
Robust Identification of Fuzzy Duplicates

Surajit Chaudhuri Venkatesh Ganti Rajeev Motwani
 Microsoft Research Stanford University

{surajitc, vganti}@microsoft.com rajeev@cs.stanford.edu

Abstract
Detecting and eliminating fuzzy duplicates is a critical

data cleaning task that is required by many applications.
Fuzzy duplicates are multiple seemingly distinct tuples
which represent the same real-world entity. We propose
two novel criteria that enable characterization of fuzzy
duplicates more accurately than is possible with existing
techniques. Using these criteria, we propose a novel
framework for the fuzzy duplicate elimination problem.
We show that solutions within the new framework result in
better accuracy than earlier approaches. We present an
efficient algorithm for solving instantiations within the
framework. We evaluate it on real datasets to demonstrate
the accuracy and scalability of our algorithm.

1. Introduction
Detecting and eliminating duplicated data is an

important problem in the broader area of data cleaning
and data quality. For example, when Lisa purchases
products from SuperMart twice, she might be entered as
two different customers, e.g., [Lisa Simpson, Seattle, WA,
USA, 98025] and [Simson Lisa, Seattle, WA, United
States, 98025]. Many times, the same logical real world
entity has multiple representations in a relation, due to
data entry errors, varying conventions, and a variety of
other reasons. Such duplicated information can cause
significant problems for the users of the data. For
example, it can lead to increased direct mailing costs
because several customers like Lisa may be sent multiple
catalogs. Or, such duplicates could cause incorrect results
in analytic queries (say, the number of SuperMart
customers in Seattle), and lead to erroneous data mining
models. Hence, a significant amount of time and money
are spent on the task of detecting and eliminating
duplicates. We refer to this problem of detecting and
eliminating multiple distinct records representing the same
real world entity or phenomenon as the fuzzy duplicate
elimination problem. This problem is similar to the
merge/purge, deduping, and record linkage problems [e.g.,
13, 17, 15, 21, 26, 1, 25]. Note that our problem
generalizes the standard duplicate elimination problem for
answering “select distinct” queries in relational database
systems, which consider two tuples to be duplicates if they
match exactly on all attributes [3]. However, in this paper,

we use duplicate elimination to mean fuzzy duplicate
elimination.

Previous solutions (as discussed further in Section 6) to
duplicate elimination can be classified into supervised and
unsupervised approaches. Supervised approaches learn
rules characterizing pairs of duplicates from training data
consisting of known duplicates [11, 5, 26, 28]. These
approaches are limited by their dependence on
comprehensive training data which exhibit the variety and
distribution of errors observed in practice, or on manual
guidance. In many real data integration scenarios, it is not
possible to obtain good training data or interactive user
guidance. Therefore, we focus on unsupervised
approaches.

Unsupervised approaches for duplicate elimination
typically rely on distance functions to measure similarity
between tuples. Previous approaches adopted clustering
algorithms to partition a relation into groups of duplicates
[e.g., 15, 21]. In particular, the single linkage clustering
algorithm has been the predominant choice as it
automatically determines the number of clusters (or the
number of groups of duplicates) unlike many clustering
algorithms, which require the number of clusters to be
specified. However, the single linkage clustering
approaches require as a parameter an absolute global
threshold to decide when two tuples are duplicates.
Distance functions are mathematical approximations to an
abstract and qualitative notion of duplication. Even in a
relation consisting only of clean tuples, some tuples are
inherently close to each other according to a reasonable
distance function, even though they are not duplicates.
Similarly, distance between duplicate tuples may higher
than several distinct pairs of tuples. For the example in
Table 1, duplicate tuples 3 and 4 are farther (according to
edit distance) from each other than distinct tuples 9 and
10. Therefore, approaches based on global distance
thresholds lead to poor recall (fraction of pairs of true
duplicate tuples an algorithm recognizes as duplicates)
and precision (fraction of tuple pairs the algorithm returns
which are truly duplicates).

The crucial characteristic differentiating the duplicate
elimination problem from the standard clustering
formulations is that it is very important to consider local
structural properties while identifying groups of

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

duplicates. In this paper, we identify two new criteria—the
compact set (CS) and the sparse neighborhood (SN)
criteria—which explicitly capture local structural
properties of data to characterize groups of duplicate
tuples. These criteria capture the properties that duplicates
in a group are closer to each other than to other tuples, and
that their “local neighborhood” is empty or sparse.
Informally, the local neighborhood of a group of tuples is
the immediate vicinity defined in terms of a surrounding
region of size dependent on the local distribution of
tuples, viz., a sphere of radius twice (say) the nearest
neighbor distance of each tuple (as illustrated in Figure 1).
These localized structural properties differentiate the
duplicate elimination problem from standard clustering
formulations. Tuples that satisfy these criteria may be
grouped together as duplicates even though they are
relatively far from each other while tuples that are closer
but do not satisfy these criteria may not be grouped
together. Note that the CS and SN criteria are orthogonal
to the choice of specific distance functions and domain
knowledge such as abbreviations. Therefore, our approach
is orthogonal to these choices.

We formalize the duplicate elimination problem to
effectively exploit the CS and SN criteria and show that
solutions to the formulations within our framework have
several desirable characteristics: varying the scale of the
distance function does not change the solution; the range
of partitions that a duplicate elimination problem can
produce is large. Our analysis here is similar in spirit to
Kleinberg’s development of an axiomatic framework for
clustering [18].

We present a scalable and efficient algorithm for our
formulation of duplicate elimination. Our algorithm
exploits nearest neighbor indexes over distance functions
as well as the database server to achieve scalability and
efficiency. In an extensive experimental study over several
real datasets, we evaluate the CS and SN criteria and show
that solutions to the duplicate elimination problems within
our framework yield better precision-recall tradeoffs than
existing single linkage approaches with global thresholds.

The remainder of the paper is organized as follows. In
Section 2, we formally define the CS and SN criteria. In
Section 3, we formalize the duplicate elimination
framework. In Section 4, we describe an efficient
algorithm for solving instantiations within this framework.
In Section 5, we discuss a thorough experimental
evaluation. In Section 6, we discuss related work, and we
conclude in Section 7.

2. Criteria Characterizing Duplicates
In this section, we define the CS and SN criteria which

are useful for characterizing duplicates. The intuition
behind these two criteria stems from the following
observations: (i) duplicate tuples are “closer” to each

other than to others; and, (ii) the local neighborhood of
duplicate tuples is sparse. In order to illustrate that these
criteria are better at characterizing duplicate tuples, let us
consider Table 1 which shows an example drawn from a
real music database. The first six tuples (tagged with an
asterisk) are duplicate tuples while the remaining tuples
are unique. Observe that some pairs (e.g., 7 and 8, 9 and
10) among unique tuples are closer to each other
according to standard distance functions (edit distance, or
cosine metric), than some of the pairs among the six
duplicate tuples. Therefore, the traditional threshold-based
approach for duplicate elimination cannot correctly
distinguish the set of duplicates without simultaneously
collapsing unique tuples together.

ID ArtistName TrackName
1* The Doors LA Woman

2* Doors LA Woman

3* The Beatles A Little Help from My Friends

4* Beatles, The With A Little Help From My Friend

5* Shania Twain Im Holdin on to Love

6* Twian, Shania I'm Holding On To Love

7 4th Elemynt Ears/Eyes

8 4th Elemynt Ears/Eyes - Part II

9 4th Elemynt Ears/Eyes - Part III
10 4th Elemynt Ears/Eyes - Part IV
11 Aaliyah Are You Ready
12 AC DC Are You Ready
13 Bob Dylan Are You Ready
14 Creed Are You Ready

Table 1: Examples from a media database.

The intuition behind the compact set (CS) criterion is
that duplicate tuples are closer to each other than they are
to other distinct tuples. That is, duplicate tuples are
usually mutual nearest neighbors. For the example in
Table 1, tuples with duplicates are tagged with asterisks.
Tuple 1 is the nearest neighbor of tuple 2 and vice-versa.
In contrast, tuple 8 may be the nearest neighbor of tuple 7
and tuple 9 that of tuple 8. (The nearest neighbor relation
is not symmetric.) Reflecting this intuition, our first
criterion is that a set of duplicates must be a compact set
of mutual nearest neighbors; note that the set may consist
of more than two tuples. In contrast, global threshold
approaches based on single linkage clustering assume
transitivity (i.e., if ‘a’ is a duplicate of ‘b’—d(a,b) < θ—
and ‘b’ that of ‘c’ then ‘a’ is a duplicate of ‘c’) and
identify connected components in the threshold-graph. In
the threshold-graph, each tuple in the relation corresponds
to a node; two nodes are connected by an edge if the
distance between corresponding tuples is less than the
threshold. Hence, global threshold approaches based on
single linkage clustering are more likely to yield a large
number of false positives. Observe that at an appropriate

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

2·nn(v)

nn(v)

Figure 1: Growth spheres

threshold (the maximum pair wise distance within a
group) a compact set forms a clique in the threshold-
graph. The key requirement is that the threshold needs to
be varied across groups depending on the local
neighborhood, and this variability is crucial for accurately
characterizing duplicates. Therefore, earlier approaches
based on single linkage clustering are limited because they
do not allow such variability.

The CS criterion alone is not sufficient to characterize
groups of duplicates because several pairs of tuples in a
clean relation (consisting of unique tuples) may still be
mutual nearest neighbors and hence compact. In the
extreme case, the set of all tuples in a relation forms a
compact set. We also require the sparse neighborhood
(SN) property to better characterize groups of duplicates.
The observation behind the SN criterion is that the local
neighborhood of a tuple with duplicates is sparse.
Alternatively, tuples which have a lot of tuples within their
close vicinity are usually
not duplicates of other
tuples. For the example in
Table 1, the unique tuples
7-14 occur in larger (4, for
this example) groups than
tuples with duplicates.
Figure 1 illustrates the idea
behind sparse
neighborhood – the region within a sphere of radius
2·nn(v), where nn(v) is the nearest neighbor distance
around the tuple v. If the number of tuples in the larger
sphere around a tuple is small, we say that its local
neighborhood is sparse. We extend this notion to a group
of tuples and say that their joint local neighborhood is
sparse if an aggregate of individual growth rates of tuples
is small, say, less than a threshold c. For instance, the
aggregation function max requires the neighborhood sizes
of all tuples in the group to be less than c. Observe that the
neighborhood size of a tuple is a property of the domain
(not the specific relation instance) to which tuples belong.
We use the neighborhood sizes of a tuple in a relation as a
directly computable approximation of the ideal measure.

We now formalize the CS and SN criteria. In the
following definitions, let R be a relation and d: R x R →
[0, 1] be a symmetric distance function over tuples in R.
For expositional clarity, we assume that all tuples in a
relation are unique and distances between distinct tuples
are non-zero.

CS Criterion: We say that a set S of tuples from R is a
compact set iff for every tuple v in S, the distance d(v, v’)
between v and any other tuple v’ in S is less than the
distance d(v, v’’) between v and any other v’’ in R−S.

Observe that if the distance function d is well-behaved
in that a tuple is closer to its (fuzzy) duplicates than to

other distinct tuples, then each group of duplicate tuples in
a relation R is a compact set.

We now introduce additional terminology to define the
sparse neighborhood criterion. For a tuple v, let nn(v)
denote the distance between v and its nearest neighbor.
Let the neighborhood N(v) be defined by a sphere of
radius p·nn(v) around v. In this paper, we fix p=2;
functions more general than linear functions may be used
to define neighborhood. The neighborhood growth ng(v)
is the number of tuples in the neighborhood N(v) of v.
Formally, ng(v) = |{u | d(u, v) < p · nn(v)}|

SN Criterion: Let AGG : 2R
→R be an aggregation

function and c (>0) be a constant. We say that a set of
tuples S is an SN(AGG, c) group if (i) |S| = 1, or (ii) the
aggregated value of neighborhood growths of all tuples in
S is less than c; i.e., AGG({ng(v): v in S}) < c.

In this paper, we only consider the max and the average
aggregation functions.

3. The Duplicate Elimination Problem
We first propose an initial formulation based only on

the CS and SN criteria and show that it can sometimes
lead to unintuitive solutions. Therefore, we add standard
constraints that sizes of groups of duplicates are small or
that the maximum distance between tuples in a group is
bounded. We then show that the resulting duplicate
elimination problem yields a unique solution, and also
discuss other interesting properties.

The Duplicate Elimination (DE) Problem—Initial
Formulation: Given a relation R, a distance function d, an
aggregation function AGG, and a positive real number c,
partition R into the minimum number of groups
{G1,…,Gm} such that for all 1 ≤ i ≤ m (i) Gi is a compact
set, and (ii) Gi is an SN(AGG, c) group.

To illustrate that the above formulation may result in
unintuitive results, consider applying the DE formulation
as stated above on the following instance R of positive
integers: {101, 102, 104, 201, 202, 301, 302}. Suppose
the distance function is the absolute difference between
values, the aggregation function is the max function, and
the SN threshold c is set to 2. Then, all tuples in R are all
put together in one group. Ideally, we may want 3 groups
{101, 102, 104}, {201, 202}, and {301, 302}. We can
replicate this phenomenon on instances with arbitrarily
large numbers of tuples and groups. In order to counter
this behavior, we rely on standard intuitive notions that
groups of duplicates are small and that distances between
tuples in a group are small. Other types of specifications
are possible within our framework.

Size Specification: The size specification captures the
informal notion that groups of duplicates are small in size.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Diameter Specification: The diameter of a group is the
maximum pair wise distance between tuples in a group.
The diameter specification captures the intuitive notion
that distance between pairs of tuples within a group of
duplicates is bounded. This specification is similar in
spirit to the traditional threshold constraint but each group
of duplicates still satisfies the CS and SN constraints.

The DE Problem: Given a relation R, a distance function
d, an aggregation function AGG, a positive real number c,
and a positive integer K or a positive real number θ (0 < θ
< 1), partition R into the minimum number of groups
{G1,…,Gm} such that for all 1 ≤ i ≤ m (i) Gi is a compact
set, and (ii) Gi is an SN(AGG, c) group, and (iii) |Gi| ≤ K
or Diameter(Gi) ≤ θ.

For the rest of the paper, we assume that the common
parameters d, AGG and c are implicit, and use DES(K) to
denote the instantiation where the size of each group is
less than or equal to K, and DED(θ) to denote the
instantiation where the diameter of each group is less than
or equal to θ. We sometimes use DE to generically denote
either of the two formulations. Note that it is also possible
to use size and diameter specifications together.

3.1. Properties of the DE Formulation
In this section, we show that the DE problems have

several desirable properties. Some of these properties
characterize the behavior of a domain-independent
distance-based duplicate elimination function under
intuitive transformations to distances between tuples.
Similar properties were proposed for domain-independent
clustering functions by Kleinberg [18]. For the rest of the
section, we assume that the distance function d, the
aggregation function AGG, and SN threshold c are fixed.
Constrained by space, we skip proof sketches of lemmas.

Uniqueness: The solutions to DES(K) and DED(θ) are
unique. Therefore, DES(K) and DED(θ) can be viewed as
functions which partition a given relation R.

Lemma 1: For a given set of parameters K or θ, the
DES(K) and DED(θ) problems have unique solutions.

Scale Invariance: Intuitively, the scale of a distance
function does not impact the local structural properties of
tuples, and hence duplicate elimination may not change.
Formally, a partitioning function f is scale-invariant if for
any distance function d and an α > 0, f(d) = f(α·d).

Lemma 2: DES(K) is scale-invariant.

Split/Merge Consistency: Intuitively, shrinking distances
between tuples in a group of duplicates, and expanding
distances between tuples across groups may only change

the partition resulting from a duplicate elimination
function in limited ways. Under such a distance
transformation, a tuple in group of duplicates cannot
simultaneously become closer to tuples in a different
group of duplicates, and farther from tuples in the original
group. That is, a group of duplicates in the new
partitioning under the transformed distances cannot be a
union of proper subsets of groups in the original partition.

Let P be a partition of R. We say that a distance
function d’ is a P-conscious transformation of d if for any
pair of tuples v1, v2 within the same group of P, d’(v1, v2)
≤ d(v1, v2) and for any pair v1, v2 in two different groups
of P, d’(v1, v2) ≥ d(v1, v2). A partitioning function f is
split/merge consistent if for any distance function d such
that P = f(d) and any P-conscious transformation d’ of d,
each group in f(d’) is either subset of a group in P or equal
to the union of groups in P.

Lemma 3: The duplicate elimination functions DES(K)and
DED(θ) are split/merge consistent.

Let P be the partition obtained by solving the duplicate
elimination problem on R. Suppose, we construct a new
relation R’ by “homogenizing” duplicate tuples. That is,
we make them very similar to each other (say, a very small
distance apart). The new distances correspond to a P-
conscious transformation of the original distance function
d. Since the duplicate elimination functions are
split/merge-consistent, re-invoking either one of them on
R’ would result in a partition that consists of union of
groups in P or subsets of groups in P.

Constrained Richness: In most scenarios where duplicate
elimination is applied, only a small fraction of tuples in
the relation have duplicates and, the sizes of groups of
duplicates tend to be small. Therefore, the range of
duplication functions must include all partitions into a
large number of small groups. This is in contrast to the
original richness property in [18], which requires all
possible partitions of a relation to be in the range. Our
modification (which constrains the range from all possible
partitions) differentiates the duplicate elimination from the
clustering problem.

Let 0 ≤ α, β < 1 be two positive constants. A
partitioning function is (α, β)-rich if its range includes all
partitions of a relation R having at least |R|(1-α) groups such
that the maximum size of any group is less than |R|β. We
now show that the range of DES(K) is rich for a variety of
parameter settings.

Lemma 4: DES(K) is (α, β)-rich if c < |R|(1- α) and K ≥ |R|β.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

4. Duplicate Elimination Algorithm
In this section, we describe a scalable and efficient

algorithm for solving the DE problem. We effectively
exploit the ``cut’’ (size or diameter) specifications to
design an efficient algorithm. The main challenges are: (i)
efficient identification of mutual nearest neighbors, and
(ii) efficient partitioning of an input relation into the
minimum number of compact SN groups which satisfy the
cut specification. Our insight is to determine tuple pairs
whose nearest neighbor sets are equal and then extend the
pair wise equality to groups of tuples. We take a 2-phase
approach: first determine the nearest neighbors (either the
best K neighbors or all neighbors within a certain radius,
depending on the cut specification) of every tuple in the
relation, and then partition the relation into compact SN
sets. By dividing it into two phases, we exploit nearest
neighbor indexes in the first phase and the query
processing ability of the database backend in the second
phase to make the algorithm efficient and scalable. Figure
3 shows the architecture of our system implemented as a
client over Microsoft SQLServer.

In the first nearest neighbor computation phase, we
assume the availability of an index for efficiently
answering the following query: for any given tuple v in R,
fetch its nearest neighbors. (Otherwise, we apply nested
loop join methods in this phase.1) Since designing exact
nearest neighbor indexes for distance (or similarity)
functions typically used for duplicate elimination is very
hard (e.g., [16]), several approximate and probabilistic
indexes have been developed for standard distance
functions (like cosine metric, edit distance, and fuzzy
match similarity) [24, 23, 9]. For the purpose of this
paper, we treat these probabilistic indexes as exact nearest
neighbor indexes. The experimental results in Section 5
illustrate that this assumption does not negatively impact
the actual results of our algorithm.

In the second partitioning phase, we partition the
relation into the minimum number of valid groups of
duplicates. We perform most of the processing required in
this phase using standard SQL queries. In the process, (i)

1 Join-based methods developed for specific distance
functions such as edit distance may be employed for the
diameter specification [GIJ+01].

we exploit efficient query processing abilities of database
systems and (ii) we avoid moving large amounts of data
between the client and the server.

4.1. Nearest Neighbor Computation Phase
In this phase, we determine for each tuple in the

relation R, its nearest neighbors and its neighborhood
growth. The output of this phase is a relation
NN_Reln[ID, NN-List, NG] where ID is the identifier of a
tuple v whose neighbor growth is NG. For the DES(K)
problem, NN-List is the list of tuple identifiers of the K
nearest neighbors of the tuple v; for the DED(θ) problem,
NN-List is the list of tuple identifiers of all tuples whose
distance from the tuple v is less than θ. Given an index
that can be used for fetching the nearest neighbors (top-K
or within a certain distance) and for computing the
neighborhood growth, a straightforward procedure is to
scan the input relation R and for each tuple v in R lookup
the index, and write the tuple [v, NN-List(v), ng(v)] to the
output.

However, the index structures typically used for
fetching nearest neighbors are disk-based. For example,
nearest neighbor indexes for the edit distance or the fuzzy
match similarity functions have a structure similar to
inverted indexes in IR [24, 9], and are usually large.
Therefore, if consecutive tuples being looked up against
these indexes are close to each other, then the lookup
procedure is likely to access the same portion of the index,
and the second lookup benefits due to the first. This
significantly improves the buffer hit ratio and the overall
running time. We now describe a lookup order that can be
implemented efficiently.
4.1.1. Index Lookup Order

Let us consider the example tuples in Table 1. Suppose
the order in which we lookup the nearest neighbors of
tuples in R is 1, 12, 5, etc. In order to fetch the nearest
neighbors of tuple 1 (“The Doors, LA Woman”), the
indexing procedure would access a portion of the index
and in the process cache it in the database buffer. A
similar lookup for nearest neighbors of tuple 12 (“Aliyah,
Are you ready”) would access a completely different
portion of the index because tuple 12 is very far from
tuple 1. Alternatively, if we lookup nearest neighbors of
tuple 2 (“Doors, LA Woman”) after processing tuple 1, we
will use almost the same portion of the index.
Consequently, we can exploit the benefits of it being
already in the database buffer.

A good lookup order must have two properties. First,
tuples immediately preceding any tuple in the order must
be close to it. Second, the procedure for ordering input
tuples has to be efficient. For instance, if the lookup order
requires the entire relation to be grouped (using an
expensive clustering algorithm), then we would have lost

Microsoft SQLServer

Figure 3: Architecture

Phase 1:
NN list computation

Phase 2:
Partitioning Phase

NN-Index

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

the benefit of ordering the input since the ordering process
itself is very expensive.

We adopt the following breadth first (BF) order, which
satisfies both the above requirements. The order
corresponds to a breadth first traversal of a tree T
constructed as follows. We select any input tuple to be the
root of the tree. The children of any node in the tree are its
nearest neighbors, which have not already been inserted
into the tree. Figure 4 illustrates the input ordering. Note
that we do not actually build such a tree but just fetch
input tuples in the appropriate order.

Each tuple (except the root) in the BF order is always
preceded by its siblings or the children of its parent’s
sibling. These tuples are much closer to each other than
arbitrary pairs of tuples. For example, the tuple numbered
5 in Figure 4 is preceded by its siblings 2, 3, and 4.
Therefore, all tuples in the lookup order are preceded by
tuples that are very close to them. Consequently, the
lookup algorithm makes localized index accesses and we
observe a significant improvement in the buffer hit ratio.
Our experimental study in Section 5 shows a 100%
improvement in the number of K nearest neighbor queries
processed per unit time interval, thus confirming the
above intuition.

For each lookup of an input tuple, we fetch its nearest
neighbor tuples. Therefore, when we encounter a tuple,
say the tuple numbered 12 in Figure 4, in the BF order we
would have already fetched it when its parent tuple
numbered 2 was looked up. Therefore, the database buffer
would already have cached tuple numbered 12. We can
either explicitly cache these tuples, memory permitting, or
rely on the database system to buffer recent accesses. In
our implementation, we rely on the latter.
Figure 5 presents the pseudo-code for the nearest neighbor
computation phase. Step 1 describes the initialization.
Step 2 iterates over the BF order queue consisting of
tuples to be looked up in the appropriate order. Step 3
describes the re-initialization of the queue when it
empties. Ensuring that every tuple in R has been looked
up can also be combined with the initialization of the
queue into a single scan of R. That is, we start a scan of R,
initialize the queue Q, and continue the scan whenever Q
is empty until we lookup all tuples.

Space requirements: We now discuss the space required
for implementing the lookup order. We maintain a bit
vector in order to mark tuples whose nearest neighbors we

have already looked up. In all practical scenarios, such a
bit vector fits in main memory given current main memory
sizes. Second, we maintain a queue to lookup tuples in the
BF order. Since we only maintain the identifiers (long
integers) of tuples in this queue, the size of the queue is
relatively small and fits in main memory. In any case,
when the queue outgrows a certain size, we stop inserting
new tuples into it until it empties out. Thus, the additional
main memory required is limited to the amount available
for consumption.

4.2. Partitioning Phase
The second partitioning phase uses the output of the

first phase to partition the input relation into the minimum
number of compact SN sets. The resulting partition is the
solution to the DE problem. For clarity of description, we
describe the procedure for the DES(K) problem, and point
out the straight-forward adjustments for the DED(θ)
problem as required. We illustrate the intuition with the
following example. Consider an example where the group
{10, 50, 100, 150} forms a compact SN set. It is enough
to know, besides the neighborhood growth (NG) values of
each tuple, that the 4 nearest neighbor sets of the pairs
{10, 50}, {10, 100}, {10, 150} are all equal. We deduce
from the pair wise equality that the group {10, 50, 100,
150} is a compact set. As illustrated in Figure 6, our two-
step procedure automates this intuition.

CSPairs Construction Step: The first step computes
equality of neighbor sets of varying sizes between tuple
pairs. That is, for a tuple pair (10, 100) as in Figure 6, we
determine whether their 2-nearest neighbor sets, 3-nearest
neighbor sets, and so on until K-nearest neighbor sets are
equal. Such a comparison between tuples v1 and v2 yields
the following list of boolean values [CS2, …, CSK] along
with their neighbor growths ng(v1) and ng(v2). The value
CSi (2 ≤ i ≤ K) denotes whether the i-neighbor sets of v1

PrepareNNLists(relation R, NNIndex I, int K, double θ)
1 Setup

a. Create the relation NN_Reln(ID, NN-List, NG)

b. Initialize queue Q by inserting a tuple from R

c. Initialize bit vector H of size |R|

2 While Q is not empty

a. v=front(Q); if H[v] is not set, get NN-List(v) and
the number of neighbors within radius 2·NN(v) using
index I;

b. Compute neighbor growth NG(v)

c. Add neighbors of v to Q, if Q has space

d. Write the tuple [v, NN-List(v),NG(v)] to NN_Reln

e. Set the bit H[v] in H

3 Insert another tuple not set in H from R into Q; goto 2.

Figure 5: Procedure for materializing NN_Reln

Figure 4: An example breadth first (BF)

1

2 11

12 111

3

22

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

and v2 are equal. We store the result in a temporary
relation CSPairs.

We issue a SQL (select into) query against the output
(NN_Reln) of the first phase to compute the CSPairs
relation. The query involves a self-join of NN_Reln (say,
FROM NN_Reln1, NN_Reln2) on the predicate that a
tuple NN_Reln1.ID is less than NN_Reln2.ID and that it
is in the K-nearest neighbor set of NN_Reln2.ID and vice-
versa. The selected column list has the following two
parts: (i) NN_Reln1.ID, NN_Reln2.ID, NN_Reln1.NG,
NN_Reln2.NG, and (ii) for each j between 2 and K a case
statement which returns 1 if the set of j-nearest neighbors
of NN_Reln1.ID equals the set of j-nearest neighbors of
NN_Reln2.ID. We can use user-defined functions to
efficiently compute part (ii) of each record in CSPairs.
However, we observe that for the Size-K specification
when the ID-List attribute is expanded into K attributes,
one per neighbor, we can use standard SQL and perform
all of the computation at the database server. For the
DED(θ) problem, we rely on a user-defined function to
compute the list of boolean values [CS1,…]. Note that the
sizes of these lists can be different for different pairs for
the Diameter-θ specification.

Partitioning Step: In this step, we extend the equality
between neighbor sets of tuple pairs to sets of tuples and
determine whether a set of neighbors is compact and
satisfies the SN criterion. In Figure 6, the 4-neighbor sets
of tuple pairs (10, 50), (10, 100), and (10, 150) are equal
and therefore form a compact set of size 4. The set {10,
50, 100, 150} can be output as a group of duplicates
provided (i) the aggregate SN value of this group is less
than the threshold c, and (ii) it cannot be extended to a
larger compact SN group. Observe that we do not
explicitly check whether or not the 4-neighbor sets of
pairs (50, 100), (50, 150), etc. because set equality is
transitive. We now describe the procedure.

We process the CSPairs relation (output of CSPairs
construction step) by issuing the following CS-group
query “select * from CSPairs order by ID” to group all
neighbor set comparison results between a tuple v and its
neighbors v’ where v.ID < v’.ID. Observe that in the result
of the CS-group query, each compact SN set G will be
grouped together under the tuple with the minimum ID in
G. We process each group Q[ID=v] (identified by the
same ID) of tuples in the result of the CS-group query.
For a group Q[ID=v] of tuples, if v has not already been
identified as belonging to a compact SN set, we determine
the largest non-trivial (of size greater than 1) compact SN
set Gv that v can belong to. This set can be identified
from just the group Q[ID=v]. We output the set Gv and
mark each tuple in Gv to indicate its assignment to a
compact set. For example, the set against tuple 10 is {10,
50, 100, 150}. We output the set {10, 50, 100, 150} and
mark tuple identifiers 10, 50, 100, 150 as belonging to a
valid compact SN set so that they are not processed again.
Space Requirements: We require a bit vector for marking
whether or not a tuple has been processed.

4.3. Correctness & Complexity
The correctness of the algorithm follows from the

following observation: Each compact SN set
G={v1,…,vm} such that m ≤ K and vi < vj (i < j) in the
solution to DE is grouped under v1 in the result of CS-
group query. The reason is that the m-nearest neighbor
sets of (v1, v2), …, (v1, vm) are all equal because G is a
compact set. Also, no tuple in G can belong to a larger
compact SN set in the solution for DE. Otherwise, v1

cannot be the minimum identifier in G. Therefore, we do
not have to further process groups in the query result
under any of these tuples.

Phase 1 is an index nested loops join using the nearest
neighbor index. Since indexes are effective at significantly
reducing comparisons between tuples, the overall cost is
linear in the number of tuples in the size of the input
relation R. The cost of the second phase is the sum of the
CSPairs construction step and the partitioning step costs.
The CSPairs construction involves comparing pairs of lists
of nearest neighbor sets of tuples, which for the Size-K
specification is less than K·|R|. The cost of sorting the
CSPairs relation dominates the partitioning step cost as
that of processing each group is very small. Observe that
Phase 1 dominates the overall cost of the algorithm.
Therefore, with an effective nearest neighbor index, our
algorithm scales to large input relations. In contrast,
standard clustering formulations (with some exceptions
like the single linkage formulation) are usually NP-hard.

4.4. Determining the SN threshold c
In our formulation of the DE problem, we require the

user to specify the sparse neighborhood threshold c. We

Output of Phase 1 (NN_Reln)

Figure 6: Example illustrating the partitioning phase

ID : Compact SN Group
10 : 50, 100, 150
…

ID1, ID2 : CS2, CS3, CS4,…,NG(ID1), NG(ID2)
10, 50 : [0, 0, 1, …], 2.0, 2.0
10, 100 : [0, 1, 1, …], 2.0, 3.0
10, 150 : [0, 0, 1, …], 2.0, 2.0
…

ID : [NN1, NN2, NN3, …], NG(TID)
10 : [100, 50, 150, …], 2.0
50 : [10, 150, 100, …], 2.0
100 : [50, 10, 150, …], 3.0
150 : [10, 100, 100, …], 2.0
…

Step 2

Step 1
(CSPairs)

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

now describe a technique to assist a user in setting the
threshold appropriately. The insight is to ask users to input
aggregated information that is easier for them to estimate
than it is to set a sparse neighborhood threshold, which
requires a deeper understanding of the data distribution.
We ask the user to estimate the fraction f of duplicate
tuples in the input relation. The intuition is that most
tuples whose NG values are less than the SN threshold are
duplicate tuples. Therefore, in an ideal scenario when NG
values of all unique tuples are above this threshold, the f-
percentile2 in the cumulative NG distribution D is the SN
threshold. However, a small percentage of unique tuples
may have lower NG values (besides the value f being only
an estimated fraction of duplicate tuples). In order to be
robust, we also rely on the aggregate characteristics that
the fraction of unique tuples is much higher than the
fraction of duplicates and that unique tuples have higher
NG values. Reflecting this intuition, our heuristic is that
the actual SN threshold is the least value x=D-1(y) around
the f-percentile (say, |D-1(y)-f| ≤ 0.05) where there is a
“spike” in the distribution D, i.e., the rate of growth D’(x)
of D is high. A spike is (heuristically) defined to occur
when the D’(x) > 1.0. When no such spike exists, we use
the value D-1(f+0.05) as the SN threshold. The parameters
for defining the vicinity of f (placing an interval around f)
and the spike may be guided by a user. Since the SN
threshold value is not required until the second
partitioning phase, we can re-use the NG values from the
first phase.

4.5. Discussion
We now discuss a few issues relating to our formulation of
the duplicate elimination problem, and extensions.

4.5.1. Incorporating Additional Knowledge
Consider a scenario where the domain expert knows that if
two tuples together satisfy a predicate (e.g., two product
descriptions are identical but for the version number at the
end), then they cannot be duplicates of each other. We
note that it is easy to add such additional constraining
predicates—which rule out tuple pairs from being called
duplicates—into our formulation of the duplicate
elimination problem. The extended algorithm proceeds
unchanged except for an additional check at the end to
ensure that all groups satisfy this new criterion. If any
group violates the new constraining predicate, we would
further split the group. The ability to add additional
constraining predicates allows us to incorporate
constraining knowledge obtained via supervised learning
[5, 26, 28] into our formulation of the DE problem.
However, note that it is not possible to add “positive”

2 The f-percentile of a cumulative distribution D is the value
x at which D(x) equals f.

knowledge, which stipulates that tuples are duplicates if a
rule or predicate is satisfied, into our formulation easily.
Our algorithm is not adaptable easily to the new problem
extended with positive knowledge.

4.5.2. Minimality of Compact sets
Consider the set of tuples {v1, v1’, v2, v2’, v3, v3’} such

that vi and vi’ (1≤ i ≤3) are duplicates. Under appropriate
distance and parameter assignment, the solution to the
DES(K) problem is a single group consisting of all six
tuples.3 Such an outcome occurs if the union of non-trivial
compact sets is also a compact SN set allowing us to
merge disjoint compact sets into a larger compact set. To
avoid such unintuitive outcomes, we can impose the
following notion of “minimality” on compact sets in
addition to the mutual nearest neighbor restriction. S is a
minimal compact set if S consists of mutual nearest
neighbors and there do not exist disjoint subsets S’ and S’’
of S such that |S’| > 1 and |S’’| > 1 and S’ and S’’ are
compact sets. The algorithm for this new formulation is a
straightforward adaptation of the algorithm for the original
formulation. We just have to add an additional post-
processing check of ensuring that each compact set is
actually minimal. Otherwise, we would further split such
groups into minimal groups.

Our experiments on a variety of real datasets however
indicate that scenarios where we merge multiple minimal
non-trivial compact sets together without violating the SN
and the group size criteria are very rare. Such mergers can
only occur if tuples across smaller compact sets are still
very close to each other. However, in most real scenarios,
either (i) all of them are really duplicates of each other or
(ii) the neighborhood growths of individual tuples would
be high preventing us from grouping them together.
Therefore, in our DE formulation we do not constrain the
solution to consist of minimal compact sets.

5. Experimental Evaluation
We present a thorough experimental evaluation of our
duplicate elimination algorithm on real datasets to show
that it is more accurate than the current threshold-based
approaches. We first describe the setup and our evaluation
metrics and then discuss the experimental results.

Real Datasets: We consider Media[artistName,
trackName] and Org[name, address, city, state, zipcode]
relations from internal data warehouses as well as publicly
available datasets: Restaurants[Name], BirdScott[Name],
Parks[Name], and Census[LastName, Last name, Middle
initial, Number, Street], from the Riddle repository [8].

3 An example assignment: the distance between vi and vi’ is
less than half that between vi (vi’) and vj (vj’) for all i ≠ j; the SN
threshold is greater than 1.0 and K is greater than 6.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Algorithms Compared: We compare our DES(K) and
DED(θ) formulations with a standard thresholding strategy
(denoted thr) based on single linkage clustering [e.g., 15,
20]. As discussed earlier, we induce (for thr) the threshold
graph using the output (NN_Reln) of the nearest neighbor
computation phase and a distance threshold θ. Each
maximal connected component is returned as a set of
duplicates. Note that most (almost 80-90%) sets of
duplicates just consist of tuple pairs. Hence, alternative
methods for componentizing the threshold graph into stars
or cliques still return similar results.

Evaluation Metrics: We use precision and recall metrics
to evaluate duplicate elimination algorithms [6]. Recall is
the fraction of true pairs of duplicate tuples identified by
an algorithm. And, precision is the fraction of tuple pairs
an algorithm returns which are truly duplicates. Higher
recall and precision values are better. A precision versus
recall graph plots the (recall, precision) values for various
parameter settings. Comparing the precision versus recall
plots allows us to comprehensively compare algorithms
across several parameter settings.

Distance Functions: We evaluate our formulation using
two distance functions. We employ the edit distance (ed)
[27] and a function combining edit distance and cosine
metric with IDF weights, called fuzzy match similarity
(fms). We consider a symmetric variant of the original fms
function [9]. The function fms was shown to be very
effective for matching erroneous tuples with their correct
counterparts. To illustrate, consider the following example
strings: “microsoft corp” and “microsft corporation.” They
are close because ‘microsoft’ and ‘microsft’ are close
according to edit distance and the IDF weights of ‘corp’
and ‘corporation’ are relatively small. In contrast, edit
distance between “microsoft corp” and “mic corporation”
is less than that between “microsoft corp” and “microsft
corporation.” Similarly, cosine metric (with IDF
weighting) places “microsft corporation” and “boeing
corporation” closer to each other than “microsoft corp”
and “microsft corporation.” Further, the fuzzy match
similarity function is efficiently (probabilistically)
indexable [9].

5.1.1. Quality
Figures 10 plots the precision versus recall graphs for

duplicate elimination algorithms using the edit distance
function: threshold-based single linkage (thr), DES(K) with
c=4 (i.e., neighborhood growth must be less than 4 for
sparseness) and c=6, and DED(θ) with c=4 and c=6. We
fix the aggregation function (AGG) to be Max and vary
the parameters K and θ, respectively and plot the precision
versus recall values. Figure 11 plots similar graphs for
algorithms using the fuzzy match similarity function. For
several datasets, and for both edit distance and fuzzy

match similarity, the DES(K) and DED(θ) plots outperform
thresholding approaches. For the same recall, our DE
approaches yield higher precision (often 5-10% and
sometimes 20% or more), especially for higher recall
values. Only for the Parks dataset, there is no
improvement over threshold approaches. Further, the
precision-recall graph for the DES(.) plots are mostly
concentrated around the same recall-precision values
whereas the DED(.) plots have a wider spread of precision-
recall values. The reason is that the nearest neighbor lists
for the DEK() formulation are dependent only on K and
not on the specific distance thresholds. Usually, the
number of compact groups of size 2 is far greater than
those with number 3, etc. Therefore, the variations in
precision and recall with variations in K are not very high.
In contrast, the sizes of the nearest neighbor lists for the
DED(θ) varies significantly with variations in θ.
Consequently, the precision and recall values also vary
with θ. Therefore, the Diameter-θ specification is useful
for better control on precision.

Figure 7 plots the precision versus recall plots on the
Restaurants dataset of DES() and DED() for different
aggregation functions (Max, Avg, Max2—the 2nd

maximum value). All three aggregation functions yield
very similar results because a large percentage of groups
are of size 2.

5.1.2. Run-time Performance
We illustrate the performance of our algorithm via the

DES(K) problem with the fuzzy match similarity function;
results for the DED(θ) would be similar. We first evaluate
the impact of BF ordering on improving the performance
of the first nearest neighbor computation phase, and then
evaluate the overall scalability.

BF Ordering: We evaluate the impact of BF ordering
using a relation consisting of 3 million organization
addresses. We measure (i) database buffer hit ratio (BHR),
(ii) processor usage (PU), and (iii) the throughput or the
number of input tuples looked up per unit time interval
(Thrpt) for both BF and random (rnd) orders. We vary the
memory sizes allocated to the database buffer between
32MB and 128MB. Figure 8 presents the results. We
observe that BHR, PU, and Thrpt for the BF order are
higher than that for the random order. In particular, the

Restaurants: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

DES(K):Avg DES(K):Max
DES(K):Max2 DED(θ):Avg
DED(θ):Max DED(θ):Max2

Figure 7: Aggregation functions

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

overall throughput improved by almost 100% due to the
BF order. That is, BF ordering halves the time required
for the first phase.

0

20

40

60

80

100

B
H

R
-r

nd

B
H

R
-b

f

P
U

-r
nd

P
U

-b
f

T
hr

pt
-r

nd

T
hr

pt
-b

f

32MB 64MB 128MB

1

10

100

1000

10 100 1000
#Tuples (in 1000's)

N
o

rm
al

iz
ed

 R
u

n
n

in
g

T
im

e

Phase1
Phase2

Scalability: We now study the scalability of our algorithm
using a relation containing 3 million organization
addresses. Figure 9 reports the normalized running times
(normalized by the time required for executing Phase 1
over 10K tuples) of both phases versus the size (in
multiples of 1000) of the dataset; both axes are on
logarithmic scales. The linearity of the plots demonstrates
the scalability of both phases of our algorithm.

5.1.3. Summary
We have shown our DE formulation to be accurate and
robust and that they yield better precision-recall tradeoffs
than previous approaches. We then illustrated the
efficiency and scalability of our algorithm. In particular,
we demonstrated the benefit of BF ordering for
significantly reducing (to almost 50%) the running time of
the first nearest neighbor computation phase of the
algorithm for solving the DE problem.

6. Related Work
The problem of duplicate elimination has recently

received a lot of attention due to its practical significance
in a variety of data management scenarios. Previous
solutions to duplicate elimination can be classified into
supervised and unsupervised approaches.

Supervised approaches learn rules characterizing pairs
of duplicates from training data consisting of known
duplicates [11, 5]. These approaches assume that training
data exhibit the variety and distribution of errors observed
in practice. It is difficult, if not impossible, to obtain such
comprehensive training data, an issue that was addressed
to a limited extent by active learning approaches [26, 28]
which have the drawback of requiring interactive manual
guidance. In many real data integration scenarios, it is not

possible to obtain good training data or interactive user
guidance.

As discussed earlier, previous unsupervised methods
ignore local structural properties and rely on global
thresholds over distances (in particular, edit distance or
cosine similarity) to detect duplicates, and hence lead to
poor recall-precision tradeoffs [e.g., 15, 21, 14]. The
duplicate elimination problem has also been studied in the
record linkage literature (e.g., [13, 17, 19]). These
approaches still rely on threshold-based notions but use
similarities aggregating matches between attribute values.
See [29] for a recent survey of these methods. Alternative
approaches for partitioning the threshold-graph into
components that are strongly connected (e.g., cliques or
almost cliques) would result in almost the same groups of
tuples as those from single linkage partitioning because
most groups of duplicates in practice are very small (of
size 2 or 3). Recent research has focused on improving the
distance functions [10, 1] and in determining appropriate
thresholds, but they still inherently involve global
thresholds for single linkage clustering algorithms. Most
of these distance or similarity functions can be used with
our DE formulations thus achieving better precision-recall
tradeoffs.

Our formulation of the duplicate elimination problem is
different from standard clustering formulations [12, 22]
primarily because of the CS and SN criteria. Most
clustering formulations insist that each cluster be very
dense and contain a large number of tuples whereas our
DE formulation focuses on groups consisting of mutual
nearest neighbors and the local neighborhood being
sparse. Consequently, we cannot directly use standard
clustering formulations and algorithms. A notion similar to
the SN criterion has been explored in the context of outlier
detection [4].

Several blocking approaches have been proposed to
speed up algorithms for solving the threshold-based
duplicate elimination problem [2, 15]. The idea (similar to
that of hash join algorithms) is to partition the relation into
blocks and to only compare records within blocks.
However, they do not guarantee that all required nearest
neighbors of a tuple are also in the same block. Hence, we
are unable to use these blocking strategies.

Braunmueller et al. develop techniques for optimizing
batches of similarity queries where they simultaneously
process several nearest neighbor queries [7]. However,
these approaches require access to all candidate tuples
being fetched by the index for any single nearest neighbor
query. Implementing such a strategy requires changes to
the indexing structure and/or the database backend. Since
implementing our system as a client to standard database
systems is one of our design goals, we are unable to adopt
their approach.

Figure 9: Normalized
running times for both
phases

Figure 8: Comparing buffer
hit ratio % (BHR), processor
usage % (PU), and Lookup
throughput (Thrpt) for random
(rnd) and breadth first (bf)
ordering.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

OD: Precision vs. Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr DES(K):c=4
DES(K):c=6 DED(θ):c=4
DED(θ):c=6

WM: Precision vs. Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr DES(K):c=4
DES(K):c=6 DED(θ):c=4
DED(θ):c=6

Restaurants: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr

DES(K):c=4

DES(K):c=6

DED(θ):c=4

DED(θ):c=6

BirdScott: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr DES(K):c=4
DES(K):c=6 DED(θ):c=4
DED(θ):c=6

Parks: Precision vs Recall

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr DES(K):c=4
DES(K):c=6 DED(θ):c=4
DED(θ):c=6

Census: Precision vs Recall

0
0.2
0.4
0.6
0.8

1

0 0.5 1

P
re

ci
si

o
n

Thr
DES(K):c=4
DES(K):c=6
DED(θ):c=4
DED(θ):c=6

Figure 10: Precision vs. Recall using Edit distance

OD: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr
DES(K):c=4
DES(K):c=6
DED(θ):c=4
DED(θ):c=6

WM: Precision vs. Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr DES(K):c=4
DES(K):c=6 DED(θ):c=4
DED(θ):c=6

Restaurants: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr

DES(K):c=4

DES(K):c=6

DED(θ):c=4

DED(θ):c=6

BirdScott: Precision vs. Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr

DES(K):c=4

DES(K):c=6

DED(θ):c=4

DED(θ):c=6

Parks: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr
DES(K):c=4
DES(K):c=6
DED(θ):c=4
DED(θ):c=6

Census: Precision vs Recall

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Thr

DES(K):c=
4
DES(K):c=
6
DED(θ):c=

Figure 11: Precision vs. Recall plots using the fuzzy match similarity function

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

7. Conclusions
In this paper, we propose a new formulation for the
duplicate elimination problem based on two fundamental
properties (compact set and sparse neighborhood) which
characterize duplicate tuples. We show that our
formulation has several desirable characteristics under
intuitive transformations to distances between tuples. We
develop an efficient algorithm for solving the duplicate
elimination problem. Using real datasets, we show the
quality and robustness of our formulation as well as the
scalability of our algorithm.

References
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
fuzzy duplicates in data warehouses. In Proceedings of the
International Conference on Very Large Databases, 2002.
[2] R. Baxter, P. Christen, and T. Churches. A comparison of
fast blocking methods for record linkage. In Proceedings of the
ACM SIGKDD workshop on data cleaning, record linkage, and
object identification, August 2003.
[3] D. Bitton and D. DeWitt. Duplicate record elimination in
large data files. ACM Transactions on database systems
(TODS), 8(2), 1983.
[4] Breunig S., Kriegel H.-P., Ng R., Sander J.: 'LOF:
Identifying Density-Based Local Outliers'. In Proceedings of
ACM SIGMOD, 2000
[5] M. Bilenko and R. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of the
ninth ACM SIGKDD international conference on knowledge
discovery in databases, 2003.
[6] M. Bilenko and R. J. Mooney. On evaluation and training-
set construction for duplicate detection. In Proceedings of the
ACM SIGKDD workshop on data cleaning, record linkage, and
object identification, August 2003.
[7] Braunmueller B., Ester M., Kriegel H.-P., and Sander J.
Multiple similarity queries: A basic dbms operation for mining
in metric databases. IEEE Transactions on Knowledge and Data
Engineering, 13(1), 2001.
[8] M. Bilenko. RIDDLE: Repository of information on
duplicate detection, record linkage, and identity uncertainty.
http://www.cs.utexas.edu/users/ml/riddle/index.html
[9] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In
Proceedings of the ACM SIGMOD, June 2003.
[10] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In
Proceedings of ACM SIGMOD, pages 201--212, Seattle, WA,
June 1998.
[11] W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In
Proceedings of the eighth ACM SIGKDD international
conference on knowledge discovery in databases, Edmonton,
Canada, July 23-26 2002.
[12] E. Forgy. Cluster analysis of multivariate data: Efficiency
vs. interpretability of classifications. Biometrics, 21, 1965.

[13] I. P. Felligi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society, 64:1183--1210,
1969.
[14] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava. Approximate string joins in a
database (almost) for free. In Proceedings of the 27th
international conference on very large databases (VLDB), pages
491--500, Roma, Italy, September 11-14 2001.
[15] M. Hernandez and S. Stolfo. Real-world data is dirty: Data
cleansing and the merge/purge problem for large databases.
Data mining and knowledge discovery, 2(1): 9—37, 1998.
[16] Piotr Indyk. Approximate nearest neighbor under edit
distance via product metrics. In 15th Symposium on discrete
algorithms, 2004.
[17] B. Kilss and W. Alvey. Record linkage techniques--1985.
statistics of income division. Internal revenue service
publication, 1985.
[18] J. Kleinberg. An impossibility theorem for clustering. In
Advances in Neural Information Processing Systems, 2002.
[19] L. Gill. Ox-link: The oxford medical record linkage system.
Record Linkage Techniques 1997, 1999.
[20] A. Monge and C. Elkan. The field matching problem:
Algorithms and applications. In Proceedings of the 2nd
international conference on knowledge discovery and databases
(KDD), 1996.
[21] A. Monge and C. Elkan. An efficient domain independent
algorithm for detecting approximately duplicate database
records. In Proceedings of the SIGMOD Workshop on Data
Mining and Knowledge Discovery, Arizona, May 1997.
[22] Ester M., Kriegel H.-P., Sander J., and Xu X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the 2nd int.l conference
on knowledge discovery and databases (KDD), 1996.
[23] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio.
Indexing methods for approximate string matching. IEEE Data
Engineering Bulletin, 24(4):19--27, 2001.
[24] G. Navarro. Searching in metric spaces by spatial
approximation. The VLDB Journal, 11(1):28--46, 2002.
[25] E. Rahm and H. Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin, 23(4):3--
13, December 2000.
[26] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery in
databases, Edmonton, Canada, July 23-26 2002.
[27] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147:195--197, 1981.
[28] S. Tejada, C. Knoblock, and S. Minton. Learning domain-
independent string transformation weights for high accuracy
object identification. In Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery in
databases, Edmonton, Canada, July 23-26 2002.
[29] W. Winkler. Data cleaning methods. In Proceedings of the
ACM SIGKDD workshop on data cleaning, record linkage, and
object identification, August 2003.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

