Improving Data Quality: Consistency and Accuracy

Gao Cong! Wenfei Fan?3 Floris Geerts?*5 Xibei Jia? Shuai Ma?
!Microsoft Research Asia 2University of Edinburgh *Hasselt University
*Bell Laboratories stransnational Univ. Limburg
gaocong@microsoft.com {wenfei@inf, fgeerts@inf, x.ja@sms, smal@inf }.ed.ac.uk
Abstract In practice one also wantacrementalmethods to improve the

Two central criteria for data quality are consistency and accuracy. CONSistency of the data: given a clean datatiaseat satisfies a set

Inconsistencies and errors in a database often emerge as violationg” of cc_)nAstraints,faAnd Updﬁt?D on tge databagéf)_, itis to find
of integrity constraints. Given a dirty datababe one needs au- & '€PAIrA Drepr Of AD such thatD @ A Drepr satisfiesk (we use

tomated methods to makedbnsistenti.e., find a repairD’ that @ to denote the application of updates_). This is often advan_tageous
satisfies the constraints and “minimally” differs frobh Equally to batchmeth_ods that co_mp_ute a repaepr of D & AD starting
important is to ensure that the automatically-generated rgpair oM scratch instead of finding a typically much smaleDgep.
is accurate or makes senseeg., D’ differs from the “correct” data Another important problem for data cleaning is how to guar-
within a predefined bound. This paper studies effective methods for antee that a repair iaccuratg or makes sense. Alth(.)th an
improving both data consistency and accuracy. We employ a class@utomatically-generated repdtepr (Repr = D & ADrepr in the
of conditional functional dependencig¢sFps) proposed in[[5] to lncreme_ntal case) satisfies the constraints, it may contain edits to
specify the consistency of the data, which are able to capture in- (€ OriginalD that are not what the user wants. To ensure et
consistencies and errors beyond what their traditional counterpartscannOt go too wrong, assume thag, is the gorrect repair OD_
can catch. To improve the consistency of the data, we propose two V€ WantRepr to be as close tdo,: as possible by guaranteeing
algorithms: one for automatically computing a repgir that sat- that|d|f(Repr, Dopt)|/| Dope| is within a predefined bound Here
isfies a given set ofFDs, and the other for incrementally finding a dif counts the attribute-level differences betwe_en two databases.
repair in response to updates to a clean database. We show that boty 1 1€"€ has been a host of work on data cleaning (2,5,[25 10,
problems are intractable. Although our algorithms are necessarily _14' 34]). However, to develo_p practical dz_ata-cleanlng tools there
heuristic, we experimentally verify that the methods are effective 'S MUch more to be done. First, the previous work often models
and efficient. Moreover, we develop a statistical method that guar- € consistency of data using traditional dependeneiggs, func-
antees that the repairs found by the algorithmsaax@irate above tional depender_meﬂ)s). TradltlorjaIFDswere developed mqunly .
a predefined ratevithout incurring excessive user interaction. for schema design, but are often ||_1adequate for data cleaning. This
calls for the use of constraints particularly developed for data clean-
. ing that are able to catch more inconsistencies than traditional de-
1. Introduction pendencied [29]. Second, few algorithms have been developed for
Real-world data is often dirty,.e., containing inconsistencies, automatically finding repairs, and even less incremental methods
conflicts and errors. A recent survey [31] reveals that enterprises are in place. Third, none of the previous automated methods pro-
typically expect data error rates of approximately 1%-5%. The vides performance guarantee for #eeuracyof the repairs found.
consequences of dirty data may be severe. For example, it is re-These are illustrated by the example below.
ported [12] that wrong price data in retail databases alone ossts Example 1.1: A company maintains a relation of sale records:
consumers $2.5 billion annually. With this comes the need for ef- . .
fective methods to improve the quality of data, or to clean data. order(id, name, AC, PR, PN, STR, CT, ST, zip).
Inconsistencies, errors and conflicts in a database often emergeEachorder tuple contains information about an item sold (a unique
as violations of integrity constraints|[2,]29]. A central problem itemid, name and pricePR), and the phone number (area cade

for data cleaning is how to make the datmnsistentgiven a dirty phone numbePN) and address of the customer who purchased the
databasé, we want to minimallyeditthe data inD such thatitsat- item (streetSTR, city CT, stateST). An example databasb is
isfies certain constraints. In other words, we want to firepair of shown in Fig["I(g) (thevt rows will be elaborated on later).

D, i.e.,a databas®epr that satisfies the constraints and is as close TraditionalFDs on theorder database include:

to the original D as possible. This is the data cleaning approach fdi: [AC,PN] — [STR,CT,ST] fds: [zip] — [CT,ST]
thatus national statistical agencies, among others, have been prac- f4,: [id] — [name, PR] fds: [CT,STR] — [zip]
ticing for decades [13, 35]. Manually editing the data is unrealistic
when the databasP is large. Indeed, manually cleaning a set of
census data could easily take months by dozens of clerks [35]. This
highlights the need for automated methods to find a repai?.of

That is, the phone number of a customer uniquely determines
her address, and the zip code determines the city; in adddion
uniquely determines theame and PR of the item sold, and the
city and street uniquely determine the zip code.

Although the database of Fig. I(a) satisfies thase the data is
not clean: tupless andt, indicate that when the area code is 212,
Permission to make digital or hard copies of all or part of this work for the City could bePHIin PA, which is not the case in real life.
personal or classroom use is granted without fee provided that copies are Such inconsistencies can be captureccbgditional functional
not made or distributed for profit or commercial advantage and that copies dependencie$¢cFps) introduced in [[6]. For example, Fi§. 1{b)
bear this notice and the full citation on th_e first page. To copy otherwise,_t_o shows twoCFDs o1 andps. CFD ¢; extendsrD fd; by includ-
republish, to post on servers or to redistribute to lists, requires prior specific ing a pattern tableaul’; it asserts that for any tworder tuples,

permission and/or a fee. .
VLDB ‘07, September 23-28, 2007, Vienna, Austria. if they have the same area code 212 (resp. 610, 215pPahdhen

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09. they must have the sansd'R, CT, ST and moreover, the city and

315

©1=([AC,PN] — [STR,CT,ST], T1)
AC\PNHSTR\ CT | ST |

id name PR AC PN STR CcT ST zip
t1: [@23| H. Porter | 17.99] 215 | 8983490 Walnut | PHT | PA | 19014 _ -
wt | (1) (0.5) ©5) | 05| (05 | (08 |08] ©0.8) | (08 E gig ’\;L? ';‘X
ty: [@23| H.Porter | 17.99| 610 | 3456789| Spruce| PHI | PA | 19014 olo i
wt | (1) (0.5) ©5) | (05| (05 | (0.6) | (0.6)| (0.6) | (0.6)
ts: [@l2| J.Denver | 7.94 | 212 | 3345677 Canel | PHI | PA | 10012 o
wt | (1) (0.9) 0.9 | 09| 09 | 06 |©1]©1] (08 #2 ([Z'Zpi]p *“[CZ’TST‘]‘ST%) |
tq: | @89 Snow White | 18.99 | 212 | 5674322| Broad | PHI PA | 10012
wt | (1) (0.6) ©5) | 09| 09 | (01) | (06)] (0.6)| (0.9 T o012 | nve | Ny

(a) Exampleorder data 19014 || PHI | PA

(b) Example CFDs

Figure 1: Example data and CFDs

state must baivyc andNy (resp.PHI andPA), respectively, regard-
less of what value®N, STR have (intuitively -’ indicates “don’t
care”). It enforces hindings of semantically related values: each
tuple inTy specifies a constraint that only applies to tuples satisfy-
ing a certain pattern, rather than to the entire relationfike For
example, the constraint specified by the second tuglé ionly ap-
plies to tuples withAC = 212. Similarly,CFD @2 extendsrD fd,.
Note thatCFDs ¢1 and . cannot be expressed as traditiorak
since they specify patterns withata values In contrast, standard
FDs are a special case afDs [6].

The database of Fi). T{a) does not satisfy theses. Indeed,
tuplets violatesy; sincets[AC] = 212 butt3[CT,ST] # (NYC,
NY); it also violatesps: althoughts|zip] = 10012, t3[CT,ST] #
(NYC, NY). Similarly, t4 also violatesp; andyps.

To make the databade consistentone may want to edit; and
ts4 such thats[CT,ST] = ¢4[CT,ST] = (NYC, NY), as suggested
by CFDs ¢1 andps. In other words, a repaiRepr of D consists
of tuplest1, t2 andts, t4 updated as above. A central task of data
cleaning is to develop automated methods to find such repairs.

Now suppose that one wants to inserts a tupiato Repr, where
t5[AC, PN, CT, ST, zip] = (215, 8983490nYC, NY, 10012). Then
ts andt; violatefd;: while they agree o\C, PN, they have dif-
ferentCT,ST. The objective ofincrementaldata cleaning is to
automatically and minimally updatg such thatRepr and the up-
datedts satisfy all thecFbs andFDs given above. This is nontriv-
ial: a naive approach to updatimgmay lead to an infinite process.
Indeed, one might want to changgCT, ST] to (PHI, PA) as sug-
gested bycFD ;. However, the updatetd now violatesCFD ,:
t5[zip] =10012 buts[CT, ST]is not (Nyc, NY). Now if we change
t5[CT,ST] back to ivc, NY) as suggested by, we are back to
the originalts and again need to resolve the violationaf.

A possible fix might be by changing[CT, ST, zip] to (PHI, PA,
19014). WhileRepr and this editeds indeed satisfy all the con-
straints, this change may not becurate the correct edit could be
letting ¢5[AC] = 212 while keeping the rest @f unchanged. Im-
proving theaccuracyof the data aims to guarantee that the repairs
found are as close to the correct data as possible. a

Contributions. We present a data-cleaning framework that sup-
ports automated methods for finding repairs of databases, and for
incrementally finding repairs in response to database updates. It
also supports a statistical method that guarantees that the repair:
found by our algorithms are accurate. As opposed to previous work
on data cleaning, our methods are basedbs introduced in[[6],
rather than traditional dependencies. As we have seen abeue,
are able to capture inconsistencies beyond what starrdardan
detect. Furthermor&FDscommonly arise in practice. In data inte-
gration, for examplegDs that hold on individual sources will hold
only conditionally, and thus beconwaDs, on the integrated data.

Our first contribution is an algorithm for finding repairs of
databases based arDs. As shown in|[5], the problem of finding

316

a quality repair isnP-complete even for a fixed set of traditional
FDs. We show that this problem remains intractabledeps, and

that FD-based repairing algorithms may not even terminate when
applied tocFDs. To this end we adopt the cost model [of [5] that
incorporates both the accuracy of the data and edit distance. Based
on the cost model, we extend the-based repairing heuristic intro-
duced in|[5] such that it is guaranteed to terminate and find quality
repairs when working oeFbs. To our knowledge no prior work

has considered repairing algorithms basedbbs.

Our second contribution consists of complexity bounds and an
effective algorithm for incrementally finding repairs. We show that
the problem for incrementally finding quality repairs does not make
our lives easier: it is alsmP-complete. In light of this we develop
an efficient heuristic algorithm for finding repairs in response to
updates, namely, deletions or insertions of a group of tuples. This
algorithm can also be used to find repairs of a dirty database.

Our third contribution is a statistical method to improve the ac-
curacy of the repairs found by our algorithms. On one hand, in
order to ensure that the repairs meet the expectation of the user, it
is necessary to involve domain experts to inspect the repairs. On
the other hand, it is too costly to manually check each editing when
dealing with a large dataset. In response to this we develop a sam-
pling method that, by involving the user to inspect and edit samples
of manageable size, guarantees that the accurate rates of the repairs
found are above predefined boundith a high confidence

Our fourth contribution is an experimental study of our proposed
cleaning algorithms. We evaluate the accuracy and scalability of
our methods with real data scraped from the Web. We find that
CFDs are able to catch inconsistencies that traditiord fail to
detect, and that our repairing and incremental repairing algorithms
efficiently find accurate candidate repairs for large datasets.

Our conclusion is thatFps and the proposed algorithms are a
promising tool for cleaning real-world data. To our knowledge,
our algorithms are the first automated methods for finding repairs
and incrementally finding repairs based on conditional constraints.
Furthermore, no prior work has studied methods for guaranteeing
the accuracy of repairs without incurring excessive manual efforts.

2. Conditional Functional Dependencies
In this section we review conditional functional dependencies

?CFDS) proposed in/[6].

For a relation schemg, let attr(R) denote its set of attributes.
The domain of an attributel is denoted bydom(A4). Given a
database instand@ over R, the active domain of an attribui¢ is
denoted byadom(A, D); it consists of all the constants dom(A)
that appear as thé-attribute of a tuple inD.

In this paper we consider relation schemas consisting of a single
relation R only. However, our repairing methods are applicable
to general relation schemas by repairing each relation in isolation.
This is possible sincerDs address a single relation only.

3 = (order:[id] — [name, PR], T3), andT3 is
id PR

name
4 = (order:[CT,STR] — [zip], T4), whereTy is
CT | STR

zip

Figure 2: Standard FDs expressed a£FDs

CFD. A crD ¢ on relationR is a pair(R : X — Y, T;,), where
(1) X andY are subsets afttr(R); (2) R : X — Y is a standard
FD, referred to as thep embedded i; (3) 7, is a tableau with
all attributes inX andY’, referred to as theattern tableawf ¢,
where for eachd in X orY’, and eaclpattern tuplet, € Ty, t,[A]
is either a constant.’ in dom(A), or an unnamed variable'

If A appears in botlX andY’, we usef,[AL] andt,[Ag] in the
tableauT, to distinguish the occurrence of thfeattribute inX and
Y, respectively. We denot& asLHS(¢) andY asRHS(¢).

Example 2.1: Constraintse: and o2 given in Fig.[I(B) are
CFDs. In 4, for example,X (i.e., LHS(¢1)) is {AC, PN}, Y
(i.e., RHS(p1)) is {STR,CT,ST}, the standardb embedded in
o1 is [AC,PN] — [STR,CT, ST], and the pattern tableau &
(we separate theHS and RHS attributes in a pattern tuple with
‘|I). Each pattern tuple i} expresses a constraint. For instance,
the first tuple oft; expresses the standard fd;.

In fact all the constraints we have encountered so far can be ex-
pressed asFbs. Indeed, the first pattern tuple gf expressefd,,
and thecFps given in Fig[2 specifiefds (p3) andfds (p4). O

Observe the following. (1) A standamb R : X — Y isa
special case of theFD (R : X — Y, T},) in which T}, consists
of a single pattern tuple solely containing.‘ See, for instance,
Fig.[3. (2) The pattern tableal], of a CFD ¢ refines the standard
FD embedded i by enforcing the binding of semantically related
data values. In general, tlf® embedded ir> may not hold on the
entire relation; it holds only on tuples matching the pattern tuples.

Semantics To give the precise semantics ©fDs, we first define
an order< on data values and’! n; = . if eithern;, = n2, orm
is a data valued’ and n; is *_". The order= naturally extends to
tuples,e.g.,(Walnut,NYC, NY) =< (., NYC, NY) but (Walnut,NYC,
NY) % (-, PHI,). We say that a tuple; matchegs if ¢1 < to.

A relation instanceD of R satisfiesthecFrb ¢ = (R : X —
Y, T,), denoted byD = ¢, iff for each pairof tuplesty, ¢2 in D,
and foreachtuplet,, in the pattern tableall,, if ¢1[X] = t2[X]
t,[X], thent1[Y] = t2[Y] =< t,[Y]. Thatis, ift1[X] andtz[X]
are equal and match the pattepiX], thent¢:[Y] and¢2[Y] must
also be equal to each other and match the pattgin].

Example 2.2: Theorder table in Fig[] satisfiegs, ¢4 of Fig.[3.
However, as remarked in Exam@]l.l, eachsof, does not sat-
isfy, i.e., violates CFDs ¢1, @2 of Fig.[I(b). Indeed, considey =
(212,_|| ., NYC, NY) in T. Althoughts[AC, PN] = ¢3[AC, PN] =<
t,[AC, PN], we have that3[STR, CT,ST] % t,[STR,CT,ST].
This tells us that while a violation of a standafd requirestwo
tuples, asingletuple may violate a&FD. a

We say that a databade satisfiesa set® of CFDs, denoted by
D | %,if D = ¢ for eachp € X. Moreover, we say thab
is consistent with respect t8 if D |= X; otherwise we callD
inconsistenor dirty.

Observe that pattern tableausdmrbs are quite different from
Codd tables, variable tables and conditional tables, which have
been traditionally used in the context of incomplete information

~
=

formalisms can include two tuples that result from different instan-
tiations of a table tuple. In contrast, a pattern tableau is used to
constrain—as part of aFb—a singlerelation instance, which can
contain any number of tuples that are all instantiations of the same
pattern tuple via different valuations of the unnamed variahles *

Normal form . From the semantics afFDs we immediately obtain

a normal formof cFDs. Given a sef of CFDs, we may assume
that eactcFD ¢ € Y is of the form¢ = (R : X — A, t,), where

A € attr(R) andt,, is a single pattern tuple. For ease of exposition
we assume thatrps are given in the normal form.

Satisfiability. To clean data based @¥rDs we need to make sure
that thecFDs are satisfiable, or make sense. Badisfiability prob-
lemis to determine, given a sél of cFDs, whether or not there
exists a (non-empty) databage such thatD = X. While this
problem is trivial for traditionalFbs, i.e., any set offDs is satis-
fiable, this is no longer true fotFbs. Indeed, it has been shown
that this problem is intractable in general [6]. However, when the
database schema is fixed, satisfiabilityasfbs can be decided in
PTIME. In the sequel we consider satisfialleDs only.

3. A Framework for Data Cleaning

We have seen thatrDs are capable of capturing moigconsis-
tencies than traditionalFDs. The next question is how to resolve
these violations and hence improve data consistency? Moreover, as
there may exist (possibly infinitely) many repairs, which candidate
repair should be chosen? Furthermore, how can one tell whether a
repair is accurate or not? In this section we answer these questions,
state the problems we will tackle, and present an overview of our
data-cleaning framework.

3.1 Violations and Repair Operations

We first formalize the notion of violations, which helps us de-
cide how “dirty” a data tuple is. We then discuss edit operations to
resolve the violations.

Consider a database and a set: of cFbs. For each tuple
in D, thenumber of violationsncurred byt, denoted byio(¢), is
computed as follows. Initiallyio(t) is set to0.
(1) ForeaclcFrDg = (R: X — A, tp) in Y, if t[X] < t,[X] but
t[A] # t,[A], we say that violates¢, and incrementio(t) by 1.
This may occur when, [A] is a constant.
(2) ForeachcFrD ¢ = (R : X — A, tp) in X, if t{X] =< t,[X]
andt[A] < t,[A], then foreachtuple ¢’ in D such thatt[X] =
t'[X] =< t,[A] butt[A] # t'[A], we say that violates¢ with ',
and addl to vio(t). We can w.l.o.g. assume thgf{A] = ‘_’ since
otherwise the violation is already covered by case (1) above

For a subse€ of D, the number of violations it is defined to
be the sum ofio(¢) for all ¢ in C, denoted byio(C).

A repairRepr of a databas® w.r.t. a set® of CFDsis a database
that (i) satisfiess, i.e., Repr |= X, and (i) is obtained fronD by
means of a set akpair operations

We considenattribute value modificationas repair operations,
along the same lines &s| [5,|14,| 24| 34]. Note that tuple insertions
do not lead to repairs whetrDs (or FDs) are concerned, and that
tuple deletions can be mimicked by attribute value modifications.

When we modify theA-attribute of a tuplet in the database
D, we either draw its value fromdom(A, D), i.e., the set ofA-
attribute values occurring i, or use the special valuaill when
necessary. That is, we dwt inventnew values. We pickull if
the value of an attribute isnknownor uncertain To simplify the

[22,]18]. The key difference is that each of these tables representsdiscussion we assume that one can keep track of a giventtiuple

possibly infinitely many relation instances, one instance for each

D during the repair process despite that the valuermy change

instantiation of variables. No instance represented by these table(this can be achieved b®/g.,using a temporary unique tuple id).

317

Attribute value modifications are sufficient to resotvep viola-
tions: If a tuplet violates acFb ¢ = (R : X — A, t,) (case 1
above), weresolve thecfFD violation by either modifying the val-
ues of theRHS(¢) attribute such thaff A] =< ¢, [A], or changing the
values of som&HS(¢) attributes such thafX] % ¢,[X]. If ¢ vio-
lates¢ with another tuple’ (case 2 above), we either modifyA]
(resp.t’[A]) such thatt[A] = t'[A], or change[X] (resp.t'[X])
such that[X] # t,[X] (resp.t'[X] # t,[X]) or¢[X] # ¢'[X].
Remarks. (1) We adopt thesimple semantics of thesQL stan-
dard [23] fornull: ¢, [X] = t2[X] evaluates tarue if either oneof
them containswll. (2) In contrast, when matching a data tuple
and a pattern tuple,, t[X] =< ¢,[X] is false if ¢[X] containsnull,
i.e., CFDs only apply to those tuples that precisely match a pattern
tuple, which does not contaiull. (3) In case some attributes are
non-nullable, we use 57 DEFAULT to reset attributes values to

their default value. The semantics of the matching operator is re-
defined accordingly. For convenience, we assume that all attributes

are nullable. (4) A tuple can be “deleted” via value modifications
by settingnull to all of its attributes.

3.2 Cost Model
As a violation may be resolved in more than one way, an imme-

repamng
module

pI|ng
|ncrementa] &D Repr module

module Rehr \L

(E 9]
sarrpl e
AD — = u=

@.

Figure 3: Data cleaning framework

Remarks. (1) Although the cost model incorporates the weight
information, our cleaning algorithms to be given shortly do not
necessarily rely on this. In the absence of the weight information,
our algorithms setv(¢, A) to 1 for each attributed of each tuple

t. In this case our algorithms use the number of violaticin$t)

to guide repairing process, and our experimental results show that
the algorithms work well even when the weight information is not
available. (2) Other similarity metrics (semg.,[11]]) can also be
used instead of theL metric in our model.

3.3 A Data Cleaning Framework: Overview
Therepairingproblem is stated as follows: given a 8&bf CFDs
over a schem& and a database instanfeof R, it is to compute

diate question is which one to choose? One might be tempted toa repairRepr of D such thaRepr = ¥ andcost(Repr, D) is min-
pick the one that incurs least repair operations. While such a repairimum. That is, we wanhdutomatednethods to find a repagonsis-

is close to the original data, it may not be accurate.

tent w.r.t.3 by modifying D. Intuitively, the smalletost(Repr, D)

We would like to make the decision based on both the accuracy is, the more accurate and closer to the original Gatar is.

of the attribute values to be modified, and the “closeness” of the
new value to the original value. Following the practiceusf na-
tional statistical agencies [IL3, [35], we assume thaegghtin the
rangef0, 1] is associated with each attributeof each tuplé in the
datasetD, denoted byw (¢, A) (see thewt rows in Fig[1(d)). The
weight reflects the confidence of thecuracyplaced by the user in

theattributet[A], and can be propagated via data provenance anal-

We also study théncremental repairing problemsuppose that
the databas® is consistenti.e., D = X. Given updatedA D to D,
we want to find a repaif Drepr Of AD such thatD @ ADgepr = 2
andcost(A Dgepr, AD) is minimum. Since smal\ D often incurs
a small number of FD violations, and becausg is clean and thus
should not be updated, it is more reasonable and more efficient to
computeA Dge,r than computing a repalitepr of D@ A D starting

ysis in data transformations. Given this, we extend the cost model from scratch. We considgroup updatesA D is a set of tuples to

of [5] to provide a guidance for how to choose a repair.

For two valuesy, v’ in the same domain, we assume thalis
tance functiondis(v,v") is in place, with lower values indicating
greater similarity. In our implementation, we simply adopt the
Damerau-Levenshteirp() metric [16], which is defined as the

minimum number of single-character insertions, deletions and sub-

stitutions required to transformto v’. The cost of changing the
value of an attribute[A] from v to v’ is defined to be:

cost(v,v') = w(t, A) - dis(v,v") /max(|v|, |v']),

Intuitively, the more accurate the origingl4] value v is and
more distant the new valug is from v, the higher the cost of this
change. We usdis(v,v") /max(|v], |v'|) to measure the similarity
of v andv’ to ensure that longer strings withcharacter difference
are closer than shorter strings witkcharacter difference.

The cost of changing the value of &xtuplet to ¢’ is the sum of
cost(t[A], t'[A]) for eachA € attr(R) for which the value of[A]
is modified. The cost of a repdRepr of D, denotedtost(Repr, D)
is the sum of the costs of modifying tuplesin

Example 3.1:Recall from Examplg T]1 that tuple violatescFbs

1, w2 givenin Fig[I(B). There are at least two alternative methods
to resolve the violations: changing (&)JCT,ST] to (NyYC, NY), or

(2) t3[zip] to 19014 and3[AC] to 215. The costs of these repairs
are 3/3*0.1+3/3*0.1=0.2and 1/3*0.9 + 2/5* 0.8 = 0.6,
respectively, in favor of option (1). Indeed, although option (1)
involves more editing than option (2), it may be more reasonable
since the weights ofs[CT, ST] indicate that these attributes are
less trustable and thus are good candidates to change. O

318

be inserted or deleted. For any deletiah®), the tuples can be
simply removed fromD without causing angFb violation. Thus
we need only to consider tuple insertion.

To assess the accuracy of repairs, assume a correct fepair
of D, perhaps worked out manually by domain experts. We say
that a repair isaccurate w.r.ta predefined bound at apredefined
confidence levé, if the ratio|dif (Repr, Dopt)|/| Dopt| is within the
bounde at the confident level.

In practice it is unrealistic to manually finB,,. or involve do-
main experts to inspect the entRepr when the dataset is large. To
this end we employ a semi-automated and interactive approach: we
let the user inspect small samples, and edit the sample data as well
as inputcFDsif necessary; leveraging the user input, we invoke our
automated (incremental) repairing methods to revise repairs.

Putting these together, we develop a framework for data clean-
ing as shown in Fid.]3. The framework consists of three modules.
(a) The repairing module takes as input a dataliased a sek of
CFDs. It automaticallyfinds a candidate repaRepr. (b) The incre-
mental repairing module takes update® as additional input, and
automaticallyfinds repairA Dgepr. (€) The output repairs of these
two modules are sent to the sampling module, which also takes as
input accuracy bound and confider(eed). The sampling module
generates a sample and lets the user inspect it. The user feedback —
both changed\X: to thecFps and changes to the sample data —
recorded. If the accuracy is below the predefined bound, the repair-
ing or incremental repairing module is invoked again based on the
user feedback. The process may continue until an accurate enough
repair is recommended to the user. In the next three sections, we
present algorithms and methods for supporting these modules.

4. An Algorithm for Finding Repairs

We now present an algorithm for the repairing module, which
automaticallyfinds a candidate repair for an inconsistent database.
It is nontrivial to find a quality repair. As shown ih|[5], the re-
pairing problem is alreadyP-complete for standamebs even when
the relational schema armabs are fixed {.e., the intractability is the

data complexity). We show that farDs the problem remainsp-
completej.e., CFDs do not add to the complexity of this problem.

Corollary 4.1: The repairing problem foicFDs is NP-complete,
even for a fixed database schema and a fixed setps. a

This tells us that practical automated methods for this prob-
lem have to be heuristic. Worse, althoughbs do not increase
the worst-case complexity, previous methods for repairibgno
longer work oncrbs. Indeed, while it suffices to resolw viola-
tions by only editing values of attributes in tR&lS of FDs [5], this
strategy may not terminate @¥Ds, as shown by the next example.

Example 4.1: Recall CFDs ¢1, 2 from Fig[I(b). As illustrated

in Example L], tuples,, 5 violate o1. While this violation can

be resolved by changing the valuevc, NY) of the RHS(¢1) at-
tributests[CT, ST], to the values, [CT, ST], this introduces a vio-
lation of ¢2. This can no longer be resolved by changing the value
of the RHS(¢p2) attributests[CT,ST] back to tyc, NY) as sug-
gested byp,, since otherwise we are back to the originglhave

to resolve the violation ofp; again, and end up with an infinite
process. O

To cope with this we present a repair algorithns\TBHREPAIR,
which is a nontrivial extension of the algorithm febs proposed
in [5]. It extends the notion of equivalence classes of [5], and it
guarantees to terminate and finds a repait. CFDs.

4.1 ResolvingcFD Violations
We first revise the notion of equivalence classes explored in [5],
and then present our strategy for repair@rps.

Equivalence classesAn equivalence classonsists of pairs of the
form (¢, A), wheret identifies a tuple in whichi is an attribute.
In a databaseD, each tuplet and each attributel in ¢ have an
associated equivalence class, denotedddy, A).

In a repair we will assign a uniquarget valueto each equiva-
lence clasZ, denoted byarg(E). Thatis, for all(t, A) € E, t[A]
has the same valuarg(E). The target valuearg(E) can be ei-
ther ‘', a constant, or null, where "’ indicates thatarg(FE) is not
yet fixed, anchull means thatarg(E) is uncertain due to conflict.
To resolvecFD violations we may “upgradetarg(F) from ‘' to
a constanti, or from a to null, but not the other way around. In
particular, wedo notchangetarg(E') from one constant to another.

Intuitively, we resolvecFb violations by merging or modify-
ing the target values of equivalence classes. ConsideF@
¢ =(R:X — A, t,). For any pair of tuples; and¢. in D,
if t1[X] = t2[X] < t[X], then(t1, A) and(t2, A) should belong
to the sameequivalence class and eventually[A] = targ(E).

If (t1,A) # (t2, A), we may be able to resolve the violation by
mergingeq(t1, A) andeq(t2, A) into one. By using equivalence

Procedure CFD-RESOLVE. Leveraging equivalence classes, we
present the main idea of our strategy for resolvimp violations,
which is done by procedureFd-RESOLVE, a key component of
algorithm BATCHREPAIR.

ProcedurecFD-RESOLVEtakes as input a paiit, A) and acFD
¢ = (R: X — At,), wheret violatesy. Recall from Sec-
tion[3.3 thatt may violatey if ¢[X] =< ¢,[X] and in addition,
either (1)t[A] # tp[A] andt,[A] is a constant; or (2) there exists
another tuple’ such that’[X] = ¢[X] butt'[A] # t[A], where

t»[A] = _. The procedure resolves the violation as follows.
(1) t[A] # tp[A] andt,[A] = a. There are two cases to consider.
(1.1)If targ(eq(t, A)) =, i.e.,the target value oéq(¢, A) is not

yet fixed, we resolve this by simply lettingrg(eq(¢, A)) := a.
(1.2)Otherwisetarg(eq(t, A)) is either a distinct constaht or null
for which we know that the value cannot be made certain. In this
case we have to change the value of s&rH& () attribute oft, a
situation that does not arise when repairing traditicrmal

More specifically, we look at each attribut¢ € X such that
targ(eq(t, B;)) is *_, i.e., not yet fixed. If no suchB; exists, we
cannot resolve the conflict with a certain value. Thus we gk
such that the sum of weights of attributesda(¢, B;) is mini-
mal, and changearg(eq(¢, B;)) to null. If there existsB; with
targ(eq(t, Bi)) = -, we pick such aB; and a valuev such that
cost(eq(t[B;]), v) is minimum, and letarg(eq(t, B;)) := v. The
valuew is picked by a procedurelRDV, which we shall discuss
shortly, along with the definition afost(eq(¢[B;]), v).

Example 4.2: Continuing with Examplé 4]1, suppose that we
want to resolve the violation ofp, caused by tuplets. If
targ(eq(ts, CT)) andtarg(eq(¢s,ST)) are ', we can resolve this
by simply letting them to b&iyc andNY, respectively. However,

if these target values were already sebto andPA when,e.g.,re-
solving the violation ofp; caused bys and¢;, we can no longer
change these target values of RES(y2) attributes. Hence, we
have to change the value of théiS(y2) attributets|zip]. Now
procedure DV may settarg(eq(ts, zip)) to 19014. If, however,
targ(eq(ts, zip)) was already given another constant, we set it to
null since there is no certain value to resolve the violation. O

(2) t violates with another tuplet’. We consider the following
cases. Suppose thatrg(eq(t, A)) = n andtarg(eq(t’, A)) = 7'.

(2.1) Neithern nor#’ is null, and at least one of them is.’ In this
case the violation is resolved byergingeq(t, A) andeq(t’, A)

into one. We remark that this step is identical to the resolution step
for FDs presented in [5]. In fact this is thenly operation required

to resolve allFD violations. ForcFDs, more needs to be done. We
lettarg(eq(t, A)) be *_ if both and andy” are *’; if one of them

is a constant, we lettarg(eq(t, A)) bec.

(2.2)n" andn’ are distinct constants ¢/, respectively. Like case
(1.2) above, this inconsistency cannot be resolved by changing
RHS() attributes, and we have to resolve this by changing some
LHS() attribute of eithet ort’, along the same lines as case (1.2).

(2.3) At least one ofy andn’ is null. Assume that it is). Thent[A]
will be given null as its value. By the simple semanticsrafil,

classes, we separate the decision of which attribute values should![A] = targ(eq(t', A)) no matter what valuearg(eq(t', A)) will
be equal from the decision of what value should be assigned to the€ventually take. In other words, the violation is already resolved.

equivalence class. We defer the assignmenagf(E') as much as

Example 4.3: Consider again the setting of Example]4.1, and sup-

possible to reduce poor local decisions, such as changing the valugoose that we want to resolve the violationgfcaused bys andt; .

of t5[CT,ST] in Exampld 4.]L.
We use€ to keep track of the current set of equivalence classes
in a databas®. Initially, £ consists okq(t, A) for all tuplest in
D and all attributeA in ¢, whereeq(t, A) starts with a single pair
(t, A), with targ(eq(t, A)) = .

319

If the target values odq(¢s, CT) andeq(ts, ST) (resp.eq(t1, CT)
andeq(t1,ST)) are ', and none of them isull, we can resolve
the violation by simply mergingq(ts, CT) andeq(¢:, CT) and by
mergingeq(ts, ST) andeq(t1,ST). In the presence of conflicting
target valuese.g.,wheneq(¢s, CT) andeq(t:, CT) have distinct

Procedure BATCHREPAIR(D,)

Input: A setX. of CFDs, and a databade.
Output: A repairRepr of D.

1. £={{(t,A)}|te R, A€ att(R)};

2. foreachE € £do /[*initializing targ(E) */

3. targ(E) =

4. Initialize Dirty_Tuples;

5. while Dirty_Tuples #

6. (t, B,v,) := PICKNEXT();

7. Repr := CFD-RESOLVHY, B, v, ¢);

8. UpdateDirty_Tuples;

9. if Dirty_Tuples = @ then

10 for eachE € £ do

11. if targ(F) =- then [*instantiating- */
12. targ(F) := a constant with the least cost;
13. UpdateDirty_Tuples;

14. for eachE € £ and each{t, A) € E do

t[A] = targ(E);
. return D.

/* updating D to obtainRepr

Figure 4: Algorithm B ATCH REPAIR

Procedure PICKNEXT()

1. BestCost ;= o0;
2. for eachcFbp = (R: X — A, tp),t € Dirty_Tuples(y) do

3. decide an attribut® in ¢ to update=q(t, B);

4. S={t' € R|V[XU{A}\{B}] = t[X U{A}\ {B}]}
5. v = FINDV(t, B, S, ¢);

6. if Cost(t, B,v) < BestCost then

7 BestFix := (¢, B, v, ¢); BestCost := Cost(t, B, v);

8. return BestFix;

Figure 5: procedure PiICK NEXT

the least cost (line 8).

It remains to show how the valueis picked. Given,, B andy,
procedure WDV (not shown) aims to select semantically-related
values by first using values &rDs. If this is not possible, a value is
selected from values appearing in related tuples. Moreover, by the
definition of Cost the optimal value is selected in a similar way
as in the most-common-value strategy. More preciselybV
checks whetheB = A. If so, v is already determined by either
tp[A] (case (1.1) in Section 4.1) or the target valuesaft, A)

constant target values, we have to change the target value of theandeq(¢', A) (¢’ is the tuple with whicht violates, case (2.1)).

LHS(¢1) attributes of eithet; orts, i.e., the target value of one of
eq(ts, AC), eq(ts, PN), eq(t1, AC) oreq(t1, PN). O

4.2 Batch Repair Algorithm
We now present algorithmA& CHREPAIR. In addition to the set

& of equivalence classes, the algorithm keeps track of violations

of CFDs. As we have seen in Examgle .1, a repair may gener-
atenew violations Therefore, we maintain for eaddrD ¢ € X
a setDirty_Tuples(y) of tuples that (possibly) violate. We up-

date these sets after each resolution of a violation. More precisely, .

suppose that a violation @f caused by is resolved by updating
eq(t, A). Then for each tuple’, if (t', A) € eq(t, A), and for
eachy = (R : X — C.t,), if A € X U{C}, we addt’ to
Dirty_Tuples(t)). We then remove from Dirty_Tuples(¢). In this
way Dirty_Tuples always contain alpotentially unresolvetuples.
The algorithm is shown in Fi§] 4. We start with initialization of
the sett of equivalence classes abdrty_Tuples (lines 1-4). Next,
as long as there are dirty tuples (loop on line 5) we greedily look for
the “best” next repair. More specifically, the procedureKNEXT
loops over eacltFD ¢ € ¥ and its violating tuple; it identifies
which pair (¢, t) incurs the least cost to repair (line 6). The algo-
rithm then resolves for ¢ (line 7), resulting in a modified set of
equivalence classes, by invoking procedor®-RESOLVE. It then

Otherwisej.e.,if B € LHS(yp), it inspectstarg(eq(t1, B)) for all
t1 € S, and finds with the leastCost(¢, B, v) such thab # t[B].
The motivation for pickingv from S is to find a semantically-
related value, identified by the patteffik U {A} \ {B}]. If such
v does not exist, it lets := null.

Example 4.4: Returning to Examplg 42, suppose now that the tar-
get values of(eq(ts, CT),eq(t5,ST)) are PHI, PA). To resolve

the violation ofp, caused byts, we decide to change the target
value ofts[zip]. Procedure RKNEXT finds S = {t1,t2,t3, 4},

i.e., S consists of all tupleg’ with (PHI, PA) as the target value

of (eq(t’,CT),eq(t',ST)), Now Procedure RDV attempts to
choosev from the target values ofq(t', zip) for t' € S. There

are two such values: 19014 and 10012. It decides to pick 19014
since it is the only one that differs fromg[B]. If S were empty or
targ(eq(ts, zip)) already had a constant, it assignsl to v. O

Upon receiving(t, B, v, ¢) from PICKNEXT, procedurecFbp-
RESOLVEn algorithm BATCHREPAIR merges or update the target
values of equivalence classes to resolve the violatiop odused
by t, as described in Sectipn 4.1.

Correctness. Clearly at each step of algorithmaBCHREPAIR, a
CFD violation is resolved. However, each step can also introduce
new violations as illustrated in Example 4.1; moreover, a tup#n

updates the set of dirty tuples (line 8) before finding the next best appear as a violation multiple times. Neverthelessi1REPAIR

repair. If no more dirty tuples are unresolved (line 9), then for each
equivalence clask € £ withtarg(E) = _, itfinds a constant value
with the least cost to instantiaterg(E) (lines 10-12). That isul-
timately all equivalence classes will have either a constant value
or null. This instantiation may introduce new violations, and thus
Dirty_Tuples should be maintained (line 13). After the loop, we
create a repaiRepr by editing the original databade by using the
target values of equivalence classes (lines 14-15).

The most expensive and elaborate proceduredg REXT (see
Fig.[§). It finds the next tuple andcFD ¢ to be resolved. More
specifically, for eacltrFD ¢ and its unresolved tuple PICKNEXT
first decides for which attribut& of ¢ it can updatesq(¢, B) to
resolve the violation (line 3), following the analysis described in
Sectior[4.]L. AfterB is fixed, it finds a sef of tuples that agree
with ¢ on all the attributes ip exceptB (line 4). The idea is that we
may pick a target value for eq(¢, B) from the B-attribute values
of the tuples inS (line 5). It then analyzes the cost of repairing the
violation usingv (lines 6-7), whereCost (¢, B, v) is defined to be
> (r.0yeeqtt,my W', C) - cost(v, '[C]). It returns(t, B,v) with

320

always terminates and generates a repair.

Theorem 4.2: Given any databasé® and any set: of CFDs,
BATCHREPAIR terminates and finds a repaRepr = X for D.
|

Proof sketch: At each step either the total numb&T of equiva-
lence classes is reduced or the numHeof those classes that are
assigned a constant aull is increased. Lek be the number of

(t, A) pairsinD. SinceN < kandH < 3 - k (the target value of
eq(t, A) can only be ”, a constant, onull), BATCHREPAIR neces-
sarily terminates. Furthermore, since the algorithm proceeds until
no more dirty tuples exist, it always finds a repair/of a

5. An Incremental Repairing Algorithm

In this section we present the algorithm underlying the incre-
mental module of our framework shown in FfE; 3, which tackles
theincremental repairing problemAs remarked in Sectidn 3.3, it
suffices to consideA D consisting of insertions only, as deletions
never cause any inconsistencies.

Procedure INCREPAIR(D, AD, ¥, O)

Input: A clean databas®, a set> of CFDs, a set of updateA D,
and an orderin@ on AD.

Output: A repairRepr of D & AD such thatD C Repr.

1. Repr:=D;

2. for eacht in AD in the given orde® do

3. Repr; := TUPLERESOLVE (¢, Repr, X);

4

5

Procedure TUPLERESOLVE(t, Repr, X)

Input: Atuplet to repair, the current repaiepr, and a sekt of CFDs.
Output: A repairRepr, of t such thaRepr U {Repr, } = X.
1. C:=0; Repr, :=t;
2. while attr(R) # C do
cost 1= o0;
for eachC € [attr(R) \ C]x do
V:={0 | Repr U {repr:[C/0]} E Z(CUC)};
0 := arg —ming ey costfix(C, 9);
if costfix(C,0) < cost then
cost := costfix(C, v); BestFix:=(C, v);
. C :=C U C; Repr, :=Repr,[C/1];
0. return Repr,.

3

4

. Repr := Repr U {Repr, }; 5.
. return Repr. 6.
7

8

9

1

Figure 6: Algorithm | NCREPAIR

One might think that the incremental repairing problem is sim-
pler than its batch (non-incremental) counterpart. Unfortunately
it is not the case. Indeed, since the repairing problem (see Sec-
tion[3.3) can be seen as an instance of the incremental repairing

Figure 7: Algorithm TUPLERESOLVE

p2 that satisfieg) and differs fromp; in at mostk variables. O

problem (indeed, just consider the case that= (), we immedi-
ately obtain the following corollary from Theordm }1.1.

Corollary 5.1: The incremental repairing problem farDsis NP-
complete, even for a fixed schema and a fixed sebof O

Theoren{ 5P shows that finding the optimal refiidpr, of ¢ is
infeasible in practice. Indeed, the naive approach, namely, enu-
merating all possible repairs and then selecting the one with the
minimal cost, is clearly not an option in case that the number of

Therefore, we again have to rely on heuristics in the incremental attributes or the size of the active domains is large.

setting. We first develop a heuristic in Secfjion5.1 and then present

optimization techniques to improve the algorithm in Secfio} 5.2.
Finally, we show in Sectiop 5.3 that the incremental algorithm in
fact provides an alternative method for the repairing problem.

5.1 Incremental Algorithm and Local Repairing Problem

Given a set of updated D, Corollary[5.] tells us that it is be-
yond reach in practice to find an optimAlDge,r. Furthermore,
we cannot directly apply the algorithm developed for the repairing
problem to findingA Drepr Since we cannot prevent it from updat-
ing the cleanD. Following the approach commonly used in repair-
ing census data [13, 35], we repair the tuple\iP one at a time
following some ordering) on these tuples. We assume tldais
given but will provide various orderings in Sectjon[5.2.

Therefore, the key problem is to find, given a clean dataliase
a tuplet to be inserted intd, and a sek of CFDs, a repairRepr,
of ¢ of minimum cost such thab U {Repr, } is a repair. We refer
to this as thdocal repairing problem

Algorithm | NCREPAIR. The overall driver of our incremental re-

In light of this intractability, procedure JPLERESOLVEIs based
on agreedyapproach. As shown in Fif] 7, it takes as input a single
tuplet to be inserted, the current rep&epr, and a sek of CFDs,
and returns a repaRepr, of ¢ such thaRepr U {Repr,} = X.

Before we explain TPLERESOLVE in more detail, we need
some notation. For a fixed integkér> 0 and a set of attributes
X C attr(R) we denote by X], the set of all subsets oX of
sizek. For a tuplet, a setC' € [X], andv = (v1,...,vx), Where
v; € adom(D, A;)U{null} for eachA; € C, we denote by[C/7]
the tuple obtained by replacingA;] by v; for eachA; € C and
leaving the other attributes unchanged. Finally, for &%ef CFDs
and a setX C attr(R), we denote by:(X) the set ofcFDsin X
oftheform(R:Y — A,t,)withY U {A} C X.

We explain how procedureUPLERESOLVE works in an induc-
tive way. In a nutshell, it greedily finds the “best” sets of attributes
of ¢ to modify in order to create a repair. More specifically, for a
fixedk > 0 itfirst finds the “best’C; € [attr(R)] (lines 4-9) and
attribute value$ = (v1, ..., vy) for the attributes irC; such that

(i) vs isinadom(Repr, A;) U {null} (line 5);

pairing algorithm is presented in F[g. 6. Taking as input a database (i) Repr U {t[C1 /4]} satisfies alcFosin £(C1) (line 5); and

D, a setAD of updates, a set of crbs, and an ordering) on
AD, it does the following. It first initializes the reparepr with
the current clean databage (line 1). It then invokes a procedure
called TuPLERESOLVE (line 3) to repair each tuplein AD ac-
cording to the given orde® (line 2), and adds the local repair
Repr, of t to Repr (line 4) before moving to the next tuple. Once
all tuples inA D are processed, the final repair is reported (line 5).
The key characteristics ofNCREPAIR are (i) that the repair
grows at each step, providing in this way more information that
we can use to clean the next tuple, and (ii) that the dafa is not
modified since it is assumed to be clean already.
Algorithm TupPLERESOLVE. The core of the NCREPAIR algo-
rithm is the procedure JPLERESOLVE that aims to solve the local
repairing problem. One might think that the local repairing prob-

lem would make our lives easier. However, the result below tells us

that it is not the case.

Theorem 5.2: The local repairing problem isip-complete. More-
over, it remains intractable if one considers standamonly. O
Proof sketch: The NP-hardness is verified by reduction from the
distance-SAT problem, which isP-complete|[3]. That is to deter-
mine, given a propositional logic formuda an initial truth assign-
mentp;, and a constankt, whether there exists a truth assignment

321

(iii) the costcostfix(C1,0) = cost(t, t[C1/D]) x vio(t[C1/D]) is
minimal (lines 6-8).

In other words, the predefined parametdimits the number of
possible repairs that we consider. Our experiments show that for

= 1,2 we are already able to obtain good results. We denote the
set of allk-tuplesv satisfying (i) and (ii) byV (line 5). Once T-
PLEREsOLVEfindsC: andv, C1 is added t& andt is replaced by
t1 = t[C1/7] (line 9). Furthermore, TPLERESOLVE will never
backtrack and modify; for the attributes irC; again.

Suppose that TPLERESOLVE already selected best pairwise
disjoint setsC,...,Cy in [attr(R)]r and k-tuples oy, ..., o,
such that fort, = t,-1[C»/0,], we have thaRepr U {t,} &
3(C), whereC = C1 U --- U Cr—1. Thatis,t, is the current
(almost) repair fort. If attr(R) = C then clearlyt,, is a real
repair of ¢ and TUPLERESOLVE will output Repr, = ¢, (line
2, line 10). Otherwise, UPLERESOLVE finds the next best set
Chn41 in [attr(R) \ C]i and finds ak-tuple 0,41 satisfying the
same conditions (i)—(iii) as abowexceptthat the repaitt,,+1 =
tn [Crt1/0n+1] must satisfp(Cr 1 UC). Again, the seC), 11 is
then added t@ and the current (almost) repair is settto.1. The
procedure TPLERESOLVE keeps selecting such sets of attributes
and values untibttr(R) is completely covered.

It is important that is allowed to contaimull values (see prop-
erty (i)). Indeed, this is needed for guaranteeing the existence of
k-tuplesu satisfying property (ii) as the next example illustrates.

Example 5.1: Considerts in Examplg 1.]L and suppose that 2.
Suppose that TPLERESOLVE already fixed all attributes except
CT andST. In fact, no attribute values ity are changed since the
violatedcrpsinvolve the two non-fixed attributes. In order fouT
PLERESOLVE to repairts it needs to find a tuplé = (v1,v2)
for C = {CT,ST} such thatis[C/9] satisfies bothp; and ¢,.
As observed in Examp[e 1.1 no sugtexists when we only con-
sider values in the active domains. Thus the only possilblere is
(null, null). In contrast, Example 1.1 shows t@t{CT, ST, zip}
for k = 3, ando=(PHI, PA, 19014) provides a repair fag. O

Correctness.The termination of N\CREPAIR follows from the fact
that (i) each tuple ilAD is treated only once; and (ii) each at-
tribute is modified at most once byUPLERESOLVE. Moreover,
TUPLERESOLVE always generates a repair for each tuplé\ip.

Theorem 5.3: Given a databasé, a setX. of cFbs and update
AD, INCREPAIR always terminates and finds a repal Drepr
such thatD @& ADger = X, regardless of the ordering. O

5.2 Ordering for Processing Tuples and Optimizations

While the ordering? for processing tuples has no impact on the
termination of an NCREPAIR process, it does make a difference
when it comes to repairing performance and the accuracy of the re-
pair. We next study various orderings, based on which we develop
(and experiment with) variants of the¢REPAIR algorithm.

Theoren{ 411 tells us that it is beyond reach in practice to find
an ordering that leads to an optimal repair. Thus we propose and
experiment with the following orderings.

Linear-scan ordering. A naive approach is to adopt an arbitrary
linear-scan order fof), with the benefit that it incurs no extra cost.
We refer to NCREPAIR based on this as LNICREPAIR.

A greedy algorithm based on violations.This algorithm, referred
to as V-INCREPAIR, is based on theumber of violationsio(t)
of each tuplet, which is defined in Sectign 3.1. A tuplee D
might cause multiple violations of constraints¥n Intuitively, the
lessvio(t) is, the more accurateis and the less costly to repair it.
Algorithm V-INCREPAIR repairs tuples in thécreasingorder of
vio(t) so that accurate tuples are includedipr early, and based
on them we resolve violations of “less accurate” tuples.

A greedy algorithm based on weightsAnother approach is based
on the weightwt(¢) of a tuplet (recall the definition ofvt(¢) from
Sectio). Intuitively, the largevt(t) is, the more accurateis.
We develop a variant oNCREPAIR, referred to as WNCREPAIR,
which processes tuples based on deereasingorder ofwt(¢) to
reduce the cost and improve the quality of repairs found.

We next present optimizations adopted by our algorithm.

Optimization. The main computational cost oNtREPAIR lies

in the procedure TPLERESOLVE. Indeed, there one needs to (i)
consider all possible subsetsof attributes of sizé; (ii) for each
suchC compute the se¥ consisting of all possiblé-tupless on
the attributes inC' that satisfy the relevantrps; and (iii) obtain
from V the tupled that has minimal cost with[C] (Fig[7, lines
5-6). To do these tasks efficiently we leverage the use of indices.

LHS-indices. For eachcrD (R : X — A, tp) in X we build
an indexZ for the embeddedbd X — A. The index consists of
pairs(key, it) wherekey uniquely identifies itenit in Z and is con-
structed as follows: it,[A] = a, then we simply addt,[X], a)

to Z; if t,[A] =_, then we add for each tupté € Repr such that
t'[X] = t,[X] the pair(t”[X],t"[A]) to Z. Observe that because

~
=S

322

Repr is clean, such keys provide indeed a unique identifier.

Now, given a tuple’ and a fixed set of attribute® we can ef-
ficiently determine whether or not a candidate repaie ¢'[C /)]
violates acFD (R : X — A, tp) in Z(C U C) by (i) searching
the index forp usingt”’[X] as key; and (i) testing whethef [A]
matches the returned item. Doing this for aktDs allows us to
compute the number of violations of a candidate repair efficiently.

Finally, these indices are dynamically updated when repairs are
added tcRepr using standard update mechanisms.

Cost-based indicesWe arrange the values eaflom(Repr, A) for
each attributed in a tree structure, by using a hierarchical agglom-
erative clustering method [20]. In the tree, “similar” values are
grouped together based on the metric. Suppose for the moment
that we are considering a single attributeonly and want to range
overadom(Repr, A) such that values are considered in decreasing
similarity to a given attribute valugA]. We then simply iterate
over adom(Repr, A) by first searching fot[A], starting from the
root, and then moving to its child cluster that is closest[t#)] in
terms of theDL metric. This process then continues until we find
a value modification fot[A] that satisfies the requirements given
in TUPLERESOLVE. If no suitable candidate can be found, we sim-
ply usenull. In case of multiple attributes (recall thatuPLERE-
SOLVE tries to findk-tuples), we range over the individual trees in
a nested way until a suitable candidate tuple is found. Again, we
introducenull whenever no suitable attribute value can be found.

5.3 Applying INCREPAIR in the Non-incremental Setting

Algorithm INCREPAIR can also be used in the non-incremental
setting. Indeed, given a dirty databaBé one can first extract a
maximal consistent set of tupled from D’ and then simply ap-
ply INCREPAIRto D andAD = D’ \ D. However, computing
such a maximal set of tuples might be too hard in practice:

Proposition 5.4: It is NP-hard to find, given a datasé?’ and a set
3 of cFDs, a maximal subsef' of D’ such thatC = 3. O

Proof sketch: This is verified by reduction from the independent
set problem, which isip-complete (cf.[[17]). a

Greedy algorithms do provide some approximation guarantées [7]
for finding such a se€. However, unless for eachrD ¢ € ¥

the number of tuples that violate with another tuple is bounded
by a small constant, the approximation factor grows with the size
of the database [19]. A simpler approach is to compute th€'set

of tuples that do not violatany constraint in3. This clearly does

not gives us a maximal set of tuples but as shown n [6] it can be
efficiently computed usingQL queries. Moreover, in practice one
can often expect this set to be fairly large. Indeed, the typical error
rate of real-world data in enterprises is 1%-5% [31].

6. Statistical Methods for Improving Accuracy

In this section we present the third part of the cleaning frame-
work shown in Fig[Bj.e., the sampling moduleThe repairing al-
gorithms BATCHREPAIR and INCREPAIR both return a repaiRepr
that satisfies theFDs in X, i.e., consistentw.r.t. the givenCFbs.
However, certain value changesRmapr, which were automatically
generated, may not be what the user wants. Referring to Exam-
pleg1.] anfl5]1NCREPAIR (for k = 3) resolves theps by modi-
fying ts in the attributesCT, ST andzip, while the user may have
wanted to modifyts[AC] only. This concerns thaccuracyof the
repair, rather than its consistency.

As remarked in Section 3.3, it is unrealistic to consult the user
for every change. To improve the accuracy without incurring ex-
cessive human efforts, we propose a sampling process. The proce-
duresAMPLING (not shown) involves the user to inspect and adit

sampleof Repr rather than the entirRepr. This procedure ensures

that for candidate repairs found by the repairing algorithms, their

estimated inaccuracy ratee., |dif (Repr, Dopt)|/|Dopt|, is below
a predefined boundwith high confidence.

Given a repaiRepr and predefined and é, proceduresam-
PLING works as follows: (1) it draws a sampkefrom Repr and
lets the user inspect; (2) based on the user feedback andt
computes dest statisticz; and finally (3) it compares with the
critical valuez, at confidence level, which is obtained via nor-
mal distribution (seee.g.,[1]), wherea = 1 —§. If z < —z,,

then it rejects the null hypothesis that the proportion of inaccurate

data inRepr is above the giver value, andRepr is returned as
a candidate repair. Otherwise it recruits the user to leolib the
sampleS andcFbsin X. This user interaction may trigger new vi-

olations after which the repairing algorithm and sampling process

are invoked again, based on the possidgr-revisedetY of CFDs
and database.
The objective ofSAMPLING is twofold: (i) It involves the users

probability .
The remaining question is how to compute the inaccuracy rate

p for a specific samplé&. First, we let the user inspect and mark

the tuples that fall short of the expectation. From the user feedback

we get, for each € [1,m], a numbere;, which is the number

of inaccurate tuples in those tuples drawn from strafm The

weighted inaccuracy rate of the sampleS is computed byp =

(icim € -8/ (e m |Pil - 8:), wheres; = |Pi| /(& - k).
Sample size We next discuss the choice of the sizéor the sam-

ple S. In general, the lower the inaccurate rat&epr is, the larger

the sample is required. Intuitively, this is because in order for inac-
curate tuples to appear in the sample, a large enough sample needs
to be taken. A theoretical prediction for sampling size can be de-
rived using Chernoff bounds|[1], as follows.

Theorem 6.1: For a random sampleS' of sizek and a constant
aifk> ¢+ din(L5) + %\/(In(l—ié))2 +2-c-In(115), then
P[X < ¢] < 1- 4 holds,i.e.,the probability that at least many

to check whether the repair is accurate enough to meet their expec-inaccurate tuples appear in the samyflés no less thars. O

tation on the data quality; and (ii) it allows the repairing algorithms
to “learn” from the user interaction and improve the next round of
cleaning process. In particular, the user may enter oewg based
on new semantic bindings of related values.

We next outline methods for drawing a sample and for comput-

Proof sketch: The Chernoff bounds

constan® < 75 < 1, we haveP[X < (1 — n)ke] < e~ 3. By

rewriting P[X < c]to P[X < (1—(1—c¢/(ke)))ke], and applying

the Chernoff bound result tB[X < (1—(1—c¢/(ke)))ke] < 1-6,
]

'1] state that for any positive

2

ing the statistic test. We also discuss the size of the samples re-We get the inequality stated in the theorem.

quired to guarantee with high probability that the inaccuracy ratio
is below the predefinedthreshold.

Sampling methods. A naive approach is to use uniform random

sampling techniques. However, the tuples drawn in this way may

not sufficientlyrepresenthose that were modified by the repairing

algorithm, which are the tuples that we would like the user to check

7. Experimental Evaluation

In this section, we present an experimental study of our repairing
algorithms. We investigate the repair quality, scalability, and sensi-
tivity to error rate and types of violations for botmnBCHREPAIR
and INCREPAIR.

since they have a higher likelihood to be inaccurate. This motivates 7.1 Experimental Setting

us to employ the stratified sampling methpd [1].
The idea is to partition the tuples Repr into multiple strata and
draw certain number of tuples from each strata, giving priority to

Our experiments were conducted on an Apple Xserve with
2.3GHz PowerPC duapPuand 4B of memory; of those, at most
2GB could be used by our system. We used a commeb&&IS on

strata that are likely to be inaccurate. More specifically, suppose the same machine.

that we want to draw a sample bftuples. We partitiorRepr into

m strataPi, . .., P, with m < k. Fori € [1,m], the stratump;
consists of those tuplg§in Repr such that’ was obtained by the
repairing algorithm by modifying a tuplein the original dataset
D with vio(t) > v;, wherevio(t) is the number of violations of
(Sectior{ 3.]1), ana; is a fixed threshold. Alternatively, instead of
usingvio(t) one can useost(t', t) to partition the data set.

We also assume predefined threshofds...,&,, such that
Zie[l,m] & = 1andg; < &y1. Then we drawg; - £ many tu-
ples from the stratun®;. In this way we give a larger coefficient
&, to the stratumP;, and thus draw more tuples frof, if tuples
in P; are more likely to be inaccurate. We draw tuples from each
P; by leveraging a widely used algorithra..,[33]) that scans the
data in one pass and uses constant space, afdtatsist of tuples
drawn from all strata.

Statistical Test. Let random variableX denote the number of in-

Data and constraints. Our experiments used an extension of the
relation shown in Figl]1. Specifically, its schema models a com-
pany’s sales records and includes 4 additional attributes, namely,
the country of the custom&iTY, the tax rate of the ite'WAT, the

title TT and quantity of the itenQTT. To populate this table, we
scraped real-life data frommAzON and other websites, and gen-
erated datasets of various sizes, ranging from 10k to 300k tuples.

Our setX consists of 7cFDs: 5 taken from Fig[]l and Fig]2,
together with two new cycliCFbs.

We included 300-5,000 tuples in the pattern tableaus of these
CFDs, enforcing patterns of semantically related values which we
identified through analyzing the real data. Note that the set of con-
straints is fairly large since each pattern tuple is in fact a constraint.

We first populated the table such that the initial datasets are con-
sistent with all thecrbs in X. We refer to this “correct” data as
D,p:. We then introduced noise to attributes/ig,: such that each

accurate tuples in a sample. Because the probability of having an“dirty” tuple violates at least one or morerps. To add noise to
inaccurate tuple in the sample is proportional to the size of that an attribute, we randomly changed it either to a new value which

sample, the variabléX obeys a Binomial distribution, which is
commonly computed via its normal approximation (provided that

is close in terms obL metric (distance between 1 and 6) or to an
existing value taken from another tuple. Such “dirty” dataset is re-

the sample size is large enough). Thus we can compute the tesferred to asD. We used a parametgranging from 1% to 10% for

statistic byz = (p—€)/(1/ #), wherep is the inaccuracy rate
in a specific sample; is the predefined inaccuracy rate dnis the

sample size. As mentioned earlier, we compare the test statistic

z with the critical valuez, at confidence leved. If z < —z,,
we can conclude that the inaccuracy rateRepr is belowe with

323

S,

the noise rate.

Moreover, in accordance to the cost model defined in Section 3.2
we set weights to the attributes of tupleg/inn the following way.
Suppose that is a tuple inD, then we say thatl is a “clean” at-
tribute fort if the corresponding tupl¢ in D,,: agrees witht on
attribute A; otherwise we calld “dirty” for ¢. For dirty attributes

in ¢, we randomly assign a weight(t, A) in [0, a]; for clean at- INCREPAIR is influenced by the quality of the weightse., the
tributes we randomly select a weightt, A) in [b, 1]. This is based choice ofa andb. The good performance of WEREPAIR is con-
on the assumption that a clean attribute usually has a slightly highersistent with the expectation that a tuple which has less violations

weight than a dirty attribute. In the experiments, weset 0.6 is more likely be a correct tuple. Indeed, algorithm MeREPAIR
andb = 0.5. We also studied the case when no weight information first repairs tuples that are more likely to be correct, which will pro-
was available, by setting the weights to 1 for all attributes. vide more reliable information when cleaning less accurate dirty
Algorithms. We have implemented prototypes ofABCHRE- tuples subsequently. A similar argument holds for the good accu-
PAIR and all three variants ONCREPAIR, i.e., L-INCREPAIR, V- racy of W-INCREPAIR. Moreover, the running times (Fi.13) of

INCREPAIRaNd W-INCREPAIR, all in Java. We did not experiment ~ L-INCREPAIR and W-INCREPAIR are similar and slightly better

with algorithmsAMPLING because we could easily find out the in- ~ than V-INCREPAIR. Therefore, the improved quality of the latter

accuracy rate in a repaitepr by comparing the clean data and the two algorithmsdoes notome at a price, in terms of time.

repair, since we started with the clean data. Also in Fig.[§ and Fig[70 we show the accuracy of the repair
In the experiments we used¢REPAIR to repair the entire data ~ given by BATCHREPAIR. Although BATCHREPAIR and INCRE-

set, as described in Secti@S'sv except in one occasion@ig_ 12).PA|R are different in nature, the quallty of the repairs prOVIded by

That is, L-INCREPAIR, V-INCREPAIR and W-INCREPAIR were them is comparable. Note also that tReecisionand Recall de-
applied to non-incremental setting except for Fig. 12. crease slightly with the increase of noise rate, as expected. The val-

ues ofRecallare relatively high, which means that our algorithms
can repair most of the errorBrecisionshows that new noises were
introduced when repairing these errors.

In the following, when reporting on theNEREPAIR algorithm
we always used VNCREPAIR, as it consistently gave good results
for a wide range ofa, b)-values.

In Fig.[I4 we verify our intuition thatFDs with a constant in
theirRHS are more informative during the repairing than those with
a variableRHS. In this experiment we fixed the size of the data
to 60K tuples and varied the percentage of violations for constant
CFDs W.r.t. violations for variablecFbs from 20% to 80%. As can

cision and Recal| which are widely used in information retrieval Eetﬁe';n’ aanncreasmg lnunFlber of ::ons?’tb vnc:_la::ons enabled
and many other area®recisionis the ratio of the number of cor- 0 TCHREPAIR and INCREPAIR 1o achieve higher accuracy.

rectly repaired noises to the number of changes made by the repair-Scalability. In the following experiments we investigate the scal-

Measuring repair quality. There is no benchmark algorithm avail-
able for repairingcFbs. While each repaiRepr of the databas®
found by our algorithms satisfies all tteFDs (this follows from
the correctness of our algorithms), it still may contain two types
of errors: (a) the noises that are not fixed, and (b) the new noises
introduced in the repairing process. Although it is important to dis-
tinguish these two types of errors, the metrics used in previous data
cleaning work often considers the first type of errors while ignoring
the second type. For example, [5] measuhespercentage of error
corrected which does not distinguish these two types of errors.

To measure these two types of errors, we used the notidPieef

ing algorithm. It measures the repair correctnd®scallis the ra- ability of our algorithms. In Fig[11 we show the scalability
tio of the number of correctly repaired noises to the total number of of BATCHREPAIR. As described in Sectidn| 4, the overall com-
noises. It measures repair completeness. For a dirty ddBesed a plexity is governed by the proceduredRNEXT. We found in our

Repr found by our algorithms, we compute the number of noises by €xperiments that without any further optimizatiomT®HREPAIR
dif(D, Dopt) (recall that we knowD,:). The number of changes ~ runs very slow. Therefore, we applied some additional optimiza-
made by the repairing algorithmdsf (D, Repr) and the number of ~ tions based on the dependency graph ofthes, which help Fck-
noises correctly repaired if (D, Repr) — dif (Dopt, Repr). Note NEXT to select the nextFp to repair. As Fig[Il shows, the op-
that our algorithm may change some valuesud. If such a value timized BATCHREPAIR scales very well for database sizes varying
before the change is correct, we count thél as an error; other- from 60K to 300K tuples. The noise rate was fixed at 5%.

wise, we treat it as a correction. The effectiveness ofNCREPAIR, when used in thécremental
) setting, is reported in Fi§. 12. We started from a clean database
7.2 Experimental Results consisting of 60K tuples and inserted 10 to 70 dirty tuples. It shows

We now report our findings concerning the accuracy (Preci- that INCREPAIR significantly outperforms BTCHREPAIR in this
sion/Recall) of our algorithms, their scalability in terms of the size incremental setting, with comparable accuracy (see [Fgs. Pand 10).
of the data, noise rates, and types of violations, and show the effi- Observe that the running time afitREPAIR increases faster than
cacy ofCFDsVs. FDs in repairing data. that of BATCHREPAIR.

Efficacy of CFDs vs. FDs. We first show thatcFps are indeed The scalability of all our algorithms with respect to noise rate is
more effective tharFps in repairing dirty data. In Fig[]8, we shownin Fig[IB. We fixed the data size to 60K tuples and varied
ran BATCHREPAIR on a dataset of 60K tuples and varied the noise the noise rate from 1% to 10%. All algorithms require more time
ratep between 2% to 10%. The upper two curves report the accu- when the data has more noise, as expected. An interesting observa-
racy for our set ocFDs. The lower two curves show the accuracy tion is that BATCHREPAIR s less sensitive to the noise rate because
for the embeddedDs (i.e., the CFDs in which the pattern tableau it can repair many tuples simultaneously.

consists of a single pattern of wildcards only). Figure 8 shows that In Fig.[I§ we show that the presence of violations for vari-

patterns improved significantly the accuracy of the repair. able crbs has a negative effect on the time performance of
Quality of the repair. We evaluated the data quality of our re- POth BATCHREPAIR and INCREPAIR. This is not surprising since
pairing algorithms. We show the accuracy in termsPaécision such violations involve multiple tuples.
(Fig.[9) andRecall(Fig.[IQ) of all our algorithmsi,e., BATCHRE- Summary. Our experimental results demonstrate both the effec-
PAIR, L-INCREPAIR, V-INCREPAIR and W-INCREPAIR. In these tiveness and efficiency of our repairing algorithms. (1) We find
experiments, we varied the noise rattom 1% to 10%. The total that all of our repairing algorithms, even the worst-performed L-
database size was fixed at 60K tuples. INCREPAIR, improve the quality of the data. (2) All of our algo-
Our experiments show that \WEREPAIR and W-INCREPAIR rithms scale well with the database size. (3) Algorithms BHRE-
consistently outperform LNCREPAIR, while W-INCREPAIR per- PAIR and V-INCREPAIR provide repairs that have comparable ac-
forms slightly better than VNCREPAIR. The accuracy of W- curacy. (4) Repair quality decreases when the noise rate increases

324

100 T T T T T T T 100 T T T T T T T T
100 — T T T T T T T
By - 0%-
R e Koo X 1 -
90[]_ N %7 B s - 90 ¥=
g ° g
X =4 - 0.
g el - g 0f-a. . g ®
é’ ”””””” g o. - EI o g
< 8} BatchRepair (FD/Recall) —+— 3 60 |- - L R s . ¢ 70
BatchRepar (FD/Prec) —— - BatchRepar —4— b BetchRendi
75 | BachRepair (CFD/Recall) -~ -- - 50| WincRepair ——%-- . VAincRepdr -
BatchRepair (CFD/Prec) &~ L-IncRepair & 60 - W-IncRepair ---%--- 7]
70]]]]]]] 20 I I I L I I I L-IncRepair -
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 50 L1111
Percentage of errors(%) Percentage of errors(%) 1 2 3 4 5 6 7 8 9 10
i . . . K Percentage of errors(%)
Figure 8: Efficacy of CFDsvs. FDs Figure 9: Precision vs. noise rate . .
Figure 10: Recall vs. noise rate
3500 F T T T T =3 50 T T T T T T T T T T T T T
1400 T
- i - BatchRepair —+— L7
3000 [~ BatchRepar —— 40 —///——1— 1200 | V-IncRepair —-%-- o -
| W-IncRepair ---%--- -7 J
- 250 7 = —~ 1000 | L-IncRepair @ __-% e
8 8 a0} BatchRepair —+—| 8 x A
T 2000 7 T IncRepair -~ - T 800
£ E E
g 1o 7 E 20 - E 600
"4 "4 24
1000 B R 400
10 [e e
500 B e 200
ol]]]] o S]]]] 0
100 150 200 250 300 10 20 30 40 50 60 70 1 2 3 4 5 6 7 8 9 10
of tuplesin database(K) # of dirty tuplesinserted Percentage of errors(%)
Figure 11: Scalability of BATCH REPAIR Figure 12: Scalability of INCREPAIR Figure 13: Scalability vs. noise rate

for all of the algorithms. (5) If violations are mainly caused by extension of the algorithms df|[5] in that both are based on equiv-
constantcFbps, then the algorithms run more efficiently and pro- alence classes of tuple attributes, but the algorithms|of [5] may not
vide more accurate results. (6) While our algorithms correctly fix terminate orcrDs. Incremental repairing and sampling for improv-
noises, they may also introduce new noises. This is an issue not yeting data accuracy (Sectiopf 5 drjd 6) are not consideréd in [5].
well studied by previous work. Value modifications as repair operations are used i [13, 14, 34,
8. Related Work 5,/25, 24]. A method for_cleaning census data, l_Jased on reduction
to Mwsc, was proposed in [13] and has been being usedsya-
tional statistical agent5 [35]. Our heurisRePAIR-CFD is inspired
by [13], but differs from it in that/[183, 35] deal with editing rules
on individual records among which there is no interaction, whereas
modifying a single tuple may lead to violatioksDs by multiple
other tuples. The repair algorithms 6f [25] are essentially an ex-
tension of the method of [13] for restricted denial constraints. As
remarked earlier| [34, 24] focus on consistent query answer rather
than repair. [[14] employs logic programming to clean census data
and is quite different from the techniques developed in this work.

There has been a host of work on the merge-purge proleeagm (
[15, |21, 28]) for the elimination ofpproximate duplicates As
observed in[[B], it is possible to model many cases of this problem
in terms ofFDsandiNDsrepair. As shown in Secti¢n 3.2, clustering
echnigues developed for merge-purge have immediate applications
in constraint-based data cleaning. There have also been commercial
ETL (extraction, transformation, loading) tools, in which a large
portion of the cleaning work has still to be done manually or by
low-level programs (se¢ [29] for a comprehensive survey).

Related to this work are also theax, Potter's Wheel andrk-
Tos systemsAJAX [15] proposes a declarative language for spec-
ifying data cleaning operations (duplicate elimination) during data
transformations. Potter's Wheél [30] is an interactive data clean-
ing system, which supports a sliding-window interface, and com-
bines data transformations and error detection (syntax and irregu-
larities). ARKTOS [32] is anETL tool that detects inconsistencies
based on basic keys, foreign keys and uniqueness constraints, etc.,
but it makes little effort to remove the detected errors. While a
constraint repair facility will logically become part of the cleaning
process supported by these tools and systems, we are not aware of
analogous functionality currently in any of the systems mentioned.

A variety of constraint formalisms have been proposed|6] 4, 8,
26,/27]. Except for[[B], these formalisms have not been applied
in the context of data cleaningcFDs are proposed irf [6], which
studies satisfiability and implication analysesadbs, and gives
sSQL techniques for detecting inconsistencies usimgps. How-
ever, it does not propose cleaning methods. Constraints of [8], also
referred to as conditional functional dependencies, and their exten-
sion known as constrained dependencies df [26], also restri an
to hold on a subset of a relation. However, they cannot express
evencCFDs. More expressive are constraint-generating dependen-
cies (CGDs) of [4] and constrained tuple-generating dependencies
(cTGDs) of [27]. While bothcGbs andCTGDs can expres€FDs,
this expressive power comes with the price of high complexity.

Research on constraint-based data cleaning has mostly focuse
on two topics introduced in [2]repair is to find another database
that is consistent and minimally differs from the original database
(e.g.,[2}[5,[25,9/10; 14]); andonsistent query answés to find
an answer to a given query in every repair of the original database
(e.g.,[2 10,24, 34]). Most earlier work (except|[5} 9,14, 34])
considers traditional full and denial dependencies, which subsume
FDs, but do not consider patterns defined with data values. Beyond
traditional dependencies, logic programming is studied jn [9, 14]
for fixing census data. A tableau representation of full dependen-
cies with data values is studied n [34], which focuses on condensed
representation of repairs and consistent query answers.

Closest to our work is [5]. Here, a cost model and repairing al-
gorithms are developed for standaams andiNDs. Our cost model
(Sectiorf 3.P) is an extension of the one proposed|in [5], by allowing
weights to be associated with attributes rather than with tuples. As
remarked earlier, repairingrbs is far more intriguing than stan-
dardrDs. Our batch repairing algorithm (Sectiph 4) is a nontrivial

325

100 T T T T T

95

Q0

Accuracy(%)

IncRepair (Prec) —+—

BatchRepair (Prec) -->--

BatchRepair (Recall) ---%
IncRepair (Recall) &

g5 -

80 Il Il Il Il Il
20 30 40 50 60 70 80

Percentage of dirty tuples violating constant CFDs(%)
Figure 14: Accuracy vs. percentage of constantrFp violations

9. Conclusions

We have proposed a framework for improving data quality, based
on cFDs. We have shown that the problem for finding optimal re-
pairs and the problem for incrementally finding optimal repairs are [13]
both NP-complete. In light of these intractability results, we have
developed heuristic algorithms for both problems, and experimen- [14]
tally verified their effectiveness and efficiency in improving the
consistency of the data. To improve the accuracy of the data, we
have proposed a statistical method that guarantees to find a repaif15]
above a predefined accuracy rate with a high confidence. To our
knowledge, this work is among the first treatments of both consis- (16]
tency and accuracy, and is the first effort to (incrementally) clean

data based on conditional constraints. We expect ¢ifats and
data-cleaning methods based ©rDs will yield a promising tool
for improving the quality of real-life data.

Several extensions are targeted for future work. First, to effec- [19]
tively clean real-life data, it is often necessary to consider both
cFDs and inclusion dependencies [5]. We are investigating effec-
tive methods for improving the consistency and accuracy of the data [20]
based on botltFps and inclusion dependencies. Second, we are

studying effective methods to automatically discover useftibs

from real-life data. Finally, we exploring conditional constraints

beyondcFps.

Acknowledgments
EPSRC GR/S63205/01, GR/T27433/01, EP/E02921and BBSRC

BB/D006473/1 Floris Geerts is a postdoctoral researcher of the

FWO Vlaanderen and is supported in partt3SRC GR/S63205/01
10. References

[1] N. Alon and J. H. SpencefThe Probabilistic Method” John Wiley
Inc., 1992.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers [27]

in inconsistent databases.MODS 1999.

[3] O. Bailleux and P. Marquis. DISTANCE-SAT: Complexity and algo-

rithms. INAAAI/IAAI, 1999.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-Generating De- [29]

pendencies]CS$59(1):94-115, 1999.

Wenfei Fan is supported in part by

800 T T T T T

700 |- S BatchRepair ——

600 Ty IncRepair —->--
500
400 A
300

200

Runtime(Sec.)

100 1

0 1 1 1 1 1
20 30 40 50 60 70 80

Percentage of dirty tuples violating constant CFDs(%)

Figure 15: Time vs percentage of constantFp violations

W. Cohen, P. Ravikumar, and S. Feinberg. A comparison of string-
distance metrics for name-matching taskslIVdeb, 2003.

L. English. Plain English on data quality: Information quality man-
agement: The next frontieRM Review MagazineApril 2000.

I. Fellegi and D. Holt. A systematic approach to automatic edit and
imputation.J. American Statistical Associatipfil(353):17-35, 1976.

E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello. Census
data repair: a challenging application of disjunctive logic program-
ming. INLPAR 2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. AJAX:
An extensible data cleaning tool. 8iGMOD, 2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. Declar-
ative data cleaning: Language, model and algorithmgLIDB, 2001.

M. Garey and D. Johnsoomputers and Intractability: A Guide to
the Theory of NP-Completene¥¥. H. Freeman and Company, 1979.
G. Grahne.The Problem of Incomplete Information in Relational
DatabasesSpringer, 1991.

M. Halldérsson and J. Radhakrishnan. Greed is good: approximat-
ing independent sets in sparse and bounded-degree graf$isOQ
1994.

J. Han and M. KambetData Mining: Concepts and Techniques”
Morgan Kaufmann Publishers, 2006.

M. A. Hernandez and S. Stolfo. Real-world data is dirty: Data cleans-
ing and the merge/purge proble®ata Mining and Knowledge Dis-
covery 2(1):9-37, 1998.

T. Imielihski and W. L. Jr. Incomplete information in relational
databaseslACM 31(4):761-791, 1984.

International StandartSO/IEC 9075-2:2003(E) Information technol-
ogy: Database languages, SQL Part 2 (Foundation, 2nd edition), 2003.

4] A. Lopatenko and L. Bertossi. Complexity of consistent query an-

swering in databases under cardinality-based and incremental repair
semantics. INCDT, 2007.

A. Lopatenko and L. Bravo. Efficient approximation algorithms for
repairing inconsistent databasesI@DE, 2007.

M. J. Maher. Constrained dependenci€heoretical Computer Sci-
ence 173(1):113-149, 1997.

M. J. Maher and D. Srivastava. Chasing Constrained Tuple-
Generating Dependencies.RODS 1996.

A. Monge. Matching algorithm within a duplicate detection system.
IEEE Data Engineering Bulletir23(4), 2000.

E. Rahm and H. H. Do. Data cleaning: Problems and current ap-
proacheslEEE Data Engineering Bulletir23(4), 2000.

[5] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model [30] \. Raman and J. M. Hellerstein. Potter's Wheel: An interactive data

and effective heuristic for repairing constraints by value modification.

In SIGMOD 2005.

31
[6] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Con- [

ditional functional dependencies for data cleaningdBbE, 2007.
[7] R. Boppana and M. M. Hallokrsson. Approximating maximum inde-
pendent sets by excluding subgrapBHL, 32(2):180-196, 1992.

[8] P. D. Bra and J. Paredaens. Conditional dependencies for horizontal [33]
decompositions. IrColloquium on Automata, Languages and Pro-

gramming 1983.

[9] R.Bruniand A. Sassano. Errors detection and correction in large scale

data collecting. IMDA, 2001.

[10] J. Chomicki and J. Marcinkowski. Minimal-change integrity mainte-

nance using tuple deletionsf. Comput, 197:90-121, 2005.

326

cleaning system. INLDB, 2001.

T. Redman. The impact of poor data quality on the typical enterprise.
Commun. ACM2:79-82, 1998.

P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, and
T. Sellis. ARKTOS: towards the modeling, design, control and exe-
cution of ETL processesnf. Syst, 8:537-561, 2001.

J. S. Vitter. Random sampling with a reservédCM Trans. Math.
Softw, 11(1), 1985.

J. Wijsen. Condensed representation of database repairs for consistent
query answering. IHCDT, 2003.

[35] W. E. Winkler. Methods for evaluating and creating data quallity.

Syst, 29(7):531-550, 2004.

	Introduction
	Conditional Functional Dependencies
	A Framework for Data Cleaning
	Violations and Repair Operations
	Cost Model
	A Data Cleaning Framework: Overview

	An Algorithm for Finding Repairs
	Resolving cfd Violations
	Batch Repair Algorithm

	An Incremental Repairing Algorithm
	Incremental Algorithm and Local Repairing Problem
	Ordering for Processing Tuples and Optimizations
	Applying IncRepair in the Non-incremental Setting

	Statistical Methods for Improving Accuracy
	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Related Work
	Conclusions
	References

