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Abstract

Record or data linkage is an important enabling tech-
nology in the health sector, as linked data is a cost-
effective resource that can help to improve research
into health policies, detect adverse drug reactions, re-
duce costs, and uncover fraud within the health sys-
tem. Significant advances, mostly originating from
data mining and machine learning, have been made
in recent years in many areas of record linkage tech-
niques. Most of these new methods are not yet im-
plemented in current record linkage systems, or are
hidden within ‘black box’ commercial software. This
makes it difficult for users to learn about new record
linkage techniques, as well as to compare existing link-
age techniques with new ones. What is required are
flexible tools that enable users to experiment with
new record linkage techniques at low costs.

This paper describes the Febrl (Freely Extensi-
ble Biomedical Record Linkage) system, which is
available under an open source software licence. It
contains many recently developed advanced tech-
niques for data cleaning and standardisation, index-
ing (blocking), field comparison, and record pair clas-
sification, and encapsulates them into a graphical user
interface. Febrl can be seen as a training tool suit-
able for users to learn and experiment with both tra-
ditional and new record linkage techniques, as well as
for practitioners to conduct linkages with data sets
containing up to several hundred thousand records.

Keywords: Health data linkage, data matching, data
integration, deduplication, data cleaning, open source
software, record linkage software, GUI.

1 Introduction

Many private and public organisations in the
health sector are collecting, storing, processing and
analysing fast-growing amounts of data with millions
of records. Most of this data is about people (such
as GP or hospital patients, or members of a pri-
vate health insurance company) and contains names,
addresses, and other health related personal details.
Linking and aggregating records that relate to the
same person from several databases is becoming in-
creasingly important, as linked data can contain in-
formation that is not available otherwise, and thus
allows studies that would otherwise not have been
possible, or only using expensive and time consuming
survey methods.
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In the health sector, record linkage is of prime in-
terest as linked data can help to improve health poli-
cies, uncover fraud, reduce costs, detect adverse drug
reactions, and be used instead of expensive survey
data in epidemiological studies (Brook et al. 2005,
Clarke 2004). For example, research in Western Aus-
tralia based on an ambulance cardiac arrest database
linked with hospital data and death registers led to
the installation of defibrillators in ambulances and
hospital wards, thereby saving many lives.

In recent years, the importance of health record
linkage has been recognised in Australia with the in-
clusion of Population Health and Clinical Data Link-
age as one of twelve capability areas within the federal
government’s National Collaborative Research Infras-
tructure Strategy (NCRIS),1 and the establishment in
2006 of the NSW and ACT Centre for Health Record
Linkage (CHeReL),2 which is based on the methodol-
ogy developed by the Western Australian Data Link-
age Unit (Kelman et al. 2002).

While there are many commercial data integra-
tion and linkage systems available, most of them are a
‘black box’ from the user’s perspective, in that the de-
tails of the technology implemented within the linkage
engine are not available. Additionally, many of these
systems are specialised to a certain domain, such as
integration of business data or cleaning and dedupli-
cation of customer mailing lists. In the health sector,
however, linkages are often more complex and involve
data from many disparate sources, possibly including
population data collected outside of the health system
(such as electoral rolls or police accident databases),
as well as historical data like patients’ medical histo-
ries. While commercial linkage systems are used in
the health sector as core linkage engines, a significant
amount of additional programming is often required
by a health linkage unit to integrate a linkage engine
into a specific domain. This often means that the
linkage environment is limited by the functionality of
the commercial linkage engine at its core.

Record linkage is a complex process and requires
the user to understand, up to a certain degree, many
technical details. For example, it is important that
a user understands how approximate string compar-
isons work on name and address strings, as this will
influence the way the matching weights will be calcu-
lated. Similarly, understanding the trade-off of using
certain record fields (or attributes) for blocking or
indexing is crucial, as on one hand a certain choice
of blocking keys will result in poor linkage quality,
while on the other hand another choice of blocking
keys will generate too many record pairs and make a
linkage computationally infeasible.

While there are several affordable smaller commer-
cial record linkage systems available, they are often
limited in their ability to deal with different types of

1http://www.ncris.dest.gov.au
2http://www.cherel.org.au
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Figure 1: General record linkage process. The output
of the blocking step are candidate record pairs, while
the comparison step produces weight vectors with nu-
merical similarity weights, that are then classified into
matches, non-match and possible matches.

data, only contain a limited amount of functionality
(for example implement only certain commonly used
string comparison methods), or can only link small
data sets. Large scale record linkage system, on the
other hand, usually have a very high price tag and
are therefore only affordable by large organisations.
Almost all commercial systems are a ‘black box’ from
the user’s perspective, as the source code of their link-
age engines is not available for inspection.

It is therefore important to have tools available
that allow record linkage practitioners to experiment
with the traditional as well as new advanced record
linkage techniques, in order to understand their ad-
vantages and their limitations. Such tools should
be flexible and contain many different linkage meth-
ods, and allow a multitude of configuration options
for a user to conduct a variety of experimental link-
ages. Additionally, as most record linkage users in
the health sector do not have extensive experience
in programming, an intuitive graphical user interface
should provide a well structured and logical way on
how to setup and run record linkage projects.

This lack of flexible record linkage systems that
allow access to source code and include a large num-
ber of linkage techniques is addressed by the freely
available Febrl linkage system presented in this pa-
per (Christen et al. 2002, 2004). To the best of the
author’s knowledge, Febrl is the only free linkage sys-
tem with a graphical user interface. First, in the next
section, a short overview of the general record linkage
process is provided, and in Section 3 the structure and
functionality of the Febrl user interface is described
in detail. This is followed in Section 4 with a discus-
sion of the use of Febrl in the health sector, and the
paper is then concluded with Section 5 containing an
outlook to future work.

2 Record Linkage Process

A general schematic outline of the record linkage pro-
cess is given in Figure 1. As most real-world data
collections contain noisy, incomplete and incorrectly
formatted information, data cleaning and standardis-
ation are important pre-processing steps for successful
record linkage, and also before data can be loaded into
data warehouses or used for further analysis or data
mining (Rahm and Do 2000). A lack of good quality
data can be one of the biggest obstacles to successful
record linkage and deduplication (Clarke 2004). The

main task of data cleaning and standardisation is the
conversion of the raw input data into well defined,
consistent forms, as well as the resolution of incon-
sistencies in the way information is represented and
encoded (Churches et al. 2002).

If two databases, A and B, are to be linked, po-
tentially each record from A has to be compared
with all records from B. The total number of po-
tential record pair comparisons thus equals the prod-
uct of the size of the two databases, |A| × |B|, with
| · | denoting the number of records in a database.
Similarly, when deduplicating a database, A, the to-
tal number of potential record pair comparisons is
|A| × (|A| − 1)/2, as each record potentially has to
be compared with all others. The performance bot-
tleneck in a record linkage or deduplication system is
usually the expensive detailed comparison of record
fields (or attributes) between pairs of records (Bax-
ter et al. 2003, Christen and Goiser 2007), making it
unfeasible to compare all pairs when the databases
are large. Assuming there are no duplicate records
in the databases (i.e. one record in database A can
only match to one record in database B, and vice
versa), then the maximum number of true matches
corresponds to the number of records in the smaller
database. Therefore, while the computational efforts
increase quadratically, the number of potential true
matches only increases linearly when linking larger
databases. This also holds for deduplication, where
the number of duplicate records is always less than
the total number of records in a database.

To reduce the large amount of potential record pair
comparisons, record linkage methods employ some
form of indexing or filtering techniques, collectively
known as blocking (Baxter et al. 2003): a single record
field (attribute) or a combination of fields, often called
the blocking key, is used to split the databases into
blocks. All records that have the same value in the
blocking key will be inserted into one block, and
candidate record pairs are then generated only from
records within the same block. These candidate pairs
are compared using a variety of comparison functions
applied to one or more (or a combination of) record
fields. These functions can be as simple as an ex-
act string or a numerical comparison, can take vari-
ations and typographical errors into account (Cohen
et al. 2003, Christen 2006), or can be as complex as
a distance comparison based on look-up tables of ge-
ographic locations (longitudes and latitudes).

Each field comparison returns a numerical simi-
larity value, called a matching weight, often in nor-
malised form. Two field values that are equal, there-
fore, will have a matching weight of 1, while the
matching weight of two completely different field val-
ues will be 0. Field values that are somewhat similar
will have a matching weight somewhere between 0
and 1. A weight vector is formed for each compared
record pair containing all the matching weights cal-
culated by the different comparison functions. These
weight vectors are then used to classify record pairs
into matches, non-matches, and possible matches, de-
pending upon the decision model used (Christen and
Goiser 2007, Fellegi and Sunter 1969, Gu and Bax-
ter 2006). Record pairs that were removed by the
blocking process are classified as non-matches with-
out being compared explicitly. A variety of evaluation
measures can then be used to assess the quality of the
linked record pairs (Christen and Goiser 2007).

The class of possible matches are those record pairs
for which human oversight, also known as clerical re-
view, is needed to decide their final linkage status. In
theory, it is assumed that the person undertaking this
clerical review has access to additional data (or may
be able to seek it out) which enables her or him to
resolve the linkage status. In practice, however, often



Figure 2: Initial Febrl user interface after start-up.

no additional data is available and the clerical review
process becomes one of applying experience, common
sense or human intuition to make the decision. The
reviewed and manually classified record pairs can also
be used as training data for improving the classifica-
tion quality of subsequent linkages.

3 Febrl GUI Structure and Functionality

Febrl is implemented in Python,3 a free, object ori-
ented programming language that is available on all
major computing platforms and operating systems.
Originally developed as scripting language, Python is
now used in a large number of applications, ranging
from Internet search engines and Web applications to
steering of computer graphics for Hollywood movies
and large scientific simulation codes. Many organisa-
tions use Python, including Google and NASA, and
due to its clear structure and syntax it is also used
by various universities for undergraduate teaching in
introductory programming courses.

Python is an ideal platform for rapid prototype de-
velopment as it provides data structures such as sets,
lists and dictionaries (associative arrays) that allow
efficient handling of very large data sets, and includes
many modules offering a large variety of function-
alities. For example, it has excellent built-in string
handling capabilities, and the large number of exten-
sion modules facilitate, for example, database access
and graphical user interface (GUI) development. For
the Febrl user interface, the PyGTK4 library and the
Glade5 toolkit were use, which, combined, allow rapid
platform independent GUI development.

Febrl is published for free under an open source
software licence.6 Due to the availability of its source
code, Febrl is suitable for the rapid development, im-
plementation, and testing of new and improved record
linkage algorithms and techniques, as well as for both
new and experienced users to learn about and exper-
iment with various record linkage techniques.

In previous Febrl versions (Christen et al. 2004)
the user had to implement his or her linkage or dedu-
plication project by manually developing or modify-
ing a Python program. This required the user to be
familiar with both the syntax of the Python program-
ming language, as well as with the many configura-
tion options available in Febrl. This limited the appli-
cation of Febrl to technically experienced users. To
improve upon this, a GUI has been developed by the

3http://www.python.org
4http://www.pygtk.org
5http://glade.gnome.org
6https://sourceforge.net/projects/febrl/

Figure 3: Febrl user interface for a deduplication
project after the input data set has been initialised.
The shown values have been randomly generated.

author, with the main aim to improve the accessibility
of Febrl to non-technical record linkage practitioners.
The Febrl GUI follows the structure provided by the
Rattle open source data mining tool (Williams 2007).
The basic idea is to have a window that contains one
page (or tab, similar to tabs in modern Web browsers)
per major step of the record linkage process (as shown
in Figure 1). The initial Febrl GUI after start-up is
shown in Figure 2. Only the ‘Data’ and ‘Log’ pages
are visibly initially, additional pages will appear once
the input data has been initialised. Note that Febrl ’s
geocoding functionalities (Christen et al. 2006) have
not yet been incorporated into the GUI.

On each page, the user can select a method and
its corresponding parameters, and then confirm these
setting by clicking on the ‘Execute’ button. Appro-
priate Python code will be generated for this step
of the record linkage process and shown in the ‘Log’
page. Once all necessary steps are set up, the gen-
erated Python code can be saved and run outside of
the GUI, or a standardisation, linkage or deduplica-
tion project can be started and its results can be eval-
uated from within the GUI. All major steps will be
described in more detail and illustrated with corre-
sponding screenshots in the following sections.

3.1 Input Data Initialisation

In a first step, a user has to select if she or he wishes to
conduct a project for (a) cleaning and standardisation
of a data set, (b) deduplication of a data set, or (c)
linkage of two data sets. The ‘Data’ page of the Febrl
GUI will change accordingly and either show one or
two data set selection areas. Several text based data
set types are currently supported, including the most
commonly used comma separated values (CSV) file
format. SQL database access will be added in the
near future. As shown in Figure 3, various settings
can be selected, such as if a data set file contains a
header line with field names (if not these field names
can be entered manually); if one of the fields contains
unique record identifiers; a list of missing values can
be given (like ‘missing’ or ‘n/a’) that automatically
will be removed when the data is loaded; and there
are data type specific parameters to be set as well
(such as the delimiter for CSV data sets).

When a user selects an input data set, the first
few lines from the corresponding file will be shown,
as illustrated in Figure 3. This allows the user to
visually verify the chosen settings and change them



Figure 4: Data exploration page showing summary
analysis of record fields (or attributes, columns).

if required. When satisfied, a click on ‘Execute’ will
confirm the settings and generate the corresponding
Python code segment (which can be viewed in the
‘Log’ page). The tabs for data exploration and, de-
pending upon the project type selected, standardis-
ation, or indexing, comparison and classification will
then become visible.

3.2 Data Exploration

The ‘Explore’ page allows the user to analyse the se-
lected input data set(s) in order to get a better un-
derstanding of the content and quality of the data to
be used for a standardisation, deduplication or link-
age project. In order to speed up exploration of large
data sets, it is possible to select a sampling rate as
percentage of the number of records in a data set.

When the user clicks on ‘Execute’, the data set(s)
will be read and all the fields (or attributes, columns)
will be analysed. When finished, a report will be dis-
played in the Febrl GUI that for each field provides
information about the number of different values in
it, the smallest and largest values, the most and least
frequent values, the quantiles distribution of the val-
ues, the number of records with missing (i.e. empty)
value, as well as a guess of the type of the field (if it
contains only digits, only letters, or is of mixed type).
A summary table of the analysis of all record fields is
then reported, as shown in Figure 4.

This report is finalised by a table that calculates
the suitability of each field in the data set(s) for in-
dexing (blocking) according to the number and distri-
bution of the field values and number of records with
missing (or empty) value. For a deduplication, for
example, a field value that occurs c times in a data
set will result in c(c − 1)/2 record pairs being gener-
ated in the comparison step. Fields that have a high
percentage of records with missing value will not be
suitable for use in the indexing (blocking) step.

3.3 Data Cleaning and Standardisation

The cleaning and standardisation of a data set us-
ing the Febrl GUI is currently done separately from
a linkage or deduplication project, rather than as a
first step as shown in Figure 1. A data set can be
cleaned and standardised and is written into a new
data set, which in turn can then be deduplicated or
used for a linkage. When a user selects the ‘Stan-
dardisation’ project type, and has initialised a data

Figure 5: Example date and telephone number stan-
dardisers.

set on the ‘Data’ page, she or he can define one or
more component standardisers on the ‘Standardise’
page, as shown in Figure 5.

Currently, component standardisers are available
in Febrl for names, addresses, dates, and telephone
numbers. The name standardiser uses a rule-based
approach for simple names (such as those made of one
given- and one surname only) in combination with a
probabilistic hidden Markov model (HMM) approach
for more complex names (Churches et al. 2002), while
address standardisation is fully based on a HMM ap-
proach (Christen and Belacic 2005). These HMMs
currently have to be trained outside of the Febrl GUI,
using separate Febrl modules. Dates are standard-
ised using a list of format strings that provide the
expected formats of the dates likely to be found in
the uncleaned input data set. Telephone numbers are
also standardised using a rules based approach.

Each standardiser requires one or several input
fields from the input data set (shown on the left side of
a standardiser in the GUI), and cleans and segments
a component into a number of output fields (three for
dates, five for phone numbers, six for names, and 27
for addresses), shown on the right side in the GUI.
Various parameters can be set for each component
standardiser in the middle area of the GUI.

It is possible to define more than one standard-
iser for a component type (i.e. name, address, date or
phone number). For example, if a midwives data set
contains dates of birth of both mothers and babies,
two date standardiser are required. Once initialised
and confirmed with a click on ‘Execute’, on the ‘Out-
put/Run’ page the details of the standardised out-
put file can be set, such as its file name and a list of
fields to pass directly from the input to the output
data set without standardisation. A standardisation
project can then be started by clicking ‘Execute’ on
the ‘Output/Run’ page.

3.4 Indexing (Blocking) Definition

Once the required input data sets have been ini-
tialised, the indexing method and its corresponding
index (blocking) keys have to be defined for a dedupli-
cation or linkage. The ‘Index’ page allows the user to
select one of seven possible indexing methods (shown
in part (a) of Figure 7). Besides the ‘FullIndex’
(which will compare all record pairs and thus has a
quadratic complexity) and the standard ‘BlockingIn-
dex’ approach (Baxter et al. 2003) as implemented in
many record linkage systems, Febrl contains five re-
cently developed indexing methods (Christen 2007):
‘SortingIndex’, which is based on the sorted neigh-
bourhood approach (Hernandez and Stolfo 1995);



Figure 6: Example indexing definition using the
‘BlockingIndex’ method and two index definitions.

‘QGramIndex’, which uses sub-strings of length q (for
example bigrams, where q = 2) to allow fuzzy block-
ing (Baxter et al. 2003); ‘CanopyIndex’, which em-
ploys overlapping canopy clustering using TF-IDF
or Jaccard similarity (Cohen and Richman 2002);
‘StringMapIndex’, which maps the index key values
into a multi-dimensional space and performs canopy
clustering on these multi-dimensional objects (Jin
et al. 2003); and ‘SuffixArrayIndex’, which generates
all suffixes of the index key values and inserts them
into a sorted array to enable efficient access to the
index key values and generation of the corresponding
blocks (Aizawa and Oyama 2005).

For deduplication using ‘BlockingIndex’,
‘SortingIndex’ or ‘QGramIndex’, the indexing
step can be performed in an overlapping fashion with
the field comparison step, by building an inverted
index data structure while records are read from
the input data set and their blocking key values
are extracted and inserted into the index. The
current record is compared with all previously read
and indexed records having the same blocking key
value. This approach can be selected by the user by
ticking the ‘Dedup’ indexing box. For a linkage, and
using one of the three indexing methods mentioned
above, the BigMatch (Yancey 2002) approach can
be selected, where first the smaller input data set
is loaded and the inverted index data structures are
built in main memory, including all record attribute
values required in the comparison step. Each record
of the larger input data set is then read, its blocking
key values are extracted, and all records in the same
block from the smaller data set are retrieved from the
index data structure and compared with the current
record. This approach performs only one single pass
over the large data set and does not require indexing,
sorting or storing of any of its records. The user
can tick the corresponding ‘BigMatch’ indexing box
when conducting a linkage project.

Once an index method has been chosen, the ac-
tual index key definitions have to be selected and
their various parameters have to be set. Index keys
are made of one field value, or a concatenation of
several field values, that are often phonetically en-
coded to group similar sounding values into the same
block. Part (b) of Figure 7 lists the encoding func-
tions implemented in Febrl (Christen 2006), and Fig-
ure 6 shows an example index definition. In this ex-
ample, a user has selected the standard ‘BlockingIn-
dex’ method and has defined two index keys. The first
index key will be generated by concatenating the val-

(a) Indexing
methods.

(b) Encoding
methods.

(c) Comparison
methods.

(d) Classification
methods.

Figure 7: Available methods for indexing (a), string
encoding (b), field comparison (c), and weight vec-
tor classification (d). These are the pull-down menus
from the corresponding Febrl GUI pages.

ues from the ‘postcode’ field with the first four char-
acters of the ‘Soundex’ encoded values taken from the
‘suburb’ field, and the second index key will be gen-
erated by taking the fourth to the eighth digit of the
‘date of birth’ field (assumed to be the year of birth)
concatenated with the ‘Double-Metaphone’ encoded
values taken from the ‘surname’ field. Records that
have the same values in either of the two index key
definitions will be inserted into the same block and
compared in the record pair comparison step.

3.5 Field Comparison Functions

The comparison functions to be used to compare the
field values of record pairs can be selected and set-
up on the ‘Comparison’ page, as shown in Figure 8.
Each field comparison requires the user to select one
of the many available comparison functions (shown
in part (c) of Figure 7), as well as the two record
fields that will be compared. While one normally
would select fields with the same content from the
two data sets (for example, to compare suburb names
with suburb names), it is feasible to select differ-
ent fields (for example to accommodate for swapped
given- and surname values). Most of the comparison
functions implemented in Febrl are variations of ap-
proximate string comparisons (Christen 2006, Cohen
et al. 2003), while others are special functions that
allow the user to compare numerical values, or fields
that contain date, age or time values.

All the comparison functions return a raw similar-
ity value between 0 (for total dissimilarity) and 1 (for
an exact match). It is possible to adjust these val-
ues by setting agreement and disagreement weights,



Figure 8: An example of five field comparison func-
tion definitions. The comparisons for the ‘suburb’
field will be cached to improve performance.

as well as a special value that will be returned if one
or both of the compared field values are missing (i.e.
are an empty value). There is no limit to the number
of comparison functions that can be initialised.

As approximate similarity calculations are often
computationally quite expensive, it is possible to
cache the compared field values and their similarity
value to allow fast retrieval of the similarity value for
all subsequent comparisons of the same two field val-
ues. This will be especially useful for fields that con-
tain a small number of longer values, such as suburb
names or business and company names.

3.6 Weight Vector Classification

The last major step required is the selection of the
method used for weight vector classification and set-
ting of its parameters. Currently, Febrl offers six dif-
ferent classification techniques (listed in part (d) of
Figure 7). The simple ‘FellegiSunter’ classifier allows
manual setting of two thresholds (Fellegi and Sunter
1969). With this classifier, the similarity weights of
the weight vector of each compared record pair are
summed into one matching weight, and record pairs
that have a summed weight above the upper classifi-
cation threshold are classified as matches, pairs with
a matching weight below the lower threshold are clas-
sified as non-matches, and those record pairs that
have a matching weight between the two classifica-
tion thresholds are classified as possible matches.

With the ‘OptimalThreshold’ classifier it is as-
sumed that the true match status for all compared
record pairs is known (i.e. supervised classification),
and thus an optimal threshold can be calculated based
on the corresponding summed weight vectors. The
match status is assumed to have been generated by
an exact comparison of one of the fields in the data
set(s). For example, if a field ‘entity id’ contains the
entity identifiers, an exact match of two records that
refer to the same entity will result in a similarity value
1, while all comparisons of records that refer to two
different entities will result in a similarity value of
0. Thus these similarity values can be used to de-
termine the true match and non-match status of all

Figure 9: ‘KMeans’ weight vector classifier.

weight vectors, which in turn can be used to find one
optimal classification threshold (i.e. no record pairs
will be classified as possible matches).

Both the ‘KMeans’ and ‘FarthestFirst’ (Goiser and
Christen 2006) classifiers are based on unsupervised
clustering approaches, and group the weight vectors
into a match and a non-match cluster. Several meth-
ods for centroid initialisation and different distance
measures can be selected. It is also possible to use
only a fraction of the weight vectors when calcu-
lating the clusters (using sampling), which will be
useful when deduplicating or linking large data sets
that have resulted in a large number of weight vec-
tors. These two classifiers also allow the selection of a
‘fuzzy region’, as described in (Gu and Baxter 2006),
which will classify the weight vectors, and thus the
corresponding record pairs, in the area half-way be-
tween the match and non-match centroids as possible
matches. The Febrl user interface with the ‘KMeans’
classifier selected is shown in Figure 9.

The ‘SuppVecMachine’ classifier uses a supervised
support vector machine (SVM) and thus requires the
user to provide the true match status (as described
above for the ‘OptimalThreshold’ classifier) of weight
vectors in order to be able to train this classifier. It
is based on the libsvm library (Chang and Lin 2001),
and the most important parameters of the SVM clas-
sifier can be set in the Febrl GUI.

Finally, the ‘TwoStep’ classifier is an unsupervised
approach which in a first step selects weight vec-
tors from the compared record pairs that with high
likelihood correspond to true matches and true non-
matches, and in a second step uses these vectors as
training examples for a binary classifier (Christen
2007). Several methods are implemented on how to
select the training examples in the first step, and for
the second step a SVM classifier or k-means clustering
can be used. Experimental results have shown that
this unsupervised approach to weight vector classifi-
cation can a achieve linkage quality almost as good
as fully supervised classification (Christen 2007).

3.7 Output Files and Running a Project

Before a linkage or deduplication project can be
started, the way the match status and the matched
record pairs will be saved into files have to be set on
the ‘Output/Run’ page. There are also three further
output options that can be modified. The first is a
percentage value according to which a progress report
for the various steps in the linkage process will be re-
ported. In the example shown in Figure 10, for each
10% of record pairs compared a progress message will
be given. The second option allows for length filter-
ing in the field comparison step as described in (Gu
and Baxter 2004). If this parameter is set to a per-



Figure 10: Setting of output options and files for a
deduplication project.

centage value, then for all record pairs the length
difference of their concatenated field values will be
calculated, and if this difference is larger than the
given percentage value, then the record pair will not
compared using the field comparison functions but di-
rectly classified as a non-match. This allows efficient
filtering of record pairs that with high likelihood are
non-matches. The third parameter allows setting of
a weight vector cut-off threshold. If set, all weight
vectors with a summed matching weight below this
cut-off threshold will not be saved as they will likely
correspond to non-matches, thus saving both memory
as well as time in the classification step.

There are four output file options available. First,
the user can select to save the raw weight vectors
produced in the record pair comparison step into a
comma separated values (CSV) text file, with the first
two columns holding the identifiers of the two com-
pared records, and all following columns the similar-
ity values of the field comparisons conducted on this
record pair. The second option is to generate and
save into a file a simple text based histogram which
shows how many of the compared record pairs have
resulted in a certain summed matching weight.

For the third and fourth options, for each of the
compared record pairs that was classified as a match a
unique match identifier will be generated. In the third
option, this match identifier will be saved into a file
together with the two record identifiers of the corre-
sponding pair and its summed matching weight, while
for the fourth output option the input data set(s) will
be copied into a new file (or files) with an additional
field (or attribute) that will contain the match iden-
tifiers of all classified matches a record was involved
with (this can be one, many, or no match at all).

Once the output options have been defined, with
a click on the ‘Execute’ button the complete Febrl
project code required to run a deduplication or link-
age project will be generated and can be saved into a
Python file so it can be run later outside of the GUI.
It is now also possible to run the defined project, and
once the record pairs have been compared and classi-
fied their quality can be evaluated within the GUI.

3.8 Evaluation and Clerical Review

As shown in Figure 11, on the ‘Evaluation’ page the
results of a deduplication or linkage project are visu-
alised as a histogram of the summed matching weights
of all compared record pairs. If the true match and
non-match status of record pairs is available (as dis-
cussed earlier in Section 3.6), the quality of the con-
ducted linkage will be shown using the measurements
of accuracy, precision, recall and F-measure (or F-
score). Note that the accuracy measure commonly
used in machine learning applications is often mis-

Figure 11: Evaluation page showing the matching
weight histogram and quality and complexity mea-
sures for a linkage.

leading in record linkage applications due to the large
number of non-matches compared to matches (Chris-
ten and Goiser 2007), i.e. classifying weight vectors is
often a very imbalanced classification problem. Ac-
curacy is shown on the Febrl GUI to allow users to
learn about its misleading characteristic, as well as to
compare quality measure results. Measures that allow
the evaluation of the complexity of a deduplication or
linkage project (i.e. the number of record pairs gen-
erated by the indexing step and their quality) are the
reduction ratio, pairs completeness and pairs qual-
ity (Christen and Goiser 2007), and are shown in the
lower right part of the ‘Evaluate’ page.

Additional evaluation measures, such as the ROC
curve or AOC, will be implemented in the near fu-
ture. An interactive feature that allows manipulation
of a classification threshold on the shown histogram
will also be added. This will enable a user to move a
vertical line, that designates the classification thresh-
old, horizontally over the histogram, with constant
updates of the corresponding quality measures shown.

The ‘Review’ page, which will also be added in the
near future, will allow a user to view and manually
designate record pairs as matches or non-matches that
were originally classified as possibly matches. Note
that not all classifiers generate possible matches. The
manually classified record pairs can then also be used
as training examples, by feeding their match status
back to the classifier, as shown in Figure 1, allowing
to improve the deduplication or linkage quality.

3.9 Log Page

This page shows the Febrl Python code generated
when clicking ‘Execute’ on other GUI pages, as can
be see in the example shown in Figure 12. This al-
lows an experienced user to verify the correctness of
the generated code, and enables copying of this code
into her or his own Febrl Python modules. After a
deduplication or linkage project has been conducted,
a simple textual histogram representing the summed
matching weights can be viewed on the ‘Log’ page.

4 Discussion

For application in the health sector, the Febrl record
linkage system is a useful tool for several reasons.



Figure 12: Log page showing the Febrl Python code
generated for the ‘KMeans’ classifier from Figure 9.

First, it is freely available and can be installed
on all major computing platforms and operating sys-
tems. It is based only on software components and
libraries that are freely available themselves, thus no
costs are involved for the user. This will allow even
small organisations or private users to install the Febrl
software and experiment with it.

Second, it is a flexible tool that contains many re-
cently developed record linkage techniques, including
several advanced indexing methods, many different
field comparison functions, several phonetic string en-
coding methods, and both traditional as well as ad-
vanced experimental weight vector classifiers. This
will allow record linkage users to conduct various ex-
periments combining these techniques and evaluating
their suitability for linking their data.

Third, due to the availability of its source code,
users can extend the Febrl system with their own
record linkage techniques, or can adjust them to their
needs. For example, a user can add code that al-
lows connection to certain database types, or saving
the linkage results into a format specific to a certain
domain. The availability of the source code will also
allow users to better understand the many algorithms
employed within modern record linkage systems.

It is envisaged that Febrl can be used in the field
of health data linkage in two main areas. First, it is a
tool suitable to train new users in record linkage, as it
allows them to experiment with both traditional and
new advanced methods that are either not yet avail-
able in commercial systems or hidden within their
‘black box’ linkage engines. This will enable record
linkage practitioners to extend and deepen their prac-
tical knowledge of the many new linkage techniques
that have been developed in the past few years.

Second, Febrl can be used alongside commercial
linkage systems for comparative studies of the link-
age results generated. This will allow record linkage
practitioners to better evaluate commercial linkage
systems, which are often a ‘black box’ from a user’s
perspective. It will also allow validation of the link-
age results generated by commercial systems, and the
many included techniques in Febrl, and the availabil-
ity of its source code, will facilitate fine-tuning of the
many different linkage settings.

5 Conclusion and Future Work

In this paper the freely available Febrl record linkage
system has been presented and its graphical user in-
terface (GUI) has been described in detail. Febrl is
an training tool suitable for new record linkage users
and practitioners, and to conduct small to medium
sized experimental linkages and deduplications with
up to several hundred thousand records.

Within the health sector, it can be used alongside
commercial linkage systems for comparative linkage
studies; and for both new and experienced record link-
age practitioners to learn about the many advanced
linkage techniques that have been developed in recent
years and that are implemented in Febrl.

The current GUI for Febrl does not support Febrl ’s
geocoding functionalities (Christen et al. 2006), and
neither does it allow hidden Markov model (HMM)
training (Christen 2005, Churches et al. 2002) for
name and address standardisation within the GUI.
These features will be added in the future. It is
also planned to integrate the Febrl data set gener-
ator (Christen et al. 2006) into the GUI.

Additionally, new indexing, comparisons and clas-
sification techniques will be added as they are being
published in the record linkage research community.
One classification method that will be added soon
is the expectation-maximisation (EM) method that
has traditionally be used in record linkage for estima-
tion of the classification thresholds in the Fellegi and
Sunter approach (Winkler 2000).

Given the importance of privacy and confi-
dentiality in health data linkage (Christen and
Churches 2006, Christen 2006), it is aimed to
also include privacy-preserving record linkage tech-
niques (Churches and Christen 2004) into a future
version of Febrl, thus allowing experimental secure
linkages of data between health organisations.
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