
Integration of Heterogeneous Databases Without Common Domains
Using Queries Based on Textual Similarity

William W. Cohen
AT&T Labs-Research

180 Park Avenue, Florham Park NJ 07932

wcohenOresearch.att.com

Abstract

Most databases contain “name constants” like course num-
bers, personal names, and place names that correspond to
entities in the real world. Previous work in integration of
heterogeneous databases has assumed that local name con-
stants can be mapped into an appropriate global domain
by normalization. However, in many cases, this assumption
does not hold; determining if two name constants should be
considered identical can require detailed knowledge of the
world, the purpose of the user’s query, or both. In this pa-
per, we reject the assumption that global domains can be
easily constructed, and assume instead that the names are
given in natural language text. We then propose a logic
called WHIRL which reasons explicitly about the similarity
of local names, as measured using the vector-space model
commonly adopted in statistical information retrieval. We
describe an efficient implementation of WHIRL and evalu-
ate it experimentally on data extracted from the World Wide
Web. We show that WHIRL is much faster than naive in-
ference methods, even for short queries. We also show that
inferences made by WHIRL are surprisingly accurate, equal-
ing the accuracy of hand-coded normalization routines on
one benchmark problem, and outperforming exact match-
ing with a plausible global domain on a second.

1 Introduction

The integration of distributed, heterogeneous databases,
sometimes called data integration, is an active area of re-
search [14; 27; 2; 19; 40; 61. Largely inspired by the pro-
liferation of database-like sources on the World Wide Web,
previous researchers have addressed a diverse set of prob-
lems, ranging from access to “semi-structured” information
sources [38; 1; 391 to combining databases with differing
schemata [26; 131.

In this paper we will consider another aspect of data
integration: the integration of databases that lack common
domains. To illustrate this problem, consider a relation p
with schema p (company, industry) that associates compa-
nies with a short description of their industries, and a second
relation q with schema q(company,website) that associates
companies with their home pages. If p and q are taken from
different, heterogeneous databases, then the same company
might be denoted by different constants x and x’ in p and

Parmission to make digital or hard copies of all or part of this work for
parsonal cr Ch6srCCtIt we fa grantad without fee provided that
copier are not made or distributed for profit or commercial advan-
tage and that dopier bear this notice end the full citation on the fint page.
To copy ofhwwiw to wpubfiih, to post on swwn cr tc
redistribute to lists, requiroe prior specific permieeion and/or a fee.
SIGMOD ‘98 Seattle, WA, USA
Q 1998 ACM O-S9791-9955/98/006...$5.00

q respectively, making it impossible to join p and q in the
usual way.

In general, most databases contain many domains in
which the individual constants correspond to entities in the
real world; examples of such “name domains” include course
numbers, personal names, company names, movie names,
and place names. Most previous work in data integration
either assumes these “name domains” to be global, or else
assumes that local “name constants” can be mapped into a
global domain by a relatively simple normalization process.
However, examination of real-world information sources re-
veals many cases in which creating a global domain by nor-
malization is difficult. In general, the mapping from “name
constants” to real entities can differ in subtle ways from
database to database, making it difficult to determine if two
constants are co-referent (i.e., refer to the same entity).

For instance, in two Web databases listing educational
software companies, we find the name constants “Microsoft”
and “Microsoft Kids”: do these denote the same company,
or not? In another pair of Web sources, the names “Kestrel”
and “American Kestrel” appear: do these denote the same
type of bird, or not? To take examples from a domain fa-
miliar to most readers, under what circumstances should
“MIT” and “MIT Media Lab” be considered identical? Fi-
nally, which pairs of the following names correspond to the
same research institution: “AT&T Bell Labs”, “AT&T Labs”,
“AT&T Labs-Research”, “AT&T Research”, “Bell Labs”,
and “Bell Telephone Labs”?

In short, in many real-world data sources-particularly
those found on the Web-determining if two name constants
are co-referent is far from trivial. Frequently it requires
detailed knowledge of the world, the purpose of the user’s
query, or both. We also note that the problem of common
domains is both critical and fundamental: critical, since an
inappropriate mapping from local to global domains will
lead to erroneous or missing answers to user queries, and
fundamental, since all previous techniques for integration of
heterogeneous databases require common domains.

In this paper, we reject the assumption that common do-
mains exist, or can be easily constructed. Instead, we will
assume that the names assigned to real-world entities are
given in natural language test. Under this assumption, de-
termining if two names are co-referent is a problem of under-
standing unrestricted natural language, leading immediately
to the conclusion that it is impossible determine co-reference
reliably. Therefore, determining name co-reference should
not be handled by automatic means which are hidden to
the user.

Instead, we propose a new logic for database integration
called WHIRL. WHIRL retains the original local names and
reasons explicitly about the similarity of pairs of names,
using statistical measures of document similarity that have

201

been developed in the information retrieval (IR) community.
As in conventional database systems, the answer to a user’s
query is a set of tuples; however, these tuples are ordered
so that the Libest” answers are presented to the user first.
WHIRL considers tuples to be “better” when the name co-
reference conditions required by the user’s query are more
likely to hold.

WHIRL thus combines some properties of statistical IR
systems, and some properties of database systems. Like sta-
tistical IR systems, WHIRL reasons about the similarity of
documents, and outputs an ordered list of answers. (In sta-
tistical IR systems, documents are generally presented in
order of estimated relevance to the user’s query.) However,
like a database system, WHIRL’s answers are tuples instead
of documents, and WHIRL queries can involve many differ-
ent relations, instead of a single document collection.

In the remainder of the paper, we will first present the se-
mantics of the WHIRL query language, and then describe an
efficient query algorithm for WHIRL. Semantically WHIRL
is much like earlier probabilistic or “fuzzy” database logics
[18; 4] ; however, certain properties of text make efficient
inference a bit trickier. In particular, it is typically the case
that many pairs of names will be weakly similar, but few will
be strongly similar; this leads to inefficiencies for probabilis-
tic inference algorithms that compute all tuples with non-
zero probability. Our query-answering algorithm is novel
in that it finds the highest-scoring answer tuples without
generating all the low-scoring tuples.

Finally, we evaluate the algorithm experimentally on real-
world data extracted from the Web. We show that our al-
gorithm is much faster than naive inference methods, even
for short queries. We also show that the inferences of the
system are surprisingly accurate, as measured with average
precision. In one case WHIRL’s performance equals the per-
formance of a hand-constructed, domain-specific normaliza-
tion routine. In a second case, WHIRL’s performance gives
better performance than matching on a plausible global do-
main.

2 Semantics of the WHIRL Query Language

2.1 The vector space representation for documents

As noted above, we will adopt a data model in which real-
world entities are named by natural language text. One
widely used method for representing text is the vector apace
model [36], which we will now briefly review. We assume
a vocabulary T of terms, which will be treated as atomic;
terms might include words, phrases, or word stems (mor-
phologically derived word prefixes). A fragment of text is
represented as document vector: a vector of real numbers
v E RIT’, each component of which corresponds to a term
t E T. We will denote the component of v which corresponds
to t E T by vt.

A number of schemes have been proposed for assign-
ing weights to terms. We found it convenient to adopt the
widely used TF-IDF weighting scheme with unit length nor-
malization. Assuming that the document represented by v is
a member of a document collection C, define Gt to have the
value zero if t is not present in the document represented by
v, and otherwise the value Of = (log(TF~,~)+l).log(lDFt),
where the “term frequency” TFv,t is the number of times
that term t occurs in the document represented by v, and
the “inverse document frequency” IDFt is #, where Ct is
the subset of documents in C that contain the term t. This
vector is then normalized to unit length.

The similarity of two document vectors v and w is given
by the formula aim(v, w) = xtET vt . wt, which is usually
interpreted as the cosine of the angle between v and w.
Since every document vector v has unit length, aim(v, W) is
always between zero and one.

We note in passing that although these vectors are con-
ceptually very long, they are also very sparse: if a doc-
ument contains only Ic terms, then all but k components
of its vector representation will have zero weight. There
are well-known methods for efficiently manipulating these
sparse vectors.

The general idea behind this scheme is that the magni-
tude of the component vt is related to the “importance” of
the term t in the document represented by v. Two docu-
ments are similar when they share many “important” terms.
The TF-IDF weighting scheme assigns higher weights to
terms that occur infrequently in the collection C.’ In a col-
lection of company names, for instance, common t)erms like
“Inc.” and “Ltd.” would have low weights; uniquely appear-
ing terms like “Lucent” and “Microsoft” would have high
weights; and terms of intermediate frequency like “Acme”
and “American” would have intermediate weights.

2.2 Conjunctive queries over relations of documents

We will assume that all data is stored in relations, but that
the primitive elements of each relation are document vectors,
rather than atoms. We call this data model STIR, for Simple
Texts In Relations-“simple” emphasizing the fact that the
texts are assumed to have no additional structure.

More precisely, an extensional database (EDB) consists
of a term vocabulary T and set of relations (~1, . . . ,pn}.
Associated with each relation p is a set of tuples tuplea(p).
Every tuple (VI,. . , vk) E tuplea(p) has exactly k compo-
nents, and each of these components vi is a document vector
over T. We will also assume that a score is associated with
every tuple in p. This score will always be between zero and
one, and will be denoted acore((vl, . . . , vk) E tuplea(p)). In
most applications, the score of every tuple in a base relation
will be one; however, it will be cbnvenient to allow non-unit
scores, so that materialized views can be stored.

WHIRL (for Word-based Heterogeneous Information Re-
trieval Logic) is a query language for accessing these rela-
tions. A conjunctive WHIRL query is written B1 A.. . A Bk
where each B; is a literal. There are two types of literals. An
EDB literal is written p(X1,. . . , X,) where p is the name of
an EDB relation, and the X1’s are variable symbols (or sim-
ply variables). A similarity literal is written X N Y, where
X and Y are variables; intuitively, this will be interpreted as
a requirement that documents X and Y be similar. We will
henceforth assume that if X appears in a similarity literal
in a query Q, then X also appears in some EDB literal in
Q.

Example 1 To return to the example of the introduction,
the join of the relations p and q might be approximated by
the query Q1:

p(Companyl,Industry) A q(Company2,WebSite)
A Companyl~Company2

(Note that this is different from an equijoin of P
and q, which could be written p(Company,Industry) A
q(Company,WebSite) .) To find Web sites for companies in

‘The weighting scheme also gives higher weights to terms that oc-
cur freyvently in a document. However, in this context, this heuristic
is probably not that important, ~mce names are usually short enough
so that each term occurs only once.

202

the telecommunications industry one might
Qz:

use the query

p(Companyl,Industry) A q(Company2,WebSite)
A Companyl~Company2 A constl (IO)
A Industry-10

where the relation constl contains a single document de-
scribing the industry of interest, such as “telecommunica-
tions equipment and/or services”.

To define the semantics of WHIRL, we will extend the
notion of score to single literals, and then to conjunctions.
Let B be a literal, and 8 a substitution such that BB is
ground. If B is an EDB literal p(Xi, . , X,), we define
score(B8) = score((Xilf9,. , XkO) E p) if (X10,. . . ,XI;B) E
tuples(p), and score(B0) = 0 otherwise. If B is a similarity
literal X N Y, we define score(B0) = sim(X0, Ye).

Now, if Q = B1 A . . A Bk is a query and QS is ground,
we define score(Q0) = n:=, score(B,B). In other words, we
score conjunctive queries by combining the scores of liter&
as if they were independent probabilities.’

Recall that the answer to a conventional conjunctive
query is the set of ground substitutions that make the query
“true” (i.e., provable against the EDB). In WHIRL, the no-
tion of provability has been replaced with the “soft” notion
of score: substitutions with a high score are intended to
be better answers than those with a low score. It seems
reasonable to assume that users will be most interested in
seeing the high-scoring substitutions, and will be less inter-
ested in the low-scoring substitutions. We formalize this as
follows. Given an EDB, we define the full cmwer set SQ

for a conjunctive query Q to be the set of all 0, such that
Qe, is ground and has a non-zero score. We define an r-
answer f?Q for a conjunctive query Q to be an ordered list
of substitutions 01 , . . . ,8,. from the full answer set SQ such
that:

l for all et E RQ and CJ E SQ - RQ, score(QO,) >
score(Qa); and

l for all 0i, e3 E RQ where i < j, score(Qe,) 2 acore(Qe,).

In other words, RQ contains r highest-scoring substitutions,
ordered by non-increasing score.

We will assume the output of a query-answering algo-
rithm given the query Q will not be a full answer set, but
rather an r-answer for Q, where r is a parameter fixed by the
user. To motivate the notion of an r-answer, observe that
in typical situations the full answer set for WHIRL queries
will be very large. For example, the full answer set for the
query Qi given as an example above would include all pairs
of company names Companyi, Company2 that both contain
the term “In?‘. This set might be very large. Indeed, if we
assume that a fixed fraction 2 of company names contain
the term “Inc”, and that p and q each contain a random
selection of n company names, then one would expect the
size of the full answer set to contain (5)” substitutions sim-
ply due to the matches on the term “Inc”; further the full
answer set for the join of m relations of this sort would be
of size at least (X)“.

To further illustrate this point, we computed the pair-
wise similarities of two lists p and q of company names,3

20f course, similarity scores are not independent probabilities, so
there is no reason to expect this combination method to be opti-
mal. However, this combination method is simple and relatively well-
understood, and is in our view a reasonable starting point for research
on this sort of data integration system.

3These lists are the relations HooverWeb and Iontech from Table 1
below.

with p containing 1163 names, q containing 976 names. Al-
though the intersection of p and q appears to contain only
about 112 companies, over 314,000 name pairs had non-zero
similarity. In this case, the number of non-zero similarities
can be greatly reduced by discarding a few very frequent
terms like “Inc”.4 However, even after this preprocessing,
there are more than 19,000 non-zero pairwise similarities-
more than 170 times the number of correct pairings. This is
due to a large number of moderately frequently terms (like
“American” and “Airlines”) that cannot be safely discarded.

In conclusion, it is in general impractical to compute full
answer sets for complex queries, and antisocial to present
them to a user. This leads to the assumption of an r-answer.

2.3 Unions of conjunctive queries

The scoring scheme given above for conjunctive queries can
be fairly easily extended to certain more expressive lan-
guages. Below we consider one such extension, which corre-
sponds to projections of unions of conjunctive queries.

A basic WHIRL clause is written p(X,, . , Xk) t Q,
where Q is a conjunctive WHIRL query that contains all of
the XI’s, A basic WHIRL view V is a set of basic WHIRL
clauses with heads that have the same predicate symbol p
and arity k. Notice that by this definition, all the literals in a
clause body are either EDB literals or similarity literals-in
other words, the view is “flat”, involving only extensionally
defined predicates.

Now, consider a ground instance a = p(xl, . . . , xk) of
the head of some view clause. We define the support of a
(relative to the view V and a given EDB) to be the set of
triples (A t Q, 0,3) satisfying these conditions:

1. (A t Q) E V; and

2. A6’ = a, and QB is ground; and

3. score(QO) = S, and s > 0.

The support of a will be written support(a). We then define
the score of (Xl,. , xk) in p as follows:5

score((x1,. . , rXk)EP)=l-- l-I (1-s)

(C,e,S)E~~PPort(P(~,....,Xk))

(1)

We can now define the materialization of the view V to be a
relation with name p which contains all tuples (x1,. . , xk)
such that score((x,, ,xk) E p) > 0.

Unfortunately, while this definition is natural, there is a
difficulty with using it in practice. In a conventional setting,
it is easy to materialize a view of this sort, given a mecha-
nism for solving a conjunctive query. In WHIRL, we would
prefer to assume only a mechanism for computing r-answers
to conjunctive queries. However, since Equation 1 involves
a support set of unbounded size, it appears that a r-answers
are not enough to even score a single ground instance a.

Fortunately, however, low-scoring substitutions have only
a minimal impact on the score of a. Specifically, if (C, 0,s)
is such that s is close to zero, then the corresponding fac-
tor of (1 - s) in the score for a is close to one. One can
thus approximate the score of Equation 1 using a smaller

41n fact, certain common “stop words” are generally discarded in
statistical IR systems.

‘As a brief motivation for this formula, note that it is some sense
a dual of multiplication: if el and ea are independent probabilistic
events with probability pl and pz respectively, then the probability of
(elAe2) ispl ‘~2, and the probability of (elVe2) is I-(I-pl)(l-~2).

203

set of high-scoring substitutions, such as those found in an
r-answer for moderately large r.

In particular, let V contain the clauses A1 t QI, . . . ,
A, t Qn, let RQ,, . , Rg, be r-answers for the Q,‘s, and
let, R = lJ,Rg,. Now define the r-support for a from R to
be the set

{(A t Q, 0, s) : (A t Q, 0, s) E support(a) and 8 E R}

Also define the r-score for a from R by replacing support(a)
in Equation 1 with the r-support set for a. Finally, define the
r-materialization of v from R to contain all tuples Xi,. . . , Xk

with non-zero r-score, with the score of x1, . . . , xk in p being
its r-score from R.

Clearly, the r-materialization of a view can be constructed
using only an r-answer for each clause body involved in the
view. As r is increased, the r-answers will include more and
more high-scoring substitutions, and the r-materialization
will become a better and better approximation to the full
materialized view. Thus given an efficient mechanism for
computing r-answers for conjunctive views, one can effi-
ciently approximate the answers to more complex queries.

2.4 Relation to other logics

At the level described so far, WHIRL is closely related to
earlier formalisms for probabilistic databases. In particular,
if similarities were stored in a relation sim(X ,Y) instead of
being computed ‘(on the fly”, and certain irredundancy as-
sumptions are made, then WHIRL is a strict subset of Fuhr’s
probabilistic Datalog [18].6 There are also close connections
to existing formalisms for probabilistic relational databases
[41 .

Given this, it might well be asked why it is necessary
to introduce a new and more restricted probabilistic logic.
Our response is that the assumptions made in WHIRL en-
able relatively efficient, inference, without making the logic
too restricted to handle its intended task: integration of het-
erogeneous, autonomous databases by reasoning about the
similarity of names. In particular, these restrictions make
it possible to generate an r-answer for conjunctive queries
efficiently, even if the full answer set is large, and even if the
document vectors used to represent local entity names are
quite diverse. These claims will be substantiated more fully
in Section 4 below.

3 The Query Processing Algorithm

3.1 Overview of the algorithm

The current implementation of WHIRL implements the op-
erations of finding the r-answer to a query and the r-
materialization of a view.’ In this section we will describe
an efficient strategy for constructing an r-answer to a query,
and then present some detailed examples of the algorithm.
First, however, we will give a short overview of the main
ideas used in the algorithm.

‘Specifically, if one assumes that queries B1 A Bk are “irredun-
dant” in the sense that there is no ground substitution % with non-zero
score such that E,6 = B,% for i # j, and also make the same inde-
pendence assumptions made in Fuhr’s Datalogpio, then the score for
a WHIRL predicate is exactly the probability of the corresponding
compound event, which is the same as the probability computed by
Datalog,,,“.

‘However, note that not every relational algebra query can be ex-
pressed in WHIRL, since there is no equivalent of negation or set dif-
ference. Nor ape SQL operations like grouping and sorting supported.

In WHIRL, finding an r-answer is viewed as an optimiza-
tion problem; in particular, the query processing algorithm
uses a general method called A* search [33; 251 to find the
highest-scoring r substitutions for a query. Viewing query
processing as search is natural, given that the goal is to find
a smell number of good substitutions, rather than all satisfy-
ing substitutions; the search method we use also generalizes
certain techniques used in IR ranked retrieval [41]. However,
using search in query processing is unusual for database sys-
tems, which more typically use search only in optimizing a
query.

To motivate our use of search, consider finding an r-
answer to the WHIRL query

insiderTip A publiclyTraded A XNY

where the relation publiclyTraded is very large, but the
relation insiderTip is very small. In processing the corre-
sponding equijoin insiderTip A publiclyTraded A
X=Y with a conventional database system, one would first
construct a query plan: for example, one might first find
all bindings for X, and then use an index to find all values
Y in the first column of publiclyTraded that are equiva-
lent to some X. It is tempting to extend such a query plan
to WHIRL, by simply changing the second step to find all
values Y that are similar to some X.

However, this natural extension can be quite inefficient.
Imagine that insiderTipcontains the vector xl, correspond-
ing to the document “Armadillos, In?‘. Due to the frequent
term “In?, there will be many documents Y that have non-
zero similarity to xl, and it will be expensive to retrieve all
of these documents Y and compute their similarity to xl.

One way of avoiding this expense is to start by retriev-
ing a small number of documents Y that are likely to be
highly similar to xl. In this case, one might use an index to
find all Y’s that contain the rare term “Armadillos”. Since
“Armadillos” is rare, this step will be inexpensive, and the
Y’s retrieved in this step must be somewhat similar to xl.
(Recall that the weight of a term depends inversely on its
frequency, so rare terms have high weight, and hence these
Y’s will share at least one high-weight term with X.) Con-
versely, any Y’ not retrieved in this step must be somewhat
dissimilar to xl, since such a Y’ cannot share with xl the
high-weight term “Armadillos”. This suggests that if r is
small, and an appropriate pruning method is used, a sub-
task like “find the r documents Y that are most similar
to xl” might be accomplished efficiently by the subplan of
“find all Y’s containing the term ‘Armadillos’ “.

Of course, this subplan depends on the vector xl. To
find the Y’s most similar to the document “The American
Software Company” (in which every term is somewhat fre-
quent) a very different type of subplan might be required.
The observations suggest that query processing should pro-
ceed in small steps, and that these steps should be scheduled
dynamically, in a manner that depends on the specific doc-
ument vectors being processed.

In the query processing algorithm described below, we
will search through a space of partial substitutions: for ex-
ample, one state in the search space for the query given
above would correspond to the substitution that maps X
to xl and leaves Y unbound. The steps we take through
this search space are small ones, as suggested by the discus-
sion above; for instance, one operation is to select a single
term t and use an inverted index to find plausible bindings
for a single unbound variable. Finally, we allow the search
algorithm to order these operations dynamically, focusing
on those partial substitutions that seem to be most promis-

204

ing, and effectively pruning partial substitutions that cannot
lead to a high scoring ground substitution.

3.2 A* search

A* search (summarized in Figure 1) is a graph search
method which attempts to find the highest scoring path be-
tween a given start state SO and a goal state [33; 251. Goal
states are defined by a goalstate predicate. The graph be-
ing searched is defined bv a function children(s), which
returns the set of states directly reachable from state s. TO
conduct the search the A* algorithm maintains a set OPEN of
states that might lie on a path to some goal state. Initially
OPEN contains only the start state SO. At each subsequent
step of the algorithm, a single state is removed from the OPEN
set; in particular, the state s that is “best” according to a
heuristic function, h(s), is removed from OPEN. If s is a goal
state, then this state is output; otherwise, all children of s
are added to the OPEN set. The search continues until r goal
states have been output, or the search space is exhausted.

The procedure described above is a variant of the A* pro-
cedure normally studied, but it has similar desirable prop-
erties. In particular, define a heuristic function h(.) to be
admissible iff for all states s and all states s’ reachable from
s, h(s) 2 h(s’). Define a graph G to be a bounded tree if it is
a tree of finite depth in which the goal states are all leaves.
It is straightforward to show that if h(.) is admissible and
the graph G defined by the children function is a bounded
tree containing at least r goal states, then this A* variant
will output in non-increasing order the r goal states with the
largest heuristic values. Thus the A* search will compute an
r-answer for Q, whenever the conditions above are met, each
state s encodes a substitution 8,, and h(s) = score(Qe,) for
ground 8,.

3.3 The operators and heuristic function

We will now explain how this general search method has
been instantiated in WHIRL. We will assume that in the
query Q, each variable in Q appears exactly once in an
EDB literaL In processing queries, the following data struc-
tures will be used. An inverted index will map terms t E T
to the tuples that contain them: specifically, we will as-
sume a function index(t,p, i) which returns the set of tu-
ples (VI,. . . ,Vi,. . , vk) in tuples(p) such that vi’ > 0. We
will also precompute the function maxweight (t,p, il, which
returns the maximum value of vit over all documents vi in
the i-th column of p.

The states of the graph searched will be pairs (0, E),
where B is a substitution, and E is a set of exclusions. Goal
states will be those for which B is ground for Q, and the
initial state SO is (0,0). An exclusion is a pair (t, Y) where t
is a term and Y is a variable. Intuitively, it means that the
variable Y must not be bound to a document containing the
term t. Formally, we will say that a substitution 6 is E-valid
if V(t, Y) E E, (YO)t = 0. Below we will define the children
function so that all descendents of a node (s, E) must be E-
valid; by making appropriate use of these exclusions we will
force the graph defined by the children function to be a
tree.

We will adopt the following terminology. Given a sub-
stitution 0 and query Q, a similarity literal X N Y is con-
straining iff exactly one of XB and Y6’ are ground. Without

‘This restrictmn is made innocuous by an additional predicate
eq(X,Y) which is true when X and Y are bound to the same doc-
ument vector. The implementation of the aq predicate is relatively
straightforward, and will be ignored in the discussion below.

loss of generality, we assume that XB is ground and YB is
not. For any variable Y, the EDB literal of Q that contains
Y is the generator9 for Y, the position ! of Y within this
literal is Y’s generation index.

Children are generated in two ways: by exploding a state,
or by constraining a state. Exploding a state corresponds
to picking all possible bindings of some unbound EDB lit-
eral. To explode a state s = (0, E), pick some EDB lit-
eral p(YI , . , Yk) such that all the Y’s are unbound by
H, and then construct all states of the form (0 U {YI =
vl,. , Yk = vk}, E) such that (VI,. . ,vk) E tuples(p) and
Ou{Y, = vl,. . . , Yk = vk} is E-valid. These are the children
of s.

The second operation of constraining a state implements
a sort of sideways information passing. To constrain a state
s = (0, E), pick some constraining literal X w Y and some
term t with non-zero weight in the document X0 such that
(t,Y) @ E. Let ~(YI,. . . , 1%) be the generator for the (un-
bound) variable Y, and let L be Y’s generation index. Two
sets of child states will now be constructed. The first is a
singleton set containing the state s’ = (0, E’), where E’ =
E U {(t, Y)}. Notice that by further constraining s’, other
constraining Iiterals and other terms t in XB can be used to
generate plausible variable bindings. The second set St con-
tains all states (e,, E) such that 8, = 6U(Yi = VI,. . . , fi =
vk} for some (vi,. . . ,vk) E index(t,p, !) and 6, is E-valid.
The states in St thus correspond to binding Y to some vector
containing the term t. The set children(s) is St U {s’}.

It is easy to see that if s1 and s3 are two different states
in St, then their descendents must be disjoint. Furthermore,
the descendents of s’ must be disjoint from the descendents
of any si E St, since all descendents of s’ are valid for E’,
and none of the descendents of s; can be valid for E’. Thus
the graph generated by this children function is a tree.

Given the operations above, there will typically be many
ways to “constrain” or “explode” a state. In the current im-
plementation of WHIRL, a state is always constrained using
the pair (t, Y) such that xt . maxweight(t,p, l) is maximal
(where p and e are the generator and generation index for
Y.) States are exploded only if there are no constraining
literals, and then always exploded using the EDB relation
containing the fewest tuples.

It remains to define the heuristic function. (For con-
venience, we will use h(B, E) for h((B, E)) below.) Recall
that the heuristic function h(B, E) must be admissible, and
must coincide with the scoring function score(QS) on ground
substitutions. This implies that h(B,E) must be an upper
bound on score(q) for any ground instance q of Q6. We
thus define h(B, E) to be nt, h’(B,, 8, E), where h’ will be
an appropriate upper bound on score(B,B). We will let this
bound equal score(B,8) for ground B,B, and let it equal 1 for
non-ground B;, with the exception of constraining literals.
For constraining literals, h’(.) is defined as follows:

h’(B,, B, E) s c xt .maxweight(t,p,C) (2)
tET:(t,Y)BE

where p and .! are the generator and generation index for
Y. Note that this is an upper bound on the score of B,u
relative to any ground superset u of 0 that is E-valid.

‘Notice that for well-formed queries, there will be only one gener-
ator for a variable Y.

205

Generic A* search As used in WHIRL

procedure A*(r,so,goalState(.),children(.))
begin

OPEN := {so}
while (OPEN# 0) do

s := argmaxsleopE,h(s’)
OPEN := OPEN - {s}
if goalState then

output (9, h(s))
exit if r answers printed

else
OPEN := OPEN U children(s)

endif
endwhile

end

Initial state 30: (0,0)

goalState((B,E)): true iff 919 is ground

children((6,E)): see text

h((0, E)): I-I,=, h’(B$) where
/a’(B,e) = score(B,8) for ground B,B
h’((X - Yp) =

CtU:(t,Y)CE xt . maxweight(t,p, e)
where XB = x, Y is unbound in 6 with
generator p and generation index e (see text)

Figure 1: Implementation of WHIRL

3.4 Additional details

In the current implementation of WHIRL, the terms of a
document are stems produced by the Porter stemming algo-
rithm [34]. In general, the term weights for a document vi
are computed relative to the collection C of all documents
appearing in the i-th column of p. However, the TF-IDF
weighting scheme does not provide sensible weights for re-
lations that contain only a single tuple. (These relations
are used as a means of introducing “constant” documents
into a query.) Therefore weights for these relations must be
calculated as if they belonged to some other collection C’.

To set these weights, every query is checked before in-
voking the query algorithm to see if it contains any EDB
literals p(X1,. . . , Xk) for a singleton relation p. If one is
found, the weights for the document xi to which a variables
X; will be bound are computed using the collection of docu-
ments found in the column corresponding to Yi, where Y, is
some variable that appears in a similarity literal with X,. If
several such Y,‘s are found, one is chosen arbitrarily. If Xi
does not appear in any similarity literals, then its weights
are irrelevant to the computation.

The current implementation of WHIRL keeps all indices
and,document vectors in main memory, and consists of about
5500 lines of C and C++.”

3.5 Examples of WHIRL

We will now walk through some examples of this procedure.
For clarity, we will assume that terms are words.

Example 2 Consider the query

constl(I0) A p(Company,Industry) A IndustryNIO

where constl contains the single document “telecommuni-
cations services and/or equipment”. With B = 0, there are
no constraining literals, so the first step in answering this
query will be to explode the smallest relation, in this case
constl. This will produce one child, 51, containing the ap-
propriate binding for IO, which will be placed on the OPEN
list.

Next s1 will be removed from the OPEN list. Since
Industry-10 is now a constraining literal, a term from the
bound variable IO will be picked, probably the relatively rare
stem “telecommunications”. The inverted index will be

“‘Although it would have been preferable to implement both STIR
and WHIRL using MIX [23].

used to find all tuples (~01, indl), , (con, ind,) such that
ind, contains the term LLtelecommunications”, and n child
substitutions that map Company=co, and Industry=ind, will
be constructed. Since these substitutions are ground, they
will be given h(.) values equal to their actual scores when
placed on the OPEN list. A new state s; containing the ex-
clusion (telecommunications, Industry) will also be placed
on the OPEN list. Note that h(si) < /a($~), since the best
possible score for the constraining literal Industry-10 can
match at most only four terms: “services” “and”, “or”,
“equipment”, all of which are relatively frequent, and hence
have low weight.

Next, a state will again be removed from the OPEN list. It
may be that h(si) is less than the h(.) value of the best goal
state; in this case, a ground substitution will be removed
from OPEN, and an answer will be output. Or it may be that
h(si) is higher than the best goal state, in which case it
will be removed and a new term, perhaps “equipment”, will
be used to generate some additional ground substitutions.
These will be added to the OPEN list, along with a state 3:’
which has large exclusion set and thus a lower h(.) value.

This process will continue until r documents are gener-
ated. Note that it is quite likely that low weight terms such
as “or” will not be used at all.

In a survey article, Turtle and Flood [41] review a num-
ber of query optimization methods for ranked retrieval IR
systems. The post effective of these was one they call the
mQz.sco~e optimization. It can be shown that the behavior
of WHIRL on queries of the sort shown above is identical to
the behavior of an IR system using the maxscore optimiza-
tion.

Example 3 Consider the query

p(Companyl,Industry) A q(Company2,UebSite)
A CompanylNCompany2

In solving this query, the first step will be to explode the
smaller of these relations. Assume that this is p, and that p
contains 1000 tuples. This will add 1000 states ~1,. . . , ~1000
to the OPEN list. In each of these states, Company1 and
Industry are bound, and CompanylwCompany2 is a con-
straining literal. Thus each of these 1000 states is analogous
to the state s1 in the preceding example.

However, the h(.) values for the states 31,. . . , S~OOO will
not be equal. The value of the state si associated with the
substitution 8, will depend on the maximum possible score
for the literal CompanylwCompany2, and this will be large
only if the high-weight terms in the document Companylei

206

appear in the company field of q. As an example, a one-word
document like “3Com” will have a high h(.) value if that term
appears (infrequently) in the company field of q, and a zero
h(.) value if it does not appear; similarly, a document like
“Agents, In? will have a low h(.) value if the term “agents”
does not appear in the first column of q.

The result is that the next step of the algorithm will be
to choose a promising state sz from the OPEN list-a state
that could result in an good final score. A term from the
Company1 document in s,-say “3Com”-will then be picked
and used to generate bindings for Company2 and WebSite.
If any of these bindings results in perfect match, then an
answer can be generated on the next iteration of the algo-
rithm.

In short, t,he operation of WHIRL is somewhat similar to
time-sharing 1000 simpler queries on a machine for which the
basic unit of computation is to access a single inverted index.
However, WHIRL’s use of the h(.) function will schedule the
computation of these queries in an intelligent way: queries
unlikely to produce good answers can be discarded, and low-
weight terms are unlikely to be used.

Example 4 Consider the query

p(Company1 ,Industry) A q(Company2 ,WebSite)
A CompanylNCompany2 A constl(I0) A Industry-10

where the relation consti contains the single docu-
ment , “telecommunications and/or equipment”. In solv-
ing this query, WHIRL will first explode consti and gen-
erate a binding for IO. The literal Industry-10 then be-
comes constraining, so it will be used to pick bindings for
Company1 and Industry using some high-weight term, per-
haps “telecommunications”.

At this point there will be two types of states on the
OPEN list. There will be one state s’ in which only IO is
bound, and (telecommunications, Industry) is excluded.
There will also be several states sir.. . , sn in which IO,
Company1 and Industry are bound; in these states, the lit-
eral CompanylwCompany2 is constraining. If s’ has a higher
score than any of the sI’s, then s’ will be removed from the
OPEN list, and another term from the literal Industry-10
will be used to generate additional variable bindings.

However, if some s; literal has a high h(.) value then
it will be taken ahead of 3’. Note that this possible when
the bindings in s, lead to a good actual similarity score for
Industry-IO as well as a good potential similarity score for
Companyl~Company2 (as measured by the h’(.) function). If
an si is picked, then bindings for Company2 and WebSite will
be produced, resulting a ground state. This ground state
will be removed from the OPEN list on the next iteration only
if its h(.) value is higher that of 9’ and all of the remaining
s,‘s.

This example illustrates how bindings can be propagated
through similarity literals. The binding for IO is first used to
generate bindings for Company1 and Industry, and then the
binding for Company1 is used to bind Company2 and Website.
Note that bindings are generated using high-weight, low-
frequency terms first, and low-weight, high-frequency terms
only when necessary.

Example 5 We observe that if all scores of all tuples in
the EDB are equal to one, and if all documents contain a
single term, then the score of all substitutions will be either
zero or one. In this case, the full answer set for a WHIRL
query Q corresponds exactly to the substitutions that satisfy
the query obtained replacing every similarity literal X N Y
with an equality literal’equal (X,Y) (or equivalently, resolv-
ing against the unit clause X N X c.). Let us consider

computing the full answer set (or equivalently, an r-answer
for some very large r) for a query of the form

Pl(X1) A ... A PL(XI;) A x1 N x2

A x2 N x3 A . A Xk-1 N XI,

over a such a “conventional” EDB. We will also assume that
there is no duplication of documents within a single pi; in
other words, the query corresponds to a k-way join using
unique keys.

Although the query algorithm is designed for quite dif-
ferent problems, it is instructive to examine its behavior on
this sort of “conventional” k-way join. We claim that in this
case, the running time for the WHIRL query algorithm is
O(k . ni log n,), where 12; is the size of the smallest relation
p,. To see this, consider the operation of the algorithm on
such a query.

The fist step for the algorithm will be to “explode” the
smallest relation p, . This will place nr states ~1,. . , sn,
on the OPEN list, where each sJ contains a substitution 6,
binding X, to a different document xj.

Now consider some state s3. State sj contains at most”
two constraining liter&, Bi = X, - X,+1 and Bz = Xi-1 -
X,, and h(sJ) = h’(B1,8~,0). h’(Bz,O,,0). For this sort of
“conventional” data, /a’(Bl , B,, 0) is easy to interpret: Equa-
tion 2 will evaluate to 1 for B1 (respectively Bz) only when
the single term t contained in xj is contained in some doc-
ument in p,+l (respectively p,-1) and zero otherwise. So
WHIRL will pick some sj from the OPEN list that binds xj
to a value appearing in both pt-l and pi+l, and constrain
this state by picking a value for either Xi-1 or Xi+i. In
either case, the unique possible binding for the newly con-
strained variable will be computing in constant time using
the index function, sJ will be removed from the OPEN list,
and a single new state 3: will be placed on the OPEN list in
its stead. This process can now be repeated for state si,
leading eventually to either a goal state descendent of s3, or
to a “dead end” state with an h(.) value of zero.

Following this argument, it is easy to see that the OPEN
list never contains more than ni elements, and that the
depth of every state (in the graph defined by the children
function) is at most k. This means that at most n, . k itera-
tions of the while loop of Figure 1 are possible, and leads to
a running time of O(k . n, log n,). The final factor of log n,
bounds the time required to remove a state from an OPEN
list of size ni-although it is unnecessary for this sort of
“conventional” data, in general the OPEN list is implemented
as a heap.

4 Experimental Results

To evaluate WHIRL, we used the relations described in Ta-
ble 1. Most of these relations are from Web sites that, are
plausible subjects for data integration.

We evaluated our implementation of WHIRL along two
dimensions. First, we wished to measure the time needed
to evaluate queries, and compare this time cost with other
strategies. Second, we wished to measure the accuracy of
the answers produced by WHIRL. In this evaluation we used
the measures of precision and recall traditionally used in the
statistical IR community.

All experiments were performed using a prototype imple-
mentation of WHIRL, which keeps all indices and document
vectors in main memory.

“If the smallest relation is p, or pb, then there will be only one
constraining literal, but a similar argument applies.

207

#Tuples Schema source
31,281 I!lDB(movieBame,year) http://us.imdb.com
37,572 VideoFlicks(movieIiame,year,genre) http:// www.videoflicks.com

232 Review(movieBame,nenspaper,revien) http://www.cinema.pgh.pa.us/movie/reviews
78 MovieLink(movielYame,cinema8ame,address,phone,zipcode) http:// www.movielink.com

2,474 Hoovers(companyBame,industry) http:// www.hoovers.com
1,163 HooversUeb(companyBame,industry,nebsite) http://www.hoovers.com

976 Iontech(companyBame,nebsite,tickertape,industry) http:// www.iontech.com
13,625 ReutersTrain(story, keywords) http://www.research.att.com wlewis/reuters21578.html
6,188 ReutersTest(story, keywords) t~ttp://www.research.att.com/~lewis/reuters21578.html

990 Animall(commonBame,scientificlame) http://endeavor.des.ucdavis.edu/nps
4,719 Animal2(commonBame,scientificBame,Range) llttp://www.nceet.snre.umich.edu/EndSpp/ES.lists.html

Table 1: Relations used in the experiments

4.1 Timing results

We evaluated run-time performance with CPU time mea-
surements on a specific class of queries, which we will hence-
fort,h call similarity joins. A similarity join is a query of the
form

naive method by a factor of 20 or more. Note that the abso-
lute time required to compute the join is fairly modest-with
n = 30,000, WHIRL takes well under a minute13 to pick the
best 10 answers from the 900 million possible candidates.

p(x’,,..., x, ,..., Xk)
A C,(Yl,. ,Yj,. .,Y,, A x, N YJ

An answer to this query will consist of the r tuples from p
and 4 such that X, and YJ are most similar.

This type of query has several advantages for benchmark-
ing purposes. It is highly relevant to our research goals, since
it is directly related to the sort of data integration problem
which led us to develop WHIRL. This class of queries is suf-
ficiently constrained in form so that it can be handled using
simple algorithms built on top of well-known, previously ex-
isting IR search methods. This makes it possible to compare
the query optimizations used in WHIRL with previous query
optimizations. In particular, we will compare WHIRL with
the following algorithms.

We also joined ReutersTrain and Hoovers using the
company name column of Hoovers and the story column
of ReutersTrain. This application of similarity joins corre-
sponds to searching for all mentions in the Reuters corpus of
any company listed in Hoovers, and illustrates an interest-
ing blending of IR search with data integration. The results
are shown in the second graph of Figure 2. On these prob-
lems the maxscore method does not improve over the naive
method with respect to CPU time.14 However, WHIRL
speeds up the naive method by a factor of 2-4. The ab-
solute time required is again small-about 5 CPU seconds
for n := 2474.

l The naive method for similarity joins takes each doc-
ument in the i-th column of relation p in turn, and
submits it as a IR ranked retrieval query to a corpus
corresponding to the j-column of relation q. The top r
results from each of these IR queries are then merged
to find the best r pairs overall. This might be more ap-
propriately be called a “semi-naive” method; on each
IR query, we use inverted indices, but we employ no
special query optimizations.

It should be noted that the run-time for these queries is
fast in part because some of the documents being joined are
names. Names tend to be short and highly discriminative,
and thus behave more like traditional database keys than
arbitrary documents might. This point can be illustrated
experimentally [9].

Elsewhere we present timing results for typical queries
posed to a prototype data integration system based on WHIRL
[IO]. In this setting the queries are more complex (e.g., four-
and five-way joins) but the relations are somewhat smaller,
containing a few hundred to a few thousand tuples. Query
processing time for these queries is usually a tenth of a sec-
ond or less.

l As noted above, WHIRL is closely related to maxscore
optimization [41]. We thus compared WHIRL to a
maxscore method for similarity joins; this method is
analogous to the naive method described above, except
that the maxscore optimization is used in finding the
best r results from each “primitive” query.

To see how these algorithms behave, we used them to
compute the top 10 answers” for the similarity join of sub-
sets of the IMDB and VideoFlicks relations. In particular,
we joined size n subsets of both relations, for various val-
ues of n between 2000 and 30,000. The results are shown
in Figure 2. For this data, WHIRL speeds up the maxscore
method by a factor of between 4 and 9, and speeds up the

4.2 Average precision on similarity joins

To evaluate the accuracy of the answers produced by WHIRL,
we adopted the following methodology. Again focusing on
similarity joins, we selected pairs of relations which con-
tained two or more plausible “key” fields. One of these
fields, the “primary key”, was used in the similarity literal
in the join. The second key field was then used to check the
correctness of proposed pairings; specifically, a pairing was
marked as “correct” if the secondary keys matched (using an
appropriate matching procedure) and “incorrect” otherwise.

We then treated “correct” pairings in the same way that
“relevant” documents are typically treated in evaluation of a
ranking proposed by a standard IR system. In particular, we
measured the quality of a ranking using (non-interpolated)

“In other experiment (not reported here due to space considera-
t,ions) we have explored the result of increasing T up to several thou-
sand For these sorts of problems the compute time for WHIRL grows
no worse than linearly with T

13All timing results are given in CPU seconds on a MIPS Irix 6.3
with 200 MHz RlOOOO processors.

141t cdoes, however, greatly reduce the number of accesses to the
inverted index, as Turtle and Flood observed.

208

Hoovers-Reuters
VideoFlicks-IMDB 20 90 - ,f

16
60 - 16 c Maxscore z ,/’

WHIRL
WUIRI .o ,/’

70 --a- .. -
14

50 - 10

40 a

30 - 6

20 4 -
2

10 -
0

0 500 1000 1500 2000 2500
0 5000 10000 15000 20000 25000 30000

Number of tuples
Number of tuples

Figure 2: Runtime for similarity joins (in seconds)

Similarity Joins Similarity Joins with
Incompatible Schemata

Table 2: Average precision for similarity joins

average precision. To motivate this measurement, assume
the end user will scan down the list of answers and stop at
some particular “target answer” that he or she finds to be
of interest. The answers listed below this “target” are not
relevant, since they are not examined by the user. Above
the target, one would like to have a high density of correct
pairings; specifically, one would like the set S of answers
above the target to have high precision, where the precision
of S is the ratio of the number of correct answers in S to
the number of total answers in S. Average precision is the
average precision for all “plausible” target answers, where
an answer is considered a plausible target only if it is correct.
To summarize, letting ok be the number of correct answers
in the first k, and letting c(k) = 1 iff the k-th answer is
correct and letting c(k) = 0 otherwise, average precision is
the quantity CL=, c(k). y.

Note that average precision is 1 only when all correct
answers precede all incorrect answers. In the experiments
below, we used r-answers of size r = 1000 to compute aver-
age precision.

We used three pairs of relations from three different do-
mains. In the business domain, we joined Iontech and
HooversWeb, using company name as the primary key, and
the string representing the “site” portion of the home page
as a secondary key. In the movie domain, we joined Review
and MovieLink, using film names as a primary key. As a
secondary key, we used a special key constructed by the
hand-coded normalization procedure for film names that is
used in IM, an implemented heterogeneous data integration
system [27]. In the animal domain, we joined Animal1 and
Animala, using common names as the primary key, and sci-

entific names as a secondary key (and a hand-coded domain-
specific matching procedure).

The results are summarized in Table 2. On these do-
mains, similarity joins are extremely accurate-in the movie
domain, the performance is actually identical to the hand-
coded normalization procedure. These results contrast with
the typical performance of statistical IR systems on retrieval
problems, where the average precision of a state-of-the art
IR system is usually closer to 50% than 90%. This sug-
gests that the similarity reasoning required to match names
is easier than the similarity reasoning required to process a
typical IR ranked retrieval query.

In the experiments, we used the secondary key as a “gold
standard” ; however, in most of the domains, the matching
procedure for the secondary keys is somewhat error prone.
Checking all pairings manually would be too time consum-
ing, but to get some idea of the accuracy of the secondary
keys we took the top 100 pairs in the business domain, and
manually checked the 13 pairs marked as “incorrect’ accord-
ing to the secondary key. Of these 13 pairings, there were 11
in which the secondary keys were wrong, one in which the
WHIRL pairing was wrong (at rank 77), and one pair where
correctness could not be easily determined. This suggests
that the similarity join is actually more accurate than the
use of Web sites as a key.

4.3 Joins with incompatible schemata

Another problem which occurs in integrating heterogeneous
data is the problem of incompatible schemata. For example,
consider trying to find employees of a university using the
following two relations: professor (name, workAddress)
and university(name,state). It is plausible that concate-
nating a university name and state would give a document
similar, but not identical, to an employee’s workAddress.
(Typically a workAddress would have a number of extra
terms, such as “Department of Computer Science”, in addi-
tion to some variant of the university name and its state.)
Thus in this case, an appropriate similarity join might give
a useful result, even though the objects being joined are in
fact different.

We explored this possibility by considering different
schemata for the MovieLink and Review relations, with the
aim of constructing problems that are similar to the sort of

209

incompatible-schemata problem given above, but still pos-
sible to evaluate rigorously by checking individual pairings.
For MovieLink, we considered a variation in which each tu-
ple contains a single document containing a movie name
plus a complete cinema address. (In the table, we call this
document a “movieListing”.) For Review, we considered a
variation in which each tuple contains only a review entry,
and no separate movie name field.15 We then computed sim-
ilarity joins with each possible combination of a MovieLink
variant and a Review variant.

One would expect the irrelevant “noise” words that ap-
pear along with the movie names to have some adverse af-
fect on precision. In our experiments with the Review and
Movielink relations, however, the effect was quite slight:
joining movie names to movie listings reduces average pre-
cision by only 2%, and joining movie listings to complete
reviews reduces average precision by less than 7%. Finally,
joining movie listings to movie names leads to no measur-
able loss in average precision. These results are summarized
in Table 2.

5 Related Work

Chaudhuri et al present efficient solutions to the problem
of loosely integrating Boolean text queries with database
queries [8]. In contrast, we have considered a much tighter
integration between databases and statistical IR queries.
The assumptions made by Chaudhuri et al are not particu-
larly appropriate in the context of heterogeneous database
integration.

As noted above in Section 2.4, WHIRL is closely related
to probabilistic databases (e.g., [18; 41). To our knowledge
such database systems have not been used in data integra-
tion tasks. Furthermore, the implementation of WHIRL is
unique in generating only a few “best” answers to a query;
existing probabilistic database systems typically find all tu-
ples with non-zero probability. As we argued above in Sec-
tion 2.2, this would often be impractical for the problems en-
countered in this sort of heterogeneous database integration,
due to the prevalence of weak matches between documents.

The WHIRL query algorithm borrows heavily from tech-
niques previously used to optimize ranked retrieval searches
in statistical IR. To our knowledge, these techniques have
not been previously used for approximating the join of lists
of documents. More generally, the sort of approximate join
implemented in WHIRL does not seem to have been investi-
gated in the IR literature, although numerous other hybrids
of statistical IR techniques with database representations
have been proposed (e.g., [37; IS]).

There has also been much work on approximate match-
ing techniques for the removal of duplicates and merging of
heterogeneous data sources [32; 16; 22; 21; 20; 311. Most of
the approximate matching methods proposed are domain-
specific (e.g., using Soundex to match surnames), a notable
exception being the Smith-Waterman edit distance adopted
by Monge and Elkan [31]. Applying these techniques is a rel-
atively expensive off-line process which is usually not guar-
anteed to find the best matches, due to the nearly universal
use of “blocking” heuristics which restrict the number of
similarity comparisons.

Here, we have considered approximate matching using
the vector space model of similarity. This model enjoys a
number of advantages. Like Smith-Waterman, it is domain-
independent. It is extremely well supported experimentally

15The review documents virtually always contain a title nammg the
movie being rewewed, as well as a lot of additional text.

as a similarity metric for text; we note that in a previous
comparison, a simple term-weighting method gave better
matches than the Smith-Waterman metric [30]. Finally, by
using inverted indices, it is possible to quickly locate items
similar to a given item. Exploitation of this property re-
sults in a approximate matching algorithm that is guaran-
teed to find the best pairings, but still fast enough to inter-
leave with query-answering. Note that interleaving match-
ing with query-answering, rather than computing the best
matches off-line, has an important consequence: rather than
commit early as to whether a match is correct or incorrect,
one can propagate uncertainty about approximate matches,
and then use the propagated uncertainty to rank answers
presented to the end user.

There have also been a number of approaches to data
integration which address issues orthogonal to the problem
of lack of common domains. Examples of such work include
“semi-structured” data models [38; 1; 391; while we have
focused here on relational models, due to their simplicity,
we believe that many of the basic principles of WHIRL can
be applied to more complex data models as well. Other
data integration systems provide a database-like view of t.he
Web (e.g., [17; 29; 24]), in which queries can express com-
binations of keyword searches and hypertext connectivity
constraints; in effect, these languages offer a means declara-
tively navigating the Web. As suggested by the experiments,
we believe that our work is most appropriate for integrating
sites that contain no explicit links connecting them. WHIRL
also differs from such models in that it includes statistical
IR methods for searching within documents, rather than
boolean keyword search methods.

In its basic motivation, our work is inspired by previous
work in the integration of heterogeneous data sources, such
as data sources on the Web [27; 2; 19; 3; 40; 61. None of
these previous systems, however, include a “fuzzy” matching
procedure for names; instead they generally construct global
domains using hand-crafted domain-specific normalization
schemes. Use of domain-specific matching algorithms has
also been proposed as an alternative to normalization [15].

The connection between WHIRL and other data integra-
tion systems is discussed more fully in another paper [lo],
which describes a WHIRL-based data integration system for
Web data sources. The focus of that paper is on mecha-
nisms for converting HTML information sources into STIR
databases, and other practical issues in fielding a data inte-
gration system. In contrast, this paper focuses on efficient
theorem proving algorithms for WHIRL and rigorous eval-
uation of WHIRL in controlled experiments.

Some of the results of this paper have also appeared pre-
viously in preliminary form [9].

6 Conclusions

In an ideal world, one would like to integrate information
from heterogeneous autonomous databases with little or no
human effort. In other words, one would like data to be
easily shared among databases. Unfortunately, such data
sharing is difficult with current data models. One funda-
mental and critical problem is the lack of global domains:
different databases are likely to use different const,ants to
refer to the same real-world entity, making operations like
joins across relations from different databases impossible.

We believe the data model and query language presented
in this paper represent a significant advance toward the long-
term goal of easily sharable data. We have outlined an ap-
proach to the integration of structured heterogeneous infor-

210

mation sources, based on extended conventional database
query languages with standard IR methods for reasoning
about textual similarity. The approach is embodied in an
implemented logic called WHIRL. WHIRL is intended for
integration of relations that are semantically heterogeneous
in the sense that there is no common naming scheme for
entities.

The problem of integrating relations without global do-
mains has received little prior attention. Current data inte-
gration systems typically use domain-specific rules to nor-
malize entity names, and then use the normalized versions
of these names as keys. These normalization rules are devel-
oped manually, sometimes at considerable effort. In prac-
tice, the cost of this process in terms of human time limits
data integration systems to relatively well-structured data
collected from a relatively small number of sites. Further-
more, normalization is prone to error, and unlike WHIRL,
a system based on normalized keys has no way of either as-
sessing the likelihood of such errors or (more importantly)
informing the user of potential errors.

Our experiments show that the accuracy of WHIRL’s
“similarity joins” are quite good, even compared to hand-
coded int,egration schemes based on normalization. In one
case WHIRL’s performance equals the performance of a hand-
constructed, domain-specific normalization routine. In a
second case, WHIRL’s performance gives better performance
than matching on a plausible global domain. WHIRL is also
efficient; the current implementation can handle join opera-
tions on moderate sized databases (containing a few tens of
thousands of t,uples) at interactive speeds.

Although t,hese results are encouraging, many additional
topics remain to be addressed. There are many well-known
methods for conducting an approximate A* search; some
or all of these may lead to substantial performance im-
provements. The current version of WHIRL handles het-
erogeneous data, but not in a distributed fashion; this is
another intriguing topic for future work. We would also
like to consider the issue of closely integrating WHIRL with
appropriate learning methods for text categorization [28;
121, adjusting numerical parameters for queries [5; 7; II],
and learning logical expressions [35].

Finally, we plan to continue our evaluation of WHIRL on
actual data integration tasks [lo]. These experiments allow
us to evaluate WHIRL on less artificial queries, and suggest
necessary extensions. One drawback of such work, how-
ever, is that any system integrating data from existing Web
information sources requires some sort of human-directed
translation of these sources--for instance, our data integra-
tion system requires translation from HTML to STIR. This
makes it impossible to separate the performance the integra-
tion system as a whole from the cleverness and industry of
the humans that are doing the translation. In a better world,
of course, translation would be unnecessary; instead data
would be encoded directly in STIR, or some other sharable
data model.

Acknowledgments

The author is grateful to Alon Levy for numerous helpful
discussions while I was formulating this problem, and for
comments on a draft of the paper; to Jaewoo Kang, for pro-
viding me with data and the normalization routines used in
IM; to Alex Borgida, Sal Stolfo, and Mark Jones for com-
ments on the paper; to Susan Cohen for proofreading; and to
Edith Cohen, David Lewis, Haym Hirsh, Fernando Pereira,
Divesh Srinivasan, Dan Suciu, and many other colleagues

for helpful advice and discussions.

References

[II

PI

131

[41

[51

161

[71

PI

PI

[lOI

[Ill

[W

[I31

[I41

[W

Serge Abiteboul and Victor Vianu. Regular path queries with
constraints. In Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS-97), Tucson, AZ, May 1997.

Yigal Arens, Craig A. Knoblock, and Chun-Nan Hsu. Query
processing in the SIMS information mediator. In Austin
Tate, editor, Advanced Planning Technology. AAAI Press,
Menlo Park, CA, 1996.

Paolo Atzeni, Giansalvatore Mecca, and Paolo Merialdo.
Semistructured and structured data on the Web: go-
ing back and forth. In Dan Suciu, editor, Proceed-
ings of the Workshop on Management of Semistructured
Data, Tucson, Arizona, May 1997. Available on-line from
http://www.research.att.com/ suciu/workshoppapers.html.

Daniel Barbara, Hector Garcia-Molina, and Daryl Porter.
The management of probabilistic data. IEEE Transations
on knowledge and data engineering, 4(5):487-501, October
1992.

Brian T. Bartell, Garrison W. Cottrell, and Richard K.
Belew. Automatic combination of multiple ranked retrieval
systems. In Seventeenth Annual International ACM SIGIR
Conference on Research and Development in InJormation
Retrieval, 1994.

R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. No-
dine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikris-
han, A. Unruh, and D: Woelk. Infosleuth: an agent-based
semantic integration of information in open and dynamic en-
vironments. In Proceedings of the 1997 ACM SIGMOD, May
1997.

Justin Boyan, Dane Freitag, and Thorsten Joachims. A
machine learning architecture for optimizing web search en-
gines. Technical Report WS-96-05, American Association of
Artificial Intelligence, 1994.

S. Chaudhuri, U. Dayal, and T. Yan. Join queries with ex-
ternal text sources: execution and optimization techniques.
In Proceedings of the 1995 ACM SIGMOD, May 1995.

William W. Cohen. Knowledge integration for structured
information sources containing text (extended abstract). In
The SIGIR-97 Workshop on Networked InJormation Re-
trieval, 1997.

William W. Cohen. A Web-based information system that
reasons with structured collections of text. In Proceedings of
Autonomous Agents-S??, St. Paul, MN, 1998.

William W. Cohen, Rob Schapire, and Yoram Singer. Learn-
ing to order things. To appear in NIPS-97, 1997.

William W. Cohen and Yoram Singer. Context-sensitive
learning methods for text categorization. In Proceedings of
the 19th Annual International A CM Conference on Research
and Development in Information Retrieval, pages 307-315,
Zurich, Switzerland, 1996. ACM Press.

Oliver M. Duschka and Michael R. Genesereth. Answering
recursive queries using views. In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS-97), Tucson, AZ, May
1997.

Oliver M. Duschka and Michael R. Genesereth. Query plan-
ning in infomaster. In Proceedings of the Twelfth Annual
ACM Symposium on Applied Computing (SAC97), San Jose,
CA, l?ebruary 1997.

Douglas Fang, Joachim Hammer, and Dennis McLeod. The
identification and resolution of semantic heterogeneity in
multidatabase systems. In Multidatabase Systems: An Ad-
vanced Solution for Global Information Sharing, pages 52-
60. IEEE Computer Society Press, Los Alamitos, California,
1994.

211

PO1

WI

PA

[231

1241

[25l

PSI

[271

WI

WI

[301

[311

[3X1

1331

[341

I. P. Felligi and A. B. Stinter. A theory for record linkage.
Journal of the American Statistical Society, 64:1183-1210,
1969.

Thorsten Fiebig, Jurgen Weiss, and Guido Moerkotte. RAW:
a relational algebra for the Web. In Dan Suciu, editor, Pro-
ceedings of the Workshop on Management of Semistructured
Data, Tucson, Arizona, May 1997. Available on-line from
http://www.research.att.com/ suciu/workshoppapers.html.

Norbert Fuhr. Probabilistic Datalog--a logic for powerful
retrieval methods. In Proceedings o./ the 1995 A CM SIGIR
conference on research in information retrieval, pages 282-
290, New York, 1995.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. Ullman, and J. Widom. The TSIM-
MIS approach to mediation: Data models and languages (ex-
tended abstract). In Next Generation Information Technolo-
gies and Systenas (NGITS-95), Naharia, Israel, November
1995.

M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. In Proceedings of the 1995 ACM SIGMOD,
May 1995.

Scott Huffman and David Steier. Heuristic joins to integrate
structured heterogeneous data. In Working notes of the
AAAI spring symposium on information gathering in het-
erogeneous distributed environments, Palo Alto, CA, March
1995. AAAI Press.

B. Kilss and W. Alvey (ed). Record linkage techniques-
1985. Statistics of Income Division,
Internal Revenue Service Publication 1299-2-96. Available
from http://www.bts.gov/fcsm/methodology/, 1985.

Donald E. Knuth. The Art of Computer Programming, Vol-
ume I: Fundamental Algorithms (second edition). Addison-
Wesley, Reading MA, 1975.

D. Konopnicki and 0. Schmueli. W3QS: a query system for
the world wide web. In Proceedings of the 21nd International
Conference on Very Large Databases (VLDB-96), Zurich,
Switzerland, 1995.

Richard Korf. Linear-space best-first search. Artificial In-
telligence, 62(1):41-78, July 1993.

Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.
Query answering algorithms for information agents. In Pro-
ceedings of the 13th National Conference on Artijicial Intel-
ligence (AAAI-96), Portland, Oregon, august 1996.

Alon Y. Levy, Anand Rajaraman, and Joann 3. Ordille.
Querying heterogeneous information sources using source de-
scriptions. In Proceedings of the 22nd International Confer-
ence on Very Large Databases (VLDB-96), Bombay, India,
September 1996.

David Lewis. Representation and learning in information
retrieval. Technical Report 91-93, Computer Science Dept.,
University of Massachusetts at Amherst, 1992. PhD Thesis.

Alberto Mendelzon and Tovo Milo. Formal models of Web
queries. In Proceedings oj the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS-97), Tucson, AZ, May 1997.

A. Monge and C. Elkan. The field-matching problem: al-
gorithm and applications. In Proceedings of the Second In-
ternational Conference on Knowledge Discovery and Data
Mining, August 1996.

A. Monge and C. Elkan. An efficient domain-independent
algorithm for detecting approximately duplicate database
records. In The proceedings of the SIGMOD 1997 workshop
ora data mining and knowledge discovery, May 1997.

H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.
James. Automatic linkage of vital records. Science, 130:954-
959, 1959.

Nils Nilsson. Principles oj Artij?cial Intelligence. Morgan
Kaufmann, 1987.

M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

[351

[361

1371

1381

1391

[401

I411

J. Ross Quinlan. Learning logical definitions from relations.
Machine Learning, 5(3), 1990.

Gerard Salton, editor. Automatic Test Proceasing. Addison
Welsley, Reading, Massachusetts, 1989.

Peter Schiiuble. SPIDER: A multiuser information retrieval
system for semistructured and dynamic data. In Proceedings
of the 1993 ACM SIGIR conference on research in injorma-
tion retrieval, pages 318-327, Pittsburgh, PA, 1993.

Dan Suciu. Query decomposition and view maintanance for
query languages for unstructured data. In Proceedings of
the Z&ad International Conference on Very Large Databases
(VLDB-96), Bombay, India, 1996.

Dan Suciu, editor. Proceedings of the Workshop on Man-
agement of Semistructured Data. Available on-line from
http://www.research.att.com/ suciu/workshoppapers.html,
Tucson, Arizona, May 1997.

Anthony Tomasic, Remy Amouroux, Philippe Bonnet, and
Olga Kapitskaia. The distributed information search com-
ponent (Disco) and the World Wide Web. In Proceedings of
the 1997 A CM SIGMOD, May 1997.

Howard Turtle and James Flood. Query evaluation: strate-
gies and optimizations. Information processing and manage-
ment, 31(6):831-850, November 1995.

212

