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The problem of measuring "similarity" of objects arises in 
many applications, and many domain-specific measures 
have been developed, e.g., matching text across docu- 
ments or computing overlap among item-sets. We pro- 
pose a complementary approach, applicable in any domain 
with object-to-object relationships, that measures similar- 
ity of the structural context in which objects occur, based 
on their relationships with other objects. Effectively, we 
compute a measure that says "two objects are similar if 
they are related to similar objects:' This general similar- 
ity measure, called SimRank, is based on a simple and in- 
tuitive graph-theoretic model. For a given domain, Sire- 
Rank can be combined with other domain-specific simi- 
larity measures. We suggest techniques for efficient com- 
putation of SirnRank scores, and provide experimental re- 
suits on two application domains showing the computa- 
tional feasibility and effectiveness of our approach. 

1 I n t r o d u c t i o n  

Many applications require a measure of "similarity" between ob- 
jects. One obvious example is the "find-similar-document" query, 
on traditional text corpora or the World-Wide Web [2]. More gener- 
ally, a similarity measure can be used to cluster objects, such as for 
collaborative filtering in a recommender system [3, 6, 9], in which 
"similar" users and items are grouped based on the users' prefer- 
ences. 

Various aspects of objects can be used to determine similarity, 
usually depending on the domain and the appropriate definition of 
similarity for that domain. In a document corpus, matching text may 
be used, and for collaborative filtering, similar users may be iden- 
tified by common preferences. We propose a general approach that 
exploits the object-to-object relationships found in many domains 
of interest. On the Web, for example, we can say that two pages 
are related if there are hyperlinks between them. A similar approach 
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Figure 1: A small Web graph G and simplified node-pairs 
graph G 2. SimRank scores using parameter C = 0.8 are 
shown for nodes in G 2. 

can be applied to scientific papers and their citations, or to any other 
document corpus with cross-reference information. In the case of 
recommender systems, a user's preference for an item constitutes a 
relationship between the user and the item. Such domains are natu- 
rally modeled as graphs, with nodes representing objects and edges 
representing relationships. We present an algorithm for analyzing 
the (logical) graphs derived from such data sets to compute similar- 
ity scores between nodes (objects) based on the structural context in 
which they appear, a concept to be made clear shortly. The intuition 
behind our algorithm is that, in many domains, similar objects are 
related to similar" objects. More precisely, objects a and b are sim- 
ilar if they are related to objects c and d, respectively, and e and d 
are themselves similar. The base case is that objects are similar to 
themselves. 

As an example, consider the tiny Web graph G shown in Figure 
l(a), representing the Web pages of two professors ProfA and ProfB, 
their students StudentA and StudentB, and the home page of their 
university Univ. Edges between nodes represent hypeflinks from 
one page to another. From the fact that both are referenced (linked 
to) by Univ, we may infer that ProfA and ProfB are similar, and some 

• previous algorithms are based on this co-citation [10] information. 
We generalize this idea by observing that once we have concluded 
similarity between ProfA and ProfB, and considering that ProfA and 
ProfB reference StudentA and StudentB respectively, we can also 
conclude that StudentA and StudentB are similar. Continuing forth, 
we can infer some similarity between Univ and ProfB, ProfA and 
StudentB, etc. 
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Let us logically represent the computation by using a node-pair 
graph G 2, in which each node represents an ordered pair of nodes 
of G. A node (a, b) of G 2 points to a node (c, d) if, in G, a points 
to c and b points to d. A simplified view of G 2 is shown in Figure 
l(b); scores will be explained shortly. As we shall see later, scores 
are symmetric, so for clarity in the figure we draw (a, b) and (b, a) 
as a single node {a, b} (with the union of their associated edges). 
Further simplifications in Figure l(b) are explained in Section 3. 

We run an iterative fixed-point algorithm on G 2 to compute what 
we call SimRank scores for the node-pairs in G ~. The SimRank 
score for a node v of G 2 gives a measure of similarity between the 
two nodes of G represented by v. Scores can be thought of as "flow- 
ing" from a node to its neighbors. Each iteration propagates scores 
one step forward along the direction of the edges, until the system 
stabilizes (i.e., scores converge). Since nodes of G 2 represent pairs 
in G, similarity is propagated from pair to pair. Under this com- 
putation, two objects are similar if they are referenced by similar 
objects.l 

It is important to note that we are proposing a general algorithm 
that determines only the similarity of structural context. Our algo- 
rithm applies to any domain where there are enough relevant rela- 
tionships between objects to base at least some notion of similarity 
on relationships. Obviously, similarity of other domain-specific as- 
pects are important as well; these can--and should--be combined 
with relational structural-context similarity for an overall similarity 
measure. For example, for Web pages we can combine SimRank 
with traditional textual similarity; the same idea applies to scien- 
tific papers or other document corpora. For recommender systems, 
there may be built-in known similarities between items (e.g., both 
computers, both clothing, etc.), as well as similarities between users 
(e.g., same gender, same spending level). Again, these similarities 
can be combined with the similarity scores that we compute based 
on preference patterns, in order to produce an overall similarity mea- 
sure. 

The naain contributions of this paper are as follows. 

• A formal definition for SimRank similarity scoring over arbitrary 
graphs, several useful derivatives of SimRank, and an algorithm 
to compute SimRank scores (Section 3). 

• A graph-theoretic model for SimRank that gives intuitive math- 
ematical insight into its use and computation (Section 4). 

• Experimental results using an initial in-memory implementation 
of SimRank over two different real data sets that show the effec- 
tiveness and feasibility of SimRank (Section 6 of the full version 
of this paper [4]). 

Our basic graph model is presented in Section 2. 
This paper is a shortened version of [4]. It primarily omits the 

discussion of related work and experimental results (Sections 2 and 
6 of [4], respectively). It also omits some technical extensions and 
discussion, which are noted in the body of this paper. 

2 Basic Graph Model 
We model objects and relationships as a directed graph G = (V, E)  
where nodes in V represent objects of the domain and edges in 

1The recursive nature of our algorithm, and thus its name, resembles that 
of the PageRank algorithm, used by the Google [l] Web search engine to 
compute importance scores fo r Web pages [8]. In [4] we discuss how PageR- 
ank and other iterative algorithms relate to our work. 

E represent relationships between objects. In Web pages or sci- 
entific papers, which are homogeneous domains, nodes represent 
documents, and a directed edge (p, q) from p to q corresponds to 
a reference (hyperlink or citation) from document p to document q. 
In a user-item domain, which is bipartite, we represent both users 
and items by nodes in V. A dkected edge ~p, q) corresponds to a 
purchase (or other expression of preference) of item q by person p. 
The result in this case is a bipartite graph, with users and items on 
either side. Note that edge weights may be used to represent varying 
degrees of preference, but currently they are not considered in our 
work. 

For a node v in a graph, we denote by l (v)  and O(v) the set 
of in-neighbors and out-neighbors of v, respectively. Individual in- 
neighbors are denoted as h (v) ,  for 1 < i < II(v)l, and individual 
out-neighbors are denoted as Oi(v), for 1 < i < IO(v)l. 

3 SimRank 

3.1 Motivation 

Recall that the basic recursive intuition behind our approach is "two 
objects are similar if they are referenced by similar objects." As 
the base case, we consider an object maximally similar to itself, 
to which we can assign a similarity score of 1. (If other objects 
are known to be similar a-priori, such as from human input or text 
matching, their similarities can be preassigned as well.) Referring 
back to Figure 1, ProfA and ProfB are similar because they are both 
referenced by Univ (i.e., they are co-cited by Univ), and Univ is 
(maximally) similar to itself. Note in Figure l(b) the similarity score 
of 1 on the node {Univ, Univ}, and the score of 0.414 on the node 
{ProfA, ProfB}. (How we obtained 0.414 will be described later.) 
StudentA and StudentB are similar because they are referenced by 
similar nodes ProfA and ProfB; notice the similarity score of 0.331 
on the node for {StudentA, StudentB} in Figure l(b). 

In Section 3.2 we state and justify the basic equation that formal- 
izes SimRank as motivated above. Section 3.3 modifies the equation 
for bipartite graphs, such as graphs for recommender systems as dis- 
cussed in Section 2. The actual computation of SimRank values is 
discussed in Section 3.4, including pruning techniques to make the 
algorithm more efficient. 

In Section 4.5 of the full version of this paper [4], we discuss the 
benefits of SimRank in scenarios where information is limited. 

3.2 Basic  S h n R a n k  Equation 

Let us denote the similarity between objects a and b by s(a, b) E 
[0, 1]. Following our earlier motivation, we write a recursive equa- 
tion for s(a, b). If a = b then s(a, b) is defined to be 1. Otherwise, 

II(a)l I/(b)l 
s(a, b) = C II(a)llI(b)l ~ ~ s(h(a),I~(b)) (1) 

i=l j=l 

where C is a constant between 0 and 1. A slight technicality here is 
that either a or b may not have any in-neighbors. Since we have no 
way to infer any similarity between a and b in this case, we should 
set s(a, b) = 0, so we define the summation in equation (1) to be 0 
when I(a) = 0 or I(b) = 0. 

One SimRank equation of the form (1) is written for each (or- 
dered) pair of objects a and b, resulting in a set of n 2 SimRank 
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equations for a graph of size n. Let us defer discussion of the con- 
stant C for now. Equation (I) says that to compute s(a,b), we it- 
erate over all in-neighbor paks (h(a), I~(b)) of (a, b), and sum up 
the similarity s(ii(a), Ij(b)) of these pairs. Then we divide by the 
total number of in-neighbor pairs, [l(a)lll(b)l, to normalize. That 
is, the similarity between a and b is the average similarity between 
in-neighbors of a and in-neighbors of b. As discussed earlier, the 
similarity between an object and itself is defined to be 1. 

It is shown in [4] that a simultaneous solution s( . ,  . )  E [0, 1] 
to the n 2 SirnRank equations always exists and is unique. Thus we 
can define the SimRank score between two objects a and b to be the 
solution s(a, b). From equation (1), it is easy to see that SimRank 
scores are symmetric, i.e., s(a, b) = s(b, a). 

We said in Section 1 that similarity can be thought of as "prop- 
agating" from pair to pair. To make this connection explicit, we 
consider the derived graph G 2 = (V 2, E2), where each node in 
V 2 = V x V represents a pair (a, b) of nodes in G, and an edge 
from (a, b) to (c, d) exists in E 2 iff the edges (a, c) and (b, d) exist 
in G. Figure l(b) shows a simplified version of the derived graph 
G 2 for the graph G in Figure l(a), along with similarity scores com- 
puted using C = 0.8. As mentioned earlier, we have drawn the 
symmetric pairs (a, b) and (b, a) as a single node {a, b}. Two types 
of nodes are omitted from the figure. The first are those singleton 
nodes which have no effect on the similarity of other nodes, such as 
{ProfA, ProfA}. The second are the nodes with 0 similarity, such as 
{ProfA, StudentA}. 

Similarity propagates in G 2 from node to node (corresponding 
to propagation from pair to pa k in G), with the sources of similarity 
being the singleton nodes. Notice that cycles in G 2, caused by the 
presence of cycles in G, allow similarity to flow in cycles, such as 
from {Univ, ProfB} back to {ProfA, ProfB} in the example. Simi- 
larity scores are thus mutually reinforced. 

Now let us consider the constant C, which can be thought of 
either as a confidence level or a decay factor. Consider a simple 
scenario where page x references both c and d, so we conclude some 
similarity between c and d. The similarity of z with itself is 1, but we 
probably don't want to conclude that s(c, d) = s(z, x) = 1. Rather, 
we let s(c,d) = C • s(x,x) ,  meaning that we are less confident 
about the similarity between c and d than we are between x and 
itself. The same argument holds when two distinct pages a and b 
cite c and d. Viewed in terms of similarity flowing in G 2, C gives 
the rate of decay (since C < 1) as similarity flows across edges. 
In Section 4 of this paper and in Section 6 of [4] we discuss the 
empirical significance of C. 

Though we have given motivation for the basic SimRank equa- 
tion, we have yet to characterize its solution, which we take to be a 
measure of similarity. It would be difficult to reason about similar- 
ity scores, to adjust parameters of the algorithm (so far only C), or 
to recognize the domains in which SimRank would be effective, if 
we cannot get an intuitive feel for the computed values. Section 4 
addresses this issue with an intuitive model for SimRank. 

We emphasize that the basic SimRank equation (and the bipartite 
version in 3.3) is but one way to encode mathematically our recur- 
sive notion of structural-context similarity. Another possibility is 
presented in Section 4.3.2 of the full version of this paper [4]. 
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Figure 2: Shopping graph G and a simplified version of  the 
derived node-pairs graph G 2. Bipartite SimRank scores are 
shown for G 2 using C1 = C2 = 0.8. 

3.3 Bipartite S i m R a n k  

Next we extend the basic SimRank equation (1) to bipartite domains 
consisting of two types of objects. We continue to use recommender 
systems as motivation. Suppose persons A and B purchased item- 
sets {eggs, frosting, sugar} and {eggs, frosting, flour} respectively. 
A graph of these relationships is shown in Figure 2(a). Clearly, the 
two buyers are similar: both are baking a cake, say, and so a good 
recommendation to person A might be flour. One reason we can con- 
clude that A and B are similar is that they both purchased eggs and 
frosting. But moreover, A purchased sugar while B purchased flour, 
and these are sin~lar items, in the sense that they are purchased by 
similar people: cake-bakers like A and B. Here, similarity of items 
and similarity of people are mutually-reinforcing notions: 

• People are similar if they purchase similar items. 

• Items are similar if they are purchased by similar people. 

The mutually-recursive equations that formalize these notions are 
analogous to equation (1). Let s(A, B) denote the similarity be- 
tween persons A and B, and let s(c, d) denote the similarity between 
items c and d. Since, as discussed in Section 2, directed edges go 
from people to items, for A # B we write the equation 

IO(A)I  IO(B)I  
s(A, B) = C1 

IO(A)IIO(B)I ~ ~ s (O ' (A) 'OAB))  (2) 
i = 1  2'=1 

and for c ¢ d we write 

I I (c ) l  I I (d) l  
s(c, d) = C2 ji(c)lli(d)l ~ ~ s(Ii(c),I~(d)) (3) 

i ~ l  j = l  

If A = B, s(A, B) = 1, and analogously for s(c, d). Neglecting 
C1 and C2, equation (2) says that the similarity between persons A 
and B is the average similarity between the items they purchased, 
and equation (3) says that the similarity between items c and d is 
the average similarity between the people who purchased them. The 
constants C1, C2 have the same semantics as C in equation (1). 
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Figure 2(b) shows the derived node-pairs graph G 2 for the graph 
G in Figure 2(a). Simplifications have been made to G 2, as in 
Figure l(b). Similarity scores for nodes of G 2, computed using 
C1 = C'a = 0.8, are also shown. Notice how sugar and flour are 
similar even though they were purchased by different people, al- 
though not as similar as, say, frosting and eggs. The node {frosting, 
eggs} has the same score as, say, {sugar, eggs}, even though frosting 
and eggs have been purchased together twice, versus once for sugar 
and eggs, since the normalization in equations (2) and (3) says that 
we consider only the percentage of times that items are purchased 
together, not the absolute number of times. It is, however, easy to 
incorporate the absolute number if desired; see Section 4.5 of [4]. 

3.3.1 Bipartite S i m R a n k  in  Homogeneous Domains 

It turns out that the bipartite SimRank equations (2) and (3) can also 
be applied to homogeneous domains, such as Web pages and scien- 
tific papers. Although a bipartite distinction is not explicit in these 
domains, it may be the case that elements take on different roles 
(e.g., "hub" pages and "authority" pages for importance [5]), or that 
in-references and out-references give different information. For ex- 
ample, two scientific papers might be similar as survey papers if they 
cite similar result papers, while two papers might be similar as result 
papers if they are cited by similar survey papers. In analogy with the 
HITS [5] algorithm, we can associate a "points-to" similarity score 
sl (a, b) to each pair of nodes a and b, as well as a "pointed-to" sim- 
ilarity score s2(a, b), and write the same equations (2) and (3) as if 
the domain were bipartite: 

Io(,~)l IO(b)l C1 
s i (a ,b)  = O(,~)llO(~)l ~ ~ s2(Oi(a),Oj(b)) 

i = 1  j = l  

II(t~)l II(b)l 

s2(a, b) = C2 I/(a)ll/(b)l ~ ~ s,(/,(a), b(b)) 
i = 1  j = l  

Depending on the domain and application, either score or a combi- 
nation may be used. 

3.4 Computing SimRank 

3.4.1 Naive Method 

A solution to the SimRank equations (or bipartite variations) for a 
graph G can be reached by iteration to a fixed-point. Let n be the 
number of nodes in G. For each iteration k, we can keep n z entries 
Rk(*,*) of length n 2, where Rk(a,b) gives the score between a 
and b on iteration k. We successively compute Rk+l(*, *) based 
on Rk (*, *). We start with Ro(*, *) where each Ro(a, b) is a lower 
bound on the actual SimRank score s(a, b): 

R o ( a , b ) = {  0 (if a ~ b )  
1 (if a = b) 

To compute Rk+l(a, b) from Rk(*, *), we use equation (1) to get: 

II(a)l  I/(b)l 

Rk+l(a,b) - C [I(a)llI(b)l ~ ~ Rk(I,(a),1~(b)) (4) 
i = 1  ~=1 

for a ~ b, and Rk+l(a,b) = 1 for a = b. That is, on each it- 
eration k + 1, we update the similarity of (a, b) using the simi- 
larity scores of the neighbors of (a, b) from the previous iteration 

k according to equation (1). The values Rk(*, *) are nondecreas- 
ing as k increases. We show in [4] that they converge to limits 
satisfying (1), the SimRank scores s(% ,) ,  i.e., for all a, b E V, 
l i m ~ o o  Rk(a, b) ~- s(a, b). In all of our experiments we have seen 
rapid convergence, with relative rankings stabilizing within 5 itera- 
tions (details are in Section [4]), so we may choose to fix a number 
K ~ 5 of iterations to perform. 

Let us analyze the time and space requirements for this method 
of computing SimRank. The space required is simply O(n 2) to store 
the results Rk. Let d2 be the average of II(a)llI(b)l over all node- 
pairs (a, b). The time required is O(Kn2d2), since on each iter- 
ation, the score of every node-pair (n 2 of these) is updated with 
values from its in-neighbor pairs (d2 of these on average). As it cor- 
responds roughly to the square of the average in-degree, d2 is likely 
to be a constant with respect to n for many domains. The resource 
requirements for bipartite versions are similar. 

We mentioned that typically K ~ 5, and in most cases we also 
expect the average in-degree to be relatively small. However, n 2 can 
be prohibitively large in some applications, such as the Web, where 
it exceeds the size of main memory. Specialized disk layout and 
indexing techniques may be needed in this case; such techniques 
are beyond the scope of this paper. However, in the next subsec- 
tion we do briefly consider pruning techniques that reduce both the 
time and space requirements. Pruning has allowed us to run our ex- 
periments entirely in main memory, without the need for disk-based 
techniques. 

3.4.2 Pruning 

One way to reduce the resource requirements is to prune the logical 
graph G z. So far we have assumed that all n 2 node-pairs of G 2 are 
considered, and a similarity score is computed for every node-pair. 
When n is significantly large, it is very likely that the neighborhood 
(say, nodes within a radius of 2 or 3) of a typical node will be a very 
small percentage (< 1%) of the entire domain. Nodes far from a 
node v, whose neighborhood has little overlap with that of v, will 
tend to have lower similarity scores with v than nodes near v, an ef- 
fect that will become intuitive in Section 4. Thus one pruning tech- 
nique is to set the similarity between two nodes far apart to be 0, and 
consider node-pairs only for nodes which are near each other. If we 
consider only node-pairs within a radius of r from each other in the 
underlying undirected graph (other criteria are possible), and there 
are on average d~ such neighbors for a node, then there will be ndr 
node-pairs. The time and space complexities become O(Kndrd2) 
and O(ndr) respectively, where d2 is the average of II(a)llI(b)l for 
pages a, b close enough to each other. Since d~ is likely to be much 
less than n and constant with respect to n for many types of data, 
we can think of the approximate algorithm as being linear with a 
possibly large constant factor. 

Of course, the quality of the approximation needs to be verified 
experimentally for the actual data sets. For the case of scientific 
papers, our empirical results suggest that this is a good approxima- 
tion strategy, and allows the computation to be carried out entirely 
in main memory for a corpus of r~ = 278,626 objects. More details 
can be found in Section [4]. 

4 Random Surfer-Pairs Model 
As discussed in Section 3.2, it is important to have an intuition for 
the similarity scores produced by the algorithm. For this we provide 
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Figure 3: Sample graph structures. 

an intuitive model based on "random surfers". We will show that 
the SimRank score s(a, b) measures how soon two random surfers 
are expected to meet at the same node if they started at nodes a and 
b and randomly walked the graph backwards. The details involve 
some complexity, and are developed in the remainder of this section. 
The model is presented in the context of general directed graphs; 
variations for bipartite SimRank (Section 3.3) are easy to derive and 
we leave them to the interested reader. 

4.1 Expected Distance 

Let H be any strongly connected graph (in which a path exists be- 
tween every two nodes). Let u, v be any two nodes in H. We define 
the expected distance 2 d(u, v) from u to v as 

d(u,v)  = ~ P[t]l(t) (5) 

The summation is taken over all tours t (paths that may have cycles) 
which start at u and end at v, and do not touch v except at the end. 
For a tour t = ( w l , . . . ,  wk), tile length l(t) of t is k - 1, the number 

k- -1  1 r of edges in t. The probability P[t] of u'aveling t is r L = l  i~-c57i~, o 
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) = 
0, is a special case of (5): only one tour is in the summation, and it 
has length 0. Because of the presence of cycles, there are infinitely 
many tours from u to v, and (5) is an (convergent) infinite sum. The 
expected distance from u to v is exactly the expected number of 
steps a random surfer, who at each step follows a random out-edge, 
would take before he first reaches v, starting from u. 

4.2 Expected Meeting Distance 

For our model, we extend the concept of expected distance to ex- 
pected meeting distance (EMD). Intuitively, the expected meeting 
distance re(a, b) between a and b is the expected number of steps re- 
quired before two surfers, one starting at a and the other at b, would 
meet if they walked (randomly) in lock-step. The EMD is symmetric 
by definition. Before formalizing EMD, let us consider a few exam- 
ples. The EMD between any two distinct nodes in Figure 3(a) is 
(informally) ~ ,  since two surfers walking the loop in lock-step will 
follow each other forever. In Figure 3(b), ra(u, v) = re(u, w) = cx~ 
(surfers will never meet) and ra(v, w) = 1 (surfers meet on the next 
step), suggesting that v and w are much more similar to each other 
than u is to v or w. Between two distinct nodes of 3(c), the EMD is 
3, suggesting a lower similarity than between v and vJ in 3(b), but 
higher than between u and v (or u and w). 

21n the literature this quantity, in undirected graphs, is known as the hit- 
ting time [7], but we will develop the idea differently and so choose to use 
another name for our presentation. 

To define EMD formally in G, we use the derived graph G 2 of 
node-pairs. Each node (a, b) of V 2 can be thought of as the present 
state of a pair of surfers in V, where an edge from (a, b) to (c, d) 
in G 2 says that in the original graph G, one surfer can move from 
a to c while the other moves from b to d. A tour in G 2 of length n 
represents a pair of tours in G also having length n. 

The EMD re(a, b) is simply the expected distance in G 2 from 
(a, b) to any singleton node (x, x) E V 2, since singleton nodes in 
G 2 represent state, s where both surfers are at the same node. More 
precisely, 

re(a, b) = E P[t]l(t) (6) 
t:(a,b)~(~,x) 

The sum is taken over all tours t starting from (a, b) which touch a 
singleton node at the end and only at the end. Unfortunately, G 2 may 
not always be strongly connected (even if G is), and in such cases 
there may be no tours t for (a, b) in the summation (6). The intuitive 
definition for re(a, b) in this case is oo, as in Figure 3(b), discussed 
above. However, this definition would cause problems in defining 
distances for nodes from which some tours lead to singleton nodes 
while others lead to (a, b). We discuss a solution to this problem in 
the next section. 

4.3 Expected..f Meeting Distance 

There are various ways to circumvent the "infinite EMD" problem 
discussed in the previous section. For example, we can make each 
surfer "teleport" with a small probability to a random node in the 
graph (the soluticm suggested for PageRank in [8]). Our approach, 
which as we will see yields equations equivalent to the SimRank 
equations, is to map all distances to a finite interval: instead of com- 
puting expected length l(t) of a tour, we can compute the expected 
f(l(~)), for a nonnegative, monotonic function f which is bounded 
on the domain [0, ~ ) .  With this replacement we get the expected- 
f meeting distance. For our purposes, we choose the exponential 
function f ( z )  = c z, where c E (0, 1) is a constant. The benefits of 
this choice of f ,  which has values in the range (0, 1] over domain 
[0, ~) ,  are: 

• Equations generated are simple and easy to solve. 

• Closer nodes have a lower score (meeting distances of 0 go to 1 
and distances of c~ go to 0), matching our intuition of similarity. 

We define s'(a, b), the similarity between a and b in G based on 
expected-f meeting distance, as 

s' (a, b) = E P[t]c~(O (7) 
t:Ca,b)~(x,~) 

where e is a constant in (0, 1). The summation is taken to be 0 if 
there is no tour :from (a, b) to any singleton nodes. Note from (7) 
that s'(a, b) E [0, 1] for all a, b, and that s'(a, b) = 1 if a = b. 

Let us consider these similarity scores on Figure 3 using C = 0.8 
as an example. Between any two distinct nodes a, b in Figure 3(a), 
s'(a,b) = 0. In Figure 3(b), s ' (v ,w)  = 0.8 while s ' (u ,v)  = 
s'(u, w) = 0. Fbr any two distinct nodes in the complete graph of 
Figure 3(c), s'(a, b) ~ 0.47, a lower score than between v and w in 
Figure 3(b). 

4.4 Equivalence to S i m R a n k  

We now show that s ' ( . ,  , )  exactly models our original definition 
of SimRank scores by showing that s ' ( , ,  , )  satisfies the SirnRank 
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equations (1). To ease presentation, let us assume that all edges in 
our graph G have been reversed, so following an edge is equivalent 
to moving one step backwards in the original graph. 3 

First, to aid in understanding, we give an intuitive but infor- 
mal argument about the expected distance d(u, v) in a graph; the 
same ideas can be applied to the expected-f meeting distance. Sup- 
pose a surfer is at u 6 V. At the next time step, he chooses 
one of O1 (u) . . . . .  Oio(~)1 (u), each with probability T~-~Tf' Upon 
choosing O~(u), the expected number of steps he will still have to 
travel is d(Oi(u), v) (the base case is when Oi(u) = v, for which 
d(Oi(u),v) = 0). Accounting for the step he travels to get to 
Oi(u), we get: 

1 IO(~,)1 
= 1 + 

i = 1  

With this intuition in mind, we derive similar recursive equations 
for s'(a, b) which will show that s'(a, b) = s(a, b). If a = b then 
s'(a, b) = s(a, b) = 1. If there is no path in G 2 from (a, b) to any 
singleton nodes, in which case s'(a, b) = 0, it is easy to see from 
equation (4) that s(a, b) = 0 as well, since no similarity would flow 
to (a, b) (recall that edges have been reversed). Otherwise, consider 
the tours t from (a, b) to a singleton node in which the first step is to 
the out-neighbor Oz ((a, b)). There is a one-to-one correspondence 
between such t and tours t '  from Oz((a,b)) to a singleton node: 
for each t '  we may derive a corresponding t by appending the edge 
((a,b),Oz((a,b))) at the beginning. Let T be the bijection that 
takes each t '  to the corresponding t. If the length of t '  is l, then the 
length of t = T(t')  is l + 1. Moreover, the probability of traveling t 
is P[t] = T~7~3iP[ t ' ]  = i ~ p [ t ' ] .  We can now split the 
sum in (7) according to the first step of the tour t to write 

I o ( ( a , b ) ) l  

z.~-I 

• I O ( ( . , b ) ) l  

= Z 
z-~-I 

C 

IO(a) llO(b)l 

C 

IO(a)llO(b)l 

P[T( t')]c l(T(t') ) 
t': o~((,~,b))~(=,~) 

Z 1 hr.,, t(t')+l 
~,: o=((o,~))~(=,=) IO(a)llO(b)l ~t~ jc 

IO((-,~))1 
P[t'lc'(') 

,=1 t': O,((a,b))~(x,z) 
[O(a)l IO(b)l 

s'(o,(a), oj(b)) (8) 
i = 1  j = l  

Equation (8) is identical to the SimRank equation (1) with c = C 
and in-edges swapped for out-edges. Since the solution to (1) is 
unique, s'(a, b) = s(a,b) for all a, b 6 V. Thus we have the fol- 
lowing theorem. 

Theorem. The SimRank score, with parameter C, between two 
nodes is their expected-f meeting distance traveling back-edges, for 
f ( z )  = C z. 

Thus, two nodes with a high SimRank score can be thought of as 
being "close" to a common "source" of similarity. 

3Had we written equation (l) in terms of out-neighbors instead of in- 
neighbors, as may be appropriate in some domains, this step would not be 
necessary. 

5 Future Work 

There are a number of avenues for future work. Foremost, we must 
address efficiency and scalability issues, including additional prun- 
ing heuristics and disk-based algorithms, One possible approxima- 
tion that differs from the neighborhood-based pruning heuristic in 
Section 3.4.2 is to divide a corpus into chunks, computing accurate 
similarity scores separately for each chunk and then combining them r 
into a global solution. A second area of future work is to consider 
ternary (or more) relationships in computing structural-context sim- 
ilarity. For example, in the student-course domain we might also 
include the professors who taught the courses and the grades re- 
ceived by the students. Extending our entire framework to encom- 
pass such relationships should be possible, but it is not straightfor- 
ward. Finally, we believe that structural-context similarity is only 
one component of similarity in most domains, so we plan to explore 
the combination of SimRank with other domain-specific similarity 
measures. 
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