
Hardening Soft Information Sources

William W. Cohen
�

AT&T Labs–Research
Shannon Laboratory

180 Park Avenue
Florham Park, NJ 07932

wcohen@whizbanglabs.com

Henry Kautz
y

AT&T Labs–Research
Shannon Laboratory

180 Park Avenue
Florham Park, NJ 07932

kautz@cs.uw.edu

David McAllester
AT&T Labs–Research
Shannon Laboratory

180 Park Avenue
Florham Park, NJ 07932

dmac@research.att.com

ABSTRACT
The web contains a large quantity of unstructured infor-
mation. In many cases, it is possible to heuristically ex-
tract structured information, but the resulting databases
are \soft": they contain inconsistencies and duplication, and
lack unique, consistently-used object identi�ers. Examples
include large bibliographic databases harvested from raw sci-
enti�c papers or databases constructed by merging hetero-
geneous \hard" databases. Here we formally model a soft
database as a noisy version of some unknown hard database.
We then consider the hardening problem, i.e., the problem
of inferring the most likely underlying hard database given
a particular soft database. A key feature of our approach
is that hardening is global | many sources of evidence for
a given hard fact are taken into account. We formulate
hardening as an optimization problem and give a nontrivial
nearly linear time algorithm for �nding a local optimum.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
data integration

1. INTRODUCTION
The web contains a large quantity of unstructured infor-
mation. In many cases, it is possible to heuristically ex-
tract structured information, but the resulting databases are
\soft": they contain duplication and lack unique consistently-
used object identi�ers.

As an example of a soft database, consider the large bib-
liographic databases harvested from raw scienti�c papers

�Current address: Whizbang Labs-Research, East, 4616
Henry St, Pittsburgh, PA 15213.
yCurrent address: Dept. of Computer Science, Univ. of
Washington, Seattle WA.

KDD ’00 Boston, Massachusetts USA

A \soft" database S:
author(\Bart Selman", \Critical behavior in satis�ability").
a�liation(\Bart Selman", \Cornell University").
author(\B. Selman", \Critical behavior for satis�ability").
author(\B. Selman", \BLACKBOX theorem proving").

A \hard" database H:
author(bart selman, critical).
a�liation(bart selman, cornell).
author(bart selman, blackbox).

Figure 1: A \soft" bibliographic database and the
underlying \hard" data

by systems such as ResearchIndex [11] or Cora [4]. These
databases contain information about thousands of technical
papers. However, it is often hard to determine if two cita-
tions refer to the same paper, or if two names (e.g. \William
Cohen" and \W. E. Cohen") refer to the same person. This
makes it di�cult to perform basic operations such as count-
ing the number of citations to a particular paper or person.

Here we formalize a soft database as one in which distinct
identi�ers may refer to the same entity. We formalize hard-
ening as the problem of determining the (most likely) co-
references between the soft identi�ers|that is, determining
which pairs of soft identi�ers refer to the same real-world
object. The result of this is a hard (conventional) database.
An example is shown in Figure 1. Notice that more con-
clusions can be drawn from the hard database H than the
soft database S. In particular, H implies that an author of
the paper \BLACKBOX theorem proving" is a�liated with
Cornell, where as S does not.

Although we will use bibliographic data as a running ex-
ample, we wish to emphasize that soft data arises in many
di�erent contexts. For instance, soft data might be cre-
ated by automatically extracting facts from classi�ed ads
[2], or newsgroup postings [5]. A soft database might also
arise from merging the contents of several heterogeneous,
autonomously-created \hard" databases.

Formally, we will assume soft facts are given along with some
measure of how likely two identi�ers are to be co-referent.
(For example, the strings \W. E. Cohen" and \William Co-

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD 2000, Boston, MA USA
© ACM 2000 1-58113-233-6/00/08 ...$5.00

255

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

hen" are a-priori plausibly co-referent, whereas the strings
\William Cohen" and \Bart Selman" are not.) We then for-
malize the problem of �nding the best \hard" model of a set
of soft facts probabilistically. We de�ne a prior probability
distribution over possible hard databases and a prior prob-
ability distribution over name co-references. Given these
distributions, the task of constructing the most likely hard
database becomes a well-de�ned optimization problem. This
optimization problem involves minimizing the sum of the
number of tuples in the hard database, plus a cost associ-
ated with the set of co-reference assumptions required.

2. A FORMAL VIEW OF HARDENING
We will assume a set of \references", each of which is some
string referring to some real-world object. A tuple of refer-
ences is written R(r1; : : : ; rn) where R ranges over some
�xed set of relations and r1, : : : , rn are references. Unlike
a conventional hard database, we will allow distinct refer-
ences to refer to the same real-world entity. We de�ne a soft
database to be a set of tuples of the form R(r1; : : : ; rn),
where R ranges over some �xed set of relations and r1, : : : ,
rn are references.

In the bibliographic domain the same string might denote
di�erent entities when used in di�erent contexts, e.g., the
string \Michael Jordan" might denote a di�erent person in
a news story than in a paper on graphical models. To cir-
cumvent this problem we can construct references by con-
catenating a string with some indication of the context from
which that string was extracted; for instance, the author
name \Michael Jordan" extracted from a postscript paper
p would be represented as the reference \Michael Jordan"p,
and would be distinct from the reference \Michael Jordan"b
extracted from a news story b.

To return to the example of Figure 1, suppose one has pro-
cessed two postscript papers p1 and p2. The following facts
have been extracted from the title page of p1:

author(\Bart Selman"p1, \Critical behavior in satis�ability"p1).
a�l(\Bart Selman"p1, \Cornell University"p1).

and suppose the following facts have been extracted from
the bibliography section of p2:

author(\B. Selman"p2, \Critical behavior for satis�ability"p2).
author(\B. Selman"p2, \BLACKBOX: Applying theorem

proving to problem solving"p2).

Together these facts form a soft database S.

Hardening determines the co-reference relationships between
references in the soft database. The co-reference relation is
perhaps most naturally represented by an equivalence rela-
tion on the soft references. However, here it is technically
more convenient to work with an interpretation function |
a function mapping each soft reference to a hard interpre-
tation. In order to incrementally construct interpretation
functions we formulate an interpretation function as a set
of interpretation arcs each of which is an arc of the form
r1

w
! r2 where r1 and r2 are distinct references, and w is a

non-negative real number weight (or cost) discussed in more
detail below. An interpretation I is an acyclic set of inter-
pretation arcs, such that for all references r1 appearing in
I there is at most one arc of the form r1

w
! r2 2 I. This

de�nition allows interpretation arcs to be chained, i.e., it is

possible that r1
w
! r2 2 I and r2

w
0

! r3 2 I. In this case
r1 is indirectly interpreted as r3. For any given interpreta-
tion I and any reference r, we de�ne I(r) to be the ultimate
interpretation of r:

I(r) =

�
I(r0) if I contains r

w
! r0

r otherwise

Note that an interpretation I de�nes a hard database I(S)
derived by replacing each reference in S by its ultimate in-
terpretation under I.

Of course not all interpretations are possible | we would
not want to interpret \B. Selman" as \H. Kautz". The
weight w in the arc r1

w
! r2 is the cost (or unlikeliness)

of interpreting r1 as r2. Formally we assume the costs are
provided in the form of a potential interpretation set , i.e., a
set Ipot of (weighted) potential interpretation arcs. Given
a soft database S and a set Ipot of potential interpretations
our goal will be to �nd an interpretation I � Ipot minimizing
the cost function c(I) de�ned as follows where �1 and �2
are parameters of the cost function; jI(S)j is the number
of distinct tuples in the hard database I(S); and jIj is the
number of interpretation arcs in I.

c(I) � w(I) + �1jI(S)j+ �2jIj (1)

w(I) �
X

r1
w
!r22I

w

Note that as more arcs are added to I we have that w(I) +
�2jIj increases while �1jI(S)j decreases. The cost function
hence represents a tradeo� between the unlikeliness of the
interpretation and the compactness of the resulting hard
database. This objective function is approximately derived
from a probabilistic model in the following section.

3. A PROBABILISTIC MODEL
In this section we give an approximate probabilistic deriva-
tion of the cost function (1). Let Pr(H; I;S) a distribution
on hard databases H, interpretations I, and soft databases
S. An optimal hardening of S is a pair H; I that maximizes
Pr(H; IjS). Notice that for a �xed S the optimal hardening
can be found by simply maximizing the joint probability of
H; I and S.

To de�ne Pr(H; I; S) we will assume that there is a �nite set
U of potential real-world objects and a �nite set of relations,
each of �xed arity. These assumptions imply that there is
a �nite set of possible tuples � which could appear in H.
We let N be the number of possible hard tuples. In the
probabilistic model we assume that both the hard data base
H and the soft database S can contain duplicate tuples.
We let jHj and jSj be the number of tuples in H and S

respectively where distinct occurrences of the same tuple are

256

treated as separate elements. We also let jIj be the number
of arcs in an interpretation I | note that duplication of arcs
in I is ruled out by the requirement that every reference has
at most one outgoing arc. We now assume that Pr(U; I; S)
can be decomposed as follows where �H, �I, and �S are real
number parameters in the interval (0; 1) and the number Z
is selected so that Pr(I) sums to 1.

Pr(H; I; S) = Pr(SjI;H) � Pr(I) � Pr(H) (2)

Pr(H) = �H(1� �H)
jHj

�
1

N

�jHj

(3)

Pr(I) =
1

Z
� �I(1� �I)

jIj
Y

r1
wi!r22I

e
�wi (4)

Pr(SjI;H) = �S(1� �S)
jSj

�
1

jI�1(H)j

�jSj
(5)

In (5) we have that I�1(H) is the set of soft tuples � such
that I(�) 2 H and jI�1(H)j is the cardinality of this set.

The above equations correspond to a certain process for gen-
erating the triple H;I; S. First H is generated by repeatedly
selecting one of the N possible hard tuples at random. At
each iteration the selection process stops with probability
�H and continues with probability 1 � �H. A similar pro-
cess is used to generate I by selecting arcs from Ipot where

the probability of the arc r1
w
! r2 is proportional to e�w

and where, on each selection iteration, the selection process
terminates with probability �I. In the case of generating I,
however, after the arcs have been selected we check that I
is well formed, i.e., that it is acyclic and that each reference
has at most one outgoing edge. If I is not well formed then
we start over. If the weights in Ipot are normalized so that

the probability of selecting r1
w
! r2 is exactly e�w, we have

that the constant Z equals the probability that a I is well
formed when the selection phase terminates. Finally, given
H and I we generate S using a process analogous to that for
generating H except that we select individual tuples from
the set I�1(H).

Given a soft data base S our objective is �nd the values I
and H maximizing Pr(I;HjS). This is equivalent to �nd-
ing I and H so as to maximize Pr(H; I;S). For any given
value of S and I the optimal value of H is simply I(S).
So, given S, it su�ces to �nd the value of I maximizing
Pr(I(S); I;S). This is in turn equivalent to minimizing the
\complexity" of the triple H, I, and S, i.e., minimizing the
quantity � ln Pr(I;H;S). For this minimization problem we
can ignore terms that do not depend on the choice of I. So
the problem becomes that of selecting I so as to minimize
the cost c0(I) de�ned as follows.

c
0(I) � jI(S)j log

�
N

1� �H

�
(6)

+jIj log

�
1

1� �I

�
+w(I)

+jSj log jI�1(I(S))j

To derive (1) we assume that the last term in (6) can be
approximated by a linear function of the form �+ �jIj.

4. OPTIMAL HARDENING IS NP-HARD
Here we show that the optimization problem de�ned by (1) is
NP-hard. The problem remains NP-hard even under rather
severe restrictions. In particular, we can assume that all
weights in Ipot are zero and that �2 in (1) is also zero so
that we are simply minimizing jI(S)j. Furthermore, we can
assume that Ipot has a rather restricted form. De�ne a \hard
reference" to mean a reference h such that Ipot contains an

arc of the form r
w
! h and de�ne a \soft reference" to be a

reference r such that Ipot contains an arc of the form r
w
! h.

The graph Ipot is bipartite if and only if the hard references
are disjoint from the soft references.

Theorem 4.1. Unless NP = P , there is no polynomial
time algorithm for computing an interpretation I � Ipot
minimizing jI(S)j even under the assumption that Ipot is
bipartite and every soft reference occurs at most once in S.

Proof. The proof is by reduction of vertex cover [7]. Let
G = (V; E) be a graph. The vertex cover problem is that of
determining if there exists V 0 � V with jV 0j < k such that
every edge in E contains a vertex in V 0. Given the graph let
S be the soft data base such that for each edge fx; yg 2 E

we have that S contains the tuple R(rfx;yg). Note that no
reference occurs more than once in S. Let Ipot consist of

all arcs of the form rfx;yg
0
! x and rfx;yg

0
! y. Note that

Ipot is bipartite. For any interpretation I providing a hard
interpretation for every reference we have that I(S) de�nes
a subset of the vertices that covers the edges. We now have
that there exists an I with jI(S)j < k if and only if there
exists a vertex cover of the given graph smaller than k.

5. A GREEDY HARDENING ALGORITHM
While �nding an optimal hardening is intractable, it is clearly
possible to heuristically search for a good hardening. A nat-
ural approach is to use a local search algorithm that begins
with an empty interpretation I and iteratively extends it
so as to improve the cost function (1). We will consider a
simple algorithm that adds one arc at a time | at each iter-
ation I is replaced with I [fr1

w
! r2g. Each arc is selected

greedily so as to induce the largest reduction in c(I).

To constructing an e�cient greedy algorithm it is convenient
to introduce some formal notation. We abbreviate I[fr1

w
!

r2g as I + r1
w
! r2. We de�ne candidates(I) to be the set

of arcs r1
w
! r2 2 Ipot such that I+r1

w
! r2 is a well formed

interpretation, i.e., such that I(r2) 6= I(r1) and I(r1) = r1.
Assuming that I and S are clear from context we de�ne
�(r1

w
! r2) to be the reduction in cost achieved by adding

r1
w
! r2, i.e., the quantity c(I)� c(I + r1

w
! r2).

The greedy algorithm can be viewed as repeatedly merging
equivalence classes. At each point in time the interpretation
I de�nes an equivalence relation on the set of references used
in S, i.e., r1 and r2 are equivalent under I if I(r1) = I(r2).

Each new arc r1
w
! r2 added to I merges two equivalences

classes.

Each step of the form I := I + r1
w
! r2 can also be viewed

as a kind of heuristic inference. For example, if S contains

257

a tuple stating that \B. Selman"p1 is an author of paper
x and another tuple stating that the (di�erent) reference
\Bart Selman"p2 is also an author of x then merging these
two references reduces the number of tuples in I(S). If two
references have several overlapping facts, e.g., they are both
authors of the same two papers, then we have even stronger
evidence that they are the same. The above algorithm it-
eratively �nds the \safest" heuristic inference, i.e., the one
for which the positive evidence in the form of shared tuples
most strongly outweighs the cost of the identi�cation.

Note that as more inferences are made additional evidence
can be generated for further inferences. For example, orig-
inally we may have that r1 authors papers x and y; r2 au-
thors papers y and z; and r3 authors papers x and z. The
evidence for any single merger is originally one shared pa-
per, e.g., r1 and r2 share paper x. Once we have merged r1
and r2, however, the evidence for merging r3 with the class
fr1; r2g becomes stronger | it is now based on two shared
papers.

The above comments imply that even for a �xed arc r1
w
! r2,

the value of �(r1
w
! r2), which can be viewed as the current

weight of evidence in favor of r1
w
! r2, can change during the

execution of the algorithm. So it is not immediately clear
that �nding the next greedy arc (the safest next inference)
can be done without searching though all the potential arcs.
Assuming that Ipot is roughly proportional to jSj, the naive
implementation would run in time quadratic in the size of
S. For soft data bases of sizes typical for web applications
quadratic behavior is prohibitive. Our main result is that
the greedy algorithm can be implemented in a way that runs
to completion in nearly linear time.

We now de�ne the ambiguity of a reference r1 to be the
number of arcs of the form r1

w
! r2 in Ipot. The ambiguity of

a potential interpretation set Ipot is the maximal ambiguity
of any reference r1 appearing in Ipot. Let d be the ambiguity
of I. Let k be the maximum number of arguments of any
relation symbol. We now have the following.

Theorem 5.1. It is possible to run the greedy search al-
gorithm to completion in time O(jSjk3d log(jSjkd)).

The e�cient implementation keeps the elements of
candidates(I) in a priority queue where the priority of

r1
w
! r2 is �(r1

w
! r2). The algorithm incrementally up-

dates priorities on each iteration. The e�cient version can
be written as follows where Q is a priority queue containing
arcs in Ipot. Each time an arc is removed from Q it is ei-
ther determined to no longer be a candidate or is added to
I. The algorithm maintains priorities so the priority of an
arc r1

w
! r2 in candidates(I) is always �(r1

w
! r2). The

algorithm also uses a union-�nd data structure to maintain
the current equivalence relation on references. The opera-
tion union(r1; r2) declares two references to be equivalent,
and two references r1 and r2 have been made equivalent if
and only if find(r1) is the same as find(r2). The e�cient
implementation is summarized below.

E�cient Implementation

I := ;;
Q := a priority queue containing all arcs in Ipot

where the priority of r1
w
! r2 is �(r1

w
! r2).

while Q is not empty and the largest priority is positive

Remove the highest priority arc r1
w
! r2 from Q;

If find(r1) 6= find(r2) and I(r1) = r1 then

execute I := I + r1
w
! r2; union(r1; r2); and

update the priorities of arcs on Q

The remainder of this section describes how the priority up-
dates on each iteration can be done in sublinear time (amor-
tized over all iterations). We �rst reduce the problem of
maintaining priorities to the conceptually simpler problem
of maintaining the e�ect of each arc on the quantity jI(S)j.
Note that the equivalence relation maintained in the union-
�nd data structure is the same as that de�ned by I, i.e., we
have that I(r1) = I(r2) if and only if find(r1) = find(r2).

For any arc r1
w
! r2 2 Ipot de�ne �H(r1

w
! r2) to be the

change in jI(S)j. We then have the following where find(S)
is the result of replacing each soft reference r in S by find(r)
and find+ union(r1; r2) denotes the �nd map that results
from performing the union operation on r1 and r2.

�H(r1
w
! r2) = jfind(S)j � j[find+ union(r1; r2)](S)j

Since �(r1
w
! r2) can be written as �1�H(r1

w
! r2)�w��2

it now su�ces to incrementally maintain �H(r1
w
! r2).

To e�ciently update �H(r1
w
! r2) we maintain a set E of

e�ect assertions each of which is a triple h�; r1
w
! r2; 	i

where � 2 find(S), r1
w
! r2 2 Ipot with find(r1) occur-

ing in �, and where 	 is the result of replacing find(r1)
by find(r2) in �. Note that we do not require the arc to

be in candidates(I). The assertion h�; r1
w
! r2; 	i can be

viewed as a kind of meta-assertion about the e�ect of adding
the arc r1

w
! r2 to I. The assertion h�; r1

w
! r2; 	i states

that if we union r1 and r2 and change the �nd map so that
the �nd of elements in the equivalence class of r1 are set to
the �nd of r2, then � will be converted to 	. The algorithm
maintains the invariant that E is the set of all e�ect asser-
tions (for the current values of I and find). The initial set

E0 is the set of triples h�; r1
w
! r2; 	i such that � 2 S, r1

occurs in � and 	 is the result of replacing r1 by r2 in �.

We now describe the relationship between the set E of e�ect
assertions and the quantities �H(r1

w
! r2). De�ne, for any

arc x, the set range(x) to be the set of 	 such that there ex-
ists a � 2 find(S) such that E contains a triple of the form
h�; x; 	i. For any 	 in range(x) we de�ne count(x;) to
be the number of triples in E of the form h�; x; 	i plus one
if find(S) contains 	. It is possible to show the following.

�H(x) =
X

	2range(x)

[count(x;)� 1] (7)

By maintaining appropriate indices, it is possible to e�-
ciently incrementally maintain the set E, the set find(S),
and the values of count(x;) and �H(x). One key detail
is that in merging equivalence classes for references r1 and
r2 we change the value of the �nd map on the smaller of

258

the two classes. This ensures that each time the �nd of a
reference changes the size of its equivalence class at least
doubles. So the number of �nd changes for a given refer-
ence can be at most the log of the number of references, i.e.,
at most log(jSjk). Another key observation is that in any
triple h�; x; 	i 2 E we have that � and x determine 	.
This implies that are at most jSjkd triples in E. Details are
given in the full paper.

6. CONCLUSIONS
Previous work has considered reasoning directly with soft
databases (e.g. [3, 6, 1]). One disadvantage of this approach
is that queries to a soft, probabilistic database are generally
more expensive to answer than queries to a conventional
\hard" database. There is also close connection between
the work described here and well-studied problem of record
linkage (e.g. [10, 8, 9]). In record linkage the goal to deter-
mine which entity descriptions are co-referent (that is, refer
to the same real-world object). It is generally assumed that
each entity is represented by a \record"|a vector of atomic
values|and the similarity or dissimilarity of two records is
measured by comparing these vectors. However, there are
many situations where the similarity of two entity names
depends on properties that cannot be easily represented in
a single record. For instance, \B. Selman" and \Bart Sel-
man" are clearly more likely to be variants of the same name
if \B. Selman" and \Bart Selman" have authored similarly-
titled technical papers; however, a publication history is not
easily stored as a record attribute. This heuristic could be
easily incorporated into our approach by extending a soft
bibliographic database with facts about co-authorship.

In this paper we have considered the following more general
problem: given a soft database S, and a structure Ipot in-
dicating which name co-reference relationships are possible,
�nd the hard database H that is most likely given S. We
show that a natural formalization of this optimization prob-
lem is NP-complete but that optimally greedy hardening can
be done in time nearly linear in jSj.

7. REFERENCES
[1] D. Barbara, H. Garcia-Molina, and D. Porter. The

management of probabilistic data. IEEE Transations
on knowledge and data engineering, 4(5):487{501,
October 1992.

[2] M. E. Cali� and R. Mooney. Relational learning of
pattern-match rules for information extraction. In
Working Papers of ACL-97 Workshop on Natural
Language Learning, 1997.

[3] W. W. Cohen. Integration of heterogeneous databases
without common domains using queries based on
textual similarity. In Proceedings of ACM
SIGMOD-98, Seattle, WA, 1998.

[4] Cora: Computer science research paper search engine.
http://www.cora.justresearch.com, 2000.

[5] D. Freitag. Multistrategy learning for information
extraction. In Proceedings of the Fifteenth
International Conference on Machine Learning.
Morgan Kaufmann, 1998.

[6] N. Fuhr. Probabilistic Datalog|a logic for powerful
retrieval methods. In Proceedings of the 1995 ACM
SIGIR conference on research in information retrieval,
pages 282{290, New York, 1995.

[7] M. R. Gary and D. S. Johnson. Computers and
Intractibility: A Guide to the Theory of
NP-completeness. W. H. Freeman and Company, New
York, 1979.

[8] M. Hernandez and S. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD, May 1995.

[9] A. Monge and C. Elkan. An e�cient
domain-independent algorithm for detecting
approximately duplicate database records. In The
proceedings of the SIGMOD 1997 workshop on data
mining and knowledge discovery, May 1997.

[10] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130:954{959, 1959.

[11] Researchindex: The NECI scienti�c literature digital
library. http://www.researchindex.com, 2000.

259

