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Abstract

Entity identification, i.e., detecting semantically corresponding records from heterogeneous data sources, is a critical

step in integrating the data sources. The objective of this research is to develop and evaluate a novel multiple classifier

system approach that improves entity identification accuracy. We apply various classification techniques drawn from

statistical pattern recognition, machine learning, and artificial neural networks to determine whether two records from

different data sources represent the same real-world entity. We further employ a variety of ways to combine multiple

classifiers for improved classification accuracy. In this paper, we report on some promising empirical results that

demonstrate performance improvement by combining multiple classifiers.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The need to integrate heterogeneous data
sources is ubiquitous. Legacy databases developed
over time in different sections of an organization
need to be integrated for strategic purposes.
Business mergers and acquisitions force informa-
tion systems previously owned by different institu-
tions to be merged. Information needs to be shared
or exchanged across system boundaries of coop-
erating enterprises. The rapid growth of the
Internet continuously amplifies the need for
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semantic interoperability across heterogeneous
data sources. The numerous data sources on the
World-Wide-Web create new requirements and
opportunities for data integration.

In order to integrate a collection of heterogeneous
data sources, either logically (e.g., using a mediator/
wrapper architecture) or physically (e.g., building a
data warehouse), a critical step is to identify
semantically corresponding records, i.e., records that
represent the same entity in the real world, from the
data sources. This problem has been referred to as
entity identification [1], approximate record matching

[2], merge/purge [3], and record linkage [4,5]. It has
been shown to be a very complex and time-
consuming task due to dirty data and semantic
heterogeneities among different data sources. Wink-
ler reported that integration of several mailing lists
d.
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for the US Census of Agriculture in 1992 consumed
thousands of person-hours even though an auto-
mated matching tool was used [5].

In this paper, we propose a novel multiple

classifier system approach to entity identification.
We apply multiple classification techniques drawn
from statistical pattern recognition, machine learn-

ing, and artificial neural networks to determine
whether two records from different data sources
represent the same real-world entity. While past
research has been committed to a particular
technique, such as record linkage [4,5], logistic

regression [6], or decision tree [1,2,7,8], we con-
ducted experiments to select the best techniques in
each particular case, because the performance of
classification techniques varies in different situa-
tions; there is no single technique that is always
superior to others. We further combine multiple
classifiers in a variety of ways for potential
improvement of classification accuracy. We have
empirically evaluated our approach using real-
world heterogeneous data sources and report some
promising experimental results in this paper.

The paper is organized as follows. In the next
section, we briefly review some past approaches
for entity identification. In Section 3, we discuss
some widely used classification techniques that can
be applied to entity identification and some
attribute-matching functions that can be used as
features for classification. In Section 4, we propose
a multiple classifier system approach to improving
classification accuracy and describe a variety of
ways to combine multiple classifiers. We then
report some empirical evaluation results in Section
5. Finally, we summarize the contributions of this
work and discuss future research directions.
2. Related work

Various approaches, both rule- and learning-

based, have been proposed for detecting semanti-
cally corresponding records from heterogeneous
data sources. They differ in how they generate
decision rules to establish the correspondence
between two records.

Rule-based approaches elicit decision rules
from domain experts. Most of these rules involve
comparing an overall similarity score and a
threshold value. The overall similarity score for
two records is usually a linear combination of
similarity degrees between common attribute
values of the two records. In Chen et al.’s
approach [9], the weight (i.e., coefficient in the
linear model) of each common attribute is specified
manually according to its importance in determin-
ing whether two records match or not. In Segev
and Chatterjee’s approach [10], the weights and
thresholds are specified manually based on domain
knowledge or estimated using some statistical
techniques such as logistic regression. Dey et al.
[11] collected the weights from multiple domain
experts and used the averages. Hern!andez and
Stolfo [3] provided users a high-level declarative
language to specify arbitrarily complex decision
rules, the so-called equational theory.

Rule-based approaches are powerful in captur-
ing domain knowledge and are applicable to many
cases where simple key equivalence cannot be
found. However, specifying the rules requires deep
understanding of the application domains and
demands a time-consuming knowledge acquisition

process and experimental evaluation. It is very
difficult for human experts to provide a compre-
hensive set of decision rules, especially when fuzzy

comparisons are involved.
Learning-based approaches, using statistical clas-

sification or machine learning techniques, automa-
tically learn the decision rules from sample data. In
these approaches, domain experts are required to
provide classified examples rather than rules.

Newcombe et al. [12] and some others pioneered
the statistical record linkage field. They proposed a
probabilistic approach to discriminating matches
and non-matches based on odds ratios of frequencies,
which are computed based on intuition and past
experience. Newcombe [13] summarized the devel-
opment and application of their approach. Fellegi
and Sunter [4] proposed a formal mathematical
foundation for record linkage, which extends the
Bayes classification method by maintaining accepta-
ble error rates while leaving some cases unclassified.
Newcombe et al.’s intuitive approach and Fellegi
and Sunter’s theory of record linkage have been the
foundation of many software systems, including
GRLS developed at Statistics Canada [14] and the
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record linkage system developed at the US Bureau of
the Census [15]. Other statistical techniques, such as
logistic regression [6], have also been used to learn
entity identification rules.

Recently, decision tree techniques, such as
CART [7] and C4.5 [1,2], have been applied in
entity identification. Tejada et al. [8] further
combined multiple decision trees via bagging to
improve classification accuracy.

An obvious advantage of learning-base ap-
proaches over rule-based approaches is the elim-
ination of the knowledge acquisition process. It is
often much easier for users to provide manually
classified examples than to specify rules. Many
classification techniques have been developed in
statistical pattern recognition, machine learning,
and artificial neural networks and are potentially
applicable to entity identification. There are also a
variety of methods to combine multiple classifica-
tion techniques to improve prediction accuracy.
However, only a few of these methods have been
applied in entity identification and the methods
were chosen in an ad-hoc manner. In our
approach, we select the best (base or composite)
methods from a variety of widely used classifica-
tion techniques and methods to combine multiple
techniques via experiments.
Classification
Methods

Statistical 
Methods

Machine 
Learning

Bayes

Record Linkage

Discriminant Analysis

Logistic Regression

Classification via Regression

Decision Table

Decision Tree

Decision Rule

k-Nearest Neighbor

Neural Network Back Propagation

Linear

Quadratic

Naive

Second-order

Fig. 1. Some classification techniques.
3. Classification for entity identification

Given a pair of records from semantically
corresponding tables in two databases, we need to
determine whether they represent the same real-
world entity. This is a two-class (match or non-
match) classification problem. Each pair of records
to be compared is described in terms of a vector of
features, x ¼ ðx1;x2;y; xmÞ: Each feature, xi; is
usually a distance or similarity measure for compar-
ing the values of the two records on semantically
corresponding attributes. The objective is to assign
the record pair to one of two classes, match (M) or
non-match (N), based on the features.

3.1. Classification techniques

A classification technique learns a general rule,
called a classifier, from a set of sample record
pairs, whose true classes are known. The learned
classifier can then be used to predict the classes of
other record pairs. The set of sample record pairs
used to train a classifier is called a training data set.
In practice, domain experts need to manually
classify some record pairs, which are then used as
training data. Various categories of classification
methods, including statistical pattern recognition,
machine learning, and artificial neural networks,
have been theoretically analyzed and empirically
evaluated [16]. Fig. 1 shows some widely used
classification techniques.

The Bayes method estimates the odds ratio,
PrðM jxÞ=PrðN jxÞ; and compares it to a threshold
value to determine the class of a record pair. The
threshold value is determined by the prior
probabilities of the two classes and the relative
costs associated with two types of errors, i.e.,
false matches and false non-matches. The Bayes
method provides intuitively optimal classifica-
tion. It, however, can seldom be applied directly
without making simplifying assumptions because
of the numerous combinations of feature values,
especially when some of the features are contin-
uous. Naive Bayes, which assumes that the
features are conditionally independent, is com-
monly used. Continuous features usually need to
be discretized prior to classification. When the
conditional independence assumption about the
features is seriously violated, second-order or
even higher-order dependency terms may be con-
sidered to incorporate the dependencies among
the features. Fellegi and Sunter’s record linkage

theory [4] extends the basic Bayes method to
maintain acceptable levels of error rates. The
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decision space is divided into three areas, match,
non-match, and unclassified, based on two thresh-
olds. Unclassified record pairs then need to be
manually reviewed.

Fisher’s linear discriminant analysis (LDA) is
another widely used statistical classification meth-
od. LDA uses a line (in a two-dimensional feature
space) or hyper-plane to separate the two classes.
The coefficients in the linear model are chosen in
such a way to separate the two classes as much as
possible, assuming that the features follow normal
distributions. LDA has been extended to produce
more flexible decision boundaries. For example,
quadratic discriminant analysis (QDA) uses a
quadratic discriminant function to separate the
two classes. Logistic regression assumes that the
logarithm of the odds ratio of match to non-match
is linearly related to the features; the decision
boundary between the two classes is still linear in
the original feature space. Logistic regression

makes no assumption about the distributions of
the features and has an advantage over LDA when
many features are categorical. In practice, how-
ever, logistic regression and LDA often produce
very similar results [16]. Regression techniques,
such as linear regression, can also be used for
classification. A regression model can be derived
from the training data to predict the class using the
features. k-nearest neighbor techniques simply
memorize the training data and classify each new
case into the majority class of the k cases in the
training data that are closest to the new case.

Machine learning techniques generate decision

tables, trees, or rules that are easily understood
and are most compatible with human reasoning. A
decision table learner selects several most discri-
minating features to form a lookup table, which is
then used to classify new cases. Decision tree
techniques follow a ‘‘divide and conquer’’ strategy
and build tree-like sequential decision models. A
decision tree can be easily translated into a set of
mutually exclusive decision rules; each leaf node of
the tree corresponds to a rule. There are also rule-
induction techniques that can produce more
general classification rules. A special form of
simple classification rules is 1R (for ‘‘1-rule’’),
which uses a single most discriminating feature to
determine the class of a case.
Back propagation is one of the most widely used
neural network techniques for classification. Neur-
al networks are highly interconnected networks,
which learn by adjusting the weights of the
connections between nodes on different layers. A
neural network may have an input layer, an output

layer, and zero or many hidden layers. Theoreti-
cally, a neural network with two or more hidden
layers can approximate any function and has the
potential to achieve the lowest possible error rates.
However, neural networks are ‘‘black boxes’’; it is
hard to interpret the rules they follow in classifying
cases. The training of a neural network is often not
trivial; it takes experience and experimenting to
adjust the parameters, such as the number of
nodes on each layer and the learning rate.

3.2. Attribute-matching functions

Each pair of records to be compared is described
in terms of a vector of features, each of which is
usually a distance or similarity measure used to
compare the values of the two records on
semantically corresponding attributes. Given two
(base or derived) attributes whose domains are A1

and A2; an attribute-matching function is a map-
ping f : A1 � A2-½0; 1�; which returns the degree
of match between two values drawn from A1 and
A2; where 1 reflects a perfect match.

If two corresponding attributes in different
databases share the same format and store
accurate data, we can compare them using simple
equality. However, we frequently observe both
schema level and data level discrepancies. Seman-
tically corresponding attributes often have differ-
ent formats in different databases. There are
incorrect data, phonetic errors, typographical
errors, and different abbreviations in most opera-
tional databases. Human names are often mis-
spelled or may be substituted with similar-
sounding names. The same name may have
different spellings in different languages, e.g.,
Joseph in English and Giuseppe in Italian, or
different nicknames, e.g., Bob and Robert. Luj!an-
Mora and Palomar [17] identified eleven types of
data discrepancies across databases.

Transformation functions are needed to convert
corresponding attributes into compatible formats.
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Approximate attribute-matching functions are
needed to measure the degree of similarity between
two attribute values. There are many general-
purpose approximate string-matching methods.
The Soundex coding technique [18] has been
widely used in record linkage problems to compute
the phonetic distance between human names.
Levenshtein’s edit distance [19] is a simple yet
widely used metric of string distance. There are
also many special-purpose methods that are
suitable for comparing special types of strings,
e.g., human names and addresses [15]. Stephen [19]
reviewed many string distance measures, including
Hamming distance, Levenshtein’s metrics, longest
common substring, and q-grams. Budzinsky [18]
compared 20 string comparison methods. Some of
these methods account for spelling errors, such as
insertion, deletion, transposition, and substitution
of characters; some account for phonetic errors;
some are special-purpose.

Numeric attributes measured on interval or
ratio scales can be compared using normalized
distance functions. Special dictionaries, or look-up
tables, can be built to bridge different coding
schemes used for semantically corresponding
attributes in different databases. For example,
name equivalence dictionaries can be built to
account for different variants of human names,
e.g., different nicknames, names in different
languages, and different spellings of Asian names.

Different matching methods work well for
different types of attributes. If multiple matching
functions can be used to compare a pair of
corresponding attributes, it may be necessary to
evaluate various functions and select the most
discriminating one for classification, because some
classification techniques, e.g., linear discriminant
analysis and logistic regression, are sensitive to
highly correlated features. We can compute the
correlation between each matching function and
the class (match or non-match) of record pairs
based on the training examples for classification
and select the matching function that is most
highly correlated with the class. There are also
heuristics that help in choosing appropriate
matching functions. For example, Soundex is
good for comparing human names; edit distance
measures are good for comparing strings with
spelling errors; dictionaries are good to bridge
different coding schemes. We can also construct
arbitrarily complex matching functions by com-
bining multiple matching functions and transfor-
mation functions.
4. A multiple classifier system approach to

improving classification accuracy

A single classifier, regardless of how accurate it
is, provides only one estimate of the optimal
classification rule. Recently, there have been many
efforts to combine multiple classifiers to obtain a
better estimate of the optimal decision boundary
and thus improve classification accuracy. Several
conferences, such as Multiple Classifier Systems
(MCS) have been devoted to such research [20–22].

We propose a multiple classifier system ap-
proach to improving classification accuracy in
entity identification. Multiple classifiers are com-
bined in a variety of ways, including bagging,
cross-validated committee, boosting, cascading, and
stacking (see Fig. 2), to determine whether a pair
of records corresponds to the same entity in the
real-world. These methods combine multiple
classifiers of the same type (i.e., with homogeneous

base classifiers) or different types (i.e., with
heterogeneous base classifiers).

Methods for combining homogeneous classifiers
gather the base classifiers into an ensemble, also
called a committee, and ask the base classifiers to
‘‘vote’’ on the results [23]. The votes of base
classifiers may or may not be weighted. In an un-
weighted voting scheme, multiple classifiers
trained independently using different training data
sets are given equal weights in the voting. The data
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sets used to train the multiple base classifiers are
generated based on an original training data set. In
bagging (abbreviation for bootstrap aggregating),
each training data set consists of n examples
randomly sampled with replacement from the
original training data set with n examples. The n

examples in each generated training data set cover,
on the average, 63.2% of the examples in the
original training data set, with some examples
appearing multiple times. This method for gen-
erating random training data sets is called boot-

strap. In a cross-validated committee method, the
original training data set is randomly divided into
m disjoint subsets (folds); m training data sets are
generated by leaving one fold out each time. 10-
fold cross-validated committees are commonly
used in practice.

Boosting is a widely used ensemble method, in
which the votes of base classifiers are weighted
according to their performances. In boosting, base
classifiers are learned sequentially. Each new
classifier is trained to perform better on examples
classified incorrectly by previous classifiers. This is
achieved by giving those examples higher weights.
In the voting for the final classification decision,
base classifiers are weighted according to their
accuracy.

Heterogeneous base classifiers can be combined
via cascading and stacking. First, the output of
one classifier can be used as an artificial input
feature together with the original features to train
another classifier. Such a cascade of multiple
classifiers may perform better than base classifiers
learned independently [24]. A weakness of most
rule-induction methods, such as C4.5 decision tree
[25], is that they cannot learn intermediate
concepts and abstractions from multiple variables
[16]. A decision tree divides the feature space into
regions, whose boundaries are always orthogonal
to one of the dimensions. In a two-dimensional
feature space, these regions are rectangles, whose
sides are parallel to one of the axes; for a linearly
separable data set, they must use numerous line
segments to approximate the discriminant line.
Discriminant functions learned by other discrimi-
nant analysis methods, such as Fisher’s LDA and
logistic regression, can be used as additional input
features to train decision trees or rules, so that the
decision regions have more flexible boundaries in
the feature space.

Another method for combining heterogeneous
base classifiers is stacking [26], which trains
another classifier, called a meta classifier, to make
the final classification decision based on the
predictions of multiple base classifiers. Each
training example for the meta classifier is described
in terms of the outputs of the base classifiers and
the true class.

A multiple classifier system is not restricted to
containing only two levels. Several multiple
classifier systems can be further combined. Com-
plex multiple classifier systems with arbitrarily
many levels can be developed if necessary. In
practice, however, multiple classifier systems with
more than three layers are seldom significantly
more productive.

In this paper, we focus on classification accuracy
and leave out the scalability of the subsequent
application of learned classifiers in matching
records in the entire heterogeneous data sources.
Scalability is indeed a critical issue that must be
addressed, especially when large data sources need
to be matched. A straightforward pair-wise
comparison procedure requires N � M compar-
isons when two data sources with N and M

records, respectively, need to be matched, and is
prohibitively time-consuming when N and M are
not trivial. Past research has studied this issue. For
example, the sorted-neighbor method proposed by
Hern!andez and Stolfo [3] sorts or indexes the two
tables on selected common (base or derived)
attributes (e.g., first three characters of a person’s
last name), called a blocking factor, and compares
only records in a limited sliding window with
regard to the blocking factor (i.e., having similar
values on the blocking factor). The number of
comparisons is reduced to ðN þ MÞ � w; where w

is the size of the sliding window and is independent
of N and M : The time complexity is reduced from
OðN � MÞ to OðN þ MÞ (note that w is a
constant). It may be necessary to apply the method
multiple times with different blocking factors and
combine the results of the multiple runs to reduce
the risk of missing match record pairs due to
potential errors on the blocking factors. This
method can be applied with the classifiers learned
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using our proposed approach to match records in
large heterogeneous data sources and is not further
discussed in this paper. Interested readers may
refer to Hern!andez and Stolfo [3].
5. Empirical evaluation

We have evaluated our multiple classifier system
approach using several sets of real-world hetero-
geneous data sources. In this paper, we report on
some of our experiments of the passenger match-
ing procedure of an application service provider
(ASP) for the airline industry. This ASP serves
over 20 national and international airlines. It
maintains a separate PNR (‘‘passenger reserva-
tion’’) database for each served airline. One
particular service is the identification of potential
duplicate passengers in PNRs of a single airline or
across airlines. Many airlines, among many other
PNR

Passenger

Segment

Address

Has 
Segment
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Address

Has
Passenger

1

1

1

M

1M

ConfoEmail
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FirstName

Passenger_id

An entity type.
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on the lines connecting the rel
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Legend:

Fig. 3. A conceptual mode
companies, are also planning to build an inte-
grated customer database by consolidating various
heterogeneous data sources. The techniques we are
evaluating are also useful in such customer
relationship management (CRM) efforts.

Fig. 3 shows a conceptual model of an airline
PNR database. The information relevant to
passenger matching includes: passenger name,
frequent flyer number, PNR confirmation infor-
mation, address, phone, and itinerary segment.
We used a snapshot of each of the databases
for two airlines in our experiment. Table 1 shows
the number of records in the tables of the two
snapshorts.

5.1. Attribute-matching functions

The comparison of a pair of passengers was
based on some relevant attributes. We used exact
comparison for some attributes (e.g., city, state,
Phone
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Table 1

Number of records in the tables of the PNR database snapshots

Table name Description Number of records

Snapshot A Snapshot B

PNR Passenger

reservation

261,141 545,763

Passenger Passenger

information

351,438 745,168

Frequent

Flyer

Frequent flyer

number

129,067 20,750

Address Passenger

address

117,797 235

Phone Passenger

phone

numbers

600,149 756,033

Segment Itinerary

segments

953,930 1,294,707
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boarding point, off point, confirmation email,
confirmation fax, and phone numbers) and ap-
proximate comparison for some other attributes
(e.g., address and confirmation address). There
were various kinds of problems in passenger
names (e.g., similar-sounding names, spelling
errors, initials, variants of first name and middle
name combinations, and nicknames). We com-
bined multiple matching methods, including exact
comparison, Soundex, sub-string, and edit dis-
tance, to compare passenger names. Postal codes
had five or more digits. We compared two postal
codes using exact comparison and sub-string.
Table 2 summarizes these attribute-matching
functions. For example, function Lname combined
equality comparison, Soundex matching, substring
matching, and Levenshtein’s edit distance (see
Section 2.2) to compare the passenger last names
of two PNRs. The Pearson correlation coefficient
of 0.950 indicates how well this attribute-matching
function can predict whether two PNRs are about
the same passenger. Function Lname was the most
effective in such prediction; function Cell was the
least effective.

5.2. Classification of record pairs

We trained classifiers to determine whether a
pair of passengers matched or not, based on their
distances on relevant attributes. Some passengers
use frequent flyer numbers in their reservations.
We relied on frequent flyer numbers to generate
training examples. Two passengers with the same
frequent flyer number for the same frequent flyer
program are very likely to be the same person,
while two passengers with different frequent flyer
numbers for the same frequent flyer program are
very likely to be different people. However, there
are rare exceptions; different people, especially
people in the same family, may share a single
frequent flyer number, while a single person may
use multiple frequent flyer numbers for a single
program. We manually screened these exceptions
from the training data set. The training data set
consisted of 20,000 non-matching examples and
5000 matching examples.

We used some widely used classification techni-
ques available in Weka [26], including 1-rule (1R),
logistic regression (Logistic), classification via
linear regression (Linear), J4.8 decision tree
(J4.8), naive Bayes (Bayes), back propagation
neural network (BP), and k-nearest neighbor
(1-NN, 3-NN, and 5-NN), to classify record
pairs. 1R selects the single most discriminating
feature to make the classification decision. In this
example, Lname was selected. The classification
rules were:

IF LnameX0:61; Match; Otherwise; Non-Match:

The model learned by Logistic was:

IF DLogisticX0; Match; Otherwise; Non-Match;

where

DLogistic ¼ 7:1489 � Fname þ 10:9680 � Lname

þ 19:3729 � CFax

þ 41994 � Cemal

þ 3:1365 � Caddr 	 7:1046 � Street

þ 3:8845 � City þ 0:8369 � State

þ 13:7226 � Postal

þ 1:3558 � Bpoint þ 1:0095 � Opoint

þ 17:4604 � Home þ 14:9700 � Bus

þ 2:3154 � Agency þ 12:8704 � Cell

þ 10:8609 � Fax 	 15:0788:
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Table 2

Summary of attribute-matching functions

Name Related attribute(s) Description Function Range r

Lname Passenger.Last Name Passenger last name Equality+Soundex+Substring

+Edit Distance

[0, 1] 0.950

Fname Passenger.First Name Passenger first name Equality+Soundex

+Substring+Edit Distance

[0, 1] 0.775

City Address.City City of address Equality {0, 1} 0.675

Caddr PNR.ConfoAddress Confirmation address Edit Distance [0, 1] 0.611

Street Address.Address1

+Address.Address2

Street of address Edit Distance [0, 1] 0.607

State Address.State State of address Equality {0, 1} 0.580

Opoint Segment.OffPoint Off point of itinerary segment Equality {0, 1} 0.532

Cfax PNR.ConfoFax Confirmation fax Equality {0, 1} 0.497

Bpoint Segment.BoardPoint Boarding point of itinerary segment Equality {0, 1} 0.487

Postal Address.PostalCode Postal code of address Equality+Substring {0, 1} 0.362

Cemail PNR.ConfoEmail Confirmation email Equality {0, 1} 0.340

Bus Phone.PhoneNumber

+Phone.IsBusiness

Business phone number Equality {0, 1} 0.248

Agency Phone.PhoneNumber

+Phone.IsAgency

Agency phone number Equality {0, 1} 0.223

Home Phone.PhoneNumber

+Phone.IsHome

Home phone number Equality {0, 1} 0.215

Fax Phone.PhoneNumber

+Phone.IsFax

Fax number Equality {0, 1} 0.177

Cell Phone.PhoneNumber

+Phone.IsCell

Cell phone number Equality {0, 1} 0.129

r-Pearson correlation coefficient between an attribute-matching function and the class (match/non-match).

{0, 1}-The set consisting of two members 1 and 0.

[0, 1]-The closed real interval between 0 and 1.
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The model learned by Linear was:

IF DLinearX0; Match; Otherwise; Non 	 Match;

where

DLinear ¼ 0:1409 � Fname þ 0:7892 � Lname

þ 0:0450 � CFax þ 0:0201 � Cemal

	 0:0755 � Caddr 	 0:0092 � Street

þ 0:1665 � City 	 0:0070 � State

þ 0:0360 � Postal þ 0:0186 � Bpoint

þ 0:0261 � Opoint þ 0:0474 � Home

þ 0:0337 � Bus þ 0:0157 � Agency

	 0:0391 � Fax 	 0:5939:

Fig. 4 shows a decision tree generated by J4.8,
Weka’s implementation of C4.5 [25]. DecTab
selected features Fname, Lname, State, and
Opoint for the table lookup when a new example
needed to be classified. Bayes estimated a collec-
tion of prior probabilities and posterior probabil-
ities. BP learned a collection of weights in a
network with one hidden layer. k-nearest neighbor
(1-NN, 3-NN, and 5-NN) methods simply mem-
orized the training examples and classified each
new example according to the majority class of its
k nearest training examples.

5.3. Comparison of techniques

We conducted experiments to compare the
accuracy of different classification techniques and
different combinations of techniques. We first ran
each of ten base classification techniques 100
times; each time 66% of the 25,000 examples were
randomly re-sampled for training; the rest were set
aside for testing. We then tested whether various
ways to combine multiple classifiers, including



ARTICLE IN PRESS

Lname <= 0.6 
|   Street <= 0.55: Non-Match (19737/13) 
|   Street > 0.55 
|       Cfax = -2: Match (2) 
|       Cfax = -1: Non-Match (9) 
|       Cfax = 0: Non-Match (14) 
|       Cfax = 1: Match (3) 
Lname > 0.6 
    Fname <= 0.29 
    |   Opoint = 0: Non-Match (164/1) 
    |   Opoint = 1 
    |       Fname <= 0.15: Non-Match (64/3) 
    |       Fname > 0.15 
    |           City = -2: Match (1) 
    |           City = -1 
    |           |   Cemail = -2: Non-Match (4/1)
    |           |   Cemail = -1: Match (7/1) 
    |           |   Cemail = 0: Match (0) 
    |           |   Cemail = 1: Match (0) 
    |           City = 0: Non-Match (8/1) 
    |           City = 1: Non-Match (0) 
    Fname > 0.29: Match (4987/18) 

Fig. 4. A J4.8 decision tree. The two numbers attached to each

leaf node are the total number of examples covered by the node

and the number of examples incorrectly classified by the node in

the training data. An attribute-matching function returns: (	1)

if one of two values under comparison is missing; and (	2) if

both values are missing.
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cascading, bagging, boosting, and stacking, could
improve the performance of the base classifiers.
Each composite classification method was also run
100 times; each time 66% of the 25,000 examples
were randomly re-sampled for training, the rest
were set aside for testing. Table 3 summarizes the
accuracy and costs (i.e., training time and testing
time) of the base and composite classifiers. For
example, the mean and standard deviation of the
accuracy of 1R were 98.921% and 0.085%,
respectively; the mean and standard deviation of
the false positive (i.e., PNRs about different
passengers that are classified as matching) rate of
1R were 1.212% and 0.102%, respectively; the
mean and standard deviation of the false negative
(i.e., PNRs about the same passenger that are
classified as non-matching) rate of 1R were
0.544% and 0.194%, respectively; the mean and
standard deviation of the training time of 1R were
0.86 and 0.16 s, respectively; the mean and
standard deviation of the testing time of 1R were
0.22 and 0.16 s, respectively.

Among the 26 base and composite classifiers,
cascading Logistic and J4.8 was the most accurate
(99.807%); 1R was the least accurate (98.921%).
The testing time required by k-nearest neighbor
methods, which do not learn any generalized
structure from the training examples and compare
every new example with every training example, is
much longer than the testing time required by
methods that learn some generalized structure. In
this experiment, 1-NN, 3-NN, 5-NN spent
2319.51, 3197.25, and 3192.20 s on average in
testing, respectively, while other methods spent
between 0.22 (1R) and 2.41 (BP) s on average in
testing. BP was much slower in training than any
other method. The training time of BP was
515.42 s; the training times of other methods,
except k-NN, were between 0.86 (1R) and 60.24
(DecTab) s.

We further compared the accuracy of the
classifiers statistically using ANOVA and t-tests.
An ANOVA test (Table 4) of the accuracy of the
26 classifiers indicates that at least two of the
classifiers performed significantly differently in
terms of accuracy (F (25,2574)=1809.657,
po0:05). A Sheff!e’s post hoc test (Table 5)
recognized five homogeneous (in terms of accu-
racy) subsets of classifiers at the significance level
a ¼ 0:05:

Table 6 summarizes a series of t-tests that
compare the accuracy of each composite classifier
with the accuracy of a base classifier. Bagging and
boosting combine multiple classifiers of the same
type into an ensemble, or committee, and take a
vote among the members. It does not make much
sense to bag or boost k-NN methods because they
do not learn any generalized structure from
training examples. We bagged nine classifiers of
each of the other seven base classification techni-
ques (i.e., 1R, Linear, J4.8, Logistic, DecTab,
Bayes, and BP) and boosted a maximum of nine
classifiers of each type using the AdaBoost.M1
method [26]. Bagging significantly improved J4.8
and never significantly degraded any base classi-
fier. Boosting significantly improved 1R, Linear,
and J4.8. However, unlike bagging, which never
significantly degraded a base classifier, boosting
did degrade some classifiers, including DecTab
and Logistic.

While bagging and boosting combine multiple
classifiers of the same type, cascading and stacking
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Table 3

Summary of classification results

Method N Accuracy (%) False positive rate (%) False negative rate (%) Training time (s) Testing time (s)

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

1R 100 98.921 0.085 1.212 0.102 0.544 0.194 0.86 0.16 0.22 0.16

Bayes 100 99.764 0.042 0.119 0.033 0.707 0.171 1.22 0.47 0.74 0.36

Linear 100 98.928 0.084 1.252 0.096 0.350 0.118 19.72 3.01 0.82 0.20

DecTab 100 99.784 0.050 0.095 0.038 0.702 0.217 60.24 11.72 0.60 0.19

Logistic 100 99.769 0.040 0.134 0.042 0.617 0.150 7.12 0.77 0.52 0.24

J4.8 100 99.781 0.046 0.120 0.043 0.613 0.195 4.08 0.48 0.24 0.18

BP 100 99.778 0.046 0.112 0.048 0.662 0.186 515.42 15.43 2.41 0.24

1-NN 100 99.749 0.147 0.179 0.162 0.539 0.382 0.17 0.06 2319.51 42.42

3-NN 100 99.773 0.038 0.150 0.051 0.534 0.148 0.15 0.04 3197.25 119.93

5-NN 100 99.785 0.044 0.133 0.046 0.545 0.179 0.15 0.04 3192.20 140.51

Cascading 100 99.807 0.045 0.099 0.042 0.570 0.195 4.90 0.76 0.26 0.40

Bag 1R 100 98.922 0.083 1.205 0.102 0.568 0.180 7.06 0.32 0.29 0.10

Bag Bayes 100 99.756 0.046 0.126 0.037 0.716 0.174 8.46 2.89 3.79 1.21

Bag Linear 100 98.928 0.084 1.252 0.096 0.350 0.118 169.55 13.15 5.06 0.25

Bag DecTab 100 99.790 0.045 0.072 0.028 0.761 0.206 617.88 62.92 3.66 0.26

Bag Logistic 100 99.769 0.041 0.138 0.044 0.607 0.148 73.64 4.50 2.50 0.38

Bag J4.8 100 99.793 0.044 0.113 0.038 0.584 0.184 34.50 4.14 0.57 0.24

Bag BP 100 99.782 0.041 0.106 0.039 0.667 0.176 4567.54 177.66 19.22 1.21

Boost 1R 100 99.677 0.068 0.202 0.066 0.804 0.253 10.04 0.61 0.21 0.06

Boost Bayes 100 99.758 0.044 0.123 0.038 0.721 0.172 22.55 1.84 3.62 0.41

Boost Linear 100 99.449 0.216 0.439 0.215 0.998 0.809 214.08 41.39 4.87 1.01

Boost DecTab 100 99.734 0.075 0.138 0.092 0.779 0.325 1306.35 324.32 6.59 9.88

Boost Logistic 100 99.759 0.044 0.150 0.053 0.609 0.153 51.12 16.06 1.44 0.49

Boost J4.8 100 99.802 0.040 0.133 0.041 0.460 0.167 55.16 5.45 0.70 0.05

Boost BP 100 99.778 0.046 0.105 0.040 0.688 0.180 1145.65 219.77 2.59 0.86

Stacking 100 99.791 0.042 0.117 0.043 0.578 1.620 6050.18 130.35 4.82 0.14

Table 4

ANOVA of the accuracy of 26 single or composite classifiers

Sum of

squares

df Mean

square

F Sig.

Between

groups

245.226 25 9.809 1809.657 0.000

Within

groups

13.952 2574 0.005

Total 259.178 2599
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are usually used to combine classifiers of different
types. We used the discriminant function DLogistic

learned by Logistic as an additional input feature
to train J4.8 again. The cascaded classifier
performed significantly better than each of two
base classifiers (compared with J4.8: t(198)=4.060,
po0:05; compared with Logistic: t(198)=6.335,
po0:05). Stacking treats the outputs of base
classifiers as input features and trains a meta-
learner, which can be a classifier of any type, to
make the final classification decisions. We com-
bined seven base classifiers, including 1R, Linear,
J4.8, Logistic, DecTab, Bayes, and BP using
stacking, and used logistic regression as the
meta-learner. The stacked classifier performed
better than every base classifier.

In another set of studies, we evaluated the
electronic product catalogs (E-catalog) of two
leading online bookstores and the property data-
bases managed by two departments of a large
public university. Cascading logistic regression
and J4.8 decision tree performed better than the
two base classifiers in both studies. Stacking seven
classifiers of different types using logistic regres-
sion as the meta classifier was more accurate than
the base classifiers in both studies. Bagging
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improved J4.8 and DecTab in the E-catalog
example, and J4.8, DecTab, and Bayes in the
property example. Bagging never degraded a base
classification technique. Boosting improved 1R,
Table 5

Sheff!e’s test of the accuracy of 26 classifiers—homogeneous

subsets

Method N Subset for alpha=0.05

1 2 3 4 5

1R 100 98.921

Bag 1R 100 98.922

Bag Linear 100 98.928

Linear 100 98.928

Boost Linear 100 99.449

Boost 1R 100 99.677

Boost DecTab 100 99.734 99.734

1-NN 100 99.749 99.749

Bag Bayes 100 99.756 99.756

Boost Bayes 100 99.758 99.758

Boost Logistic 100 99.759 99.759

Bayes 100 99.764 99.764

Bag Logistic 100 99.769 99.769

Logistic 100 99.769 99.769

3-NN 100 99.773 99.773

BP 100 99.778 99.778

Boost BP 100 99.778 99.778

J4.8 100 99.781 99.781

Bag BP 100 99.782 99.782

DecTab 100 99.784 99.784

5-NN 100 99.785 99.785

Bag DecTab 100 99.790 99.790

Stacking 100 99.793 99.793

Bag J4.8 100 99.795 99.795

Boost J4.8 100 99.802

Cascading 100 99.807

Sig. 1.000 1.000 0.229 0.101 0.177

Table 6

t-tests that compare a composite classifier with a base classifier (df=

Base method Bagging to base Boosting to base

t p t p

1R 0.040 0.484 69.767 0.000

Linear 	0.020 0.492 22.512 0.000

J4.8 1.826 0.035 3.347 0.000

DecTab 0.929 0.177 	5.492 0.000

Logistic 	0.102 0.459 	1.802 0.037

Bayes 	1.161 0.124 	0.984 0.163

BP 0.666 0.253 0.000 0.500
Linear, J4.8, and DecTab but degraded Logistic
and Bayes in the E-catalog example. Boosting
improved only 1R but degraded Linear and J4.8 in
the property example. Detailed results for these
two cases are omitted in the paper to save space
and are available from the authors.

5.4. Summary of results

Past research in other problem domains has
found that bagging often improves classification
accuracy and seldom degrades it; boosting may
perform significantly better than bagging, but may
also significantly degrade performance [23,26].
Bagging works better for unstable classification
techniques than for stable ones. Classifiers pro-
duced by unstable techniques (e.g., decision tree,
decision table, decision rule, and neural network
learners) may change significantly in response to
small changes in the training data. Linear model
learners, such as Fisher’s LDA and logistic
regression, are generally very stable. Boosting
performs well in low-noise cases but overfits very
badly in high-noise cases, while the performance of
bagging is not affected by noise. One explanation
is that each new classifier generated in boosting
places a larger weight on previously incorrectly
classified examples, which are very likely noises in
high-noise cases.

Our experimental results agreed with these
previous findings from other problem domains.
Bagging improved some base classification techni-
ques and never degraded a technique. Boosting
sometimes performed significantly better than
bagging but sometimes degraded some base
198)

Cascading to base Stacking to base

t p t p

91.822 0.000

91.630 0.000

4.060 0.000 1.562 0.060

1.074 0.142

6.335 0.000 3.731 0.000

4.603 0.000

2.068 0.020
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classification techniques. Bagging worked better
for unstable techniques such as decision tree,
decision table, and naive Bayes than for stable
ones such as linear model learners. Boosting was
not productive in the high-noise (many training
examples were wrong because of errors in a
common key) property example except for the
simplest technique, 1-R. In addition, our results
show that cascading or stacking heterogeneous
classification techniques always performed better
than any individual base classifier.

We are aware of the limited generalizability of
our empirical results. While we have evaluated
three cases using real-world data in different
domains and obtained encouraging results, more
empirical studies, especially in less balanced and
more difficult real-world situations, need to be
conducted in the future to further validate the
usefulness of the proposed approach in real-world
applications.
6. Contributions and future work

We have described a novel multiple classifier
system approach to entity identification for
heterogeneous database integration. Our experi-
mental results show that combining multiple
classifiers in a variety of ways, such as cascading,
bagging, boosting, and stacking, may improve
classification accuracy, thus impacting database
integration. Since the performance of various base
and composite classification techniques varies in
different situations, we recommend that practi-
tioners conduct experiments to select the best
techniques in each particular application. We have
also generated some preliminary heuristics: bag-
ging works better on unstable techniques than on
stable techniques and seldom degrades perfor-
mance; boosting may perform significantly better
than bagging but may also degrades performance,
especially in high-noise cases; cascading or stack-
ing heterogeneous classifiers usually performs
better than each base classifier.

Besides the methods for combining multiple
classifiers we have described in this paper, it is also
possible to combine automatically learned classi-
fiers with manual classification rules. Decision
rules learned by classification techniques and rules
provided by human experts can be synthesized to
take advantage of both the domain knowledge of
the experts and the patterns revealed by the data.

In the experiments we have described in this
paper, we compared different techniques in terms
of plain accuracy using a somewhat balanced data
set. In real-world applications, however, neither
are the two classes (i.e., match and non-match) of
record pairs balanced, nor are the costs associated
with the two types of errors (i.e., false match and
false non-match) symmetric. Different weights
should be given to the two classes, according to
the prior probabilities of the two classes and the
relative costs of the two types of errors.

Partial classification methods for entity identifi-
cation need to be further evaluated. In classical
classification problems, classifiers are built to
minimize error rates or costs of errors. If the error
rates or costs of the classifiers are not acceptable,
however, the classifiers cannot be trusted and have
to be abandoned. The training effort is wasted. To
avoid wasting the entire training effort, part of the
classifiers may be used. Usually the classifiers tend
to be less accurate near the boundaries between
different classes. A different formulation of the
classification problem is to classify as many new
examples as possible while maintaining acceptable
error rates. Examples that cannot be classified with
the required degree of certainty can simply be
rejected and further evaluation demanded. In other
words, given acceptable error rates, the goal is to
minimize the percentage of ‘‘unclassified’’ examples.

The techniques we have described in this paper
are useful for detecting instance-level correspon-
dences across data sources. A related problem is
the identification of schema-level correspondences
[27]. Techniques for solving the two problems can
be incorporated into an iterative procedure, so
that correspondences on the two levels can be
evaluated incrementally [28].
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