
memory cache called the token-frequency cache. (See Section
4.4.1 for a discussion on this issue.) We then determine the min-
hash signature mh(t) of each token t. (If |t| � q, we define
mh(t)=[t].) We assign the weight w(t)/|mh(t)| to each q-gram in
mh(t). Using the ETI, we then determine a candidate set S of
reference tuple tids whose similarity (as per fmsapx and hence fms)
with the input tuple u is greater than c. We fetch from the
reference relation all tuples in S to verify whether or not their
similarities with u (as per fms) are truly above c. Among those
tuples which passed the verification test, we return the K tuples
with the K highest similarity scores.

Candidate Set Determination: We compute the candidate set S
as the union of sets Sk, one for each q-gram qk in the min-hash
signatures of tokens in tok(u). For a q-gram qk which is the ith
coordinate in the min-hash signature mh(t) of a token t in the jth
column, Sk is the tid-list from the record [qk, i, j, freq(qk, i, j), Sk]
in ETI. Observe that the lookup for [qk, i, j, freq(qk, i, j), Sk] is
efficient because of the index on the required attribute
combination of ETI. Each tid in Sk is assigned a score that is
proportional to the weight w(t) of the parent token t. If a tuple
with tid r is very close to the input tuple u, then r is a member of

several sets Sk and hence gets a high overall score. Otherwise, r
has a low overall score. Tids that have an overall score greater
than w(u)�c minus an adjustment term—a correction to
approximate the edit distance between tokens with the similarity
between their q-gram sets—constitute the candidate set.

During the process of looking up tid-lists corresponding to q-
grams, we maintain the scores of tids in these tid-lists in a hash
table. At any point, the score of a tid equals the sum of weights of
all q-grams whose tid-lists it belongs to. The weight w(qk)
assigned to a q-gram qk in the min-hash signature mh(ti) of a token
ti is w(ti)/|mh(ti)|. If a tid in Sk is already present in the hash table,
then its score is incremented by w(qk). Otherwise, we add the tid
to the hash table with an initial score of w(qk). After all q-grams in
the signatures of input tokens are processed, we select a tid r and
add it to the candidate set S only if its score is above w(u)�c
(minus the adjustment term).

An optimization to the after-the-fact filtering of tids with low
scores described above is to add a tid to the hash table only if the
score it can potentially get after all min-hash q-grams are
processed is greater than the threshold. We add a new tid to the
hash table only if the total weight, which is an upper bound on the
score a new rid can get, of all min-hash q-grams yet to be looked
up in the ETI is greater than or equal to w(u)�c. This optimization
significantly reduces the number of tids added to the hash table.
We summarize the basic algorithm in Figure 3.

We illustrate the above procedure with the example input tuple I1
in Table 2 and the ETI in Table 3. Suppose q=3 and H=2. We use
the notation [q1, q2]:w to denote the min-hash signature [q1, q2]
with each q-gram assigned a weight of w. The tokens and their
weights in I1 are beoing:0.5, company:0.25, seattle:1.0, wa:0.75,
98004:2.0; their total weight is 4.5. Suppose their min-hash
signatures are [eoi, ing]:0.25, [com, pan]:0.125, [sea, ttl]:0.5,
[wa]:0.75, [980, 004]:1.0. We lookup ETI to fetch the following
tid-lists: [{}, {R1}], [{R1, R3}, {R1, R3}], [{R1, R2, R3}, {R1,
R2, R3}], [{R1, R2, R3}], [{R1, R2, R3}, {R1}]. For the purpose
of this example, we ignore the adjustment term. R1 gets an overall
score of 4.25, R2 a score of 2.75, and R3 3.0. Depending on the
threshold, the candidate set is a subset of {R1, R2, R3}. For the
example in Figure 2, suppose we looked up min-hash q-grams
‘eoi’, ‘ing’, ‘com’, ‘pan’, ‘sea’, ‘ttl’. While processing the q-gram

FuzzyMatch(input tuple u, H, ETI, R, c)
1. Initialize hash table TidScores; AdjustmentTerm = 0
2. Tokenize u and compute min-hash signatures Q of all tokens
3. Assign token weights; RemWt = sum of all token weights
4. threshold = c�RemWt
5. For each q-gram s in Q s.t. s = mhi(t) of token t in column col
6. if (mhi(t) is the first q-gram of mh(t) to be looked up)
7. AdjustmentTerm += w(t)�(1-1/q)
8. Fetch tid-list(s) by looking up (s, i, col) against ETI
9. Update TidScores

a. Increment scores of existing tids by w(t)/|mh(t)|
b. If RemWt � threshold, insert new tids with score w(t)/|mh(t)|.

10. RemWt −= w(s)
11. Fetch tuples from R for TIDs with score � c–AdjustmentTerm
12. Compare, using f, each of these tuples with u
13. Return K (or less) most similar tuples with similarity above w(u)�c

Figure 3: Basic Query Processing Algorithm

‘wa’, we add new tids to the hash table only if 0.75 + 2.0 (the
total weight of the remaining q-grams) is greater than w(u)�c. We
now formally state that the basic algorithm retrieves the correct
fuzzy matches with a high probability. For the purpose of the
formal guarantee in Theorem 1, we assume that no q-gram is
classified as a stop token. Alternatively, the stop q-gram threshold
is set to at least |R|. We omit the proof due to space constraints.

Theorem 1: Let 12 log2,0,10 −−≥><< εδεδ H . The basic
query processing algorithm returns the K reference tuples closest,
as per fms, to the input tuple with a probability of at least 1-ε .

4.3.2 Optimistic Short Circuiting (OSC)
In the basic algorithm, we fetch tid-lists by looking up ETI of all
q-grams in min-hash signatures of all tokens. We now discuss the
short circuiting optimization to significantly reduce the number of
ETI lookups. The intuition is as follows. Weights of input tokens
(and hence weights of min-hash q-grams) often vary significantly.
Therefore, we may look up the ETI on just a few important q-
grams and—if a fetching test succeeds—optimistically short
circuit the algorithm by fetching the current closest K reference
tuples. If we are able to efficiently verify—via a stopping test—
whether these tuples are actually the closest K tuples then, we can
save a significant amount of work: (i) avoid ETI lookups on a
number of unimportant q-grams, and (ii) avoid initializing and
incrementing similarity scores in the hash table for large numbers
of tids associated with unimportant high-frequency q-grams.

We illustrate the intuition using the input tuple I1, the reference
relation in Table 1, and the ETI relation in Table 3. Suppose K=1,
q=3, and H=2. The tokens along with weights in I1 are
beoing:0.5, company:0.25, seattle:1.0, wa:0.75, 98004:2.0; their
total weight is 4.5. Suppose their min-hash signatures are [eoi,
ing]:0.25, [com, pan]:0.125, [sea, ttl]:0.5, [wa]:0.75, [980,
004]:1.0. For the purpose of this example, we ignore the
adjustment terms. We order q-grams in the decreasing order of
their weights, and fetch their tid-lists in this order. We first fetch
the tid-list {R1, R2, R3} of q-gram ‘980.’ We cannot yet
distinguish between the K and (K+1)th (here, 1st and 2nd) best
scores. So, we fetch the list {R1} of the next most important q-
gram ‘004’. At this point, R1 has the best score of 2.0, and R2 and
R3 have scores of 1.0. We now estimate (by extrapolating its
current score) the score for R1 over all q-grams to be, say, 4.5.
The best possible score s2

next that R2 (the current K+1th highest
score tid) can get equals its current score plus the sum of weights
of all remaining q-grams: 1.0+ (4.5-2.0) = 3.5. Observe that s2

next
is also greater than the best possible (K+1)th similarity—as per
fmsapx and hence fms—among all reference tuples in R. Because
4.5 > 3.5, we anticipate the reference tuple R1 to be the closest
fuzzy match, fetch it from R, and compute fms(u, R1). If fms(u,
R1) � 3.5/4.5, we stop and return R1 as the closest fuzzy match
thus avoiding looking up and processing tid-lists of q-grams: eoi,
ing, com, pan, sea, ttl, wa. However, if fms(u, R1) � 3.5, we
continue fetching the next most important q-gram (here ‘wa’).

The robustness of the stopping test ensures that inaccuracy in
estimating the score of R1 over all q-grams does not affect the
correctness of the final result. However, it impacts performance. If
we over-estimate we may fetch more reference tuples and realize
they are not good matches, and if we under-estimate then we may
perform a higher number of ETI lookups.

The query processing algorithm enhanced with optimistic short
circuiting (OSC) differs from the basic algorithm in two aspects:
(i) the order in which we look up q-grams against ETI, and (ii) the
additional short-circuiting procedure we potentially invoke after
looking up each q-gram. Pseudo code is almost the same as that in
Figure 3 except for two additional steps: 3.1 (the ordering of
tokens) and 9.1 (short circuiting procedure). We order Q the set of
all q-grams in the min-hash signatures of an input tuple in the
decreasing order of their weights, where each q-gram s in the
signature mh(t) is assigned a weight w(t)/|mh(t)|. After fetching
tid-list(s) (Step 8 in Figure 3) and processing tids in the tid-list
(Step 9 in Figure 3), we additionally perform the short circuiting
procedure (new Step 8.1 whose pseudo code is shown in Figure
4). If the short circuiting procedure returns successfully, we skip
steps 10, 11, and 12.

The short circuiting procedure consists of a fetching test and a
stopping test. The fetching test (Step 3 in Figure 4) evaluates
whether or not the current K tids could be the closest matches. On
failure, we return and continue processing more q-grams. On
success, we fetch the current best K candidates from the reference
relation R (Step 4), and compare (using fms) each of them with
the input tuple u (Step 5). The stopping test (Step 6) confirms
whether or not u is more similar to the retrieved tuples than to any
other reference tuple. On success, we stop and return the current
K candidate tuples as the best K fuzzy matches. On failure, we
continue processing more q-grams.

We now describe the fetching and stopping tests. Let w(Q) denote
the sum of weights of all q-grams in a set of q-grams Q. Let
Qp=[q1,…,qp] denote the ordered list of q-grams in min-hash
signatures of all tokens in the input tuple u such that w(qi) �
w(qi+1). Let Qi denote the set of q-grams [q1,…., qi]. Let ssi(r)
denote the similarity score of the tid r plus the adjustment term
after processing tid-lists of q1,…,qi. Suppose ri

1,…,ri
K, ri

K+1 are the
tids with the highest K+1 similarity scores after looking up q-
grams q1,…,qi. Informally, the fetching test returns true if and
only if the “estimated overall score” of ri

K is greater than the “best
possible overall score” of ri

K+1. We compute the estimated overall
score of ri

K by linearly extrapolating its current similarity score
ssi(r

i
K) to ssi(r

i
K)�w(Qp)/w(Qi), and the best possible overall score

of ri
K+1 by adding the weight (w(Qp)−w(Qi)) of all q-grams yet to

be fetched to ssi(r
i
K+1).

The stopping test returns successfully if fms(u, ri
j) � ssi(r

i
K+1) +

w(Qp)−w(Qi), for all 1 � j � K. Since ssi(r
i
K+1) + w(Qp)−w(Qi) is

the maximum possible overall score any candidate outside the
current top K candidates can get, if the similarities (as per fms) are
greater than this upper bound we can safely stop because we are
sure that no other reference tuple will get a higher score. The
following theorem (whose proof we omit) formalizes the
guarantees of the algorithm. Again, for the purpose of obtaining
the formal guarantee, we assume that no q-gram is classified as a
stop token.

Theorem 2: Let 12 log2,0,10 −−≥><< εδεδ H . The query
processing algorithm enhanced with optimistic short circuiting

Fetching Test = {

True,))()(()()(
)(
)(

1 ip
i
Kip

i

i
Ki QwQwrssQw

Qw
rss

−+>⋅ +

False, Otherwise

returns the K reference tuples closest according to fms to the input
tuple with probability at least 1-ε .

4.4 Resource Requirements
We now discuss the resource requirements of the two phases of
our algorithm: the ETI building and the query processing phases.

The expensive steps of the ETI building phase are: (1) scan of the
reference relation R, (2) writing the pre-ETI, (3) sorting the pre-
ETI, and (4) writing the ETI. The total I/O cost during these
phases is O(mavg�q�H�|R| + |ETI|� (12+q)) where mavg is the average
number of tokens in each tuple, and |ETI| is the number of tuples
in ETI which is less than H�n�|�|q—the maximum number of q-
grams times H times the number of columns in R—given that � is
the alphabet over which tokens in R are formed from.

The expensive steps for processing an input tuple are: (1) looking
up ETI for tid-lists of q-grams, (2) processing tid-lists, and (3)
fetching tuples in the candidate set. The number of ETI lookups is
less than or equal to the total number of q-grams in signatures of
all tokens of a tuple. On average, this number is mavg�H. The
number of tids processed per tuple and the size of the candidate
set is bounded by the sum of frequencies of all q-grams in the
signatures of tokens in a tuple. In practice, the candidate set sizes
are several orders of magnitude less than the above loose upper
bound. Due to its dependence on the variance of token weights of
input tuples, the reduction in the number of ETI lookups due to
OSC is hard to quantify.

4.4.1 Token-Frequency Cache
Thus far, we assumed that frequencies of tokens are maintained in
a main memory token-frequency cache enabling quick
computation of IDF weights. Given current main memory sizes on
desktop machines, this assumption is valid even for very large
reference relations. For example, a relation Customer[Name, city,
state, zip code] with 1.7 million tuples has approximately 367,500
distinct tokens (even after treating identical token strings in
distinct columns as distinct tokens). Assuming that each token and
its auxiliary information (4 bytes each for column and frequency)
together require on average 50 bytes, we only require 18.375 MB
for maintaining frequencies of all these tokens in main memory.
In those rare cases when the token-frequency cache does not fit in
main memory, we can adopt one of following approaches.

Cache without Collisions: We can reduce the size of the token-
frequency cache by mapping each token to an integer using a 1-1
hash function (e.g., MD5 [21]). We now only require 24 bytes of

space (as opposed to a higher number earlier) for each token: the
hash value (16 bytes), the column to which it belongs (4 bytes),
and the frequency (4 bytes). Now, the token-frequency cache for
the 1.7 million tuple customer relation requires only around
10MB.

Cache with Collisions: A less preferred option is to restrict the
size of the hash table to at most M entries allowing multiple
tokens to be collapsed into one bucket. The impact on the
accuracy and correctness of our fuzzy matching algorithm
depends on the collision probability. More the collisions, the
more likely we will compute incorrect token weights.

In our experiments, we assume that the token-frequency cache fits
entirely in main memory and hence do not measure the impact of
collisions in a size-restricted token frequency cache on accuracy.

5. EXTENSIONS
We now discuss several extensions to the query processing
algorithm and the fuzzy match similarity function.

5.1 Indexing Using Tokens
We now extend the ETI and the fuzzy match query processing
algorithm to effectively use tokens for further improving
efficiency. Consider the input tuple I1 [I1, Beoing Company,
Seattle, WA, 98004] in Table 2. All tokens except ‘beoing’ are
correct, and this characteristic of most tokens in an input tuple
being correct holds for a significant percentage of input tokens.
Tokens are higher level encapsulations of (several) q-grams.
Therefore, if we also index reference tuples on tokens, we can
directly look up ETI against these tokens instead of several min-
hash signatures thus potentially improving efficiency of the
candidate set retrieval. However, the challenge is to ensure that
the candidate set we fetch contains all K fuzzy matching reference
tuples. If we do not look up ETI on the q-gram signature of a
token, say ‘beoing’, we may not consider reference tuples
containing a token ‘boeing’ close to ‘beoing’. And, it is possible
that the closest fuzzy match happens to be the reference tuple
containing ‘boeing’. So, the challenge is to gain efficiency
without losing accuracy.

Our approach is to split importance of a token equally among
itself and its min-hash signature by extending the q-gram
signature of a token to include the token itself, say, as the 0th
coordinate in the signature. The extension modifies the similarity
function fmsapx resulting in fmst_apx. Under the broad assumption
that all tokens in an input tuple are equally likely to be erroneous,
the new approximation fmst_apx resulting from the modification of
the token signature is expected to be a rank-preserving
transformation of fmsapx. That is, if v1 and v2 are two reference
tuples, and u an input tuple then E[fmsapx(u, v1)] > E[fmsapx(u, v2)]
implies E[fmst_apx(u, v1)] > E[fmst_apx (u, v2)]. Consequently, the
fuzzy matches identified by using fmst_apx are the same as that
identified by using fmsapx. Hence, we gain efficiency without
losing accuracy. Lemma 5.1 formally states this result. We omit
the proof due to space constraints.

Definition of fmst_apx: Let u be an input tuple, v be a reference
tuple, t and r be tokens, q and H be positive integers. Define

]))()([
1

][(
2
1

),(' � =+==
i

iimh rmhtmhI
H

rtIrtsim

BOOLEAN ShortCircuit_ETILookups(TidScores, TupleList)
//FetchingTest(sK, sK+1)

1 Identify K+1 tids ri
1,…,ri

K+1 with the highest similarity scores

2 Estimate the score K
opts over Qp of ri

K and determine the best

possible score 1+K
bests over Qp of ri

K+1

3 If 1+> K
best

K
opt ss

4 Fetch R tuples ri
1,…,ri

K

5 Compare them with u to determine fms(u, ri
1), …, fms(u, ri

K)
//Stopping Test

6 If fms(u, ri
j) � 1+K

bests for all j, then assign TupleList =
<ri

1,…,ri
k> and return True; else, return false

Figure 4: Short-Circuiting Decision Procedure

)),('
2

(*)(),(
])[(

])[(

_ drtsim
q

Maxtwvufms mh
col colutokt

colvtokr

apxt += � �
∈ ∈

Lemma 5.1: If the probability of error in an input token is a
constant p (0 < p < 1), then fmst_apx is a rank-preserving
transformation of fmsapx.

The construction of the ETI index relation has to be modified to
write additional tuples of the form [token, 0, column, tid-list]. We
omit details of the ETI building and query processing, which are
straight-forward extensions of the earlier discussion.

5.2 Column Weights
Our infrastructure can be extended to assign varying importance
to columns while matching tuples. Let W1,…,Wn be the weights
assigned respectively to columns A1, …, An such that W1+…+Wn
= 1. A higher Wi value exaggerates the contribution due to
matches and differences between attribute values in the ith column
to the overall similarity score. The only aspect that changes is that
of weights assigned to tokens during the query processing
algorithm. Now, a token t in the ith column gets a weight w(t)�Wi
where w(t) is the IDF weight and Wi is the column weight. The
fuzzy match similarity function, the ETI building algorithm, and
the rest of the query processing algorithm remain unchanged.

5.3 Token Transposition Operation
The fuzzy match similarity function may also consider additional
transformation operations while transforming an input tuple to a
reference tuple. We now consider one such operation: the token
transposition operation which re-orders adjacent tokens.

Token transposition: Let u[r, a1,…,an] be an input tuple. The
token transposition operation transforms a token pair (t1, t2)
consisting of two adjacent tokens in tok(ai) where t2 follows t1 into
the pair (t2, t1). The cost is a function (e.g., average, min, max, or
constant) g(w(t1), w(t2)) of the weights of t1 and t2. Because the
token transposition operation only transforms the ordering among
tokens the resulting similarity is still less (probabilistically) than
fmsapx. Therefore, all the analytical guarantees of our fuzzy
matching algorithm are still valid when we include the token
transposition operation.

6. EXPERIMENTS
Using real datasets, we now empirically demonstrate (i) the
quality of our new similarity function under a variety of
commonly encountered errors, and (ii) the efficiency of our fuzzy
matching operation.

6.1 Datasets and Setup
We start with a clean Customer[name, city, state, zip code]
relation consisting of about 1.7 million tuples from an internal
operational data warehouse as the reference relation. We create
input datasets by introducing errors in randomly selected subsets
of Customer tuples. Therefore, all characteristics of real data—
e.g., variations in token lengths, frequencies of tokens—are
preserved in the erroneous input tuples. We consider two types of
error injection methods. The type I method introduces errors in
tokens with equal probability, i.e., all tokens in a column are

equally likely to become erroneous. The type II method introduces
errors in tokens with a probability that is directly proportional to
their frequency, i.e., tokens with higher frequency are more likely
to become erroneous. This is a common phenomenon because the
more frequently a token occurs the more likely it is to have
erroneous versions, e.g., several different versions of the token
‘corporation’ are ‘corp, co., corpn, inc.’ Observe that the type II
error injection method is biased towards fms because errors in low
weight high frequency tokens do not significantly reduce fms
similarity.

Table 4: Types and descriptions of errors
P(ej | u[i] error)

ej Description of Error
i = 1 i � 1

1 Spelling error: modify token 0.5 0.4

2 Token replacement: replace commonly
abbreviated tokens with abbreviations 0.25 0.25

3 Missing values: u[i] = null 0.0 0.1

4 Truncation: truncate u[i] by 5 or less characters 0.1 0.1

5 Token merge: remove delimiters in u[i] 0.1 0.1

6 Token transposition: reorder adacent tokens 0.1 0.05

As shown in Table 4, we associate with column i a probability pi
(0 < pi < 1) with which we introduce errors into the value u[i] of
tuple u. Error introduction across columns is independent. If we
decide (with probability pi) to introduce an error into u[i], we
select from among several types of errors with conditional
probabilities P(ej | u[i] error) shown in the table above. We do
not introduce missing values in the name column as input tuples
with a missing name cannot possibly be matched with their target.
Hence, we have two conditional probability columns: one each for
i=1 and i�1.

Metrics
We use the following evaluation metrics.

(1) Normalized Elapsed Time: the elapsed time to process the set
of input tuples using the fuzzy match algorithm divided by the
elapsed time to process one input tuple using the naïve
algorithm (which compares an input tuple with each reference
tuple). If the normalized time for a fuzzy match algorithm is
less than the number of input tuples, then it outperforms the
naive algorithm.

(2) Accuracy: The percentage of input tuples for which a fuzzy
match algorithm identifies the seed tuple, from which the
erroneous input tuple was generated, as the closest reference
tuple is its accuracy.

Parameter Settings: In all our experiments, we set K=1 (i.e., we
only retrieve the closest fuzzy match), the q-gram size q=4, the
minimum similarity threshold c=0.0, and the token insertion
factor (required for measuring fms) cins=0.5.

Machine Specifications: We ran experiments on a 930MHz
Pentium machine with 256MB RAM running Microsoft Windows
XP. We implemented our algorithm on the Microsoft SQLServer
2000 database system using OLEDB for database access.

Accuracy on D1, D2, D3

50
55
60
65
70
75
80
85
90
95

100

Q
+T

_0

Q
_1

Q
+T

_1

Q
_2

Q
+T

_2

Q
_3

Q
+T

_3

%
A

cc
ur

ac
y

D1

D2

D3

Fuzzy Match Times for 1655 tuples

0

0.5

1

1.5

2

2.5

Q
+T

_0

Q
_1

Q
+T

_1

Q
_2

Q
+T

_2

Q
_3

Q
+T

_3

N
or

m
al

iz
ed

 T
im

e

D1

D2

D3

Time for Building ETI (D2)

0

1

2

3

4

5

6

7

Q+T_0 Q_1 Q+T_1 Q_2 Q+T_2 Q_3 Q+T_3

N
o

rm
al

iz
ed

 T
im

e

 Figure 5: Accuracy Figure 6: Normalized Elapsed Times Figure 7: ETI Building Time

6.2 Experimental Results
In this section, we use the following notation to denote the
approaches and parameters we evaluate. To denote the signature
computation strategy, we use A_H, A∈{Q, Q+T} and H � 0. Q
denotes q-grams only, and Q+T denotes q-grams plus token
signatures as discussed in Section 5.1. H is the number of q-grams
in the signature. For example, Q+T_2 is a signature with 2 q-
grams and the token; Q+T_0 denotes a token only (no q-grams at
all) signature.

6.2.1 Accuracy
We first compare the quality of ed and fms, and then evaluate
accuracy of our fuzzy match algorithms.

6.2.1.1 Comparison between ed and fms
We show that the quality of fms is better than ed using two
datasets: one created using Type I and the other using Type II
error injection methods. Each one of these datasets has around
100 tuples. The probabilities of error in columns are 0.90, 0.5,
0.5, 0.6, respectively. Because we want to compare the quality of
similarity functions and not the efficiency of algorithms for
identifying the fuzzy matches, we use the naïve algorithm to
identify the best fuzzy match for each input tuple.

The adjacent table shows
the accuracies of fms and
ed on each dataset. We
observe that fms is better
than ed. As expected, it is significantly better for the dataset
created with Type II errors than it is for the dataset with Type I
errors. To study the cases that are not biased towards fms, we
henceforth consider only datasets created with Type I error
injection method.

Table 5: Error probabilities for creating datasets
Dataset Error Probabilities: [Name, City, State, Zip code]

D1 [0.90, 0.90, 0.90, 0.90]

D2 [0.80, 0.5, 0.5, 0.6]

D3 [0.70, 0.5, 0.5, 0.25]

6.2.1.2 Accuracy of Algorithms
We evaluate the accuracy of various strategies on datasets D1, D2,
and D3 generated using the type I error injection method. The
error probabilities on each column for these datasets are shown in
Table 5. Note that D3 is relatively cleaner than D2, which in turn
is cleaner than D1. Each of D1, D2, and D3 has 1655 tuples. The
Customer relation which is the reference relation in all our

experiments has approximately 2 million tuples. Figure 5 shows
the results from which we observe the following.

(i) Min-hash signatures significantly improve accuracy: Q_H (for
H>0) is more accurate (5% to 25%) than Q+T_0 (the tokens
only approach).

(ii) Adding tokens to the signature does not negatively impact
accuracy, because when H > 0, Q+T_H is as accurate as Q_H.

(iii) Even small signature sizes yield higher gains in accuracy: Q_2
is more accurate than Q_1, but the difference in accuracy
between Q_2 and Q_3 is not significant.

6.2.2 Efficiency
To demonstrate the overall efficiency of our algorithms, we
measure the normalized elapsed time for processing fuzzy match
queries, the number of candidate reference tuples fetched per
input tuple, and the number of tids processed per input tuple. To
demonstrate the effectiveness of the optimistic short circuiting
(OSC) optimization, we observe the numbers of reference tuples
fetched per input tuple when OSC succeeded versus when it
failed. Figure 6 shows the normalized elapsed times, from which
we observe the following.

(i) Our algorithms are 2 to 3 orders of magnitude faster than the
naïve algorithm: the normalized elapsed time of any of our
strategies for processing all 1655 input tuples is less than 2.5.
That is, they process all 1655 tuples before the naïve
algorithm processes 2 or 3 tuples.

(ii) The query processing time decreases with the signature size.
Even though we may have to look up ETI for more q-grams,
the presence of more q-grams helps better distinguish
differences between similarity scores of tids. Consequently,
the average number of reference tuples fetched per input tuple
decreases with signature size, also confirmed by Figure 8.

(iii) For all 1�H�3, Q+T_H is significantly faster than Q_H thus
confirming our intuition (discussed in Section 5.1) that the
use of tokens significantly improves efficiency of candidate
set retrieval without compromising on accuracy.

We now discuss results on the average number of reference tuples
fetched per input tuple (Figure 8), the average number of tids
processed per input tuple (Figure 9) for D2. The results for D1
and D3 are similar. Again, Figure 8 shows that more q-grams help
decrease candidate set sizes by better distinguishing similarity
scores of tids. Even though, as shown in Figure 9, the average
number of tids processed per input tuple increases, it is more than
compensated by the average reduction in candidate set sizes.

 fms ed

Accuracy on Type I 69% 63%

Accuracy on Type II 95% 71%

Figure 10 shows that the optimistic short circuiting (OSC)
optimization is successful for 50%—75% of the input tuples, and
the success fraction increases with signature size. Once again, we
believe that this behavior is due to the higher distinguishing
ability between similarities by using more q-grams. Figure 8 also
splits the average number of reference tuples fetched into two
parts: the number when OSC succeeds and the number when OSC
fails. We observe that when OSC succeeds, we retrieve very few
(around 1 per input tuple) candidate tuples. For those remaining
tuples where OSC fails, we fetch a much larger number.

6.2.2.1 ETI Building Time
Figure 7 shows the normalized ETI building times for various
settings. As expected the time for Q+T_H is greater than Q_H.
Observe that the normalized time for any setting is less than 7.
Thus, if we have more than 10 input tuples to fuzzy match, then it
seems advantageous to build the ETI, and use our fuzzy match
algorithm. Because we persist the ETI as a standard indexed
relation, we can use it for subsequent batches of input tuples if the
reference table does not change. Due to space constraints, we do
not discuss ETI maintenance when the reference table changes.

7. CONCLUSIONS
In this paper, we generalized edit distance similarity by
incorporating the notion of tokens and their importance to
develop an accurate fuzzy match similarity function for matching
erroneous input tuples with clean tuples from a reference relation.
We then developed the error tolerant index and an efficient
algorithm for identifying with high probability the closest fuzzy
matching reference tuples. Using real datasets, we demonstrated
the high quality of our similarity function and the efficiency of
our algorithms.

REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy

duplicates in data warehouses. In Proceedings of VLDB, Hong Kong,
2002.

[2] R. Baeza-Yates and G. Navarro. A practical index for text retrieval
allowing errors. In R. Monge, editor, Proceedings of the XXIII Latin
American Conference on Informatics (CLEI'97), Valparaiso, Chile,
1997.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley Longman, 1999.

[4] A. Broder. On the resemblance and containment of documents. In
Compression and Complexity of Sequences (SEQUENCES '97),
1998.

[5] P. Ciaccia, M. Patella, P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. VLDB 1997.

[6] E. Cohen. Size estimation framework with applications to transitive
closure and reachability. Journal of Computer and System Sciences,
1997.

[7] W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In Proceedings of
ACM SIGMOD, Seattle, WA, June 1998.

[8] W. Cohen. Data integration using similarity joins and a word-based
information representation language. ACM Transactions on
Information Systems, 18(3):288--321, July 2000.

[9] E. Cohen and D. Lewis. Approximating matrix multiplication for
pattern recognition tasks. In SODA: ACM-SIAM Symposium on
Discrete Algorithms, 1997.

[10] W. Cohen and J. Richman. Learning to match and cluster entity
names. In proceedings of SIGKDD, Edmonton, July 2002.

[11] V. Gaede and O. Gunther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170--231, 1998.

[12] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava. Approximate string joins in a
database (almost) for free. In Proceedings of VLDB, Roma, Italy,
September 11-14 2001.

[13] M. Hernandez and S. Stolfo. The merge/purge problem for large
databases. In Proceedings of the ACM SIGMOD, San Jose, CA, May
1995.

[14] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the 30th
Symposium on Theory of Computing (STOC), 1998.

[15] P. Jokinen and E. Ukkonen. Two algorithms for approximate string
matching in static texts. In A. Tarlecki, editor, Mathematical
Foundations of Computer Science, 1991.

[16] R. Motwani and P. Raghavan. Randomized Algorithms Cambridge
University Press, 1995.

[17] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing
methods for approximate string matching. IEEE Data Engineering
Bulletin, 24(4):19--27, 2001.

[18] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text
with approximate q-grams. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching (CPM'2000), LNCS
1848, 2000.

[19] G. Navarro. Searching in metric spaces by spatial approximation.
The VLDB Journal, 11(1):28--46, 2002.

[20] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. In Proceedings of ACM SIGKDD, Edmonton,
Canada, 2002.

[21] B. Schneier. Applied Cryptography John Wiley, 1996.

[22] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology, 147:195--
197, 1981.

[23] Trillium Software. http://www.trilliumsoft.com

[24] W. Winkler. The state of record linkage and current research
problems. http://www.census.gov/srd/papers/pdf/rr99-04.pdf

#Ref. Tuple s Fe tched pe r Input Tuple (D2)

0
10
20
30
40
50
60
70

Q+T_0 Q_1 Q+T_1 Q_2 Q+T_2 Q_3 Q+T_3

#F
et

ch
es

OSC Failure OSC Success

#Rids pe r input tuple (D2)

0

2

4

6

8

10

Q+T_0 Q_1 Q+T_1 Q_2 Q+T_2 Q_3 Q+T_3

#R
id

s
in

 T
h

o
u

sa
n

d
s

OSC Success and Failure Fractions (D2)

0

0.2

0.4

0.6

0.8

1

Q+T_0 Q_1 Q+T_1 Q_2 Q+T_2 Q_3 Q+T_3

F
ra

ct
io

n

FailureFraction SuccessFraction

 Figure 8: Average Candidate Set Size Figure 9: #Tids processed per Input Tuple Figure 10: OSC Success Fractions

	page1: 313
	page2: 314
	page3: 315
	page4: 316
	page5: 317
	page6: 318
	page7: 319
	page8: 320
	page9: 321
	page10: 322
	page11: 323
	page12: 324

