
Incremental Distance Join Algorithms
for Spatial Databases*

Gisli R. Hjaltason and Hanan Samet
Computer Science Department and

Center for Automation Research and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

grh@cs.umd.edu and hjs@cs.umd.edu

Abstract

Two new spatial join operations, distance join and distance semi-
join, are introduced where the join output is ordered by the distance
between the spatial attribute values of the joined tuples. Incremental
algorithms are presented for computing these operations, which can
be usedin a pipelined fashion, thereby obviating the need to wait for
their completion when only a few tuples are needed. The algorithms
can be used with a large class of hierarchical spatial data structures
and arbitrary spatial data types in any dimensions. In addition, any
distance metric may be employed. A performance study using R-
trees shows that the incremental algorithms outperform non-incre-
mental approaches by an order of magnitude if only a small part of
the result is needed, while the penalty, if any, for the incremental
processing is modest if the entire join result is required.

1 Introduction

The spatial join operation is similar to the join operaion in rela-
tional databases. It is defined on two sets of objects, and computes
a subset of the Cartesian product of the two sets, determined by a
spatial predicate, which prescribes a certain spatial relationship be-
tween the objects in the result. The most common spatial predi-
cate is intersect, i.e., the geometry of the objects are required to in-
tersect [l, 7, 8, 19, 21, 22, 231. A generalization of this is within,
where the objects are required to lie within some distance of each
other [25, 301. Other spatial predicates have been considered as
well, and general methods to compute a spatial join proposed [4, 141.
Some of these methods involve special join indexes [14, 251.

In this paper, we define a “distance join” operation, which com-
putes a subset of the Cartesian product of sets A and B, and speci-

*This work was supported in part by the National Science Foun-
dation under Grant IRI-97 127 15 and the Department of Energy un-
der Contract DEFG0295ER25237.

rermass~cn tc make dlgnsl or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies arc not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the tint psgo.

To copy otherwise, to republish, to post on servera or to
redistribute tc lists, requires prior specific permission and/or I) fee.
SIGMOD ‘98 Seattle, WA, USA
Q 1998 ACM 0-89791-995.5/98/006...$5.00

lies an orderon the result, based on distance. The distance is usually
defined in terms of spatial attributes, but this need not he the case.
When the distance of the resulting pairs is limited to a range, we
have a generalization of a spatial join based on a within predicate.
The “distance semi-join” is a useful special case of the distancejoin
which for each object in A finds the nearest object in B. Figure I
defines the distance join and distance semi-join operations using a
syntax loosely adapted from SQL-92, including the STOP AFTER
clause extension proposed in [lo]. The WHERE and STOP AFTER
clauses, specifying limits on the distance and/or the number of result
tuples, are optional. These basic queries could be made more com-
plicated by adding further selection conditions in the WHERE clause.

SELECT *
FROM Rl, R2, distance(Rl.sl, R2.s2) d
[WHERE d >= <dmin> AND d <= <dmax>l
ORDER BY d
[STOP AFTER <n>]

(4

SELECT *, min(d)
FROM Rl, R2, distance(Rl.sl, R2.s2) d
[WHERE d >= <dmin> AND d <= tdmax>]
GROUP BY Rl.sl
ORDER BY d
[STOP AFTER <n>]

(b)

Figure 1: Definition of (a) distance join and (b) distance semi-
join using SQL.

The distance join and distance semi-join have numerous useful
applications in spatial databases. For example, given a spatial data-
base of rivers and cities, we can use partial computation of them to
“find the city nearest to any river”, “ find the city nearest to any river,
such that the city has a population of more than 5 million”, and “find
cities within 5 miles of any river”. The distance semi-join is useful
as a clustering operation. For example, suppose we are given two
relations consisting of the locations of stores and of warehouses, re-
spectively, and for each store we wish to determine the closest ware-
house. This is achievedby taking the distance semi-join of the stores
relation with the warehouse relation. The distance semi-join works
by reporting the (store,warehouse) pairs in order of distance. Note
that once we have determined the closest warehouse to a particular

237

store, that store does not participate in other tuples with the remain-
ing warehouses.

Computing the complete distance semi-join yields a clustering
of the stores. In fact, for point data, the result partitions the space in
a manner analogous to a discrete Voronoi diagram, i.e., each point
in the stores relation is associated with the closest point in the ware-
house relation (thus, in the terminology of Voronoi diagrams, the lo-
cations of the warehouses are the sites). The attractiveness of this
analogy lies in providing users a mechanism to perform a geomet-
ric operation such as the Voronoi diagram using a data base prim-
itivc without having to invoke a special purpose algorithm from a
geometric library to perform the operation. Note that this operation
is not symmetric. In particular, the result of computing the distance
semi-join of the warehouse relation and the stores relation is that for
each warehouse, we get the closest store.

The clustering join [33] is similar to the distance semi-join with
the difference being that the clustering join is symmetric. An algo-
rithm for computing the clustering join is also given in [33]. How-
ever, that algorithm is not well suited for spatial data that resides
in &dimensional Euclidean space. The reason is that [33] deals
with more general objects-such as patterns, strings, trees, graphs,
etc.-whose internal structure is unknown as far as the algorithm
is concerned. The only knowledge about the objects comes from
a distance measure that returns the distance between two objects.
Furthermore, the distance measures are assumed to be expensive to
compute, so that the overall goal is to compute as few distances as
possible. In contrast, spatial data allows the use of spatial indexes
which in effect summarize the data and enable avoiding many dis-
tance calculations (which, however, are not necessarily the most ex-
pensive component of query algorithms involving distances).

In this paper we present incremental algorithms for computing
the distance join and distance semi-join in the sense that the pairs
resulting from the corresponding operation are reported one-by-one.
This enables the query processorto use the algorithms in a pipelined
fashion. Furthermore, the algorithms aim to deliver results as soon
as possible. Such “fast first” pipelined join methods have recently
become a focus of attention [3,34]. They have become important
in enabling the development of more user friendly and interactive
interfaces to database systems [161. Recent proposals for extending
SQL [lo] also benefit greatly from the presence of such algorithms.

A variation of our incremental distance join algorithm can be
used to compute intersecting pairs [3 11, closest pair [6], and all near-
est neighbors [2, 1 I, 321 in a set of objects. While our incremental
distance join algorithm may not always be competitive with some
of the above algorithms in terms of computational complexity, it
may nevertheless be a reasonable alternative given that a spatial data
structure has already been built. In addition, unlike most of these
methods, it is not limited to point or rectangle objects.

The rest of this paper is organized as follows. Section 2 de-
scribes the incremental algorithms for computing the distance join
and distance semi-join. Section 3 describes the environment in
which we perform our experiments, and Section 4 presents the re-
sults. Section 5 concludes with a number of future tasks.

2 Incremental Distance Join Algorithms

In this section we describe our incremental distance join algorithm.
Although our algorithm is general in the sense that it can be used
with most spatial data structures, for concreteness we present it in
the context of the R-tree. Also, performance tests were conducted
with R-trees (see Section 4). The rest of this Section is organized
as follows. Section 2.1 reviews the R-tree. Section 2.2 describes
the basic incremental algorithm for the distance join, followed by
an outline of a number of methods for extending its functionality

as well as improving its performance. Section 2.3 presents modi-
fications to the basic algorithm to enable it to compute the distance
semi-join operation.

2.1 R-trees
The R-tree [I 51 (see Figure 2) is one of many proposed spatial data
structures. It is an object hierarchy in the form of a balanced struc-
ture inspired by the BS -tree [121. Each R-tree node contains an ar-
ray of (key, pointer) entries where key is a hyper-rectangle that min-
imally bounds the data objects in the subtree pointed at by pointer.
In an R-tree leaf node, the pointer is an object identiher (e.g., a tuple
ID in a relational system), while in a non-leaf node it is a pointer to
a child node on the next lower level. The maximum number of en-
tries in each node is termed its node capacity orfun-out and may be
different for leaf and non-leaf nodes. The node capacity is usually
chosen so that a node fills up one (or a small number of) disk pages.
R-trees can be used to index a space of arbitrary dimension and ar-
bitrary spatial objects rather than just points.

As described above, R-tree leaf nodes contain a minimal bound-
ing rectangle and an object identifier for each object in the node, i.e.,
the geometric description of the objects is stored external to the R-
tree itself. Another possibility is to store the actual object, or only its
geometric description, in the leaf instead of the bounding rectangle.
This is usually only useful if the object representation is relatively
small (e.g., similar in size to a bounding rectangle) and is fixed in
length. If the entire object data (i.e., all relevant attributes) are stored
in the leaf nodes, then the object identifiers need not be stored. The
disadvantageof this approach is that objects will not have a fixed ad-
dress, as some objects must be moved upon each R-tree node split.

RO:m
_..

.__.___ ..-___

Rl R3 R4
,@, ;g,

R2 : d5 R6

R3:& R4:&37 R5:& R6:&

(a) &‘I

Figure 2: An R-tree for a set of 9 line segments. (a) Spatial ren-
dering of the line segments and hounding rectangles, and (b) a
tree access structure for (a). Bounding rectangles for individual
line segments are omitted from (a) in the interest of clarity.

\
We make use of an R-tree variant called the RI-tree [5]. It dif-

fers from the conventional R-tree in employing a more sophisticated
insertion and node-splitting algorithms that attempt to minimize a
combination of overlap and area increase between minimum bound-
ing rectangles.

2.2 Computing Distance Join
Our incremental distance join algorithm may be viewed as simul-
taneously applying an incremental nearest neighbor algorithm [181
(see [171 for the application of a similar approach to the LSD tree)
to the two spatial data structures corresponding to the spatial at-
tributes of the joined relations. The algorithm works for any spa-
tial data structure based on a hierarchical decomposition. In our
description, we assume a spatial data structure that forms a tree
structure, where each tree node represents some region of space and
where objects (or pointers to them in external storage) are stored in
the leaf nodes whose region intersects the objects. Further, we as-
sume that each object is stored in only one leaf. We handle both

238

the case that the objects are stored directly in the leaf as well as
the case that the leaf nodes contain the minimum bounding rect-
angles of objects along with a pointer to the actual object repre-
sentation. This set of assumptions was chosen as it holds for the
R-tree. However, the algorithm can be easily adapted to handle
most spatial data structures that do not satisfy these assumptions,
such as the hB-tree [24] (which forms a directed acyclic graph), and
quadtrees (27, 281 (where non-point objects may be stored in more
than one leaf node). In the remainder of this section, we do not make
a distinction between a node and the region that it represents; the
meaning should be clear from the context.

The input to the incremental distance join algorithm is two spa-
tial indexes, Ri and R2. The algorithm maintains a set of pairs P,
with one item from each of RI and R2, each item being either a node
or an object. Initially, P contains just one pair corresponding to the
root nodes of RI and Rz. We obtain the set of all pairs, i.e., the
Cartesian product of the sets of objects in RI and Rz, as follows.
As long as P contains a pair p with at least one item being a node,
replace p in P by all the pairs resulting from replacing the node by
its entries (child nodes for non-leaf nodes, objects for leaf nodes).
It is intuitively obvious that this process will result in P containing
the set of all pairs. The algorithm essentially computes P in this
way, but processes the pairs in P in order of their distance, thereby
attempting to report object pairs as soon as possible.

The algorithm works for data objects of arbitrary type and di-
mension (although our experiments use two-dimensional points),
provided that consistent distance functions are used. Four dis-
tance fu_nctions are needed: one between objects of each collection,
two between objects of one collection and nodes of the spatial in-
dex of the other collection, and one between nodes of each spa-
tial index. More accurately, the functions we need are &,(ol, oa),
&,(oI, 122),&(721, oa),and&n(ni,nz), where01 andnl arean
object and a node from RI, respectively, and 02 and na are an ob-
ject and a node from R2, respectively. If the leaf nodes store min-
imum bounding rectangle for objects, then the functions d,, and
d,, are not required. Instead, we need the functions dbn(bl , n2),
dnb(m, bz), in addition to dbb(bl, bz), where bl and b2 denote a
minimum bounding rectangle for objects in RI and Rz, respec-
tively. If node regions are rectangles, then d,, can serve the pur-
pose of all three functions.

Usually, the distance functions are all based on a distance met-
ric for points, d(pl,pz), suchas theChessboard,ManhattanorEuler
metrics. However, this need not be the case. As long as the distance
functions are “consistent”, the algorithm will function correctly. In-
formally, by consistent, we mean that no pair can have a smaller
distance than a pair that gives rise to it during the processing of the
algorithm. For example, if 01 and o2 are objects in RI and Rz, re-
spectively, and 7~1 is a leaf node that contains RI, then we must have
doo(ol,o2) > d no 7~1, OS). If the distance functions are all based (
on the same metric, this condition will hold due to the triangle in-
equality property. In what follows, we usually refer to the distance
functions collectively with the symbol d, as the particular distance
function to be used can be inferred from the context.

2.2.1 Basic Algorithm
We first describe the basic version of the algorithm, and then intro-
duce extensions to it as well as ways to improve its performance.
The heart of the algorithm is a priority queue, where each element
contains a pair of items, one from each of the input spatial indexes
RI and Rz. An item can be either a data objector a node, so there are
four kinds of possible pairs, node/node, node/object, object/node,
and object/object. If object bounding rectangles (abbreviated by
obr) are stored in leaves, then these will become the third type of
pair items, resulting in nine possible kinds of pairs, of which we use

five: node/node, nodelobr, obrlnode, obrlobr, and object/object’.
The key used to order the queue elements is the distance between
each pair. We later discuss how to handle ties, i.e., how to order pairs
with equal distance.

At each step in the algorithm, the element at the head of the pri-
ority queue is retrieved, i.c., the element with the smallest distance
key. If the element stores a pair of data objects, then the pair is re-
ported as the next closest pair. No pair that is subsequently reported
will have a smaller distance due to this pair having the smallest key
in the queue. Furthermore, the consistency constraints on the dis-
tance functions guarantee that no pair on the queue will result in gen-
erating a pair of data objects with a smaller distance’. If one of the
items in the dequeued element is a node, then the algorithm pairs up
the entries of the node (objects for leaf nodes, sub-nodes for non-leaf
nodes) with the other item.

The basic algorithm is presented in Figure 3 for the case that the
leaf nodes of the spatial indexes contain object bounding rectangles.
In the figure, item 1 in a queue element is from RI, while item 2 is
from Ra. The INCDISTJ~IN procedure contains the high level con-
trol structure for the algorithm, while procedures PROCESSNODE~
and PROCESSNODE enqueue new pairs for each entry in a node
from RI and Rz, respectively. In lines 6 and 11 of INCDISTJOIN,
the next closest pair of objects is reported. The entire state of the
algorithm is represented by the priority queue. Thus, at this point,
control can be passed to the process that invoked the incremental
distance join algorithm, which may or may not decide to retrieve
more pairs. If one of the items in the dequeued element is a node,
then one of the procedures PROCESSNODE~ and P~ocEssNoDE2
is called. This version of the algorithm arbitrarily chooses to call
PROCESSNODEI if both items are nodes.

In line 4 of PROCESSNODE~, [0] denotes the boundingrectan-
gle of 0 (note that in practice the object reference must be enqueued
along with the bounding rectangle). If the object geometry is repre-
sented directly in the leaf nodes, then the actual objects would be
used here instead of the bounding rectangles. Also, in this case, the
if statement in line 7 of INCDISTJOIN would not be needed.

The connection of the incremental distancejoin to our incremen-
tal nearest neighbor algorithm [181 is easy to see from Figure 3, as
PROCESSNODE~ and PRocEssNo~E2 are essentially the same as
the basic loop of the nearest neighbor algorithm. In particular, in
PROCESSNODE~, item 2 serves the role of the query object.

2.2.2 Priority Queue Ordering and Tree Traversal

The key for ordering the priority queue of pairs is the distance be-
tween the items. An important question is how to break ties for pairs
with the same distance. Different choices will lead to vastly differ-
ent traversal patterns. Since our goal is to produce result pairs as
soon as possible, it is obvious that we want to order pairs containing
objects or object bounding rectangles ahead of (i.e., with greater pri-
ority than) pairs of nodes. Furthermore, given two pairs with nodes,
the pair containing nodes at a deeper level is given a higher priority.
This leads to a depth-first-like traversal pattern of the tree hierarchy
of the spatial indexes for pairs having the same distance (a version
using this approach is termed “DepthFirst” in Section 4.1.1). Alter-
natively, if nodes at a higher level are given priority, a breadth-first-

‘Note that objects only appearin one of the combinations that we
allow in order to reduce the number of accesses to the object storage.
With our scheme, each object must be accessed at most once for each
object/object pair.

2A pair (ii, &) is said to be generated from a pair (ii , i&) if the
pair (ii , 22) results from a sequence of algorithm operations starting
with (ii, i:). As an example, all object/object pairs are ultimately
generated from the initial pair of root nodes.

239

INCDISTJOIN(R~, R2)
I Q t N~~WPRIORITYQUEUBO
2 ENQUEUE(Q, 0, (ROOTNODE(ROOTNODE(R
3 while not ISEMPTY do
4 Elem + DEQUEUE(Q)
5 if both items in Elem are data objects then
6 Report Elem
7 else if both items are object bounding rectangles then
8 let O1 and O2 be the corresponding object references
9 D +- DIST(O~, 02)

IO if ISEMPTY or D < FRONT(Q).DlST then
I1 Report (Oi,O2)
I2 else
13 ENQUBUE(Q, 13, (O,, OZ))
14 endif
IS else if item 1 in Ebrn is a node then
16 PROCESSNODEI(Q, Elern)
17 else
18 PROCESSNODE2(Q, Ekm)
19 endif
20 enddo

PROCESSNODEI (Q. Hem)
I Node +- item I of Elem
2 Item2 +- item 2 of Elem
3 if Node is a leaf node then
4 for each entry [0] in Node do
5 ENQUEUE(DISTUO], Itemz), ([Ol, Itemz))
6 enddo
I else
8 for each Child node of Node do
A ENQUEUE(Q, Dls’r(Child, Items), (Child, Itemz))
10 enddo
11 endif

PRO&SSNODE~(Q, Elem)
I Same as PROCESSNODE~, with items 1 and 2 exchanged

Figure 3: Basic version of incremental distance join algorithm
where leaf nodes contain bounding rectangles.

like traversal would result (termed “BreadthFirst” in Section 4.1.1).
This could be of advantage if WC wanted to compute a large por-
tion of the distance join operation (i.e., generate a very large num-
ber of pairs), as it would in certain cases enable the algorithm to bet-
ter schedule node and object accesses [21]. However, given our us-
age assumptions, much of the work may be wasted, as a breadth-first
traversal would require processing all pairs at one level before any
pairs at the next level are considered.

In the version of the INCDISTJOIN procedure that we presented
in Figure 3, when the dequeued pair contains two nodes, (711, no),
node ni is arbitrarily chosen to be processed (i.e., its entries exam-
ined) rather than nZ. This is not a good strategy, as it will cause RI
to be traversed down to the leaf level before the root of Rz is pro-
cessed. A better strategy would attempt to traverse the two indexes
more evenly so that the level of the nodes in node/node pairs does
not differ by much. This is done by choosing to process the node
that is at a shallower depth. If both nodes are at the same level in
their respective trees, then the algorithm chooses to process the node
whose region has a larger area. Although the strategy that we have
outlined is not always the best one, our experiments have shown it
to perform well overall.

An alternative to processing only one of the nodes for node/node
pairs is to process both simultaneously (termed “Simultaneous” in
Section 4.1.1). This is more in line with traditional spatial join algo-
rithms].8,21]. In fact, if this is done, then many of the optimization
techniques developed for spatial join can be applied [8], such as the
usage of plane sweep and the restriction of the search space. The
idea is that when processing pair (nl, na), we first mark the entries
in nr that are within the specified distance range (see Section 2.2.3)
from the space spanned by na, and similarly for the entries in na we
mark the ones that are within the specified distance range from the
space spanned by n1. This serves to eliminate entries that cannot
possibly become members of any of the new pairs. Next, a plane
sweep along one of the axis is used to pair up the entries in the two
nodes (which have previously been sorted along that axis). Figure 4
illustrates the plane-sweep process, where rl and r2 are entries in
n1, and sl, s2, s3 and s4 are entries in n2. Without plane sweep,
rl would have to be checked for intersection with all the entries in
n2, but with plane sweep we only have to check intersection of rl
with sl and s2. The plane-sweep algorithm given in [8] has to be
modified to work for a non-zero maximum distance (recall that [8]
focuses on spatial join with the intersection predicate). For exam-
ple, if the rectangle currently being used has the coordinate range
(xi, 5~2) along the sweep axis, then the algorithm must sweep along
the entries in the other node up to the coordinate value 22 + D,,, ,
where D,,, is the maximum distance. As an example, in Figure 4,
we would have to check whether s3 is within the proper distance of
rl, in addition to sl and s2.

Figure 4: Plane sweep along z-axis over the entries in two nodes.

Processing both nodes simultaneously for node/node pairs is not
always better than processing only one node as in our original for-
mulation. Intuitively, it seems likely that the optimizations that it
affords will only yield significant benefits if the distance range is
rather narrow. As an extreme case, if the minimum is 0 and the max-
imum is unbounded, then all possible pairs of entries from the two
nodes will have to be generated, a total of]nr 1. In2 1 (InI denotes the
number of entries in node n). In contrast, if only one of the nodes
is processed, say nr , then only]ni I pairs will result. All of these
pairs may have a greater distance than the next closest pair. Thus,
in best case, only InI] pairs are generated from (nl, n2) with our
original formulation of the incremental distance join algorithm be-
fore the next object pair is reported. The downside, of course, is
that processingonly one node at a time may lead to each node being
accessed more times from disk when the algorithm has to compute
many object pairs.

If both nodes in node/node pairs are processed simultaneously,
then the incremental distance join algorithm resembles somewhat
the spatial join algorithm introduced in [21]. The difference is
that [21] is breadth-first and is limited to finding intersecting object
pairs, although it would be straightforward to generalize it to com-
pute a spatial join with a within predicate (however, unlike with our
algorithm, if the pairs are desired in order of distance, then the en-

240

tire result would have to be computed and sorted before the first pair
can be reported).

Some widely used spatial data structures form unbalanced tree
hierarchies (e.g., quadtrees [28] and the buddy-tree [29]). Bounding
rectangles are not always present in the leaf nodes of these stmc-
tures, even when objects are not represented directly in the leaves
(i.e., the leaves only contain pointers to the objects). If this is the
case, then it is better to defer processing leaf nodes until both items
in node/node pairs are leaf nodes, at which time both leaf nodes
are processed simultaneously. This strategy will tend to reduce the
number of times each object needs to be accessed from disk.

2.2.3 Distance Range

A shortcoming of the algorithm as stated in Section 2.2.1 is that a
very large number of pairs will be inserted into the priority queue,
even when computing a modest number of object pairs for rela-
tively small object relations. Most of the pairs inserted in the pri-
ority queue will have a large distance, and will most likely never be
retrieved from the queue unless a very large number of object pairs
is requested. However, for object relations of non-trivial size, the
number of pairs in the Cartesian product of the two relations (recall
that a full distancejoin operation computes the Cartesian product) is
immense. For example, for two relations with 50,000 objects each,
the Cartesian product contains 2.5 billion pairs. Typical queries will
only require computing a very small fraction of this high number.
Thus, it is unlikely that pairs with a large distance are ever retrieved
from the queue. The large number of pairs put on the queue and
never requested occupies a great deal of memory space and slows
down queue operations3. Thus, we need a way of limiting the num-
ber of pairs inserted into the queue. One way of doing so is to impose
a maximum distance on object pairs. Any pair that has a distance
larger than the maximum can be rejected, as no object pair with less
distance can be derived from it (this is guaranteed by the consistency
of the distance functions).

Above, we haveestablished the need to be able to impose a max-
imum on the distance of object pairs. In addition, it may be use-
ful for some queries to impose a minimum on the distance of object
pairs. The incremental distance join algorithm is easily modified so
that it limits the distance of the pairs that are returned to a range of
values. In order to effectively prune pairs based on a minimum dis-
tance, we need functions that compute an upper bound on the dis-
tance of any object pair that can be generated from any pair (il, &)
(such a function is clearly not needed for object/object pairs). In
other words, for any object pair (01, 02) generated from (il, &),
we have d(ol, 02) 5 d,,,(il, &), where d,,, is the upper bound
function appropriate for (ix, &). This means that if d,,,(il, &) is
smaller than the minimum, then we can discard the pair (il , ;2), as
no object pair with a distance larger than the minimum will be gen-
erated from (i1 , iz)

Now, the question is how to compute d,,, for the various types
of pairs. For pairs of nodes, (r~l, nz), we have dmax(nl, n2) =
maxplEnl,PzEnz d(pI,pz). For a node/object pair (121, 02), we
have dmax(nl, 02) = maxplEnl d(pl, 02), and similar for ob-
ject/node pairs. The functions for nodelobr, obrinode, and obrlobr
pairs can be defined in a similar manner as for node/node pairs.
However, a closer approximation to the upper bound is possi-
ble for these types of pairs through the use of a distance metric
that has been termed MINMAXDIST [26]. The object bound-
ing rectangles are required to minimally bound the objects. The

3But see Section 3.2 for a description of a priority queue imple-
mentation that puts part of the queue on disk if its size is too large
to fit in memory.

key idea behind the MINMAXDIST metric is that if b is the d-
dimensional minimum bounding rectangle of object o, then each
of the d - 1 dimensional faces4 of b must touch o at some point.
Thus, given a point p, we have d(p, o) 5 maxpf Ef d(p, pf),
for each f E F(b), where F(b) denotes the set of faces of
b. The face S causing the right hand side of the inequality to
reach its minimum is the best approximation of d(p, o) given
the bounding rectangle b, so the function computing the MIN-
MAXDIST for a point and a bounding rectangle is dmm(p, b) =
minfEF(b)(max,jEf d(p,pf)). A practical way of computing the
value of d ,,(p, b) is to first compute the maximum distance from
p to a vertex of b, say urnax, and then to determine the vertex ad-
jacent to vUmax (i.e., along an edge) that is closest to p [26]. Now,
we can define dmax(nl , b2) = maxpen d,,(p, bz), and similarly
for obr/node pairs. The MINMAXDIST definition of d,,, for two
object bounding rectangles is more complicated: d,,,(bl , bz) =
~inj~EF(Dl),j~EF(b~)(m~~P~Ej~,p~Ej2 d(pl,pa)). The price of
basing the d,,, functions for pairs with at least one bounding rect-
angle on the MINMAXDIST metric is that they are more expensive
to compute than the simpler d,,, function for node/node pairs.

Figure 5 presents a version of PROCESSNODE~ that restricts
distances to a range of values. The arguments Min and Man spec-
ify the minimum and maximum desired distance. MINDIST de-
notes the regular distance functions (i.e., DIST in Figure 3) while
MAXDISrdenotes the d,,, functions. Again, this version of PRO-
CESSNODE 1 assumes that the leaf nodes of the spatial indexes store
bounding rectangles. We must also modify the if statement in line 7
of the INC:DISTJOIN procedure in Figure 3 to check that the dis-
tance D falls in the desired range. In case the object geometry were
represented directly in the leaf nodes, then the actual objects would
be used in line 4 of Figure 5. Also, if item 2 is an object, then
MAXDIST is equivalent to MINDIST.

PROCESS NODE 1 (Q, Elem, Min, MUX)
1 Node + item 1 of Elem
2 ltemz + item 2 of Elem
3 if Node is a leaf node then
4 for each [O] in Node do
5 if MAXDIST([01, Iternz) > Min and

MINDIST([O], Itemz) 5 Max then
6 ENQUEUE(Q, MINDIST([O], 1temz), ([O], Itemz))
7 endif
8 enddo
9 else

10 for each Child node of Node do
11 if MAXDIST(Child, Itemz) 2 A4in and

MINDIST(Child, Itemz) 5 MUX then
12 ENQUEUE(Q, MINDIST(Child, Item2), (Child, Items))
13 endif
14 enddo
15 endif

Figure 5: Portion of incremental distance join algorithm with
distance range restriction.

2.2.4 Estimating Maximum Distance
As we pointed out in Section 2.2.3, a reasonably narrow distance
range (i.e., small interval between minimum and maximum dis-
tance) is crucial for the incremental distance algorithm to perform

‘In two dimensions, the faces are line segments.

241

well. However, it is often not practical to require the user to set a
maximum distance. Furthermore, the maximum distance is likely to
be greatly overestimated. It is therefore important to have another
way of estimating the maximum distance, given some other infor-
malion. One way of doing so is to set an upper bound on the number
of pairs that the algorithm must compute. In many applications, es-
pecially involving interactive queries, a fairly low number of pairs
are known to be needed. This is aided by query languageextensions
that enablelimiting the numberof tuples in the result of queries (e.g.,
the “STOP AFTER” clause proposed for the “SELECT” statement
of SQL [lo]).

Given that the algorithm must compute a maximum of 1C pairs,
the algorithm can estimate the maximum distance based on the pairs
that have been seen so far. Obviously, if li object/object pairs have
been seen, then the pair with the largest distance among those li
pairs will provide a lower bound on the maximum distance neces-
sary to compute the K closest pairs. However, we can do better
than this by also making use of other types of pairs (e.g., nodelnodc
pairs). In general, more than one object/object pair may be gcn-
erated from a pair (il, iz). This means that much fewer than Ii
pairs are sufficient for estimating the maximum distance of Ii ob-
ject/object pairs.

In the following, D,i, and D,,, denote the minimum and max-
imum distance imposed on the pairs to be computed by the algo-
rithm, d denotes a regular distance function (i.e., computing min-
imum distance between two items) and d,,, denotes the functions
computing the upper bound on the distance of any object pairs gen-
erated from a pair. If the query specifies no maximum on the dis-
tance, then D,,, is initially 00. Ourgoal is to reduce D,,, as much
as possible, given Ii-, the maximum number of pairs requested.
Whenever a pair (ii, i2) is inserted into the priority queue, we show
below how to use the pair for the purpose of estimating a lower value
for D,,, Doing this adds overhead to the algorithm, but unless I\
is very large, it reduces considerably the number of pairs inserted
into the priority queue, and thereby improves the overall running
time of the algorithm.

A pair (ii, 82) is eligible to be used for estimating D,,, if
d(il, h) 2 fL,, and d,,,(zi , &) 5 D,,,. This guarantees that
all object/object pairs generated from (ir , i2) will have a distance
in the range [D,,,,,, D,,,]. Since we cannot know in advance how
many object pairs are generated from a pair (ir , iz), we must instead
determine a lower bound on this number. This can be derived from
the minimum number of objects in the subtree of ii and iz, assuming
they are nodes (if they are objects or object rectangles, this number
is one). The minimum number of objects in the subtree of a node
can, in turn, be derived from the minimum fan-out and the height of
the corresponding tree. For the R-tree, for example, the minimum
fan-out of nodes is typically 40% of the maximum fan-out (except
for the root node). A more aggressive strategy would result from us-
ing the expected number of pairs generated from (ii, iz) based on
the average node occupancy. However, if the number of pairs gen-
erated from (ii, 12) is over-estimated, then this may lead to a value

of ~,n,x that is too small (i.e., smaller than the Kth object/object
pair), thereby causing us to find less than I< pairs which will force
us to restart the query. The reason we need to restart is that the pri-
ority queue does not provide us any useful information as we will
have pruned too many entries by our maximum distance heuristic.

The process for estimating li maintains a set of pairs M, each of
which has been inserted in the priority queue but not retrieved from
it. When an eligible pair (i.e., with the distance function values as
specified above) is inserted into the priority queue, it is also inserted
into M. If this causes the sum of the number of object/object pairs
(actually, the lower bound of object/object pairs as described above)
that can be generated for the pairs in M to be larger than li, then

we remove pairs from M until this is not the case, setting D,,, to
the d,,, value of the pair removed last. The pair to remove next
is chosen based on the largest d max value. When a pair is retrieved
from the priority queue, we must also remove the pair from M if it
is present. However, when reporting the next object/object pair, we
can reduce the value of li by one.

The question is how to organize the set M. The operations that
are performed on M, in addition to insertion, are to remove the pair
with largest d,,, as well as to remove a pair given the particular
items in the pair. There is no single data structure that supports efti-
cient execution of both of these operations. In our implementation,
we chose to use a priority queue QM organized on the d,,, val-
ues to support finding the largest value, and a hash table to support
locating a particular pair. The hash table entries contain a pointer
to the corresponding priority queue entry, thereby enabling deleting
the entry from QM for a pair that must be removed. It is important
not to confuse QM with the main priority queue of the algorithm
(i.e., Q in Figure 3). QM will not be discussed further in the re-
mainder of this paper.

2.2.5 Other Extensions

A number of other extensions of the incremental distance join are
possible. The first is to add some spatial criterion to one or both of
the relations involved in the join. As an example, the objects may
be required to fall inside a given rectangle, or they may be required
to have some minimum area. Such an extension can actually be ap-
plied equally to other spatial join algorithms, and does not necessar-
ily involve modifying the algorithm. Instead, the distance functions
(which may be parametrized) can check the additional spatial cri-
teria, and return some special value if the pair should be discarded.
Of course, if the spatial criterion has a high selectivity (i.e., such that
few objects in each relation participating in the join satisfy the cri-
terion), then it may be better to first restrict the number of objects
by using the spatial criterion before computing the join. However,
the cost of that alternative will include building a spatial index on
the resulting restricted relations, or it will require using some algo-
rithm other than the incremental distance join. In either case, it may
take longer to produce the first few pairs with the alternative than
with the incremental distance join, since it it highly geared towards
producing pairs early.

The second extension is to impose a secondary ordering on the
pairs produced by the algorithm, besides the distance between the
objects. This is probably most useful if the resulting pairs are re-
quired to intersect, i.e., the maximum distance is 0. For example,
we may wish to find the intersections of roads and rivers in order
of distance from a given house. In the general case, this extension
requires modifying the algorithm. However, for the special case of
finding intersections, the distance functions could return 00 for pairs
that don’t intersect, but for pairs that intersect, the functions would
return some ordering value (such as the distance from the house in
our example).

Another possible extension is to find the pairs in reverse order
of distance, i.e., the farthest pair first, etc. This is relatively simple
to achieve. lnstead of ordering the elements on the priority queue
in ascending order of distance, we would order them in descending
order of distance (for example, this can be done by simply using the
negative of the distance as a key). In addition, instead of using the
regular distance functions as a key to order the pairs on the priority
queue, the d,,, functions must be used for all types of pairs except
object/object pairs (recall that the tErnax functions compute an upper
bound on the distance of object/object pairs generated from pairs).
As before, the algorithm will perform better if the distance range is
rather narrow. However, in this case, we can estimate the minimum
distance in the presence of an upper bound K on the number of ob-

242

ject pairs that will be requested. This is instead of estimating the
maximum distance as was described in Section 2.2.4.

2.3 Computing Distance Semi-Join
Recall that distance semi-join is a subset of a distance join, where
an object pair (ol, 02) appears in the result only if none of the prior
pairs contain 01 as the first item. Thus, we must keep track of the set
S, of objects 01 whose pairs (01,02) have been reported. The easi-
est way to extend the incremental distancejoin algorithm to compute
a distance semi-join is to use the algorithm unchanged and check
outside of the algorithm if object 01 in output pairs (01,02) has
been seen before (i.e., if it is present in the set S,). However, that
approach (termed “Outside” in Section 4.2.1) dots not take advan-
tage of the special structure of the distance semi-join to reduce the
amount of work expended by the algorithm. In this section we idcn-
tify several possible ways to modify the incremental distanccjoin al-
gorithm such that it computes the distance semi-join operation more
efficiently. Also, we discuss how the extensions and optimizations
described in section 2.2 for the incremental distance join algorithm
apply for computing the distance semi-join operation.

First, we must bring into the algorithm the knowledge of the
set S,, the set of objects from the first collection that has already
been seen. This is straightforward to do, and requires minor mod-
ifications to the INCDISTJOIN procedure of Figure 3 (termed “In-
side]” in Section 4.2.1) as well as to procedure PROCESSNODE~
(termed “lnside2” in Section 4.2.1). Specifically, in line 4 of IN-
CDISTJOIN, if in the dequeued element (i, , in), il is an object or
an object bounding rectangle, then we check if il is present in S,.
If so, then we discard the pair. In PROCESSNODE~, if the node is
a leaf node, then in line 5 we must ignore entries that correspond to
objects that are present in S,.

Bringing the knowledge of the set S, into the algorithm is a defi-
nite improvement, but we can do better still. The next improvement
is based on the fact that for each pair (01; 02) in the output of the dis-
tance semi-join of A and B, 02 is the object in B nearest to 01. This
can be exploited locally in the PROCESSNODE procedure (termed
“Local” in Section 4.2.1). To see how, note that for a pair (01, Q),
the object in the subtree of TQ closest to 01 is most likely in some of
the entries of ‘nz whose region is near 01. Specifically, we compute
d,,,(ol, e2) for each entry e2 in n2, and determine the minimum
value, D,,. Any entry in 122 that is farther away from 01 than D,,
can be discarded as it is guaranteed not to contain the object in the
subtree of 122 nearest to ol. This principle can be applied in PRO-
CESSNODE2 even for pairs (il, n2) where il is an object bounding
rectangle or a node, since d,,, (il, 7~2) is an upper bound on the dis-
tance of any object pair derived from (;, , ng). Observe that this ap-
proach is analogous to the downward pruning strategy of the nearest
neighbor algorithm of [26].

A more aggressive strategy can be obtained by using the same
insight in a global fashion. In other words, for each object and node
in RI (the spatial data structure representing the objects in A), main-
tain the smallest d,,, distance that has been seen so far (termed
“GlobalAll” in Section 4.2.1). Any time we consider enqueuing a
pair (il , i2), we would first make sure that the distanceofthe pair is
smaller than the smallest d,,, distance for il. Employing this strat-
egy requires a considerable amount of memory space if RI contains
many objects. Nevertheless, it is useful as a comparison with the
other strategies. Moreover, we can compromise by only maintain-
ing the globally smallest d,,, distance for the nodes of RI, which
requires an order of magnitude less space than doing so also for the
objects in RI (termed “GlobalNode” in Section 4.2.1).

As in the case of computing the distance join incrementally, WC
can estimate the maximum distance needed to produce a maximum
of kY pairs for the distance semi-join. This is done in much the same

way as described in Section 2.2.4. The difference, here, is that in
the set M of the pairs being used in the estimation process, the first
item in each pair is unique. In other words, if ($,, i2) is a pair in
M, then no other pair in M has il as the first item5, Also, the num-
ber of pairs generated from a pair (il , i2) is bounded by the num-
ber of objects in the subtree of il, assuming it is a node. When an
item (il, i2) is about to be inserted into M, WC must first check if
another item (i1, ii) exists in 1M. If so, then WC replace (il , &) by
(il, i2) if the latter has a smaller d,,, value and ignore (il , iz), oth-
erwise. There are two additional subtle differences. When (01,02)
is reported, any pair (ol, i2) in M must be removed. Also, a pair
(121, ;2) may only be inserted into M if 721 has never been processed
for any pair (7~1, &). Otherwise, some of the objects in the subtrcc
of 11.1 would be counted more than once (since processing n,l in the
pair (n,l, $) may lead to some pairs (el , ih) to be inserted into M
where e:1 is an entry in nl). This may lead to an estimate of D,,,,
that is too low thereby causing us to find less than I< pairs which
will force us to restart the query. The reason we need to restart is
that the priority queue does not provide us any useful inlbrmation
as we will have pruned too many entries by our maximum distance
heuristic.

The extensions discussed in Section 2.2.5 also apply for the dis-
tance semi-join version of the our incremental algorithm. However,
modifying the algorithm to find pairs in reverse order of distance
leads to what may seem an unintuitive, and perhaps not very useful.
result. There are two possible ways of defining a reverse distance
semi-join operation on relations A and B. The first is to report in
reverse order of distance the object in B closest to each object in A.
The second is to report in reverse order of distance the object in B
fhrthest from each object in A. The straightforward way of apply-
ing the incremental distance join to the reverse distance semi-join
will be in accordance to the second definition since it corresponds
to reporting for each object o1 the first pair (ol, 02) that occurs in a
reverse distance join. The first definition would mean reporting for
each object o1 the last pair (ol, 02) that occurs in a reverse distance
join, which would be extremely inefficient.

3 Experimental Environment

3.1 System and Data
All of our experiments were run on a Sun Ultra I Model 17OE ma-
chine, rated at 6.17 SPECint95 and 1 I .80 SPECfp95, with 64MB
in main memory and a 2.1 GB internal disk drive. The spatial data
structure that we used is an RI-tree [5]. The size of the nodes was
IK, for a maximum fan-out of 50, with 256K of memory used for
buffers. The spatial objects were represented directly in the leaves
of the R*-trees. We chose that approach in order to simplify the
analysis of the execution time results. Also, the organization of the
external object storage has a large effect on the performance, and
thus introduces an additional variable. The software was compiled
with a GNU C++ compiler set for maximum optimization (-03).
The distance functions were based on the Euclidean metric.

As in other evaluations of spatial algorithms (e.g., [8, 21]), we
derived our test data from the TIGER/Line File [9]. We used two
sets of points from the coverage of the Washington, DC area: Water
contains the centroids of water features (37,495 points), and Roads
contains thecentroids of road features (200,482 points). It should bc
clear that dealing with line data is much more complex than points.
Making experiments with line data and more complex spatial fca-
tures is a subject for future study.

“As far as M is concerned, an object bounding rectangle is
treated in the same way as the corresponding object; both are rep-
resented by the object identifier.

243

3.2 Implementation Details
An important issue is the implementation of the priority queue. It
should be clear that the number of object pairs in the result of a
full distance join operation is extremely large, or the same as in the
Cartesian product of the relations (in the absence of distance range
restrictions). Even when computing the entire distance join (this is
not likely to be very useful in practice, however), the size of the pri-
ority queue in the incremental distancejoin algorithm remains much
smaller than the size of the result. Nevertheless, a small fraction of
a very large number is still a large number. Thus, the size of the pri-
ority queue may be too large to fit in memory. However, an exclu-
sively disk-based scheme for representing the priority queue is not
desirable, due to poor performance.

In our experiments, we use a simple hybrid memory/disk
scheme that stores parts of the priority queue in a memory-based
heap structure (we chose the pairing heap structure [13]), while the
rest is offloaded to disk. If a relatively small number of object pairs
is requested, then the vast majority of pairs put on the priority queue
will never be needed. Thus, our goal in developing the scheme was
that the contents of the priority queue that were put on disk would
only be needed when a large number of object pairs were requested.
Another reason for limiting the contents of the memory-based heap
to pairs that are likely to be needed is that the algorithmic com-
plexity of heap operations is directly related to the size of the heap.
We chose to use a three-tiered scheme for representing the priority
queue, based on the distance of the pairs. Pairs with a distance less
than Dl are stored in the memory-based heap, pairs with a distance
less than D2 are stored in an unorganized list in memory, while pairs
with a distance of D2 or greater are stored on disk. If the heap be-
comes empty, then the contents of the unorganized list is put into
the heap, the value of Dl is changed to D2, a new value is chosen
for D2, and pairs on disk with distance between the new values of
Dl and D2 are put into the unorganized list (actually, we avoid ac-
cessing the pairs on disk unless they need to be inserted into the pri-
ority queue). In our implementation, a fixed distance increment DT
is used to update Dl and D2, with their initial values being DT and
2DT, respectively. The part of the queue stored on disk is organized
in linked lists of pages with the pairs in each list having distances in
the range [k&, (Ic + ~)DT).

The drawback of our priority queue scheme is that it depends
on a fixed constant DT rather than responding dynamically to the
distribution of the queue contents. In the experiments, we chose a
value for DT that worked well for the input relations. Developing
a way of choosing DT based on the input relations, or finding some
other dynamic method of deciding what part of the priority queue is
stored on disk, are subjects for further investigation.

In Section 2.3, a set S, is maintained of objects from A for
whom a pair has been reported by the incremental algorithm for the
distance semi-join. In our experiments, we use a bit string repre-
sentation for S,. The reason is that a bit string representation is ex-
tremely efficient, both for membership tests and insertions. There is
certainly a space/time tradeoff involved, since a bit string represen-
tation of a set occupies a fixed amount of space, regardless of the size
of the set. For sets of only a few elements, it would be much more
space efficient to use some other approach. Nevertheless, given the
memory capacity of modem computers, the size of the bit strings is
modest even for large data sets. For example, a bit string represen-
tation of a subset of 1 million elements would occupy 122K.

4 Performance Results

In this section, we evaluate the effectiveness of the strategies that we
presented for enhancing the efficiency of the incremental distance

join algorithm, as well as compare its performance to competing ap-
proaches for computing the distancejoin and distance semi-join. In
our ex

6”
eriments, we always joined Water with Roads,except where

noted .

4.1 Distance Join
4.1. I Priority Queue Ordering and Tree Traversal
Section 2.2.2 discussed the effect of choosing a different priority
queue ordering (i.e., how ties are resolved for pairs with the same
distance) as well as how to process pairs of two nodes. Table I
lists the values of some performance measures (the number of ob-
ject distance calculations, the maximum queue size, and the num-
ber of node I/O operations) for retrieving up to 100,000 pairs of
the distance join for a version of the incremental distance join algo-
rithm where pairs with the same distance are ordered so that the al-
gorithm performs a depth-first traversal (i.e., nodes at a deeper level
are given priority); only one node is processed at a time in node/node
pairs; and the two spatial indexes are traversed evenly7. In all ex-
periments below, except where otherwise noted, this type of queue
order and traversal is used. In Figure 6, we plot the execution times
of this version (labeled “DepthFirst”) against three other versions:
(1) “BreadthFirst” orders pairs with the same distance such that it
leads to breadth-first traversal; (2) “Basic” is the basic algorithm
of Figure 3, where we always process the first node in node/node
pairs; and (3) “Simultaneous” where both nodes of node/node pairs
are processed simultaneously.

Overall, the shape of the graphs is similar. For the versions us-
ing the priority queue order leading to depth-first traversal (“Depth-
First”, “Basic” and “Simultaneous”), obtaining the first pair is rela-
tively inexpensive, while the cost does not rise much for between 10
and 10,OOOpairs. However, for computing a larger numberof pairs,
the cost rises dramatically.

The difference in execution times for the four versions is due
to differences in the values of all performance measures in Table I.
However, the dominant factor, although not shown here, is the num-
ber of distance calculations and the size of the priority queue, which
are much larger for “Basic”and “Simultaneous”. Since a maximum
distance is not specified for these experiments, the “Simultaneous”
version is not able to benefit from its filtering and plane-sweep tech-
niques. The reason for “DepthFirst” being somewhat faster than
“BreadthFirst” for retrieving one pair is that there is one object pair
with a distance of 0. This pair is reported as soon as it is found by
“DepthFirst”, but in “BreadthFirst” it is only reported after all inter-
secting nodes have been processed. After the first pair, the differ-
ence between these methods is negligible.

An interesting question is what the reason is for the sharply
higher cost for computing 100,000 pairs compared to computing
10,000 pairs. Table 1 reveals that there is a relatively larger in-
crease in node I/O between computing 10,000 and 100,000 pairs
(node I/O counts the number of times a requested node is not in the
node buffer). The number of node accesses (not shown in the table)
increases by about 43%, and almost all of the additional accesses

‘Since the distancejoin is symmetric, the result ofjoining Roads
with Water is the same. However, the incremental distance join al-
gorithm is not necessarily symmetric in its execution pattern, so that
the execution time may be different based on the order of the joined
relations. The distance semi-join operation is not symmetric, so that
result of a distance semi-join of Roads with Water is different from
a distance semi-join of Water with Roads.

7Recall that by traversing evenly we mean that if the nodes in a
node/node pair are at a different level in their respective trees, then
we choose to process the node at a shallower level.

244

Time Dist. Queue Node
Pairs (sec.) Calc. Size I/O

1 6.9 307994 1002536 3019

1 ,jq iipi”,E~~~ jq
1OO:OOO 23.8 479262 2229874 28356

Table 1: Values of performance measures for incremental dis-
tance join algorithm using depth-first traversal, processing one
node at a time, and using even traversal.

are for nodes that are not present in the node buffer. A larger node
buffer, or a better buffer strategy, will most likely improve the per-
formance for computing 100,000 pairs. Another factor in the higher
cost of computing 100,000 pairs is that for that many pairs, parts of
the priority queue contents that were written to disk must be read
back into memory.

The values of the performance measures when joining Roads
with Water, instead of Water with Roads, is virtually the same for
these versions of the algorithm, except for “Basic”. Since Water
is larger, many more pairs are generated (in this case, Water is tra-
versed first). In fact, for retrieving 100,000 pairs, too many pairs
were generated for the priority queue to fit on disk. Thus, the treat-
ment of node/node pairs in “Basic” is clearly too simplistic.

45
3
u
E

40

8 35

2 30

.g 25

5, 20

'3 15

B 10
w

Basic -+-
Simultaneous -+-.

BreadthFirst -o--

0 . *' ' . ,' ' ' *' - . -' '
1 10 100 1000 10000 100000

Number of pairs (logarithmic scale)

Figure 6: Execution time for different queue order and node
processing.

4.1.2 Maximum Distance and Maximum Pairs

In Section 2.2.3 we discussed the importance of imposing a maxi-
mum distance, and in Section 2.2.4 we described how the maximum
distance can be estimated based on an upper bound on the number
of object pairs that will be requested. Figure 7 compares the execu-
tion time of the regular algorithm (i.e., “DepthFirst” from the pre-
ceding section) to two versions of the algorithm applied to distance
join: (I) “MaxDist” is the regular algorithm with maximum distance
set to the distance of pair number 1000, 10,000, and 100,000 (for
“MaxDist lOOO”, we only computeup to lOOOpairs, etc.); (2) “Max-
Pair” uses the maximum distance estimation for an upper bound of
1000 and 10,000 pairs (setting the maximum to 100,000 was slower
than the “Regular” version). The purposeof showing the “MaxDist”
plots is to demonstrate the effect of setting the maximum distance,

and it also provides a useful benchmark of the effectiveness of the
maximum distance estimation of “MaxPair”. Of course, in practice
we will not know in advance the distance of pair number 1000, etc.

Figure 7 confirms the benefit of setting the maximum distance.
The performance was very similar for the three values for the max-
imum distance. Setting the maximum number of pairs is seen to be
only beneficial for a relatively small number of pairs. For a maxi-
mum of 1000 pairs, we get a similar performance as for setting the
maximumdistance. When the maximum is set to 10,000 pairs, there
is less beneht, as the maximum distance estimate is not as tight and
the overhead of the estimation process is greater.

In Section 4.1. I we confirmed that processing both nodes simul-
taneously for node/node pairs is worse than processing only one at
a time if no maximum distance is specified. We performed the same
experiments as shown in Figure 7 using the “Simultaneous” ver-
sion of the incremental distance join algorithm. Although WC do not
explicitly present these results here, as expected, the performance
of “Simultaneous” was better than that of “DepthFirst” when a rcl-
atively small maximum distance was specified, or up to 20% for
“MaxDist 1000”. However, the improvement was most pronounced
for retrieving only a few pairs, and was much smaller for retrieving
IO or more pairs, or usually about 3-5%. Specifying a maximum on
the number of pairs was also a little faster using the “Simultaneous”
version for a very small number of pairs. For IO pairs or more, how-
ever, it proved better to process only one node at a time in node/node
pairs, although the improvement was not great (typically about 2-
4%).

?i
14

5 12
8 210

.; 8
5 6 .-
5

B
4

W2

MaxDist 10,000
MaxDist 100,000 x ,:'

0' s . I' ' ' ,' ' ' I' ' ' *' ' ' L'
1 IO 100 1000 10000 100000

Number of pairs (logarithmic scale)

Figure 7: Execution time for different maximum distance and
maximum pairs for distance join.

4.1.3 Priority Queue Implementation
In Section 3.2 WC discussed a hybrid implementation of the prior-
ity queue that offloads parts of the queue to disk. Figure 8 gives
the execution time for a purely memory-based queue implemcnta-
tion as well as the hybrid one, where two different values of Il)T arc
used for the hybrid approach’. The memory-based queue is only
a little slower for up to 10,000 pairs. However, for 100,000 pairs.
it is almost an order of magnitude slower, due to excessive virtual
memory thrashing, taking over 180 seconds to compute. The hy-
brid approach performed almost equally well for the different val-
ues of DT, except when retrieving 100,000 pairs. In that case, the
higher DT value (i.e., “Hyhrid2”) was helter, most likely because

“The values of DT, chosen somewhat arbitrarily, correspond to
the distancesofpairs numher7,663 and 34,906. The latter value was
used for all the other experiments.

245

it required fewer reads from the disk portion of the priority queue.
For fewer than 100,000 pairs, the lower DT value (i.e., “Hybridl”)
gave slightly better performance, as fewer priority queue elements
had to be written to disk. The best value for DT depends both on
the nature of the data sets and the amount of available memory.

Memory +-

0 L ’ ’ *’ ’ ,’ ’ ’ *’ ’ ,’ ’ *J
1 10 100 1000 10000 100000

Number of pairs (logarithmic scale)

Figure 8: Execution time for storing the priority queue entirely
in memory vs. offloading parts on disk.

4. I .4 Alternative Implementations

The distancejoin operation can be computedin other ways than with
the incremental distance join algorithm. If a maximum distance is
imposed, then a spatial join with a within predicate can be executed,
with the output being sorted once it is done. If no maximum distance
is imposed, then some distance must be guessed at if an algorithm
for the spatial join with within predicate is to be used. If the distance
is too small and not enough pairs result, then the spatial join must be
executed again with a larger distance. Due to this problem, we do
not use a spatial join algorithm for comparison.

Another way of computing a distance join is to use a nested loop
approach and compute the distance between all possible pairs of
objects. However, this will not compare favorably with using the
incremental distance join algorithm unless a very large number of
pairs is needed, which is unlikely to arise in practice (for example,
the full join for our data sets contains about 7.5 billion pairs). Nev-
ertheless, we did an experiment with this approach using the Water
and Roads data sets. For simplicity sake, we only computed the dis-
tance values but didn’t store them nor did we sort at the end, which
would be necessary for a real implementation. The data set of the
inner loop was read completely into memory in order to avoid re-
reading it. The time to execute the experiment was over 3 l/2 hours.
In that amount of time, the incremental distance join is able to com-
pute at least 100 million pairs. However, for that many pairs, the
priority queue becomes so large that the incremental distance join
is not practical unless a very large disk space is available.

4.2 Distance Semi-Join
In this section we discuss some results of our experiments for com-
puting the distance semi-join with variants of the incremental dis-
tance join algorithm. Since we are joining Water with Roads, this
results in finding the nearest neighbors of points in Water.

4.2. I Puir Filtering and Smallest d,,, Distance
In Section 2.3 we enumerated several ways of filtering out pairs
(ii, ;z) where ir is an object or an object bounding rectangle and

11 has already been reported. Also, we presented ways of limit-
ing the number of pairs generated based on the rl,,, distance of
pairs. Figure 9 gives the execution time for these various filtering
methods: (I) “Outside” executes the regular incremental distance
join algorithm and filters out resulting pairs that contain objects that
havealready beenreported; (2) “Inside!” filters only in the INCDIS-
TJOIN procedure of Figure 3; and (3) “Inside2” filters also in the
PROCESSNODE~ procedure. There are three schemes that exploit
the d,,, distance, al! of which use the filtering of “Inside2”: (I)
“Local” only works locally in the PROCESSNOEX! procedure; (2)
“GlobalNodes”uses the local strategy, as well as globahy maintain-
ing the smallest d,,, distance of nodes; and (3) “GlobalA!!” glob-
ally maintains the smallest d,,, distance of both nodes and objects.

Filtering pairs outside the INCDISTJOIN procedure appears to
be slightly better for up to 1000 pairs. However, the priority queue
became too large to find the neighbors of all points in Water. Filter-
ing inside INCDISTJOIN and/or PROCESSNODE! saves some dis-
tance calculations and node accesses for retrieving 1000 or more
pairs, but this was outweighed by more member checks against the
S, set, at least for up to 1000 pairs. For more pairs the benefit of
more filtering becomes greater, and for finding the neighbors of all
points in Water “Insidel” is about 47% slower than “Inside2” (530
vs. 362 seconds; this is not shown in Figure 9 in order not to obscure
the time difference for smaller numbers of pairs).

The three schemes for exploiting d,,, distances also are very
similar for up to 10,000 pairs. However, for much larger number
of pairs, the benefit of maintaining the d,,, distance of a!! objects
and nodes (“GlobalAll”) becomes more pronounced. Doing it only
for nodes (“GlobalNode”) did not seem to result in appreciable im-
provement compared to “Local”.

1 10 100 1000 10000 100000
Number of pairs (logarithmic scale)

Figure 9: Execution time for storing priority queue entirely in
memory vs. offloading parts on disk.

4.2.2 Maximum Distance and Maximum Pairs
As in Section 4.1.2, we now report on experiments testing the ef-
fect of setting a maximum distance or an upper bound on the num-
bers of pairs for computing the distance semi-join operation with the
incremental distance join algorithm. Figure 10 shows the result of
doing this using the “Local” version of Section 4.2.1. The figure
confirms the benefit of restricting the maximum distance. However,
setting the maximum distance to be the largest possible distance be-
tween two objects in the result of the distance semi-join (“MaxDist
Al!“) does not appear to speed up the process. Notice that setting the
maximum number of pairs to 1000 does improve the execution time,
making it virtually identical to setting the maximum distance to the
distance of the 1 OOOch pair. However, choosing 10,000 or more as

246

the maximum number of pairs makes the algorithm slower, as such a
large limit does not give a tight estimate for the maximum distance,
and the overhead cost incurred in estimating the maximum distance
exceeds its benefit. The cost of computing the neighbor of all points
in River (not shown in the figure) is about 35 seconds for “MaxDist
All” and 44 seconds for “MaxPair All”. The former is about 14%
less than if maximum distance is not set. Thus, we can see that set-
ting a low limit on the distance or the number of pairs in the out-
put gives significant savings (up to 50% or more), while less so for
higher limits.

18

Q 16
F 14
8 al 12
z?

E lo
‘ij 8
5 .x= 6
a 8 4

w 2

MaxDist 1000 s
MaxDist 10,000 -t--

MaxDist All -o--

0 ’
1 10 100 1000 10000

Number of pairs (logarithmic scale)

Figure 10: Execution time for different maximum distance and
maximum pairs for distance semi-join.

4.2.3 Alternative Implementations

The distance semi-join can also be implemented using a nearest
neighbor algorithm. For each object in relation A, we perform a
nearest neighbor computation in relation B, and sort the resulting
array of distances once all neighbors have been computed. For the
data sets in question, the execution time for doing this is about 27
seconds. The incremental distance join methods reported in Fig-
ure 9 compare favorably with this method for computing the entire
distance semi-join, especially “GlobalAll” (which took around 25
seconds). An even better result is obtained if we switch the order of
the relations (i.e., compute the distance seini-join of Rivers and Wa-
ter), in which case “GlobalAll” takes about 102 seconds while the
nearest neighbor implementation takes 141 seconds.

Observe that the “GlobalAll” strategy must keep track of the
d max distance for all objects and nodes in the R-tree for relation A,
which can occupy considerable storage. However, an implementa-
tion that uses a nearest neighbor algorithm must also store distance
values for all objects.

5 Concluding Remarks and Directions for Fu-
ture Research

Two new spatial join operations have been defined where the join
output is ordered by the distance between the spatialattribute values
of the joined tuples, and a number of different incremental strate-
gies for computing them have been examined. The rationale behind
our solutions is that frequently only a small part of the join result
will actually be needed. Our experiments revealed that for distance
join, the variant of the incremental distance join algorithms that per-
formed best overall was the one that processed only one node in
node/node pairs at a time, attempted to traverse the two trees evenly
(i.e., so as not to descend much farther into one than the other), and

ordered pairs with the same distance to result in a depth-first traver-
sal. Setting a limit on the distance of pairs was shown to improve
performance considerably, even if the maximum distance limit is
relatively large. However, imposing an upper bound on the number
of pairs is only worthwhile if the upper bound is not very large (e.g.,
in our experiments, an upperbound of 100,OOOpairs did not improve
performance). Nevertheless, in many of the applications that we en-
vision for our algorithm-most notably for interactive query inter-
faces, which quickly present the user with the most relevant part of
the query result-a small upper bound can be established.

For the distance semi-join, the strategies for improving the per-
formance of the incremental distance join were shown to yield sig-
nificant improvements, especially for computing a large part of the
result. The strategies use different means for eliminating from con-
sideration pairs that are sure not to be needed to compute the out-
put of the algorithm. The best overall strategy used every possi-
ble opportunity for eliminating pairs containing object 01 if a pair
(01,02) has been reported earlier, and uses global knowledge of
distance bounds to further eliminate pairs when processing nodes
(“GlobalAll” in Figure 9). This version was found to be better than a
non-incremental approach that computes the distance semi-join us-
ing a nearest neighbor algorithm. However, maintaining the global
knowledgeof distance bounds requires a somewhat large amount of
storage. A reasonable compromise is to exploit the distance bounds
only locally within a node as it is being processed (“Local”). The
effect of restricting the maximum distance or the maximum number
of pairs was found to yield similar benefits as when computing the
distance join.

Our algorithm finds use for processing queries such as “find the
city nearest to any river, such that the city has a population of more
than 5 million”. There are at least two options for a query optimizer
to use the incremental distance join algorithm to answer this query:

1. Execute the algorithm on the city and river relations and filter
out the result pairs where the city has too small a population,
and

2. First find the cities with a population greater than 5 million
and use that in the incremental distance join algorithm.

For the second option, a spatial index must be built on the result of
finding cities with a population of more than 5 million for the algo-
rithm to be applicable. Hence, this option is most appropriate if the
population criteria has a high selectivity. However, if the population
criteria has a low selectivity, then the first option would be superior.
More query plans may even exist, employing some other algorithm.
To enable the query optimizer to choose between these options re-
quires a cost model for the relevant algorithms (e.g., as developed
in [20] for the traditional R-tree spatial join). Developing such cost
models for the incremental distancejoin algorithms presentedin this
paper is a subject for further study.

Other issues for further investigation include developing tech-
niques to dynamically partition the priority queue between a
memory-based structure and a disk-based one. Our experiments
were limited to using two-dimensional points. Further work is
needed to determine how appropriate our approach is for more com-
plex spatial objects (i.e., with extent, such as lines and polygons), as
well as for higher dimensions.

6 Acknowledgements

We wish to thank Bj6m I? J6nsson and Dr. Robert E. Webber for
their critical comments.

247

References

[I] W. G. Aref and H. Samet. The spatial filter revisited. Proc.
of 6th International Symposium on Spatial Data Handling, pp.
190-208, Edinburgh, Scotland, September 1994.

[2] F. Bartling and K. Hinrichs. Probabilistic analysis of an al-
gorithm for solving the k-dimensional all-nearest-neighbors
problem by projection. BIT, 3 I (4):558-565,199l.

[3] R. J. Bayardo and D. P. Miranker. Processing queries for first
few answers. In Proc. of5th CIKM, pp. 45-52, Rockville, MD,
November 1996.

141

r51

t61

171

181

[91

DOI

1111

Cl21

[!31

I!41

[!51

[I61

[l71

L. Becker, K. Hinrichs, and U. Finke. A new algorithm for
computingjoins with grid files. Proc. of9th IEEE Int. Con& on
Datu Engineering, pp. 190-197, Vienna, Austria, April 1993.

N. Beckmann, H. P. Kriege!, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. Proc. of ACM SIGMOD, pp. 322-331, Atlantic
City, NJ, June 1990.

S. N. Bespamyatnikh. An optimal algorithm for closest pair
maintenance. Proc. of 11th Symp. on Computational Geome-
try, pp, 152-I 6 I, Vancouver, British Columbia, June 1995.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger. Multi-
step processing of spatial joins. Proc. ofACM SIGMOD, pp.
197-208, Minneapolis, MN, June 1994.

T. Brinkhoff, H. P. Kriege!, and B. Seeger. Efficient process-
ing of spatial joins using R-trees. Proc. qfACMSIGMOD, pp,
237-246, Washington, DC, May 1993.

Bureau of the Census. Tiger/Lineprecensusjles. Washington,
DC, 1989.

M. J. Carey and D. Kossmann. On saying “enough already!”
in SQL. Proc. of ACM SIGMOD, pp. 219-230, Tucson, AZ,
May 1997.

K. L. Clarkson. Fast algorithm for the a!! nearest neighbors
problem. Proc. of 24th IEEE Symp. on the Foundations of
Computer Science, pp. 226-232, Tucson, November 1983.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys,
!1(2):!2!-137,June 1979.

M. L. Fredman, R. Sedgewick, D. D. Slcator, and R. E. Tarjan.
The pairing heap: A new form of self-adjusting heap. Algo-
rithmica, l(l):1 11-129, 1986.

0. Giinther. Efficient computation of spatial joins. Proc. of
9th IEEE Int. Co@ on Data Engineering, pp. 50-59, Vienna,
Austria, April 1993.

A. Guttman. R-trees: a dynamic index structure for spatial
searching. Proc. of ACM SIGMOD, pp. 47-57, Boston, MA,
June 1984.

J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation.
Pror. ofACMSIGMOD, pp. !7!-182,Tucson, AZ, May 1997.

A. Henrich. A distance-scan algorithm for spatial access struc-
tures. Proc. of 2nd ACM Workshop on GIS, pp. 136-143,
Gaithersburg, MD, December 1994.

[181 G. R. Hjaltason and H. Samet. Ranking in spatial databases.
Advances in Spatial Databases- 4th Int. Symp., SSD’9.5, pp.
83-95, Portland, ME, August 1995. (Also Springer-Verlag
Lecture Notes in Computer Science 951).

1191 E. Hoe! and H. Samct. Data-parallel spatial join algorithms.
Proc. qf23rd Int. Conj on Parallel Processing, pp. 227-234,
St. Charles, IL, August 1994.

1201 Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost mode!
for estimating the performance of spatial joins using r-trees.
Proc. of 9th Int. ConJ: on Scient$c and Statistical Datubase
Management, pp. 30-38, Olympia, WA, August 1997.

12 I] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins
using r-trees: breadth-first traversal with global optimizations.
Proc. of 23rd VLDR Cor$, pp. 396-405, Athens, Greece, Au-
gust 1997.

[22] M. Kitsuregawa, L. Harada. and M. Takagi. Join strategies
on k-d-tree-indexed relations. Proc. of5th IEEE Int. Con& on
Data Engineering, pp. 85-93, Los Angeles, February 1989.

~231

1241

1251

1261

t271

1281

[291

[301

1311

~321

M. L. Lo and C. V. Ravishankar. Spatial joins using seeded
trees. Proc. of ACM SIGMOD, pp. 209-220, Minneapolis,
MN, June 1994.

D. Lomet and B. Salzberg. A robust multi-attribute search
structure. Proc. of the 5th IEEE Int. Con$ on Data Engineer-
ing, pp. 296-304, Los Angeles, February 1989.

D. Rotem. Spatial join indices. Proc. qf7th Int. Co@ on Data
Engineering, pp. 500-509, Kobe, Japan, April 1991.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. Proc. of ACM SIGMOD, pp. 71-79, San Jose, CA,
May 1995.

H. Samet. Applications of spatial data structures: Computer
graphics, image processing, and GIS. Addison-Wesley, Read-
ing, MA, 1990.

H. Samet. The design and analysis of spatiul data structures.
Addison-Wesley, Reading, MA, 1990.

B. Seeger and H. P. Kriege!. The buddy-tree: an efficient and
robust access method for spatial data base systems. Proc. of
16th VLDB Co@, pages 590-601, Brisbane, Australia, August
1990.

J. C. Shafer and R. Agrawa!. Parallel algorithms for high-
dimensional proximity joins. Proc. of 23rd VLDR Cortf, pp.
176-l 85, Athens, Greece, August 1997.

H. W. Six and D. Wood. Counting and reporting intersections
of d-ranges. IEEE Trunsuctions on Computers, 3 l(3): I8 l-
! 87, March 1982.

P. M. Vaidya. An O(n log n) algorithm for the all-nearest-
neighbor problem. Discrete & Computational Geometry,
4(2):101-l 15, 1989.

1331 T. L. Wang and D. Shasha. Query processing for distance met-
rics. Proc. qf 16th VLDB Con$, pages 602-613, Brisbane,
Australia, August 1990.

1341 A. N. Wilschut and P. M. G. Apers. Dataflow query execution
in a parallel main-memory environment. Proc. of Ist Int. Co@
on Parallel and Distributed Information Systems, pp. 68-77,
Miami, FL, December I99 I.

248

