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Abstract 
Detecting and eliminating fuzzy duplicates is a critical 

data cleaning task that is required by many applications. 
Fuzzy duplicates are multiple seemingly distinct tuples 
which represent the same real-world entity. We propose 
two novel criteria that enable characterization of fuzzy 
duplicates more accurately than is possible with existing 
techniques. Using these criteria, we propose a novel 
framework for the fuzzy duplicate elimination problem. 
We show that solutions within the new framework result in 
better accuracy than earlier approaches. We present an 
efficient algorithm for solving instantiations within the 
framework. We evaluate it on real datasets to demonstrate 
the accuracy   and scalability of our algorithm. 

1. Introduction 
Detecting and eliminating duplicated data is an 

important problem in the broader area of data cleaning 
and data quality. For example, when Lisa purchases 
products from SuperMart twice, she might be entered as 
two different customers, e.g., [Lisa Simpson, Seattle, WA, 
USA, 98025] and [Simson Lisa, Seattle, WA, United 
States, 98025]. Many times, the same logical real world 
entity has multiple representations in a relation, due to 
data entry errors, varying conventions, and a variety of 
other reasons. Such duplicated information can cause 
significant problems for the users of the data. For 
example, it can lead to increased direct mailing costs 
because several customers like Lisa may be sent multiple 
catalogs. Or, such duplicates could cause incorrect results 
in analytic queries (say, the number of SuperMart 
customers in Seattle), and lead to erroneous data mining 
models. Hence, a significant amount of time and money 
are spent on the task of detecting and eliminating 
duplicates. We refer to this problem of detecting and 
eliminating multiple distinct records representing the same
real world entity or phenomenon as the fuzzy duplicate 
elimination problem. This problem is similar to the 
merge/purge, deduping, and record linkage problems [e.g., 
13, 17, 15, 21, 26, 1, 25]. Note that our problem 
generalizes the standard duplicate elimination problem for 
answering “select distinct” queries in relational database 
systems, which consider two tuples to be duplicates if they 
match exactly on all attributes [3]. However, in this paper, 

we use duplicate elimination to mean fuzzy duplicate 
elimination.  

Previous solutions (as discussed further in Section 6) to 
duplicate elimination can be classified into supervised and 
unsupervised approaches. Supervised approaches learn 
rules characterizing pairs of duplicates from training data 
consisting of known duplicates [11, 5, 26, 28]. These 
approaches are limited by their dependence on 
comprehensive training data which exhibit the variety and 
distribution of errors observed in practice, or on manual 
guidance. In many real data integration scenarios, it is not 
possible to obtain good training data or interactive user 
guidance. Therefore, we focus on unsupervised 
approaches.  

Unsupervised approaches for duplicate elimination 
typically rely on distance functions to measure similarity 
between tuples. Previous approaches adopted clustering 
algorithms to partition a relation into groups of duplicates 
[e.g., 15, 21]. In particular, the single linkage clustering 
algorithm has been the predominant choice as it 
automatically determines the number of clusters (or the 
number of groups of duplicates) unlike many clustering 
algorithms, which require the number of clusters to be 
specified. However, the single linkage clustering 
approaches require as a parameter an absolute global
threshold to decide when two tuples are duplicates. 
Distance functions are mathematical approximations to an 
abstract and qualitative notion of duplication. Even in a 
relation consisting only of clean tuples, some tuples are 
inherently close to each other according to a reasonable 
distance function, even though they are not duplicates. 
Similarly, distance between duplicate tuples may higher 
than several distinct pairs of tuples. For the example in 
Table 1, duplicate tuples 3 and 4 are farther (according to 
edit distance) from each other than distinct tuples 9 and 
10. Therefore, approaches based on global distance 
thresholds lead to poor recall (fraction of pairs of true 
duplicate tuples an algorithm recognizes as duplicates) 
and precision (fraction of tuple pairs the algorithm returns 
which are truly duplicates). 

The crucial characteristic differentiating the duplicate 
elimination problem from the standard clustering 
formulations is that it is very important to consider local 
structural properties while identifying groups of 
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duplicates. In this paper, we identify two new criteria—the 
compact set (CS) and the sparse neighborhood (SN) 
criteria—which explicitly capture local structural 
properties of data to characterize groups of duplicate 
tuples. These criteria capture the properties that duplicates 
in a group are closer to each other than to other tuples, and 
that their “local neighborhood” is empty or sparse. 
Informally, the local neighborhood of a group of tuples is 
the immediate vicinity defined in terms of a surrounding 
region of size dependent on the local distribution of 
tuples, viz., a sphere of radius twice (say) the nearest 
neighbor distance of each tuple (as illustrated in Figure 1). 
These localized structural properties differentiate the 
duplicate elimination problem from standard clustering 
formulations. Tuples that satisfy these criteria may be 
grouped together as duplicates even though they are 
relatively far from each other while tuples that are closer 
but do not satisfy these criteria may not be grouped 
together. Note that the CS and SN criteria are orthogonal 
to the choice of specific distance functions and domain 
knowledge such as abbreviations. Therefore, our approach 
is orthogonal to these choices. 

We formalize the duplicate elimination problem to 
effectively exploit the CS and SN criteria and show that 
solutions to the formulations within our framework have 
several desirable characteristics: varying the scale of the 
distance function does not change the solution; the range 
of partitions that a duplicate elimination problem can 
produce is large. Our analysis here is similar in spirit to 
Kleinberg’s development of an axiomatic framework for 
clustering [18].  

We present a scalable and efficient algorithm for our 
formulation of duplicate elimination. Our algorithm 
exploits nearest neighbor indexes over distance functions 
as well as the database server to achieve scalability and 
efficiency. In an extensive experimental study over several 
real datasets, we evaluate the CS and SN criteria and show 
that solutions to the duplicate elimination problems within 
our framework yield better precision-recall tradeoffs than 
existing single linkage approaches with global thresholds.  

The remainder of the paper is organized as follows. In 
Section 2, we formally define the CS and SN criteria. In 
Section 3, we formalize the duplicate elimination 
framework. In Section 4, we describe an efficient 
algorithm for solving instantiations within this framework. 
In Section 5, we discuss a thorough experimental 
evaluation. In Section 6, we discuss related work, and we 
conclude in Section 7. 

2. Criteria Characterizing Duplicates 
In this section, we define the CS and SN criteria which 

are useful for characterizing duplicates. The intuition 
behind these two criteria stems from the following 
observations: (i) duplicate tuples are “closer” to each 

other than to others; and, (ii) the local neighborhood of 
duplicate tuples is sparse. In order to illustrate that these 
criteria are better at characterizing duplicate tuples, let us 
consider Table 1 which shows an example drawn from a 
real music database. The first six tuples (tagged with an 
asterisk) are duplicate tuples while the remaining tuples 
are unique. Observe that some pairs (e.g., 7 and 8, 9 and 
10) among unique tuples are closer to each other 
according to standard distance functions (edit distance, or 
cosine metric), than some of the pairs among the six 
duplicate tuples. Therefore, the traditional threshold-based 
approach for duplicate elimination cannot correctly 
distinguish the set of duplicates without simultaneously 
collapsing unique tuples together. 

ID ArtistName TrackName 
1* The Doors LA Woman 

2* Doors LA Woman 

3* The Beatles A Little Help from My Friends 

4* Beatles, The With A Little Help From My Friend 

5* Shania Twain Im Holdin on to Love 

6* Twian, Shania I'm Holding On To Love  

7 4th Elemynt Ears/Eyes  

8 4th Elemynt Ears/Eyes - Part II 

9 4th Elemynt Ears/Eyes - Part III 
10 4th Elemynt Ears/Eyes - Part IV 
11 Aaliyah Are You Ready 
12 AC DC Are You Ready 
13 Bob Dylan Are You Ready 
14 Creed Are You Ready 

Table 1: Examples from a media database. 

The intuition behind the compact set (CS) criterion is 
that duplicate tuples are closer to each other than they are 
to other distinct tuples. That is, duplicate tuples are 
usually mutual nearest neighbors. For the example in 
Table 1, tuples with duplicates are tagged with asterisks. 
Tuple 1 is the nearest neighbor of tuple 2 and vice-versa. 
In contrast, tuple 8 may be the nearest neighbor of tuple 7 
and tuple 9 that of tuple 8. (The nearest neighbor relation 
is not symmetric.) Reflecting this intuition, our first 
criterion is that a set of duplicates must be a compact set 
of mutual nearest neighbors; note that the set may consist 
of more than two tuples. In contrast, global threshold 
approaches based on single linkage clustering assume 
transitivity (i.e., if ‘a’ is a duplicate of ‘b’—d(a,b) < θ—
and ‘b’ that of ‘c’ then ‘a’ is a duplicate of ‘c’) and 
identify connected components in the threshold-graph. In 
the threshold-graph, each tuple in the relation corresponds 
to a node; two nodes are connected by an edge if the 
distance between corresponding tuples is less than the 
threshold. Hence, global threshold approaches based on 
single linkage clustering are more likely to yield a large 
number of false positives. Observe that at an appropriate 
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Figure 1: Growth spheres

threshold (the maximum pair wise distance within a 
group) a compact set forms a clique in the threshold-
graph. The key requirement is that the threshold needs to 
be varied across groups depending on the local 
neighborhood, and this variability is crucial for accurately 
characterizing duplicates. Therefore, earlier approaches 
based on single linkage clustering are limited because they 
do not allow such variability. 

The CS criterion alone is not sufficient to characterize 
groups of duplicates because several pairs of tuples in a 
clean relation (consisting of unique tuples) may still be 
mutual nearest neighbors and hence compact. In the 
extreme case, the set of all tuples in a relation forms a 
compact set. We also require the sparse neighborhood 
(SN) property to better characterize groups of duplicates. 
The observation behind the SN criterion is that the local 
neighborhood of a tuple with duplicates is sparse. 
Alternatively, tuples which have a lot of tuples within their 
close vicinity are usually 
not duplicates of other 
tuples. For the example in 
Table 1, the unique tuples 
7-14 occur in larger (4, for 
this example) groups than 
tuples with duplicates. 
Figure 1 illustrates the idea 
behind sparse 
neighborhood – the region within a sphere of radius 
2·nn(v), where nn(v) is the nearest neighbor distance 
around the tuple v. If the number of tuples in the larger 
sphere around a tuple is small, we say that its local 
neighborhood is sparse. We extend this notion to a group 
of tuples and say that their joint local neighborhood is 
sparse if an aggregate of individual growth rates of tuples 
is small, say, less than a threshold c. For instance, the 
aggregation function max requires the neighborhood sizes 
of all tuples in the group to be less than c. Observe that the 
neighborhood size of a tuple is a property of the domain 
(not the specific relation instance) to which tuples belong. 
We use the neighborhood sizes of a tuple in a relation as a 
directly computable approximation of the ideal measure.  

We now formalize the CS and SN criteria. In the 
following definitions, let R be a relation and d: R x R →
[0, 1] be a symmetric distance function over tuples in R. 
For expositional clarity, we assume that all tuples in a 
relation are unique and distances between distinct tuples 
are non-zero.  

CS Criterion: We say that a set S of tuples from R is a
compact set iff for every tuple v in S, the distance d(v, v’) 
between v and any other tuple v’ in S is less than the 
distance d(v, v’’) between v and any other v’’ in R−S.

Observe that if the distance function d is well-behaved
in that a tuple is closer to its (fuzzy) duplicates than to 

other distinct tuples, then each group of duplicate tuples in 
a relation R is a compact set. 

We now introduce additional terminology to define the 
sparse neighborhood criterion. For a tuple v, let nn(v) 
denote the distance between v and its nearest neighbor. 
Let the neighborhood N(v) be defined by a sphere of 
radius p·nn(v) around v. In this paper, we fix p=2; 
functions more general than linear functions may be used 
to define neighborhood. The neighborhood growth ng(v)
is the number of tuples in the neighborhood N(v) of v. 
Formally,  ng(v)  = |{u | d(u, v) < p · nn(v)}| 

SN Criterion: Let AGG : 2R
→R be an aggregation 

function and c (>0) be a constant. We say that a set of 
tuples S is an SN(AGG, c) group if (i) |S| = 1, or (ii) the 
aggregated value of neighborhood growths of all tuples in 
S is less than c; i.e., AGG({ng(v): v in S}) < c.

In this paper, we only consider the max and the average 
aggregation functions.  

3. The Duplicate Elimination Problem 
We first propose an initial formulation based only on 

the CS and SN criteria and show that it can sometimes 
lead to unintuitive solutions. Therefore, we add standard 
constraints that sizes of groups of duplicates are small or 
that the maximum distance between tuples in a group is 
bounded. We then show that the resulting duplicate 
elimination problem yields a unique solution, and also 
discuss other interesting properties. 

The Duplicate Elimination (DE) Problem—Initial 
Formulation: Given a relation R, a distance function d, an 
aggregation function AGG, and a positive real number c, 
partition R into the minimum number of groups 
{G1,…,Gm} such that for all 1 ≤ i ≤ m (i) Gi is a compact 
set, and (ii) Gi is an SN(AGG, c) group. 

To illustrate that the above formulation may result in 
unintuitive results, consider applying the DE formulation 
as stated above on the following instance R of positive 
integers: {101, 102, 104, 201, 202, 301, 302}. Suppose 
the distance function is the absolute difference between 
values, the aggregation function is the max function, and 
the SN threshold c is set to 2. Then, all tuples in R are all 
put together in one group. Ideally, we may want 3 groups 
{101, 102, 104}, {201, 202}, and {301, 302}. We can 
replicate this phenomenon on instances with arbitrarily 
large numbers of tuples and groups. In order to counter 
this behavior, we rely on standard intuitive notions that 
groups of duplicates are small and that distances between 
tuples in a group are small. Other types of specifications 
are possible within our framework.  

Size Specification: The size specification captures the 
informal notion that groups of duplicates are small in size.  
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Diameter Specification: The diameter of a group is the 
maximum pair wise distance between tuples in a group. 
The diameter specification captures the intuitive notion 
that distance between pairs of tuples within a group of 
duplicates is bounded. This specification is similar in 
spirit to the traditional threshold constraint but each group 
of duplicates still satisfies the CS and SN constraints.  

The DE Problem: Given a relation R, a distance function 
d, an aggregation function AGG, a positive real number c, 
and a positive integer K or a positive real number θ (0 < θ
< 1), partition R into the minimum number of groups 
{G1,…,Gm} such that for all 1 ≤ i ≤ m (i) Gi is a compact 
set, and (ii) Gi is an SN(AGG, c) group, and (iii) |Gi| ≤ K 
or Diameter(Gi) ≤ θ.

For the rest of the paper, we assume that the common 
parameters d, AGG and c are implicit, and use DES(K) to 
denote the instantiation where the size of each group is 
less than or equal to K, and DED(θ) to denote the 
instantiation where the diameter of each group is less than 
or equal to θ. We sometimes use DE to generically denote 
either of the two formulations. Note that it is also possible 
to use size and diameter specifications together.  

3.1. Properties of the DE Formulation 
In this section, we show that the DE problems have 

several desirable properties. Some of these properties 
characterize the behavior of a domain-independent 
distance-based duplicate elimination function under 
intuitive transformations to distances between tuples. 
Similar properties were proposed for domain-independent 
clustering functions by Kleinberg [18]. For the rest of the 
section, we assume that the distance function d, the 
aggregation function AGG, and SN threshold c are fixed. 
Constrained by space, we skip proof sketches of lemmas. 

Uniqueness: The solutions to DES(K) and DED(θ) are 
unique. Therefore, DES(K) and DED(θ) can be viewed as 
functions which partition a given relation R.  

Lemma 1: For a given set of parameters K or θ, the 
DES(K) and DED(θ) problems have unique solutions.  

Scale Invariance: Intuitively, the scale of a distance 
function does not impact the local structural properties of 
tuples, and hence duplicate elimination may not change. 
Formally, a partitioning function f is scale-invariant if for 
any distance function d and an α > 0, f(d) = f(α·d).

Lemma 2: DES(K) is scale-invariant. 

Split/Merge Consistency: Intuitively, shrinking distances 
between tuples in a group of duplicates, and expanding 
distances between tuples across groups may only change 

the partition resulting from a duplicate elimination 
function in limited ways. Under such a distance 
transformation, a tuple in group of duplicates cannot 
simultaneously become closer to tuples in a different 
group of duplicates, and farther from tuples in the original 
group. That is, a group of duplicates in the new 
partitioning under the transformed distances cannot be a 
union of proper subsets of groups in the original partition.  

Let P be a partition of R. We say that a distance 
function d’ is a P-conscious transformation of d if for any 
pair of tuples v1, v2 within the same group of P, d’(v1, v2 ) 
≤ d(v1, v2) and for any pair v1, v2 in two different groups 
of P, d’(v1, v2) ≥ d(v1, v2). A partitioning function f is 
split/merge consistent if for any distance function d such 
that P = f(d) and any P-conscious transformation d’ of d, 
each group in f(d’) is either subset of a group in P or equal 
to the union of groups in P. 

Lemma 3: The duplicate elimination functions DES(K)and 
DED(θ) are split/merge consistent.  

Let P be the partition obtained by solving the duplicate 
elimination problem on R. Suppose, we construct a new 
relation R’ by “homogenizing” duplicate tuples. That is, 
we make them very similar to each other (say, a very small 
distance apart). The new distances correspond to a P-
conscious transformation of the original distance function 
d. Since the duplicate elimination functions are 
split/merge-consistent, re-invoking either one of them on 
R’ would result in a partition that consists of union of 
groups in P or subsets of groups in P. 

Constrained Richness: In most scenarios where duplicate 
elimination is applied, only a small fraction of tuples in 
the relation have duplicates and, the sizes of groups of 
duplicates tend to be small. Therefore, the range of 
duplication functions must include all partitions into a 
large number of small groups. This is in contrast to the 
original richness property in [18], which requires all 
possible partitions of a relation to be in the range. Our 
modification (which constrains the range from all possible 
partitions) differentiates the duplicate elimination from the 
clustering problem.  

Let 0 ≤ α, β < 1 be two positive constants. A 
partitioning function is (α, β)-rich if its range includes all 
partitions of a relation R having at least |R|(1-α) groups such 
that the maximum size of any group is less than |R|β. We 
now show that the range of DES(K) is rich for a variety of 
parameter settings.  

Lemma 4: DES(K) is (α, β)-rich if c < |R|(1- α) and K ≥ |R|β.
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4. Duplicate Elimination Algorithm 
In this section, we describe a scalable and efficient 

algorithm for solving the DE problem. We effectively 
exploit the ``cut’’ (size or diameter) specifications to 
design an efficient algorithm. The main challenges are: (i) 
efficient identification of mutual nearest neighbors, and 
(ii) efficient partitioning of an input relation into the 
minimum number of compact SN groups which satisfy the 
cut specification. Our insight is to determine tuple pairs 
whose nearest neighbor sets are equal and then extend the 
pair wise equality to groups of tuples. We take a 2-phase 
approach: first determine the nearest neighbors (either the 
best K neighbors or all neighbors within a certain radius, 
depending on the cut specification) of every tuple in the 
relation, and then partition the relation into compact SN 
sets. By dividing it into two phases, we exploit nearest 
neighbor indexes in the first phase and the query 
processing ability of the database backend in the second 
phase to make the algorithm efficient and scalable. Figure 
3 shows the architecture of our system implemented as a 
client over Microsoft SQLServer.  

In the first nearest neighbor computation phase, we 
assume the availability of an index for efficiently 
answering the following query: for any given tuple v in R, 
fetch its nearest neighbors. (Otherwise, we apply nested 
loop join methods in this phase.1) Since designing exact 
nearest neighbor indexes for distance (or similarity) 
functions typically used for duplicate elimination is very 
hard (e.g., [16]), several approximate and probabilistic 
indexes have been developed for standard distance 
functions (like cosine metric, edit distance, and fuzzy 
match similarity) [24, 23, 9]. For the purpose of this 
paper, we treat these probabilistic indexes as exact nearest 
neighbor indexes. The experimental results in Section 5 
illustrate that this assumption does not negatively impact 
the actual results of our algorithm.  

In the second partitioning phase, we partition the 
relation into the minimum number of valid groups of 
duplicates. We perform most of the processing required in 
this phase using standard SQL queries. In the process, (i) 

1 Join-based methods developed for specific distance 
functions such as edit distance may be employed for the 
diameter specification [GIJ+01]. 

we exploit efficient query processing abilities of database 
systems and (ii) we avoid moving large amounts of data 
between the client and the server.  

4.1. Nearest Neighbor Computation Phase 
In this phase, we determine for each tuple in the 

relation R, its nearest neighbors and its neighborhood 
growth. The output of this phase is a relation 
NN_Reln[ID, NN-List, NG] where ID is the identifier of a 
tuple v whose neighbor growth is NG. For the DES(K)
problem, NN-List is the list of tuple identifiers of the K 
nearest neighbors of the tuple v; for the DED(θ) problem, 
NN-List is the list of tuple identifiers of all tuples whose 
distance from the tuple v is less than θ. Given an index 
that can be used for fetching the nearest neighbors (top-K 
or within a certain distance) and for computing the 
neighborhood growth, a straightforward procedure is to 
scan the input relation R and for each tuple v in R lookup 
the index, and write the tuple [v, NN-List(v), ng(v)] to the 
output.  

However, the index structures typically used for 
fetching nearest neighbors are disk-based. For example, 
nearest neighbor indexes for the edit distance or the fuzzy 
match similarity functions have a structure similar to 
inverted indexes in IR [24, 9], and are usually large. 
Therefore, if consecutive tuples being looked up against 
these indexes are close to each other, then the lookup 
procedure is likely to access the same portion of the index, 
and the second lookup benefits due to the first. This 
significantly improves the buffer hit ratio and the overall 
running time. We now describe a lookup order that can be 
implemented efficiently. 
4.1.1. Index Lookup Order 

Let us consider the example tuples in Table 1. Suppose 
the order in which we lookup the nearest neighbors of 
tuples in R is 1, 12, 5, etc. In order to fetch the nearest 
neighbors of tuple 1 (“The Doors, LA Woman”), the 
indexing procedure would access a portion of the index 
and in the process cache it in the database buffer. A 
similar lookup for nearest neighbors of tuple 12 (“Aliyah, 
Are you ready”) would access a completely different 
portion of the index because tuple 12 is very far from 
tuple 1. Alternatively, if we lookup nearest neighbors of 
tuple 2 (“Doors, LA Woman”) after processing tuple 1, we 
will use almost the same portion of the index. 
Consequently, we can exploit the benefits of it being 
already in the database buffer.  

A good lookup order must have two properties. First, 
tuples immediately preceding any tuple in the order must 
be close to it. Second, the procedure for ordering input 
tuples has to be efficient. For instance, if the lookup order 
requires the entire relation to be grouped (using an 
expensive clustering algorithm), then we would have lost 

Microsoft SQLServer

Figure 3: Architecture

Phase 1:
NN list computation 

Phase 2:
Partitioning Phase 

NN-Index 
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the benefit of ordering the input since the ordering process 
itself is very expensive. 

We adopt the following breadth first (BF) order, which 
satisfies both the above requirements. The order 
corresponds to a breadth first traversal of a tree T 
constructed as follows. We select any input tuple to be the 
root of the tree. The children of any node in the tree are its 
nearest neighbors, which have not already been inserted 
into the tree. Figure 4 illustrates the input ordering. Note 
that we do not actually build such a tree but just fetch 
input tuples in the appropriate order.  

Each tuple (except the root) in the BF order is always 
preceded by its siblings or the children of its parent’s 
sibling. These tuples are much closer to each other than 
arbitrary pairs of tuples. For example, the tuple numbered 
5 in Figure 4 is preceded by its siblings 2, 3, and 4. 
Therefore, all tuples in the lookup order are preceded by 
tuples that are very close to them. Consequently, the 
lookup algorithm makes localized index accesses and we 
observe a significant improvement in the buffer hit ratio. 
Our experimental study in Section 5 shows a 100% 
improvement in the number of K nearest neighbor queries 
processed per unit time interval, thus confirming the 
above intuition. 

For each lookup of an input tuple, we fetch its nearest 
neighbor tuples. Therefore, when we encounter a tuple, 
say the tuple numbered 12 in Figure 4, in the BF order we 
would have already fetched it when its parent tuple 
numbered 2 was looked up. Therefore, the database buffer 
would already have cached tuple numbered 12. We can 
either explicitly cache these tuples, memory permitting, or 
rely on the database system to buffer recent accesses. In 
our implementation, we rely on the latter.  
Figure 5 presents the pseudo-code for the nearest neighbor 
computation phase. Step 1 describes the initialization. 
Step 2 iterates over the BF order queue consisting of 
tuples to be looked up in the appropriate order. Step 3 
describes the re-initialization of the queue when it 
empties. Ensuring that every tuple in R has been looked 
up can also be combined with the initialization of the 
queue into a single scan of R. That is, we start a scan of R, 
initialize the queue Q, and continue the scan whenever Q 
is empty until we lookup all tuples.

Space requirements: We now discuss the space required 
for implementing the lookup order. We maintain a bit 
vector in order to mark tuples whose nearest neighbors we 

have already looked up. In all practical scenarios, such a 
bit vector fits in main memory given current main memory 
sizes. Second, we maintain a queue to lookup tuples in the 
BF order. Since we only maintain the identifiers (long 
integers) of tuples in this queue, the size of the queue is 
relatively small and fits in main memory. In any case, 
when the queue outgrows a certain size, we stop inserting 
new tuples into it until it empties out. Thus, the additional 
main memory required is limited to the amount available 
for consumption. 

4.2. Partitioning Phase 
The second partitioning phase uses the output of the 

first phase to partition the input relation into the minimum 
number of compact SN sets. The resulting partition is the 
solution to the DE problem. For clarity of description, we 
describe the procedure for the DES(K) problem, and point 
out the straight-forward adjustments for the DED(θ)
problem as required. We illustrate the intuition with the 
following example. Consider an example where the group 
{10, 50, 100, 150} forms a compact SN set. It is enough
to know, besides the neighborhood growth (NG) values of 
each tuple, that the 4 nearest neighbor sets of the pairs 
{10, 50}, {10, 100}, {10, 150} are all equal. We deduce 
from the pair wise equality that the group {10, 50, 100, 
150} is a compact set. As illustrated in Figure 6, our two-
step procedure automates this intuition.  

CSPairs Construction Step: The first step computes 
equality of neighbor sets of varying sizes between tuple 
pairs. That is, for a tuple pair (10, 100) as in Figure 6, we 
determine whether their 2-nearest neighbor sets, 3-nearest 
neighbor sets, and so on until K-nearest neighbor sets are 
equal. Such a comparison between tuples v1 and v2 yields 
the following list of boolean values [CS2, …, CSK] along 
with their neighbor growths ng(v1) and ng(v2). The value 
CSi (2 ≤ i ≤ K) denotes whether the i-neighbor sets of v1

PrepareNNLists(relation R, NNIndex I, int K, double θ)
1 Setup 

a. Create the relation NN_Reln(ID, NN-List, NG) 

b. Initialize queue Q by inserting a tuple from R 

c. Initialize bit vector H of size |R| 

2 While Q is  not empty  

a. v=front(Q); if H[v] is not set, get NN-List(v) and 
the number of neighbors within radius 2·NN(v) using 
index I;  

b. Compute neighbor growth NG(v) 

c. Add neighbors of v to Q, if Q has space

d. Write the tuple [v, NN-List(v),NG(v)] to NN_Reln 

e. Set the bit H[v] in H 

3 Insert another tuple not set in H from R into Q; goto 2. 

Figure 5: Procedure for materializing NN_Reln 

Figure 4: An example breadth first (BF) 
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and v2 are equal. We store the result in a temporary 
relation CSPairs.

We issue a SQL (select into) query against the output 
(NN_Reln) of the first phase to compute the CSPairs
relation. The query involves a self-join of NN_Reln (say, 
FROM NN_Reln1, NN_Reln2) on the predicate that a 
tuple NN_Reln1.ID is less than NN_Reln2.ID and that it 
is in the K-nearest neighbor set of NN_Reln2.ID and vice-
versa. The selected column list has the following two 
parts: (i) NN_Reln1.ID, NN_Reln2.ID, NN_Reln1.NG, 
NN_Reln2.NG, and (ii) for each j between 2 and K a case 
statement which returns 1 if the set of j-nearest neighbors 
of NN_Reln1.ID equals the set of j-nearest neighbors of 
NN_Reln2.ID. We can use user-defined functions to 
efficiently compute part (ii) of each record in CSPairs. 
However, we observe that for the Size-K specification 
when the ID-List attribute is expanded into K attributes, 
one per neighbor, we can use standard SQL and perform 
all of the computation at the database server. For the 
DED(θ) problem, we rely on a user-defined function to 
compute the list of boolean values [CS1,…]. Note that the 
sizes of these lists can be different for different pairs for 
the Diameter-θ specification. 

Partitioning Step: In this step, we extend the equality 
between neighbor sets of tuple pairs to sets of tuples and 
determine whether a set of neighbors is compact and 
satisfies the SN criterion. In Figure 6, the 4-neighbor sets 
of tuple pairs (10, 50), (10, 100), and (10, 150) are equal 
and therefore form a compact set of size 4. The set {10, 
50, 100, 150} can be output as a group of duplicates 
provided (i) the aggregate SN value of this group is less 
than the threshold c, and (ii) it cannot be extended to a 
larger compact SN group. Observe that we do not 
explicitly check whether or not the 4-neighbor sets of 
pairs (50, 100), (50, 150), etc. because set equality is 
transitive. We now describe the procedure. 

We process the CSPairs relation (output of CSPairs 
construction step) by issuing the following CS-group
query “select * from CSPairs order by ID” to group all 
neighbor set comparison results between a tuple v and its 
neighbors v’ where v.ID < v’.ID. Observe that in the result 
of the CS-group query, each compact SN set G will be 
grouped together under the tuple with the minimum ID in 
G. We process each group Q[ID=v] (identified by the 
same ID) of tuples in the result of the CS-group query.  
For a group Q[ID=v] of tuples, if v has not already been 
identified as belonging to a compact SN set, we determine 
the largest non-trivial (of size greater than 1) compact SN 
set Gv that v can belong to.  This set can be identified 
from just the group Q[ID=v].  We output the set Gv and 
mark each tuple in Gv to indicate its assignment to a 
compact set. For example, the set against tuple 10 is {10, 
50, 100, 150}. We output the set {10, 50, 100, 150} and 
mark tuple identifiers 10, 50, 100, 150 as belonging to a 
valid compact SN set so that they are not processed again.  
Space Requirements: We require a bit vector for marking 
whether or not a tuple has been processed.  

4.3. Correctness & Complexity 
The correctness of the algorithm follows from the 

following observation: Each compact SN set 
G={v1,…,vm} such that m ≤ K and vi < vj (i < j)  in the 
solution to DE is grouped under v1 in the result of CS-
group query. The reason is that the m-nearest neighbor 
sets of (v1, v2), …, (v1, vm) are all equal because G is a 
compact set. Also, no tuple in G can belong to a larger 
compact SN set in the solution for DE. Otherwise, v1

cannot be the minimum identifier in G. Therefore, we do 
not have to further process groups in the query result 
under any of these tuples.  

Phase 1 is an index nested loops join using the nearest 
neighbor index. Since indexes are effective at significantly 
reducing comparisons between tuples, the overall cost is 
linear in the number of tuples in the size of the input 
relation R. The cost of the second phase is the sum of the 
CSPairs construction step and the partitioning step costs. 
The CSPairs construction involves comparing pairs of lists 
of nearest neighbor sets of tuples, which for the Size-K 
specification is less than K·|R|. The cost of sorting the 
CSPairs relation dominates the partitioning step cost as 
that of processing each group is very small. Observe that 
Phase 1 dominates the overall cost of the algorithm. 
Therefore, with an effective nearest neighbor index, our 
algorithm scales to large input relations. In contrast, 
standard clustering formulations (with some exceptions 
like the single linkage formulation) are usually NP-hard. 

4.4. Determining the SN threshold c 
In our formulation of the DE problem, we require the 

user to specify the sparse neighborhood threshold c. We 

Output of Phase 1 (NN_Reln)

Figure 6: Example illustrating the partitioning phase  

ID : Compact SN Group
10 : 50, 100, 150 
…

ID1, ID2 : CS2, CS3, CS4,…,NG(ID1), NG(ID2)
10, 50 :  [0, 0, 1, …], 2.0, 2.0 
10, 100 :  [0, 1, 1, …], 2.0, 3.0 
10, 150 :  [0, 0, 1, …], 2.0, 2.0 
…

ID : [NN1, NN2, NN3, …], NG(TID)
10 : [100, 50, 150, …], 2.0 
50 : [10, 150, 100, …], 2.0 
100 : [50, 10, 150, …], 3.0 
150 : [10, 100, 100, …], 2.0 
…

Step 2

Step 1 
(CSPairs) 
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now describe a technique to assist a user in setting the 
threshold appropriately. The insight is to ask users to input 
aggregated information that is easier for them to estimate 
than it is to set a sparse neighborhood threshold, which 
requires a deeper understanding of the data distribution. 
We ask the user to estimate the fraction f of duplicate 
tuples in the input relation. The intuition is that most 
tuples whose NG values are less than the SN threshold are 
duplicate tuples. Therefore, in an ideal scenario when NG 
values of all unique tuples are above this threshold, the f-
percentile2 in the cumulative NG distribution D is the SN 
threshold. However, a small percentage of unique tuples 
may have lower NG values (besides the value f being only 
an estimated fraction of duplicate tuples). In order to be 
robust, we also rely on the aggregate characteristics that 
the fraction of unique tuples is much higher than the 
fraction of duplicates and that unique tuples have higher 
NG values. Reflecting this intuition, our heuristic is that 
the actual SN threshold is the least value x=D-1(y) around 
the f-percentile (say, |D-1(y)-f| ≤ 0.05) where there is a 
“spike” in the distribution D, i.e., the rate of growth D’(x)
of D is high. A spike is (heuristically) defined to occur 
when the D’(x) > 1.0. When no such spike exists, we use 
the value D-1(f+0.05) as the SN threshold. The parameters 
for defining the vicinity of f (placing an interval around f)
and the spike may be guided by a user. Since the SN 
threshold value is not required until the second 
partitioning phase, we can re-use the NG values from the 
first phase.  

4.5. Discussion
We now discuss a few issues relating to our formulation of 
the duplicate elimination problem, and extensions.  

4.5.1. Incorporating Additional Knowledge 
Consider a scenario where the domain expert knows that if 
two tuples together satisfy a predicate (e.g., two product 
descriptions are identical but for the version number at the 
end), then they cannot be duplicates of each other. We 
note that it is easy to add such additional constraining
predicates—which rule out tuple pairs from being called 
duplicates—into our formulation of the duplicate 
elimination problem. The extended algorithm proceeds 
unchanged except for an additional check at the end to 
ensure that all groups satisfy this new criterion. If any 
group violates the new constraining predicate, we would 
further split the group.  The ability to add additional 
constraining predicates allows us to incorporate 
constraining knowledge obtained via supervised learning 
[5, 26, 28] into our formulation of the DE problem. 
However, note that it is not possible to add “positive” 

2 The f-percentile of a cumulative distribution D is the value 
x at which D(x) equals f.

knowledge, which stipulates that tuples are duplicates if a 
rule or predicate is satisfied, into our formulation easily. 
Our algorithm is not adaptable easily to the new problem 
extended with positive knowledge. 

4.5.2. Minimality of Compact sets  
Consider the set of tuples {v1, v1’, v2, v2’, v3, v3’} such 

that vi and vi’ (1≤ i ≤3) are duplicates. Under appropriate 
distance and parameter assignment, the solution to the 
DES(K) problem is a single group consisting of all six 
tuples.3 Such an outcome occurs if the union of non-trivial 
compact sets is also a compact SN set allowing us to 
merge disjoint compact sets into a larger compact set. To 
avoid such unintuitive outcomes, we can impose the 
following notion of “minimality” on compact sets in 
addition to the mutual nearest neighbor restriction. S is a 
minimal compact set if S consists of mutual nearest 
neighbors and there do not exist disjoint subsets S’ and S’’
of S such that |S’| > 1 and |S’’| > 1 and S’ and S’’ are 
compact sets. The algorithm for this new formulation is a 
straightforward adaptation of the algorithm for the original 
formulation. We just have to add an additional post-
processing check of ensuring that each compact set is 
actually minimal. Otherwise, we would further split such 
groups into minimal groups.  

Our experiments on a variety of real datasets however 
indicate that scenarios where we merge multiple minimal 
non-trivial compact sets together without violating the SN 
and the group size criteria are very rare. Such mergers can 
only occur if tuples across smaller compact sets are still 
very close to each other. However, in most real scenarios, 
either (i) all of them are really duplicates of each other or 
(ii) the neighborhood growths of individual tuples would 
be high preventing us from grouping them together. 
Therefore, in our DE formulation we do not constrain the 
solution to consist of minimal compact sets.  

5. Experimental Evaluation 
We present a thorough experimental evaluation of our 
duplicate elimination algorithm on real datasets to show 
that it is more accurate than the current threshold-based 
approaches. We first describe the setup and our evaluation 
metrics and then discuss the experimental results. 

Real Datasets: We consider Media[artistName, 
trackName] and Org[name, address, city, state, zipcode] 
relations from internal data warehouses as well as publicly 
available datasets: Restaurants[Name], BirdScott[Name], 
Parks[Name], and Census[LastName, Last name, Middle 
initial, Number, Street],  from the Riddle repository [8].  

3 An example assignment: the distance between vi and vi’ is 
less than half that between vi (vi’) and vj (vj’) for all i ≠ j; the SN 
threshold is greater than 1.0 and K is greater than 6. 

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 

1084-4627/05 $20.00 © 2005 IEEE



Algorithms Compared: We compare our DES(K) and 
DED(θ) formulations with a standard thresholding strategy  
(denoted thr) based on single linkage clustering [e.g., 15, 
20]. As discussed earlier, we induce (for thr) the threshold 
graph using the output (NN_Reln) of the nearest neighbor 
computation phase and a distance threshold θ. Each 
maximal connected component is returned as a set of 
duplicates. Note that most (almost 80-90%) sets of 
duplicates just consist of tuple pairs. Hence, alternative 
methods for componentizing the threshold graph into stars 
or cliques still return similar results.  

Evaluation Metrics: We use precision and recall metrics 
to evaluate duplicate elimination algorithms [6]. Recall is 
the fraction of true pairs of duplicate tuples identified by 
an algorithm. And, precision is the fraction of tuple pairs 
an algorithm returns which are truly duplicates. Higher 
recall and precision values are better. A precision versus 
recall graph plots the (recall, precision) values for various 
parameter settings. Comparing the precision versus recall 
plots allows us to comprehensively compare algorithms 
across several parameter settings. 

Distance Functions: We evaluate our formulation using 
two distance functions. We employ the edit distance (ed)
[27] and a function combining edit distance and cosine 
metric with IDF weights, called fuzzy match similarity 
(fms). We consider a symmetric variant of the original fms 
function [9]. The function fms was shown to be very 
effective for matching erroneous tuples with their correct 
counterparts. To illustrate, consider the following example 
strings: “microsoft corp” and “microsft corporation.” They 
are close because ‘microsoft’ and ‘microsft’ are close 
according to edit distance and the IDF weights of ‘corp’ 
and ‘corporation’ are relatively small. In contrast, edit 
distance between “microsoft corp” and “mic corporation” 
is less than that between “microsoft corp” and “microsft 
corporation.” Similarly, cosine metric (with IDF 
weighting) places “microsft corporation” and “boeing 
corporation” closer to each other than “microsoft corp” 
and “microsft corporation.” Further, the fuzzy match 
similarity function is efficiently (probabilistically) 
indexable [9]. 

5.1.1. Quality  
Figures 10 plots the precision versus recall graphs for 

duplicate elimination algorithms using the edit distance 
function: threshold-based single linkage (thr), DES(K) with 
c=4 (i.e., neighborhood growth must be less than 4 for 
sparseness) and c=6, and DED(θ) with c=4 and c=6. We 
fix the aggregation function (AGG) to be Max and vary 
the parameters K and θ, respectively and plot the precision 
versus recall values.  Figure 11 plots similar graphs for 
algorithms using the fuzzy match similarity function. For 
several datasets, and for both edit distance and fuzzy 

match similarity, the DES(K) and DED(θ) plots outperform 
thresholding approaches. For the same recall, our DE 
approaches yield higher precision (often 5-10% and 
sometimes 20% or more), especially for higher recall 
values. Only for the Parks dataset, there is no 
improvement over threshold approaches. Further, the 
precision-recall graph for the DES(.) plots are mostly 
concentrated around the same recall-precision values 
whereas the DED(.) plots have a wider spread of precision-
recall values. The reason is that the nearest neighbor lists 
for the DEK() formulation are dependent only on K and 
not on the specific distance thresholds. Usually, the 
number of compact groups of size 2 is far greater than 
those with number 3, etc. Therefore, the variations in 
precision and recall with variations in K are not very high. 
In contrast, the sizes of the nearest neighbor lists for the 
DED(θ) varies significantly with variations in θ.
Consequently, the precision and recall values also vary 
with θ. Therefore, the Diameter-θ specification is useful 
for better control on precision. 

Figure 7 plots the precision versus recall plots on the 
Restaurants dataset of DES() and DED() for different 
aggregation functions (Max, Avg, Max2—the 2nd

maximum value). All three aggregation functions yield 
very similar results because a large percentage of groups 
are of size 2. 

5.1.2. Run-time Performance  
We illustrate the performance of our algorithm via the 

DES(K) problem with the fuzzy match similarity function; 
results for the DED(θ) would be similar. We first evaluate 
the impact of BF ordering on improving the performance 
of the first nearest neighbor computation phase, and then 
evaluate the overall scalability.

BF Ordering: We evaluate the impact of BF ordering 
using a relation consisting of 3 million organization 
addresses. We measure (i) database buffer hit ratio (BHR),
(ii) processor usage (PU), and (iii) the throughput or the 
number of input tuples looked up per unit time interval 
(Thrpt) for both BF and random (rnd) orders. We vary the 
memory sizes allocated to the database buffer between 
32MB and 128MB. Figure 8 presents the results. We 
observe that BHR, PU, and Thrpt for the BF order are 
higher than that for the random order. In particular, the 

Restaurants: Precision vs Recall
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overall throughput improved by almost 100% due to the 
BF order. That is, BF ordering halves the time required 
for the first phase. 
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Scalability: We now study the scalability of our algorithm 
using a relation containing 3 million organization 
addresses. Figure 9 reports the normalized running times 
(normalized by the time required for executing Phase 1 
over 10K tuples) of both phases versus the size (in 
multiples of 1000) of the dataset; both axes are on 
logarithmic scales. The linearity of the plots demonstrates 
the scalability of both phases of our algorithm.

5.1.3. Summary 
We have shown our DE formulation to be accurate and 
robust and that they yield better precision-recall tradeoffs 
than previous approaches. We then illustrated the 
efficiency and scalability of our algorithm. In particular, 
we demonstrated the benefit of BF ordering for 
significantly reducing (to almost 50%) the running time of 
the first nearest neighbor computation phase of the 
algorithm for solving the DE problem. 

6. Related Work 
The problem of duplicate elimination has recently 

received a lot of attention due to its practical significance 
in a variety of data management scenarios. Previous 
solutions to duplicate elimination can be classified into 
supervised and unsupervised approaches.  

Supervised approaches learn rules characterizing pairs 
of duplicates from training data consisting of known 
duplicates [11, 5]. These approaches assume that training 
data exhibit the variety and distribution of errors observed 
in practice. It is difficult, if not impossible, to obtain such 
comprehensive training data, an issue that was addressed 
to a limited extent by active learning approaches [26, 28] 
which have the drawback of requiring interactive manual 
guidance. In many real data integration scenarios, it is not 

possible to obtain good training data or interactive user 
guidance.  

As discussed earlier, previous unsupervised methods 
ignore local structural properties and rely on global 
thresholds over distances (in particular, edit distance or 
cosine similarity) to detect duplicates, and hence lead to 
poor recall-precision tradeoffs [e.g., 15, 21, 14]. The 
duplicate elimination problem has also been studied in the 
record linkage literature (e.g., [13, 17, 19]). These 
approaches still rely on threshold-based notions but use 
similarities aggregating matches between attribute values. 
See [29] for a recent survey of these methods. Alternative 
approaches for partitioning the threshold-graph into 
components that are strongly connected (e.g., cliques or 
almost cliques) would result in almost the same groups of 
tuples as those from single linkage partitioning because 
most groups of duplicates in practice are very small (of 
size 2 or 3). Recent research has focused on improving the 
distance functions [10, 1] and in determining appropriate 
thresholds, but they still inherently involve global 
thresholds for single linkage clustering algorithms. Most 
of these distance or similarity functions can be used with 
our DE formulations thus achieving better precision-recall 
tradeoffs.  

Our formulation of the duplicate elimination problem is 
different from standard clustering formulations [12, 22] 
primarily because of the CS and SN criteria. Most 
clustering formulations insist that each cluster be very 
dense and contain a large number of tuples whereas our 
DE formulation focuses on groups consisting of mutual 
nearest neighbors and the local neighborhood being 
sparse. Consequently, we cannot directly use standard 
clustering formulations and algorithms. A notion similar to 
the SN criterion has been explored in the context of outlier 
detection [4].  

Several blocking approaches have been proposed to 
speed up algorithms for solving the threshold-based 
duplicate elimination problem [2, 15]. The idea (similar to 
that of hash join algorithms) is to partition the relation into 
blocks and to only compare records within blocks. 
However, they do not guarantee that all required nearest 
neighbors of a tuple are also in the same block. Hence, we 
are unable to use these blocking strategies. 

Braunmueller et al. develop techniques for optimizing 
batches of similarity queries where they simultaneously 
process several nearest neighbor queries [7]. However, 
these approaches require access to all candidate tuples 
being fetched by the index for any single nearest neighbor 
query. Implementing such a strategy requires changes to 
the indexing structure and/or the database backend. Since 
implementing our system as a client to standard database 
systems is one of our design goals, we are unable to adopt 
their approach. 

Figure 9: Normalized 
running times for both 
phases 

Figure 8: Comparing buffer 
hit ratio % (BHR), processor 
usage % (PU), and Lookup 
throughput (Thrpt) for random 
(rnd) and breadth first (bf) 
ordering.
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Figure 10: Precision vs. Recall using Edit distance  
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7. Conclusions
In this paper, we propose a new formulation for the 
duplicate elimination problem based on two fundamental 
properties (compact set and sparse neighborhood) which 
characterize duplicate tuples. We show that our 
formulation has several desirable characteristics under 
intuitive transformations to distances between tuples. We 
develop an efficient algorithm for solving the duplicate 
elimination problem. Using real datasets, we show the 
quality and robustness of our formulation as well as the 
scalability of our algorithm. 
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