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ABSTRACT
Reference reconciliation is the problem of identifying when
different references (i.e., sets of attribute values) in a dataset
correspond to the same real-world entity. Most previous lit-
erature assumed references to a single class that had a fair
number of attributes (e.g., research publications). We con-
sider complex information spaces: our references belong to
multiple related classes and each reference may have very few
attribute values. A prime example of such a space is Per-
sonal Information Management, where the goal is to provide
a coherent view of all the information on one’s desktop.

Our reconciliation algorithm has three principal features.
First, we exploit the associations between references to de-
sign new methods for reference comparison. Second, we
propagate information between reconciliation decisions to
accumulate positive and negative evidences. Third, we grad-
ually enrich references by merging attribute values. Our
experiments show that (1) we considerably improve preci-
sion and recall over standard methods on a diverse set of
personal information datasets, and (2) there are advantages
to using our algorithm even on a standard citation dataset
benchmark.

1. INTRODUCTION
One of the major impediments to integrating data from

multiple sources, whether by warehousing, virtual integra-
tion or web services, is resolving references at the instance
level. Data sources have different ways of referring to the
same real-world entity. Variations in representation arise for
multiple reasons: mis-spellings, use of abbreviations, differ-
ent naming conventions, naming variations over time, and
the presence of several values for particular attributes. To
join data from multiple sources, and therefore, to do any
kind of analysis, we must detect when different references
refer to the same real-world entity. This problem is known
as reference reconciliation.

Reference reconciliation has received significant attention
in the literature, and its variations have been referred to
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as record linkage [37], merge/purge [21], de-duplication [34],
hardening soft databases [9], reference matching [27], ob-
ject identification [35] and identity uncertainty [26]. Most
of the previous work considered techniques for reconciling
references to a single class. Furthermore, typically the data
contained many attributes with each instance. However, in
practice, many data integration tasks need to tackle com-
plex information spaces where instances of multiple classes
and rich relationships between the instances exist, classes
may have only few attributes, and references typically have
unknown attribute values.

The main motivation for our work comes from the ap-
plication of Personal Information Management (PIM), and
specifically, supporting higher-level browsing of information
on one’s desktop. The need for better search tools for the
desktop was highlighted by systems like SIS [16] and the
Google Desktop search tool [19]. However, these systems
provide only keyword search to the desktop’s contents. The
vision of the Personal Memex [5] and recent systems such
as Haystack [33] and Semex [13] emphasize the ability to
browse personal information by associations, representing
important semantic relationships between objects. To sup-
port such browsing, a PIM system examines data from a
variety of sources on the desktop (e.g., mails, contacts, files,
spreadsheets) to extract instances of multiple classes: Per-

son, Message, Article, Conference, etc. In addition, the sys-
tem extracts associations between the instances, such as
senderOf, earlyVersionOf, authorOf, and publishedIn, which
then provide the basis for browsing. However, since the
data sources are heterogeneous and span several years, a
real-world object is typically referred to in several differ-
ent ways. Reconciliation of the above classes of references
guarantees that they mesh together seamlessly, and so the
PIM system can provide palatable browsing and searching
experiences.

Aside from PIM, many reference reconciliation problems
involve complex relationships between multiple entities. For
example, most of the work on reconciling publications for
portals such as Citeseer [7] and Cora [25] has focused solely
on the publications. To offer a more powerful portal, we
would also like to reconcile authors, institutions, publish-
ers and conferences. In fact, reconciling the other entities
can improve the accuracy of publication reconciliation. As
another example, reconciling references in online product
catalogs is a critical problem in electronic commerce. The
reconciliation decision in this context involves the product
entities, their manufacturers, suppliers, orders and related
products.
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To date, most reference reconciliation approaches (see [20,
4] for recent surveys) employ approximate string similarity
measures and combine the similarities of multiple attributes.
Though we can apply these methods to each type of refer-
ences in isolation, we miss the rich information carried in
the relationships between the instances. Furthermore, the
previous techniques assume there are several attributes as-
sociated with every reference, and therefore a reasonable
amount of information to consider in the reconciliation de-
cision. In some contexts, this does not hold. For example,
in PIM, a person reference extracted from an email may
contain only an email address, and in Citeseer, a person ref-
erence extracted from a citation contains only a name, which
may even be abbreviated.

We describe a novel reference reconciliation algorithm that
is well suited for complex information spaces and for cases
where some of the references may lack information. The key
ideas underlying our approach are the following. First, we
make extensive use of context information (the associations
between references) to provide evidence for reconciliation
decisions. For example, given two references to persons, we
will consider their co-authors and email contacts, to help de-
cide whether to reconcile them. Second, we propagate infor-
mation between reconciliation decisions for different pairs of
references. For example, when we decide to reconcile two pa-
pers, we obtain additional evidence for reconciling the per-
son references to their authors. This, in turn, can further
increase the confidence in reconciling other papers authored
by the reconciled persons. Third, we address the lack of
information in each reference by reference enrichment. For
example, when we reconcile two person references, we gather
the different representations of the person’s name, collect her
different email addresses, and enlarge her list of co-authors
and email-contacts. This enriched reference can later be
reconciled with other references where we previously lacked
information for the reconciliation.

Our algorithm is based on propagating reference-similarity
decisions in a dependency graph whose nodes represent sim-
ilarities between pairs of references, and whose edges repre-
sent the dependencies between the reconciliation decisions.
Our framework captures the dependence between different
reference pair reconciliations and at the same time retains
the flexibility of using established reference comparison tech-
niques. The result is a reconciliation algorithm that im-
proves over the recall of previous techniques without sacri-
ficing precision.

The specific contributions of this paper are the following.

• We describe a novel reference reconciliation algorithm,
based on a general framework for propagating informa-
tion from one reconciliation decision to another. Our
algorithm uses context information, similarities com-
puted on related entities, and enriched references. In
addition, we show how our algorithm exploits knowl-
edge that two references are guaranteed to be distinct.

• We evaluate our reconciliation algorithm on several
personal information datasets and on the Cora cita-
tion dataset. In the PIM context, the experiments
show that our approach significantly improves on stan-
dard reference reconciliation techniques. On the Cora
dataset, the results show that our approach is com-
parable to recent adaptive approaches for paper rec-
onciliation, and at the same time produces accurate
reconciliation on person and publisher instances.

Person (name, email, *coAuthor, *emailContact)
Article (title, year, pages, *authoredBy, *publishedIn)
Conference (name, year, location)
Journal (name, year, volume, number)

(a) Personal Information Schema
Article a1=({“Distributed query processing in a relational

data base system”}, {“169-180”}, {p1, p2, p3}, {c1})
a2=({“Distributed query processing in a relational

data base system”}, {“169-180”}, {p4, p5, p6}, {c2})
Personp1=({“Robert S. Epstein”}, null, {p2, p3}, null)

p2=({“Michael Stonebraker”}, null, {p1, p3}, null)
p3=({“Eugene Wong”}, null, {p1, p2}, null)
p4=({“Epstein, R.S.”}, null, {p5, p6}, null)
p5=({“Stonebraker, M.”}, null, {p4, p6}, null)
p6=({“Wong, E.”}, null, {p4, p5}, null)
p7=({“Eugene Wong”}, {“eugene@berkeley.edu”}, null, {p8})
p8=(null, {“stonebraker@csail.mit.edu”}, null, {p7})
p9=({“mike”}, {“stonebraker@csail.mit.edu”}, null, null)

Conf c1=({“ACM Conference on Management of Data”},
{“1978”}, {“Austin, Texas”})

c2=({“ACM SIGMOD”}, {“1978”}, null)
(b) Raw References

{{a1, a2}, {p1, p4}, {p2, p5, p8, p9}, {p3, p6, p7}, {c1, c2}}
(c) Reconciliation Results

Figure 1: The (a) schema, (b) references, and (c)
reconciliation results in Example 1.

Section 2 defines the reconciliation problem and illustrates
our approach. Section 3 describes the dependency-graph
framework, and Section 4 describes the computation of sim-
ilarities for each class. Section 5 presents our experiments.
Section 6 describes related work and Section 7 concludes.

2. OVERVIEW
We begin by defining the reference reconciliation problem,

and then we illustrate our approach with an example from
the application of personal information management.

2.1 Problem definition
We model a domain with a schema that includes a set of

classes, each of which has a set of attributes. We distinguish
between two kinds of attributes: those whose values are of
a simple type such as string and integer, called atomic at-
tributes; and those whose values are links to other instances,
called association attributes.

Ultimately, our goal is to populate the schema such that
each instance of a class refers to a single real-world entity,
and each real-world entity is represented by at most a single
instance. However, what we are given as input are references
to real-world objects obtained by some extractor program.
Each reference partially specifies an instance of a particular
class: it has a set of values (possibly empty set) for each
attribute of that class.

The reconciliation algorithm tries to partition the set of
references in each class, such that each partition corresponds
to a single unique real-word entity, and different partitions
refer to different entities. We measure the quality of a recon-
ciliation with recall and precision. The recall measures the
percentage of correctly reconciled pairs of references over all
pairs of references that refer to the same entity, and the pre-
cision measures the percentage of correctly reconciled pairs
over all reconciled pairs of references.

Example 1. Figure 1(a) shows a subset of a schema for a
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personal information management application. The schema
contains four classes: Person, Article, Conference and Jour-

nal, each with a particular set of attributes. The association
attributes are denoted with “*”. As an example, the Person

class has two atomic attributes, name and email, and two as-
sociation attributes, emailContact and coAuthor, whose val-
ues are links to other Person instances. These associations
link a Person instance with other Person instances that they
have exchanged emails with, or have co-authored with.

Figure 1(b) shows a set of references extracted from a
personal dataset. The Article references a1 and a2, Person

references p1 to p6, and Conference references c1 and c2 are
extracted from two Bibtex items. The other three Person

references, p7 to p9, are extracted from emails. As an ex-
ample, the Person reference p7 is named “Eugene Wong”
and has email address “eugene@berkeley.edu”. The refer-
ence does not include any co-authors, but includes an email
contact–Person p8.

Figure 1(c) shows the ideal reconciliation result for the
references in Figure 1(b). 2

2.2 Overview of the approach
The goal of our approach is to address several shortcom-

ings of existing reference reconciliation algorithms that pre-
clude their use in applications such as PIM. First, it is often
the case that each reference includes very limited informa-
tion, i.e., contains values for only a few atomic attributes.
For example, a Person reference often has values for only
one or two atomic attributes. In Example 1, references p5

and p8 even do not have any attributes in common. Sec-
ond, some attributes are multi-valued, so the fact that two
attribute values are different does not imply that the two
references refer to different real-world objects. For exam-
ple, two Person references with completely different email
addresses may refer to the same person. This phenomenon
is especially common in applications where the real-world
entities (and hence, the data) evolve over time.

As we show later, the above problems lead to unsatisfac-
tory accuracy of existing reference reconciliation algorithms.
The key behind our approach is that we exploit the richness
of the information space at hand. We illustrate the main
concepts of our algorithm with the example.

Exploiting context information: The main idea un-
derlying our algorithm is to capture and leverage various
forms of context we can glean about the references, which
are not considered by traditional reference reconciliation ap-
proaches. For example, we can consider the co-author lists
and email-contact lists of person references. In our example,
we notice that p5 has co-authored articles with p6, and p8 has
email correspondences with p7. If we decide that p6 and p7

are the same person, we obtain additional evidence that may
lead us to reconcile p5 and p8. Second, we compare values of
different attributes. For example, the name “Stonebraker,
M.” and the email address “stonebraker@csail.mit.edu” are
closely related: “stonebraker” corresponds to the last name
of “Stonebraker, M.”. This observation provides positive
evidence for merging references p5 and p8.

Once we decide to merge two references, we have two
mechanisms for leveraging this information: reconciliation
propagation and reference enrichment.

Reconciliation propagation: When we reconcile two ref-
erences, we reconsider reconciling references that are related
to them via association attributes. For example, when we

detect that the Article references a1 and a2 share the same
title and similar authors and that they appeared in simi-
lar conferences and pages in the proceedings, we decide to
reconcile them. Presumably an article has a unique set of
authors, so the reconciliation of a1 and a2 implies that the
authors p1 and p4, p2 and p5, and p3 and p6 should be rec-
onciled respectively. Similarly, we reconcile the conference

references c1 and c2.

Reference enrichment: When we decide to reconcile two
references, we join their attribute values together, thereby
enrich the reference. For example, consider the reconcilia-
tion of the person references p5 and p8. Although “stone-
braker@csail.mit.edu” and “Stonebraker, M.” are rather sim-
ilar, this information is insufficient for reconciliation. Simi-
larly, we lack evidence for reconciling p5 and p9. However,
after we reconcile p8 and p9, we can aggregate their infor-
mation and now know that “mike” and “Stonebraker, M.”
share the same first name initial, and contact the same per-
son by email correspondence or coauthoring. This additional
information will enable us to reconcile p5, p8, and p9.

In summary, our approach obtains better reference rec-
onciliation results by exploiting context information, prop-
agating reconciliation decisions and enriching references. In
addition, our algorithm exploits information about two ref-
erences being distinct. To facilitate these mechanisms, we
define a graph, called the dependency graph, that captures
the dependencies of reference similarities and attribute value
similarities. In the next section, we describe how we con-
struct the dependency graph and use it for reconciliation.

3. RECONCILIATION ALGORITHM
Our reconciliation algorithm proceeds as follows. First,

we construct the dependency graph that captures the rela-
tionships between different reconciliation decisions. Then,
we iteratively re-compute scores that are assigned to rec-
onciliation decision nodes in the graph until a fixed point
is reached. Finally, we compute the transitive closure for
the final reconciliation results. Section 3.1 describes the
construction of the dependency graph, and Section 3.2 de-
scribes how we use the graph for reconciliation. Section 3.3
describes how we enrich references during the reconciliation
process, and Section 3.4 describes how our algorithm ex-
ploits negative information to further improve the accuracy
of reconciliation.

3.1 Dependency graph
To reconcile references, we need to compute the similarity

for every pair of references of the same class; this similarity
is based upon the similarity of their atomic attribute values
and that of their association attributes. A node in the graph
represents the similarity between a pair of references, and
an edge represents the dependency between a pair of simi-
larities, e.g., the similarity of a pair of references depends on
the similarity of their respective attributes and vice versa.
If we change the similarity value of a node, we may need
to recompute the similarity of its neighbors. Formally, we
define a dependency graph as the following:

Definition 3.1. Let R be a set of references. The de-
pendency graph for R is an undirected graph G = (N, E),
such that

• For each pair of references r1, r2 ∈ R of the same class,
there is a node m = (r1, r2) in G.
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Figure 2: The dependency graph for references in Figure 1(b). (a) The subgraph for references
a1, a2, p1, p2, p3, p4, p5, p6, c1 and c2. The similarity of papers a1 and a2 is represented by the node m1; it is
dependent on the similarity of the titles (represented by n1), the pages (n2), the authors (m2, m3 and m4), and
the conferences (m5). Note that there does not exist an edge from m5 to n7, because the similarity of years
is predetermined and is independent of the similarity of any conferences. Also note that there is no node
(p1, p5), because their name attributes have very different values. (b) The subgraph for references p5 and p8.
Given that p5 has coauthored with p6, and p8 has email correspondence with p7, there is a node m7 = (p6, p7),
and a bi-directional edge between m6 and m7. Note that m6 does not have a neighbor (p4, p7), because p4 and
p7 do not have any similar attributes and so the node (p4, p7) does not exist.

• For each pair of attribute values a1 of r1 and a2 of r2

(the two attributes may be of different types), there is
a node n = (a1, a2) in G and an edge between m and
n in E.

• Each node has a real-valued similarity score (between
0 and 1), denoted interchangeably as sim(r1, r2) or
sim(m). 2

In what follows, we refer to references and attribute values
collectively as elements. Note that there is a unique node
in the dependency graph for each pair of elements. This
uniqueness is crucial for exploiting the dependencies be-
tween reconciliation decisions (as we will see in Section 3.2).

Pruning and refining the graph: In practice, building
similarity nodes for all pairs of elements is unnecessarily
wasteful. Hence, we only include in the graph nodes whose
references potentially refer to the same real-world entity, or
whose attribute values are comparable (i.e., are of the same
attribute, or according to the domain knowledge are of re-
lated attributes, such as a name and an email) and similar.

Rather than considering all edges in the graph to be the
same, we refine the set of edges in the graph to be of several
types, which we will later leverage to gain efficiency. This
refinement can be obtained by applying domain knowledge,
either specified by domain experts or learned from training
data. The first refinement generates a subgraph of the orig-
inal graph. In the subgraph, there is an edge from node n

to m only if the similarity of m truly depends on the simi-
larity of n. We call n an incoming neighbor of m, and m an
outgoing neighbor of n. Note that the subgraph is directed.

The second refinement distinguishes several types of de-
pendencies, as follows. First, we distinguish between boolean-
valued dependencies and real-valued dependencies. If the
similarity of a node n depends only on whether the refer-
ences in the node m are reconciled, then we say that m is a
boolean-valued neighbor of n. In contrast, if the similarity of
n depends on the actual similarity value of node m, then we
call m a real-valued neighbor of n. As an example, given two
conference references, c1 and c2 in Figure 1(b), their simi-
larity depends on the real similarity value of their names.
While it also depends on the similarity of the articles a1

and a2, what really matters is whether they are reconciled,
and not their actual similarity value (we assume that a single
article cannot be published in two different conferences).

We further divide boolean-valued neighbors into two cate-
gories. If the reconciliation of m’s two references implies that
the two references in n should also be reconciled, m is called
n’s strong-boolean-valued neighbor. The second case in the
earlier example illustrates a strong-boolean-valued neighbor.
If the reconciliation of m’s references only increases the sim-
ilarity score of n, but does not directly imply reconciliation,
m is called n’s weak-boolean-valued neighbor. For example,
the similarity score of two persons will increase given that
they have email correspondence with the same person.

Constructing the graph: We build the graph in two
steps. In the first step we consider atomic attributes, in
the second step we consider association attributes.

1. For every pair of references r1 and r2 of the same class,
insert m = (r1, r2) with similarity 0. Further,

(1) For every pair of atomic attribute values a1 of r1

and a2 of r2, if a1 and a2 are comparable, then proceed
in two steps.

Step 1. If n = (a1, a2) 6∈ G, we compute the similar-
ity score of a1 and a2. If the score indicates that a1

and a2 are potentially similar, then insert n with the
computed score.

Step 2. Insert an edge from n to m and an edge from
m to n when the corresponding dependency exists.

(2) If m does not have any neighbors, remove m and
its associated edges.

Note that at this stage we are liberal in identifying
potentially similar atomic attribute pairs (we use a
relatively low similarity threshold) in order not to lose
important nodes in the graph.

2. We now consider references r1 and r2, where m =
(r1, r2) ∈ G. For every pair of associated attribute
values a1 of r1 and a2 of r2, if given the existence of
n = (a1, a2), there exists dependence between m and
n, we do as follows:

88



• if a1 = a2, we add the node n = (a1, a1) if it does
not exist, and add an edge from n to m;

• if a1 6= a2 and the node n = (a1, a2) exists, add
an edge from n to m and an edge from m to n

when the corresponding dependency exists.

We require that m = (r1, r2) ∈ G based on the as-
sumption that two references cannot refer to the same
entity unless they have some similar atomic attributes
values. (However, this assumption is not germane to
our algorithm.)

As an illustration, the dependency graph for the instances
in Figure 1(b) is shown in Figure 2.

3.2 Exploiting the dependency graph
Our algorithm is based on propagating similarity deci-

sions from node to node in the graph. For example, after
we decide to reconcile articles a1 with a2, we should recon-
cile their associated conferences c1 and c2, and further trig-
ger re-computation of the similarities of other papers that
mention the conferences c1 and c2, etc. Given that the de-
pendency graph has captured all the dependencies between
similarities, it guides the recomputation process, as we now
describe. We describe similarity-score functions in Section 4.

We mark the nodes in a dependency graph as merged, ac-
tive, or inactive. A node is marked merged when its similar-
ity score is above a pre-defined merge-threshold, and it thus
represents already reconciled references. A node is marked
active if we need to reconsider its similarity. The rest are
marked inactive. The algorithm proceeds as follows, until
no node is marked active.

1. Initially, all nodes representing the similarity between
references are marked active. The nodes represent-
ing the similarity between atomic attribute values are
marked merged or inactive depending on their associ-
ated similarity score.

2. We select one active node at a time and recompute its
similarity score. If the new similarity score is above a
merge-threshold, we mark the node as merged; other-
wise, we mark it as inactive. In addition, we mark as
active all its neighbors with similarity scores below 1.

This process is guaranteed to terminate under the following
two assumptions. First, we assume that the similarity-score
functions for any node are monotonic in the similarity values
of its incoming neighbors. Second, for a given node, we ac-
tivate its neighbors only when its similarity increase is more
than a small constant. While it might appear that requiring
monotonic similarity functions precludes fixing initial incor-
rect reconciliation decisions in the presence of later negative
evidence, this is not the case. We will show in Section 3.4
how we account for negative evidence.

Implementing the propagation procedure: With the
refinement on graph edges, the algorithm does not need to
activate all neighbors of a node in the second step, and so
can largely reduce similarity re-computation. Specifically,
given a node n whose similarity score increases, we do the
following instead:

• we mark as active all of its outgoing real-valued inac-
tive neighbors whose similarity scores are below 1.

• if we decide to reconcile the references in n, we mark
as active all of its outgoing boolean-valued neighbors
whose similarity scores are below 1.

In addition, a careful choice of the recomputation order can
further reduce the number of recomputation and improve
the algorithm efficiency. In particular, we employ the fol-
lowing heuristics.

• We compute similarity for a node only if the scores
of its incoming value-based neighbors have all been
computed, unless there exist mutual dependencies. For
example, we compare two articles only after comparing
their associated authors and conferences (or journals).

• When a node is merged, we consider its outgoing strong-
boolean-valued neighbors first for recomputation.

Our algorithm proceeds by maintaining a queue of active
nodes. Initially, the queue contains all reference-similarity
nodes, and it satisfies the property that a node always pre-
cedes its outgoing real-valued neighbors if there does not ex-
ist mutual dependencies. At every iteration, we compute the
similarity score for the top node in the queue. If we activate
its outgoing real-valued or weak-boolean-valued neighbors,
then we insert them at the end of the queue. If we activate
its strong-boolean-valued neighbors, we insert them in front
of the queue.

To illustrate, consider the dependency graph shown in
Figure 2(a). Initially, the queue contains nodes {m5, m4,
m3, m2, m1}, and nodes n1, n2, and n7 are marked merged.
We then compute the similarity of m5, m4, m3, m2, and m1

in succession. When we decide to merge papers a1 and a2,
we insert m2, m3, m4, and m5 back to the front of the queue,
so the queue becomes {m5, m4, m3, m2} (the order among
these nodes can be arbitrary). Note that n2 is not added
back both because it is not an outgoing neighbor of m1, and
because it already has similarity score 1. Next, we consider
m5 and decide to merge c1 and c2, so we insert its strong-
boolean-valued neighbor, n6, in the front of the queue and
the queue becomes {n6, m4, m3, m2}. This process contin-
ues until the queue is empty.

3.3 Enriching the references
Another important aspect of our algorithm is that we en-

rich the references in the process of reconciliation. Specifi-
cally, after merging references r1 and r2, all the attributes of
r2 can also be considered as those of r1. For example, if r1

has email address “stonebraker@csail.mit.edu” and r2 has
email address “stonebraker@mit.edu”, the real-world per-
son object actually has both email addresses. Now, when
we compute the similarity between r1 and another reference
r3, we compare both email addresses with the email of r3,
and choose the one with a higher similarity. Note that for
the purpose of reconciliation, we do not need to distinguish
multiple email addresses and misspelled email addresses.

A naive way to enrich the references would be to run our
propagation algorithm, then compute transitive closures and
merge the references within the same cluster, and repeat
the algorithm. However, with a little bit of care, we can
implement enrichment with only local changes to the graph.

Specifically, after we decide to merge references r1 and r2,
we search for all references r3, such that there exist nodes
m = (r1, r3) and n = (r2, r3). We proceed to remove n from
the graph in the following steps: (1) connect all neighbors
(incoming and outgoing neighbors) of n with m while pre-
serving the direction of the edges, (2) remove node n and its
associated edges from the dependency graph and from the
queue, (3) if m gets new incoming neighbors and is not active
in the queue, we insert m at the end of the queue; similarly,
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Figure 3: Enrichment for references in Figure 1(b). (a) The original subgraph representing the similarity of
references p5 and p8 (node m6), and the similarity of p5 and p9 (node m8). When we decide to reconcile p8

and p9, we need to compute similarity score for only one of m6 and m8. (b) In the first step, we connect all of
m8’s neighbors with m6, so n9 is connected with m6. Note that n8 is already connected with m6 so no change
is needed. (c) In the second step, we remove node m8 and all associated edges. We now have more evidences
for reconciling p5 and p8.

n’s neighbors that get new incoming neighbors and are not
active are inserted at the end of the queue. For example, the
recomputation of the similarity graph in Figure 2 is shown
in Figure 3.

3.4 Enforcing constraints
Up to now, our algorithm has considered only positive ev-

idences for similarity computation. In many cases, we may
have negative evidences that can contribute to the reconcil-
iation process. As a simple example, if in Figure 1(b), ref-
erence p9 were (“Matt”, “stonebraker@csail.mit.edu”), then
we would not want to merge p9 with p2, which has “Michael
Stonebraker” for the name attribute. However, as shown in
Figure 3, the algorithm as described so far might reconcile
p8 and p9 with p5, and since p2 is merged with p5, they
will all be merged together when we compute the transitive
closure.

Indeed, the above problem is a fundamental one when we
generate partitions by computing transitive closures: if we
decide to reconcile r1 with r2, and r2 with r3, then r1, r2

and r3 will be clustered even if we have evidence showing
that r1 is not similar to r3.

We begin to address this problem by considering con-
straints. A constraint is a rule enforcing that two references
are guaranteed to be distinct. For example, a constraint may
specify that the authors of one paper are distinct from each
other. Constraints are typically domain dependent. They
can be manually specified by domain experts, or learned
from training data or a clean auxiliary source [12]. To en-
force constraints, we add one more status to the nodes in the
dependency graph: non-merge. The two elements in a non-
merge node are guaranteed to be different and should never
be reconciled. Note that a non-merge node is different from
a non-existing node. The absence of the node (r1, r2) indi-
cates that r1 and r2 do not have similar attributes; but r1

can still be reconciled with r2 if both of them are reconciled
with another reference r3.

To incorporate constraints in our algorithm, we make the
following modifications.

1. When constructing the dependency graph we also in-
clude nodes whose elements are ensured to be distinct.
Such nodes are marked non-merge and will never enter
the processing queue.

2. A node that has a non-merge incoming real-valued
neighbor might be marked as non-merge according to
the constraints.

procedure Reconciliation(R) return P
// R is a reference set, P is a partitioning over R

Construct dependency graph G = (N, E);
Initiate queue q with all reference-similarity nodes that are

not marked non-merge;
while (q is not empty)

Remove the first node n = (r1, r2) from q and mark it inactive;
oldSim = sim(n); Re-compute sim(n);
if (sim(n) > oldSim)

for each (n’s outgoing real-valued neighbor m)
if (m is not active AND sim(m) < 1)

Insert m to the end of q and mark m as active;
if (sim(n) is above merge-threshold)

Mark n as merged;
for each (n’s outgoing strong-boolean-valued neighbor m)

if (m is not active AND sim(m) < 1)
Insert m to the front of q and mark m active;

for each (n’s outgoing weak-boolean-valued neighbor m)
if (m is not active AND sim(m) < 1)

Insert m to the end of q and mark m active;
for each (r3, s.t. m = (r1, r3) and l = (r2, r3) exist)

Reconnect all of l’s neighbors with m;
Remove l from G and q;
When appropriate, insert m and l’s neighbors to the end

of q and mark them as active;
end while
for each (l = (r1, r2) marked non-merge)

for each (r3, s.t. m = (r1, r3) and n = (r2, r3) exist)
if (sim(m) > sim(n)) Mark n as non-merge;
else Mark m as non-merge;

Compute transitive closure and return P;

Figure 4: Algorithm for reference reconciliation

3. After the similarity computation reaches a fixed point,
we examine every non-merge node l = (r1, r2). Let r3

be another reference such that there exist nodes m =
(r1, r3) and n = (r2, r3), where sim(m) > sim(n). If
m is marked merge, we mark n as non-merge. This
step propagates the negative evidence from l to n, so
r1 and r2 will not be merged with a common reference.

Note that with the above modification, the algorithm still
converges under the assumptions described in Section 3.2.

Figure 4 shows the reconciliation algorithm. As a fur-
ther optimization, the dependency graph can be pruned at
the very beginning using inexpensive reference comparisons,
e.g., merging Person references that have the same email ad-
dress. This preprocessing can significantly reduce the size
of the dependency graph and thus improve the efficiency.

4. COMPUTING SIMILARITY SCORES
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This section describes the similarity functions used in our
algorithm. Given a node m = (r1, r2), the similarity func-
tion for m takes the similarity scores of m’s neighbors as
input, and computes a score between 0 and 1.

Our dependency-graph based reconciliation algorithm has
the flexibility of using different domain specific similarity
functions for each class in the schema. As we explain in
Section 6, this is an important advantage of our approach
over those based on detailed probabilistic modeling [31, 30].
Note that training data, when available, can be used to learn
or tune similarity functions for specific classes.

In what follows we propose a template of similarity func-
tions that proved effective in our experiments. The sim-
ilarity functions are orthogonal to the dependency graph
framework and alternate simple or complex models can also
be used. There are tunable parameters in our functions and
these can either be learned from training data, or manually
set from experience. Note that as we propagate information
between reconciliation decisions, we may also propagate in-
correct information from an over-estimated similarity value
and mislead later similarity computations. Hence, we choose
conservative similarity functions and merge-thresholds, in
order to obtain a high precision. We obtain improvement in
recall mainly by employing a broad collection of evidence.

The components of the similarity function: the simi-
larity score S of a pair of elements is the sum of three com-
ponents, and is always between 0 and 1: (1) Srv, contributed
by real-valued incoming neighbors, (2) Ssb, contributed by
strong-boolean-valued neighbors, and (3) Swb, contributed
by weak-boolean-valued neighbors. When their sum exceeds
1, we set S to 1. Below we discuss each component in detail.

Real-valued neighbors (Srv): Given the similarity values
of the real-valued incoming neighbors, we compute the value
of Srv between 0 and 1. For example, the similarity func-
tion of a person node combines the person-name similarities,
person-email similarities, and name-and-email similarities.

Computing Srv is similar in spirit to traditional record-
linkage techniques, but with a few important differences.
First, to account for the fact that most references do not
have values for all attributes, we employ a set of similarity
functions, rather than a single one. These functions account
for cases in which some attributes are missing values (other-
wise, we need to assign 0 to the similarity of those attributes,
resulting in recall reduction). Second, our similarity func-
tions account for some attributes serving as keys. For exam-
ple, when two person instances have the same email address,
they should be merged even if other attributes are different.
Third, our similarity functions take into consideration any
possible non-merge neighbors. We organize the set of simi-
larity functions as a decision tree, where each branch node
represents certain conditions, such as the existence of a sim-
ilarity value or a non-merge neighbor, and each leaf node
represents a function for Srv.

Each function for Srv combines the elementary similarity
values using a linear combination. Formally, we define

Srv =
n
X

i=1

λixi, (1)

where n is the number of different types of real-valued neigh-
bors (e.g., email similarity, name similarity, etc.), xi is the
score for the elementary similarity of type Ti and λi is its

corresponding weight.
The final wrinkle in computing Srv is to account for at-

tributes having multiple values (e.g., a person’s email). For
the similarity node m = (r1, r2), we consider all possible at-
tribute values of r1 and r2, and compute the similarity for all
pairs of attributes that are comparable. If Ni = {n1, . . . , nk}
is the set of multiple incoming neighbors of some type Ti,
we use MAX{sim(nj)|nj ∈ Ni} for the similarity value of
the type Ti when computing Srv in Equation 1.1

Strong-boolean neighbors (Ssb): Let m be a similarity
node. In principle, if two references in one of m’s strong-
boolean-valued neighbors are merged, then the two refer-
ences in m should also be merged, unless they have very dif-
ferent atomic attribute values. For example, when we decide
to merge two papers, we can merge their authors with simi-
lar names. However, to remain conservative and avoid possi-
ble errors caused by noisy information, we only increase the
similarity score with a constant β for each merged strong-
boolean-valued incoming neighbor. Formally, Ssb is:

Ssb =



β · |Nsb| if Srv ≥ trv

0 otherwise

where β is a constant, |Nsb| is the number of merged strong-
boolean-valued incoming neighbors, and trv is a threshold
indicating that two references may possibly refer to the same
entity. Given this function, when the initial similarity value
of a pair of references, Srv, is not very high (but above the
threshold trv), the two references will be reconciled only
if several strong-boolean-valued neighbors are merged. A
more sophisticated function can require stricter conditions.
For example, we increase the similarity score of two person
names only if both names are full names.

Weak-boolean neighbors (Swb): Intuitively, the recon-
ciliation of two references in a weak-boolean-valued incom-
ing neighbor of m increases the similarity score of m. For
example, we will have higher confidence in reconciling two
person references if they not only have similar attribute val-
ues, but also contact common people (by email or by co-
authorship). However, people’s contact lists may vary a lot
in length, and it is quite possible that two references refer
to the same real-world person but have very different con-
tact lists. Hence, requiring two contact lists to be similar is
unnecessarily strict. In our algorithm we count the number
of common contacts and increase the similarity score with
a constant γ for each common contact. More generally, we
define Swb as

Swb =



γ · |Nwb| if Srv ≥ trv

0 otherwise

where γ is a constant, and |Nwb| is the number of merged
weak-boolean-valued incoming neighbors. Note that the
functions Swb and Ssb have the same form, but we assign
a much higher value to β than to γ. Furthermore, a so-
phisticated function for Swb can assign a higher reward for
the first several merged neighbors and a lower reward for
the rest, or consider the relative size of the value set of an
associated attribute.

5. EXPERIMENTAL RESULTS
1More complex cases can arise, e.g., an attribute value might
be a set with each element in the set being multi-valued.
Strategies for such cases are beyond the scope of this paper.

91



Person (name, *coAuthor)
Article (title, pages, *authoredBy, *publishedIn)
Venue (name, year, location)

Figure 5: Schema for references from Cora.

Dataset #(References) #(Entities) #Ref/#Entity
PIM A 27367 2731 10.0
PIM B 40516 3033 13.4
PIM C 18018 2586 7.0
PIM D 17534 1639 10.7
Cora 6107 338 18.1

Table 1: Properties of our datasets: the number of
extracted references, the number of real-world enti-
ties and the reference-to-entity ratio. The average
reference-to-entity ratio, 11.8, underscores the im-
portance of reference reconciliation.

We tested our algorithm on two domains: personal infor-
mation management and publication portal. We now de-
scribe a set of experiments that validate the performance of
our reconciliation algorithm. The experimental results show
that our algorithm obtains high precision and recall in both
contexts.

5.1 Datasets
Our first experiment involved four personal datasets. To

ensure that we got a variety of references, we chose the own-
ers of the datasets to be in different areas of computer sci-
ence (database and theory), in different positions (faculty
and graduate students), and most importantly, from differ-
ent countries (including China, India and the USA)2. The
datasets span several years of computer usage (from 3 to
7), and include references obtained from emails, Latex and
Bibtex files, and PDF and Word documents. The references
we extracted conform to the schema shown in Figure 1(a),
except that conferences and journals were merged into a sin-
gle Venue class. For each dataset, we manually created the
gold standard, i.e., the perfect reconciliation result.

In order to demonstrate the applicability of our algorithm
in a more conventional setting, our second experiment uses
the subset of the Cora dataset provided by McCallum [11]
and used previously in [8, 3, 30]. This dataset is a collection
of 1295 different citations to 112 computer science research
papers from the Cora Computer Science Research Paper En-
gine. We extracted references of types Person, Article and
Venue from the citations, according to the schema shown
in Figure 5. The papers in the dataset are already hand-
labeled, while we had to label the persons and venues. The
properties of our datasets are summarized in Table 1.

5.2 Experimental methodology
As in many other reference reconciliation works, we mea-

sured the overall performance with precision and recall, and
reported F-measure, defined as

F − measure =
2 · prec · recall

prec + recall

Observe that this penalizes results more for incorrect rec-
onciliation for popular entities, i.e., entities with more dis-
tinct references. This is as required in the PIM context,

2Names and email addresses of persons from these countries
have very different characteristics.

Table 2: Average precision, recall and F-measure for
each class of references: DepGraph equals or outper-
forms IndepDec in all classes.

Class IndepDec DepGraph

Prec/Recall F-msre Prec/Recall F-msre
Person 0.967/0.926 0.946 0.995/0.976 0.986
Article 0.997/0.977 0.987 0.999/0.976 0.987
Venue 0.935/0.790 0.856 0.987/0.937 0.961

Table 3: DepGraph outperforms IndepDec in recon-
ciling Person references when only the email or paper
subsets are considered and when the full datasets are
considered.

Dataset IndepDec DepGraph

Prec/Recall F-msre Prec/Recall F-msre
Full 0.967/0.926 0.946 0.995/0.976 0.986

PArticle 0.999/0.761 0.864 0.997/0.994 0.996
PEmail 0.999/0.905 0.950 0.995/0.974 0.984

where popular entities are browsed more often and errors in
their reconciliation cause more inconvenience.

We employed the same set of similarity functions and
thresholds for all datasets. We manually set the thresholds
and parameters and we used the same ones in all our exper-
iments. Specifically, we set the merge-threshold to 0.85 for
all reference similarities, and to 1 for all attribute similari-
ties. We set β = 0.1, γ = 0.05 for all classes, except that we
set β = 0.2 for Venue. We set trv = 0.7 for Person and Ar-

ticle references and trv = 0.1 for Venue references. We omit
the detailed settings for Srv since they vary from one class
to another, but they are available in [14]. We note that as
we chose the thresholds and parameters to be conservative,
the results were insensitive to small perturbations in their
values.

In our experiments, we refer to our algorithm as Dep-

Graph. On the PIM data, we compared DepGraph with a
candidate standard reference reconciliation approach, called
IndepDec (it roughly corresponds to approaches such as
[21, 27]). To contrast the two algorithms on the class Per-

son, IndepDec compares person names and emails inde-
pendently and combines the results for reference similar-
ity without exploiting the dependencies between individual
reconciliation decisions. DepGraph, in addition, compares
the names with the email accounts, considers the articles
authored by the persons, counts the common people ap-
pearing in the coauthor or email-contact lists, applies rec-
onciliation propagation and reference enrichment, and en-
forces constraints. We use the same similarity functions and
thresholds for IndepDec and DepGraph.

For the Cora dataset, we compared the results of Dep-

Graph with the results reported in papers that proposed
state-of-the-art reference reconciliation approaches.

5.3 Reference reconciliation for personal data
Table 2 shows the average, over the four datasets, preci-

sion and recall for articles, persons and venues (conferences
and journals). DepGraph obtained higher precision and
recall for both person and venue references. Specifically, it
improved the recall for venue references by 18.6%, and for
person references by 5.4%. Note that this 5.4% is in fact
substantial: as we shall see in Table 4, it corresponds to a
decrease in hundreds of partitions. Our algorithm does not
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Table 4: Performance for different PIM datasets: DepGraph outperforms IndepDec for the Person class in each
dataset. This shows that our algorithm is robust to variations in the nature of references.

PIM dataset IndepDec DepGraph

#(Persons)/#(Refs) Prec/Recall F-measure #(Par) Prec/Recall F-measure #(Par)
A (1750/24076) 0.999/0.741 0.851 3159 0.999/0.999 0.999 1873
B (1989/36359) 0.974/0.998 0.986 2154 0.999/0.999 0.999 2068
C (1570/15160) 0.999/0.967 0.983 1660 0.982/0.987 0.985 1596
D (1518/17199) 0.894/0.998 0.943 1579 0.999/0.920 0.958 1546

improve the results for articles. This is because the article
references are obtained from a set of bibtex files that are
typically very well curated by the user. From Table 2 we
also observe that while IndepDec may obtain either a low
precision or a low recall in some cases, DepGraph typically
obtains both high precision and high recall. Furthermore, as
we will explain below, the improvement of DepGraph over
IndepDec is most pronounced on the datasets in which the
references have little information, or there is a greater vari-
ety in the references to the same real-world entity.

We now examine person references, which are associated
with rich context information and therefore provide the most
opportunities for performance improvement. We divided
each dataset into two subsets: one containing person refer-
ences extracted only from emails (PEmail) and the other con-
taining person references extracted from articles and other
non-email sources (PArticle). Table 3 shows the average pre-
cision and recall of the two approaches on the whole dataset
and each subset of data. The DepGraph approach im-
proved the recall by 30.7% on the article datasets, by 7.6%
on the email datasets, and by 5.4% on the full datasets. It
obtained significant recall increase on the article datasets
by exploiting the associations between persons and articles,
which compensate for the lack of information for each person
reference in itself (each reference contains only the person
name). The high precision and recall on the PEmail sub-
set suggest that our algorithm has value also in information
spaces that include a single class of references, but with rich
associations between the references.

Table 4 shows the performance on each individual PIM
dataset. DepGraph obtained higher F-measures and gener-
ated much fewer person reference partitions on all datasets.
It improved the recall by 34.8% on dataset A, which has
the highest variety in the presentations of individual per-
son entities. Note that DepGraph reduced the recall on
dataset D. The main reason is that the owner of the dataset
changed her last name and also her email account (at the
same email server) when she got married, so after enforc-
ing the constraint, DepGraph divided her references into
two partitions with similar sizes. Since the owner is typi-
cally the most popular entity in the dataset, dividing her
references into two partitions leads to large loss in recall.
However, we observe that the other references in her dataset
were better reconciled: DepGraph obtained a much higher
precision, and reduced the number of partitions by 33. In
contrast, two other dataset owners also have name changing
issues. DepGraph successfully merged their references be-
cause they continued to use the same email addresses after
the name changes. One minor point is that the precision on
dataset C is lower than others. The owner of the dataset is
Chinese and her Chinese friends typically have short names
with significant overlap, which makes reconciliation more
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Figure 6: Each type of evidence and each algorith-
mic feature progressively contributes to more recon-
ciliation on Person references in PIM A (see Table 5
for details). The top-left most point represents Inde-

pDec while the bottom-right most point represents
DepGraph.

difficult. For such a dataset, we did not find a set of sim-
ilarity functions or heuristics that improve recall without
sacrificing precision. Except the above, we did not find dis-
tinguishable performance difference between the datasets.

Component Contributions
We now analyze the contribution of different components
of the algorithm. We conducted experiments on dataset A,
which has the highest variety and most room for improve-
ment (DepGraph improved the recall from 0.741 to 0.999).
This dataset contains 24076 Person references, and they refer
to 1750 real-world persons.

Our analysis is along two orthogonal dimensions. Along
one dimension, we analyzed the contribution of different
types of evidence. We started with Attr-wise that compares
person references by their names and their emails respec-
tively. Then, we considered Name&Email that compares
names against email addresses. Next, we considered Article
that exploits the association between persons and their ar-
ticles – two persons are likely to be the same, if the articles
they authored are similar. Finally, we considered Contact
that exploits common email-contacts and co-authors – per-
sons with a similar set of email-contacts and co-authors are
likely to be similar. Each of the above variations considers
new evidence in addition to that of the earlier. We con-
sidered Contact last because it is likely to perform the best
when some person references have already been reconciled,
and thus the contact lists can be merged and enriched.

Along another dimension, we examined the independent
contributions of reconciliation propagation and reference en-
richment. We considered four modes:
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Table 5: The number of Person reference partitions obtained by different variations of the algorithm on PIM
dataset A. For each mode, the last column shows the improvement in recall (measured as the percentage
reduction in the difference between the number of result partitions and the number of real-world entities) from
Attr-wise to Contact, i.e., by considering all the additional available evidence. For each evidence variation,
the last row shows the recall improvement by reconciliation propagation and reference enrichment. The
bottom-right cell shows the overall recall improvement of DepGraph over IndepDec.

Mode Attr-wise Name&Email Article Contact Reduction(%)
Traditional 3159 2169 2169 2096 75.4
Propagation 3159 2146 2135 2022 80.7

Merge 3169 2036 2036 1910 88.7
Full 3169 2002 1990 1873 91.3

Reduction(%) - 39.9 42.7 64.6 91.3

• Full: apply both reconciliation propagation and ref-
erence enrichment.

• Propagation: apply only reconciliation propagation.

• Merge: apply only reference enrichment.

• Traditional: apply neither.

We observed very similar precision for the different vari-
ations and modes of the algorithm, and so we focus on re-
call. To demonstrate the difference in recall, we counted the
number of person entities returned by each approach (i.e.,
the number of resulting partitions). Since the precision is
about the same in all cases, this count is proportional to
the recall and is shown in Figure 6. Table 5 shows the re-
call improvement in terms of the percentage of reduction in
the difference between the number of person partitions re-
turned by the reconciliation algorithm and the number of
real-world person entities. Note that Attr-wise in the Tra-

ditional mode is equivalent to the IndepDec approach,
and Contact in the Full mode is equivalent to the Dep-

Graph approach. The IndepDec approach reconciled the
24076 references into 3159 instances, while the DepGraph

approach reconciled them into 1873 instances, reducing the
difference between the result number of references and the
real number of references by 91.3% (from 1409 to 125).

Among the different evidence variations, Name&Email
dramatically improved the recall. It helped greatly in recon-
ciling the references extracted from Latex and Bibtex files
with the references extracted from emails. It also helped
reconcile different email accounts of a person. Contact also
significantly increased the recall. In the full mode, it suc-
cessfully reduced an extra 117 person partitions.

Among the different modes, the Full mode obtained the
highest recall, and the Traditional mode got the lowest
recall. Even when we considered all types of evidence, the
Traditional mode generated 2096 instances. The gap be-
tween the resulting number of partitions and the real num-
ber of partitions is a factor of 2.81 times the correspond-
ing gap to the Full mode. We observed that Merge per-
formed much better than Propagation independent of the
types of evidence being used. One important reason is that
when the data has a high variety, i.e., one person has sev-
eral different name presentations and email addresses, refer-
ence enrichment effectively accumulates these evidences for
more informed reconciliation decisions. Another reason is
that reference enrichment merges the contact lists that are
originally scattered across different references of the same
person, and thus significantly enhances Contact. However,
the FULL mode does significantly better than either, thus

Table 6: The precision, recall, the number of real-
word entities that are involved in erroneous rec-
onciliations (false-positives), and the graph size in
terms of the number of nodes, show that considering
constraints can significantly improve precision while
maintaining recall without blowing up the graph.

#(Entities
Method Prec/Recall with false- #(Nodes)

positives
DepGraph 0.999/0.9994 13 692030

Non-Constraint 0.947/0.9996 61 590438

demonstrates their combined utility.
Finally, we observed that reconciliation propagation and

reference enrichment require abundant evidence to be ef-
fective. For Attr-wise, the four modes obtained very similar
results. As we considered more evidence, the difference grad-
ually grew. Also, observe that Article does not provide any
benefit for Merge, but Propagation is able to reconcile
the authors of the reconciled articles and derive some bene-
fit. On the other hand, Contact provides significant benefit
for Merge compared to for Propagation because of the
consolidation of email-contact and co-author lists.

Effect of Constraints
We now examine the effect of constraint enforcement. We
compared with the Non-Constraint approach, which does
not consider any constraint or negative evidence. In con-
trast, DepGraph enforces the following three conditions:

1. Authors of a paper are distinct persons.

2. Two persons with the same first name but completely
different last name, or with the same last name but
completely different first name, are distinct persons
unless they share the same email address.

3. A person has a unique account on an email server.

Table 6 shows the precision and recall of each approach,
along with the number of real-world Person instances in-
volved in false positives. The DepGraph approach obtained
very high precision. Among the 1750 real-world instances,
only 13 were incorrectly reconciled, of which 5 are mailing
lists; hence, only 4 pairs of real person instances were in-
correctly reconciled. The Non-constraint approach has
much lower precision, where 61 instances were incorrectly
matched. We also observed that while considering con-
straints added more nodes in the dependency graph, a care-
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Table 7: Precision, recall and F-measure in the Cora
dataset: DepGraph obtains a higher F-measure for
all types of references.

Class IndepDec DepGraph

Prec/Recall F-msre Prec/Recall F-msre
Person 0.994/0.985 0.989 1/0.987 0.993
Article 0.985/0.913 0.948 0.985/0.924 0.954
Venue 0.982/0.362 0.529 0.837/0.714 0.771

ful choice of constraints did not necessarily blow up the
graph.

5.4 The Cora Dataset
Table 7 shows the precision, recall and F-measure for Dep-

Graph and IndepDec on the Cora dataset. We observed
a large improvement of F-measure on Venue references and
an improvement on Article and Person references. We note
that the Cora dataset is very noisy; for example, citations
of the same paper may mention different venues. On such
a dataset, the effect of the propagation from article nodes
to venue nodes was two-fold. On the one hand, it helped
reconcile a large number of venues and improve the recall
on venue references, and this in turn improved the recall on
article references. On the other hand, it incorrectly recon-
ciled the many different venues mentioned in citations to the
same article, and thus reduced the precision.

Finally, we compared our results with other reported ex-
perimental results on the same benchmark dataset. [30]
reported a 0.842/0.909 precision/recall on their collective
record linkage approach; [3] reported a 0.867 F-measure on
their adaptive approach; and [8] reported a 0.99/0.925 preci-
sion/recall on their approach. Because our algorithms han-
dle key attributes in a different way (two references are rec-
onciled if they agree on key values), both IndepDec and
DepGraph obtained high precision and recall. Neverthe-
less, the strength of dependency graph further improved the
result and made it comparable to those of the above adap-
tive approaches, even without using any training data.

6. RELATED WORK
The problem of reference reconciliation, originally defined

by Newcombe, et al. [29], was first formalized by Fellegi and
Sunter [17]. A large number of approaches that have been
since proposed [3, 21, 27, 36, 35] use some variant of the
original Felligi-Sunter model. Reconciliation typically pro-
ceeds in three steps: first, a vector of similarity scores is
computed for individual reference pairs by comparing their
attributes; second, based on this vector, each reference pair
is compared as either a match or non-match; and finally, a
transitive closure is computed over matching pairs to deter-
mine the final partition of references. Attribute comparison
is done by using either generic string similarity measures (see
[10, 4] for a comprehensive comparison and [6, 35, 3] for re-
cent adaptive approaches) or some domain-specific measures
(e.g., geographic locality in [1]). The classification of candi-
date reference pairs into match and non-match pairs is done
through a variety of methods: (a) rule-based methods [21,
24, 18, 22] that allow human experts to specify matching
rules declaratively; (b) unsupervised learning methods [36]
that employ the Expectation-Maximization (EM) algorithm
to estimate the importance of different components of the
similarity vector; (c) supervised learning methods [32, 8,

35, 34, 4] that use labeled examples to train a probabilistic
model, such as a decision tree, Bayesian network, or SVM,
and later apply the model to identify matching pairs; and
finally, (d) methods that prune erroneous matching pairs by
validating their merged properties using knowledge in sec-
ondary sources [12, 15, 28].

Our approach departs from the basic three-step model in
that our dependency graph effectively models relations be-
tween reconciliation decisions. There is a continuous feed-
back loop between computing similarities and matching de-
cisions. Importantly, our framework retains the flexibility
of employing the different established techniques described
above for computing attribute and reference similarities.

Most prior work has treated reference reconciliation as a
single class problem, and it is typically assumed that at-
tribute values, albeit noisy ones, are known for all the ref-
erences. This model breaks down in complex information
spaces such as PIM, where there are multiple classes and in-
dividual references not only can have missing attribute val-
ues, but also can have multiple valid attribute values. We
are able to offset this complexity by exploiting associations
between references to design new similarity measures, and
to learn from matching decisions across multiple classes.

The idea of capturing the dependencies between reconcili-
ation decisions has recently been explored in the data mining
and machine learning community. In [31], a complex gener-
ative model is proposed that captures dependencies between
various classes and attributes and also possible errors dur-
ing reference extraction. In [30], a dependency model is
proposed that propagates reconciliation decisions through
shared attribute values. Both the above approaches entail
learning a global detailed probabilistic model from training
data, and having the entire reconciliation process guided
by that probabilistic model. In complex information spaces
that contain multiple classes and complex associations be-
tween the classes, learning such a model is impractical. In
contrast, our approach provides a mechanism for exploiting
influences between reconciliation decisions, and it allows ap-
plying different domain-specific models (either heuristic or
learned) for particular classes of references.

In [2, 23], associations are used to compute similarities and
relate reconciliation decisions. Their proposed heuristics are
just a subset of the many heuristics we use. Further, we are
considering a much more complex domain.

In prior work [15], we proposed an approach in which
references are reconciled by a sequence of comparison and
matching steps with different similarity measures being used
in different steps. Merging between steps was used to in-
crease information about individual references. However,
the classes are treated in isolation and associations between
classes are not exploited. [13] described an algorithm for per-
son reconciliation in PIM, and sketched a high-level model
for relating reconciliation decisions between multiple classes,
but no details or experimental validation was provided.

The use of negative information was proposed in [12] to
validate individual reconciliation decisions. Our framework
exploits the dependency graph to propagate such informa-
tion for additional benefit.

Finally, several work [21, 27, 6, 22] has addressed the com-
putational cost of reference reconciliation. We follow the
spirit of the canopy mechanism [27] to reduce the size of our
dependency graph. We insert into the graph only atomic
attribute value pairs and reference pairs that have some po-
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tential to be similar.

7. CONCLUSIONS AND FUTURE WORK
Many applications that require reference reconciliation,

such as personal information management systems, research
paper citation portals and product catalog integration, are
based on information spaces that involve multiple classes
and rich relationships between instances. Thus far, reference
reconciliation has been studied only in the context of recon-
ciling references of a single class. This paper fills in this gap
by proposing a generic framework that effectively exploits
the rich information present in the associations between ref-
erences, and reconciles references of multiple classes at one
time. Specifically, to make more informed reconciliation de-
cisions, our framework influences later similarity computa-
tion with early reconciliation decisions, and enriches refer-
ences by instant merging. We apply our algorithm to PIM
and Cora datasets, and our experimental results show that it
obtains high precision and recall in both applications. While
we emphasize applications with multiple classes of objects,
our experiments on email-address reconciliation show that
our algorithm also benefits record-linkage tasks that match
only a single class of objects.

We plan to explore several directions in future work. First,
we will consider an efficient incremental reconciliation ap-
proach, applied when new references are inserted to an already-
reconciled dataset. Second, we will study learning tech-
niques based on our framework. Specifically, we will con-
sider how to use user feedback to adjust similarity functions
and improve future reconciliation results.
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