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Abstract

In this paper we address the problem of reference disambiguation. Specifically, we consider a situation
where entities in the database are referred to using descriptions (e.g., a set of instantiated attributes).
The objective of reference disambiguation is to identify the unique entity to which each description
corresponds. The key difference between the approach we propose (called RelDC) and the traditional
techniques is that RelDC analyzes not only object features but also inter-object relationships to improve
the disambiguation quality. Our extensive experiments over two real data sets and also over synthetic
datasets show that analysis of relationships significantly improves quality of the result.

1 Introduction

Recent surveys [4] show that more than 80% of researchers working on data mining projects spend more
than 40% of their project time on cleaning and preparation of data. The data cleaning problem often arises
when information from heterogeneous sources is merged to create a single database. Many distinct data
cleaning challenges have been identified in the literature: dealing with missing data, handling erroneous
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data, elimination of duplicate entities, and so on. In this paper we address one such challenge which we
refer to as reference disambiguation1.
The reference disambiguation problem arises when entities in a database contain references to other

entities. If entities were referred to using unique identifiers then disambiguating those references would be
straightforward. Instead, frequently, entities are represented using properties/descriptions that may not
uniquely identify them leading to ambiguity. For instance, assume a database stores information about
two distinct individuals ‘Donald L. White’ and ‘Donald E. White’, then they both can be referred to as
‘D. White’ in the database. References may also be ambiguous due to differences in the representations
of the same entity and errors in data entries (e.g., ‘Don White’ misspelled as ‘Don Whitex’). The goal of
reference disambiguation is for each reference to correctly identify the unique entity it refers to.
The reference disambiguation problem is related to the problem of record deduplication or record linkage

[23, 7, 6] that often arise when multiple tables (from different data sources) are merged to create a single
table. The causes of record linkage and reference disambiguation problems are similar; viz., differences in
representations of objects across different data sets, data entry errors, etc. The differences between the
two can be intuitively viewed using the relational terminology as follows: while the record linkage problem
consists of determining when two records are the same, reference disambiguation corresponds to ensuring
that references (i.e., “foreign keys”2) in a database point to the correct entities.
Given the tight relationship between the two data cleaning tasks and the similarity of their causes,

existing approaches to record linkage can be adapted for reference disambiguation. In particular, feature-
based similarity (FBS) methods that analyze similarity of record attribute values (to determine whether
or not two records are the same) can be used to determine if a particular reference corresponds to a
given entity or not. In the reference disambiguation problem, references occur within a context and define
relationships/connections between entities. For instance, ‘D. White’ might be used to refer to an author in
the context of a particular publication. This publication might also refer to different authors, which can be
linked to their affiliated organizations etc, forming chains of relationships among entities. Such knowledge
can be exploited alongside attribute-based similarity resulting in improved accuracy of disambiguation.
In this paper, we propose a domain-independent data cleaning approach for reference disambiguation,

referred to as Relationship-based Data Cleaning (RelDC), that systematically exploits not only features
but also relationships among entities for the purpose of disambiguation. RelDC views the database as a
graph of entities that are linked to each other via relationships. It first utilizes a feature based method to
identify a set of candidate entities (choices) for a reference to be disambiguated. Graph theoretic techniques
are then used to discover and analyze relationships that exist between the entity containing the reference
and the set of candidates.
The primary contributions of this paper are: (1) developing a systematic approach to exploiting both

attributes as well as relationships among entities for reference disambiguation (2) establishing that exploit-
ing relationships can significantly improve the quality of reference disambiguation by testing the developed
approach over 2 real-world data sets as well as synthetic data sets.
This paper is a truncated version of a longer technical report [24] in which we discuss optimizations,

computational complexity, sample content and sample graphs for real datasets, and other issues not covered
by this paper. The rest of this paper is organized as follows. Section 2 presents a motivational example.
In Section 3, we precisely formulate the problem of reference disambiguation and introduce notation that
will help explain the RelDC approach. Section 4 describes the RelDC approach. The empirical results of
RelDC are presented in Section 6. Section 7 contains the related work, and Section 8 concludes the paper.

1Also referred to as cleaning spurious links in [26]
2We are using the term foreign key loosely. Usually, foreign key refers to a unique identifier of an entity in another table.

Instead, foreign key above means the set of properties that serve as a reference to an entity.

3



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

2 Motivation for analyzing relationships

In this section we will use an instance of the “author matching” problem to illustrate that exploiting
relationships among entities can improve the quality of reference disambiguation. We will also schemat-
ically describe one approach that analyzes relationships in a systematic domain-independent fashion.
Consider a database about authors and publications. Authors are represented in the database using the
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Figure 1: Graph for the publications example

attributes 〈id, authorName, affiliation〉 and information about papers is stored in the form 〈id, title,
authorRef1,authorRef2,. . . , authorRefN〉. Consider a toy database consisting of the following authors
and publications records.

1. 〈A1, ‘Dave White’, ‘Intel’〉,
2. 〈A2, ‘Don White’, ‘CMU’〉,
3. 〈A3, ‘Susan Grey’, ‘MIT’〉,
4. 〈A4, ‘John Black’, ‘MIT’〉,
5. 〈A5, ‘Joe Brown’, unknown〉,
6. 〈A6, ‘Liz Pink’, unknown〉.
1. 〈P1, ‘Databases . . . ’, ‘John Black’, ‘Don White’〉,
2. 〈P2, ‘Multimedia . . . ’, ‘Sue Grey’, ‘D. White’〉,
3. 〈P3, ‘Title3 . . . ’, ‘Dave White’〉,
4. 〈P4, ‘Title5 . . . ’, ‘Don White’, ‘Joe Brown’〉,
5. 〈P5, ‘Title6 . . . ’, ‘Joe Brown’, ‘Liz Pink’〉,
6. 〈P6, ‘Title7 . . . ’, ‘Liz Pink’, ‘D. White’〉.

The goal of the author matching problem is to identify for each authorRef in each paper the correct
author it refers to.
We can use existing feature-based similarity (FBS) techniques to compare the description contained in

each authorRef in papers with values in authorName attribute in authors. This would allow us to resolve
almost every authorRef references in the above example. For instance, such methods would identify that
‘Sue Grey’ reference in P2 refers to A3 (‘Susan Grey’). The only exception will be ‘D. White’ references in
P2 and P6: ‘D. White’ could match either A1 (‘Dave White’) or A2 (‘Don White’).
Perhaps, we could disambiguate the reference ‘D. White’ in P2 and P6 by exploiting additional at-

tributes. For instance, the titles of papers P1 and P2 might be similar while titles of P2 and P3 might not,
suggesting that ‘D. White’ of P2 is indeed ‘Don White’ of paper P1. We next show that it may still be
possible to disambiguate the references ‘D. White’ in P2 and P6 by analyzing relationships among entities
even if we are unable to disambiguate the references using title (or other attributes).
First, we observe that author ‘Don White’ has co-authored a paper (P1) with ‘John Black’ who is at

MIT, while the author ‘Dave White’ does not have any co-authored papers with authors at MIT. We can
use this observation to disambiguate between the two authors. In particular, since the co-author of ‘D.
White’ in P2 is ‘Susan Grey’ of MIT, there is a higher likelihood that the author ‘D. White’ in P2 is ‘Don
White’. The reason is that the data suggests a connection between author ‘Don White’ with MIT and an
absence of it between ‘Dave White’ and MIT.
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Second, we observe that author ‘Don White’ has co-authored a paper (P4) with ‘Joe Brown’ who in
turn has co-authored a paper with ‘Liz Pink’. In contrast, author ‘Dave White’ has not co-authored any
papers with either ‘Liz Pink’ or ‘Joe Brown’. Since ‘Liz Pink’ is a co-author of P6, there is a higher
likelihood that ‘D. White’ in P6 refers to author ‘Don White’ compared to author ‘Dave White’. The
reason is that often co-author networks form groups/clusters of authors that do related research and may
publish with each other. The data suggests that ‘Don White’, ‘Joe Brown’ and ‘Liz Pink’ are part of the
cluster, while ‘Dave White’ is not.
At first glance, the analysis above (used to disambiguate references that could not be resolved using

conventional feature-based techniques) may seem ad-hoc and domain dependent. A general principle
emerges if we view the database as a graph of inter-connected entities (modeled as nodes) linked to each
other via relationships (modeled as edges). Figure 1 illustrates the entity-relationship graph corresponding
to the toy database consisting of authors and papers records. In the graph, entities containing references
are linked to the entities they refer to. For instance, since the reference ‘Sue Grey’ in P2 is unambiguously
resolved to author ‘Susan Grey’, paper P2 is connected by an edge to author A3. Similarly, paper P5 is
connected to authors A5 (‘Joe Brown’) and A6 (‘Liz Pink’). The ambiguity of the references ‘D. White’
in P2 and P6 is captured by linking papers P2 and P6 to both ‘Dave White’ and ‘Don White’ via two
“choice nodes” (labeled ‘1’ and ‘2’ in the figure). These “choice nodes” serve as OR-nodes in the graph
and represent the fact that the reference ‘D. White’ refers to either one of the entities linked to the choice
nodes.
Given the graph view of the toy database, the analysis we used to disambiguate ‘D. White’ in P2 and

P6 can be viewed as an application of the following general principle:

Context Attraction Principle (CAP): If reference r made in the context of entity x refers to
an entity yj whereas the description provided by r matches multiple entities y1, y2, . . . , yj , . . . , yN , then x
and yj are likely to be more strongly connected to each other via chains of relationships than x and yl
(l = 1, 2, . . . , N , l �= j).
Let us now get back to the toy database. The first observation we made, regarding disambiguation of

‘D. White’ in P2, corresponds to the presence of the following path (i.e., relationship chain or connection)
between the nodes ‘Don White’ and P2 in the graph: P2 � ‘Susan Grey’ � ‘MIT’ � ‘John Black’ � P1 �

‘Don White’. Similarly, the second observation, regarding disambiguation of ‘D. White’ in P6 as ‘Don
White’, was based on the presence of the following path: P6 � ‘Liz Pink’ � P5 � ‘Joe Brown’ � P4 �

‘Don White’. There were no paths between P2 and ‘Dave White’ or between P6 and ‘Dave White’ (if we
ignore ‘1’ and ‘2’ nodes). So, after applying the CAP principle, we concluded that the reference ‘D. White’
in both cases probably corresponded to the author ‘Don White’. In general, there could have been paths
not only between P2 and ‘Don White’ but also between P2 and ‘Dave White’. In that case, to determine
if ‘D. White’ is ‘Don White or ‘Dave White’ we should have been able to measure whether ‘Don White’ or
‘Dave White’ is more strongly connected to P2.
The generic approach therefore first discovers connections between the entity, in the context of which

the reference appears, and the matching candidates for that reference. It then measures the connection
strength of the discovered connections in order to give preference to one of the matching candidates. The
above discussion naturally leads to two questions:

1. Does the context attraction principle hold over real data sets. That is, if we disambiguate references
based on the principle, will the references be correctly disambiguated?

2. Can we design a generic solution to exploiting relationships for disambiguation?

Of course, the second question is only important if the answer to the first is yes. However, we cannot really
answer the first unless we develop a general strategy to exploiting relationships for disambiguation and
testing it over real data. We will develop one such general, domain-independent strategy for exploiting
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relationships for disambiguation which we refer to as RelDC in Section 4. We perform extensive testing of
RelDC over both real data from two different domains as well as synthetic data to establish that exploiting
relationships (as is done by RelDC) significantly improves the data quality. Before we develop RelDC, we
first develop notation and concepts needed to explain our approach in Section 3.

3 Problem definition

In this section we first develop notation and then formally define the problem of reference disambiguation.
The notation is summarized in Table 1.

Notation Meaning
D The database

X = {xi} The set of all entities in D
xi.rk the kth reference of entity xi

d[xi.rk] the (to-be-found) entity that xi.rk refers to
CS[xi.rk] the choice set for xi.rk

y1, y2, . . . , yN the N elements of choice set CS[xi.rk]
G(V,E) the entity-relationship graph for D
v[xi] the (regular) node in G that corresponds to entity xi

cho[xi.rk] the choice node for reference xi.rk
e0 edge e0 = (v[xi], cho[xi.rk])
ej edge ej = (cho[xi.rk], v[yj ]) (j = 1, 2, . . . , N)
wj the weight of edge ej (j = 0, 1, . . . , N)
L the path length limit parameter

PL(u, v) the set of all L-short simple paths between nodes u and v in G
c(u, v) the connection strength between nodes u and v in G
Nr(v) the neighborhood of node v of radius r in graph G

Table 1: Notation

3.1 References

Let D be the database which contains references that are to be resolved. Let X = {xi : i = 1, 2, . . . , |X|}
be the set of all entities3 in D. Each entity xi consists of a set of mxi properties xi.a1, xi.a2, . . . , xi.amxi

and contains a set of nxi references xi.r1, xi.r2, . . . , xi.rnxi
. Each reference xi.rk is essentially a description

and may itself consist of one or more attributes xi.rk.b1, xi.rk.b2, . . .. For instance, in the example from
Section 2, paper entities contain one-attribute authorRef references in the form 〈author name〉. If, besides
author names, author affiliation were also stored in the paper records, then authorRef references would
have consisted of two attributes – 〈author name, author affiliation〉.

Choice set. Each reference xi.rk semantically refers to a single specific entity in X which we denote by
d[xi.rk]. The description provided by xi.rk may, however, match a set of one or more entities in X. We
refer to this set as the choice set of reference xi.rk and denote it by CS[xi.rk]. The choice set consists of
all the entities that xi.rk could potentially refer to. We assume CS[xi.rk] is given for each xi.rk. If it is
not given, we assume a feature-based similarity approach is used to construct CS[xi.rk] by choosing all

3Entities here have essentially the same meaning as in the standard E/R model.
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of the candidates such that FBS similarity between them and xi.rk exceed a given threshold. To simplify
notation, we will always assume CS[xi.rk] has N (i.e., N = |CS[xi.rk]|) elements y1, y2, . . . , yN .

3.2 The entity-relationship graph

RelDC views the resulting database D as an undirected entity-relationship graph4 G = (V,E), where V
is the set of nodes and E is the set of edges. Each node corresponds to an entity and each edge to a
relationship.5 Notation v[xi] denotes the vertex in G that corresponds to entity xi ∈ X. Note that if entity
u contains a reference to entity v, then the nodes in the graph corresponding to u and v are linked since a
reference establishes a relationship between the two entities. For instance, authorRef reference from paper
P to author A corresponds to “A writes P” relationship.
In the graph G, edges have weights, nodes do not have weights. Each edge weight is a real number

in [0, 1], which reflects the degree of confidence the relationship, corresponding to the edge, exists. For
instance, in the context of our author matching example, if we are 100% confident ‘John Black’ is affiliated
with MIT, then we assign weight of 1 to the corresponding edge. But if we are only 80% confident, we
assign the weight of 0.80 to that edge. By default all weights are equal to 1. Notation “edge label” means
the same as “edge weight”.

References and linking. If CS[xi.rk] has only one element, then xi.rk is resolved to y1, and graph G
contains an edge between v[xi] and v[y1]. This edge is assigned a weight of 1 to denote that the algorithm is
100% confident that d[xi.rk] is y1. If CS[xi.rk] has more than 1 elements, then graph G contains a choice

v[xi]

v[yN]

v*[xi.rk]

v[y1]

v[y2]w0=1

...

w 1=?

w
N=?

w2=?
N nodes for
yj S[xi.rk]e0

e 1

eN

e2

Figure 2: A choice node

node cho[xi.rk], as shown in Figure 2, to reflect the fact that d[xi.rk] can be one of y1, y2, . . . , yN . Node
cho[xi.rk] is linked with node v[xi] via edge e0 = (v[xi], cho[xi.rk]). Node cho[xi.rk] is also linked with N
nodes v[y1], v[y2], . . . , v[yN ], for each yj in CS[xi.rk], via edges ej = (cho[xi.rk], v[yj ]) (j = 1, 2, . . . , N).
Nodes v[y1], v[y2], . . . , v[yN ] are called the options of choice cho[xi.rk]. Edges e1, e2, . . . , eN are called the
option-edges of choice cho[xi.rk]. The weights of option-edges are called option-edge weights or simply
option weights. The weight of edge e0 is 1. Each weight wj of edges ej (j = 1, 2, . . . , N) is undefined
initially. Since these option-edges e1, e2, . . . , eN represent mutually exclusive alternatives, the sum of their
weights should be 1: w1 + w2 + · · ·+ wN = 1.

3.3 The objective of reference disambiguation

To resolve reference xi.rk means to choose one entity yj from CS[xi.rk] in order to determine d[xi.rk]. If
entity yj is chosen as the outcome of such a disambiguation, then xi.rk is said to be resolved to yj or simply

4A standard entity-relationship graph can be visualized as an E/R schema of the database that has been instantiated with
the actual data.

5We will concentrate primarily on binary relationships. Multiway relationships are rare and most of them can be converted
to binary relationships [16]. Most of the design models/tools only deal with binary relationships, for instance ODL (Object
Definition Language) supports only binary relationships.
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resolved. Reference xi.rk is said to be resolved correctly if this yj is d[xi.rk]. Notice, if CS[xi.rk] has just
one element y1 (i.e., N = 1), then reference xi.rk is automatically resolved to y1. Thus reference xi.rk is
said to be unresolved or uncertain if it is not resolved yet to any yj and also N > 1.
From the graph theoretic perspective, to resolve xi.rk means to assign weights of 1 to one edge ej ,

1 ≤ j ≤ N and assign weights of 0 to the other N −1 edges e1, e2, . . . , ej−1, ej+1, . . . , eN . This will indicate
that the algorithm chooses yj as d[xi.rk].
The goal of reference disambiguation is to resolve all references as correctly as possible, that is, for each

reference xi.rk to correctly identify d[xi.rk]. We will use notation Resolve(xi.rk) to refer to the procedure
which resolves xi.rk. The goal is thus to construct such Resolve(·) which should be as accurate as possible.
The accuracy of reference disambiguation is the fraction of references being resolved that are resolved
correctly.
The alternative goal is for each yj ∈ CS[xi.rk] to associate weight wj that reflects the degree of

confidence that yj is d[xi.rk]. For that alternative goal, Resolve(xi.rk) should label each edge ej with
such a weight. Those weights can be interpreted later to achieve the main goal: for each xi.rk try to
identify only one yj as d[xi.rk] correctly. We emphasize this alternative goal since most of the discussion
of RelDC approach is devoted to one approach for computing those weights. An interpretation of those
weights (in order to try to identify d[xi.rk]) is a small final step of RelDC. Namely, we achieve this by
picking yj such that wj is the largest among w1, w2, . . . , wN . That is, the outcome of Resolve(xi.rk) is
yj : wj = maxl=1,2,...,N wl.

3.4 Connection Strength and Context Attraction Principle

As mentioned before, RelDC resolves references based on context attraction principle that was discussed
in Section 2. We now state the principle more formally. Crucial to the principle is the notion of connection
strength between two entities xi and yj (denoted c(xi, yj) which captures how strongly xi and yj are
connected to each other through relationships. Many different approaches can be used to measure c(xi, yj)
and will be discussed in Section 4. Given the concept of c(xi, yj), we can restate the context attraction
principle as follows:
Context Attraction Principle: Let xi.rk be a reference and y1, y2, . . . , yN be elements of its choice

set CS[xi.rk] with corresponding option weights w1, w2, . . . , wN (recall that w1+w2+ · · ·+wN = 1). The
context attraction principle states that for all l, j ∈ [1, N ], if cl ≥ cj then wl ≥ wj, where cl = c(xi, yl) and
cj = c(xi, yj).

4 The RelDC approach

We now have developed all the concepts and notation needed to explain RelDC approach for reference
disambiguation. Input to RelDC is the entity-relationship graph G discussed in Section 3 in which nodes
correspond to entities and edges to relationships. We assume that feature-based similarity approaches
have been used in constructing the graph G. The choice nodes are created only for those references that
could not be disambiguated using only attribute similarity. RelDC will exploit relationships for further
disambiguation and will output a resolved graph G in which each entity is fully resolved.
RelDC disambiguates references using the following four steps:

1. Compute connection strengths. For each reference xi.rk compute the connection strength
c(xi, yj) for each yj ∈ CS[xi.rk]. The result is a set of equations that relate c(xi, yj) with the
option weights: c(xi, yj) = gij(w). Here, w denote the set of all option weights in the graph G.

2. Determine equations for option weights. Using the equations from Step 1 and the CAP deter-
mine a set of equations that relate option weights to each other.

8
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3. Compute weights. Solve the set of equations from Step 2.
4. Resolve References. Utilize/interpret the weights computed in Step 3 as well as attribute-based
similarity to resolve references.

We now discuss the above steps in more detail in the following subsections.

4.1 Computing connection strength

Computation of c(xi, yj) consists of two phases. The first phase discovers connections between xi and yj.
The second phase computes/measures the strength in connections discovered by the first phase.

4.1.1 The connection discovery phase

v*[xi.rk]

?

?
Graph

?
v[xi]

v[y1]

v[y2]

v[yN]

Figure 3: Graph

In general there can be many connections between v[xi] and v[yj ] in G. Intuitively, many of those (e.g.,
very long ones) are not very important. To capture most important connections while still being efficient,
the algorithm computes the set of all L-short simple paths PL(xi, yj) between nodes v[xi] and v[yj ] in
graph G. A path is L-short if its length is no greater than parameter L. A path is simple if it does not
contain duplicate nodes.

Illegal paths. Not all of the discovered paths are considered when computing c(xi, yj) (to resolve ref-
erence xi.rk). Let e1, e2, . . . , eN be the option-edges associated with the reference xi.rk. When resolving
xi.rk, RelDC tries do determine weights of these edges via connections that exist in the remainder of the
graph not including those edges. To achieve this, RelDC actually discovers paths not in graph G, but in
G̃ = G − cho[xi.rk], see Figure 3. That is, G̃ is graph G with node cho[xi.rk] removed. Also, in general,
paths considered when computing c(xi, yj) may contain option-edges of some choice nodes. If a path con-
tains an option-edge of a choice node, it should not contain another option-edge of the same choice node.
For instance, if a path used to compute connection strength between two nodes in the graph contained an
option edge ej of the choice node shown in Figure 2, it must not contain any of the rest of the option-edges
e1, e2, . . . , ej−1, ej+1, . . . , eN .

4.1.2 Measuring connection strength phase

A natural way to compute the connection strength c(u, v) between node u and v is to compute it as
the probability to reach node v from node u via random walks in graph G where each step is done with
certain probability. Such problems have been studied for graphs in the previous work under Markovian
assumptions. For example, White et al. in [37] proposes to use Markov chains to compute relative
importance in graphs. The graph in our case, however, is not Markovian due to presence of illegal paths
(introduced by choice nodes). For example, consider some path p1 = v � v[xi] � cho[xi.rk], where v[xi]
and cho[xi.rk] are from Figure 2. We can continue this path by following cho[xi.rk] � v[y1] link with some
probability, i.e. the new path is v � v[xi] � cho[xi.rk] � v[y1]. However if we consider a different path

9
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p2 = v � v[y2] � cho[xi.rk], we cannot follow cho[xi.rk] � v[y1] link because edges e1 and e2 are mutually
exclusive. So, in general, for any path p = v � cho[xi.rk], the probability to follow cho[xi.rk] � v[y1] link
depends not only on cho[xi.rk] but also on other nodes on path p. This violates the Markovian assumptions.
Thus those existing approaches cannot be applied directly.
In Appendix A we have developed a model called the probabilistic model (PM) which treats edge weights

as probabilities that those edges exist and which is capable of handling illegal paths. In this section we
present the weight-based model (WM) which is a simplification of PM. Other models can be derived from
[14, 37].
WM is a very intuitive model which is suited well for illustrating issues related to computing c(u, v).

WM computes c(u, v) as the sum
∑

p∈PL(u,v) c(p) of the connection strength c(p) of each path p in PL(u, v).
The connection strength c(p) of path p from u to v is the probability to follow path p in graph G. Next
we explain how WM computes c(p). After explaining WM we shall briefly take up the differences between
WM and PM.

Motivating c(p) formula. Which factors should be taken into account when computing the connection
strength c(p) of each individual path p?

u va

N-2
... ... ... ... ...

b

Figure 4: Motivating c(p) formula

Figure 4 illustrates two different paths (or connections) between nodes u and v: pa=u�a�v and pb=u
�b�v. Assume that all edges in this figure have weight of 1. Let us understand which connection is better.
Both connections have an equal length of two. One connection is going via node a, the other one via b.

The intent of Figure 4 is to show that b “connects” many things, not just u and v, whereas a “connects”
only u and v. We argue the connection between u and v via b is much weaker than the connection between
u and v via a: since b connects many things it is not surprising we can connect u and v via b. For example,
for the author matching problem, u and v can be two authors, a can be a publication and b a university.
To capture the fact that c(pa) > c(pb), we measure c(pa) and c(pb) as the probabilities to follow paths

pa and pb respectively. Notice, measures such as path length, network flow do not capture this fact. We
compute those probabilities as follows. For path pb we start from u. Next we have a choice to go to a or
b with probabilities of 1

2 , and we choose to follow (u, b) edge. From node b we can go to any of the N − 1
nodes (cannot go back to u) but we go specifically to v. So the probability to reach v via path pb is 1

2(N−1) .
For path pa we start from u, we go to a with probability 1

2 at which point we have no choice but to go to
v, so the probability to follow pa is 1

2 .

General WM formula. In general, each L-short simple path p can be viewed as a sequence of m nodes
〈v1, v2, . . . , vm〉, where m ≤ L + 1, as shown in Figure 5. Figure 5 shows that from node vi it is possible
to follow6 ni + 1 edges labeled wi0, wi1, . . . , wini . WM computes the connection strength of path p as the
probability Pr to follow path p: c(p) = Pr. Probability Pr is computed as the product of two probabilities:
Pr = Pr1 · Pr2, where Pr1 is the probability that path p exists and Pr2 is the probability “to follow path
p given that p exists”.

6It is not possible to follow edges following which would make path not simple.
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Figure 5: Computing c(p) of path p = v1 �

v2 � · · · � vm. Only “possible-to-follow” edges
are shown.
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Figure 6: Computing c(p): new labels under as-
sumption that p exists.

First of all, path p should exist and thus each edge on this path should exist. WM computes the
probability Pr1 that p exist as the product of probabilities that each edge on path p exists: Pr1 =
w10w20× · · · ×wm−1,0. That is, WM assumes that each edge Ei0 (i = 1, 2, . . . ,m− 1) exists independently
from other edges El,0 (l = 1, 2, . . . ,m − 1, l �= i). Recall that WM is a simplification of PM presented in
Appendix A. In Appendix A we show that such an assumption of independence is reasonable.
Next WM computes probability Pr2 to follow path p given that p exists. If we assume that p exists,

then situation will look like illustrated in Figure 6. In that figure all edges are labeled with weights w′
i,j

which reflect how weights wi,j change if we add the assumption that path p exists. For example, w′
i0 = 1

(i = 1, 2, . . . ,m− 1) because each edge Ei0 should exist. For each w′
i,j, where j �= 0, either w′

i,j = wi,j, or
w′

i,j = 0. To understand why w
′
i,j can be zero, consider path p1 = ‘Don White’ � P4 � Joe � P5 � Liz �

P6 � ‘2’ � ‘Dave White’ in Figure 1 as an example. If we assume p1 exists, then edge (‘2’, ‘Dave White’)
must exist and consequently edge (‘2’, ‘Don White’) does not exist. So, if path p1 exists, the weight of
edge (‘2’, ‘Don White’) is zero. That is why in general either w′

i,j = wi,j , or, if the corresponding edge Ei,j

cannot exist under assumption that path p exists, then w′
i,j = 0.

WM computes probability Pr2 “to follow path p given that p exists” as as the product of probabilities
to follow each edge on p. In WM, the probability to follow an edge is proportional to the weight of the
edge. For example, the probability to follow edge E10 in Figure 6 is: 1

1+w′
11+w′

1,2+···+w′
1,n1

. The connection

strength of path p is computed as c(p) = Pr1 · Pr2. The final formula for c(p) is:

c(p) =
∏

i=1,2,...,m−1

w′
i0

1 +
∑

j=1,2,...,ni
w′

i,j

. (1)

The total connection strength between nodes u and v is computed as the sum of connection strengths of
paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (2)

Measure c(u, v) is the probability to reach v from u by following only L-short simple paths, such that the
probability to follow an edge is proportional to the weight of the edge.

Connection strengths in toy database. Let us compute connection strengths c1, c2, c3, and c4
for the toy database illustrated in Figure 1. Those connection strength are defined as follows: c1 =
c(P2, ‘Dave White’), c2 = c(P2, ‘Don White’), c3 = c(P6, ‘Dave White’), and c4 = c(P6, ‘Don White’).
Later, those connection strengths will be used to compute option weights w1, w2, w3, and w4.
Consider first computing c1 = c(P2, ‘Dave White’) in the context of disambiguating ‘D. White’ reference

in P2. Recall, for that reference choice node ‘1’ has been created. The first step is to remove choice ‘1’ from
consideration. The resulting graph G̃ = G−‘1’ is shown in Figure 7. The next step is to discover all L-short

11
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c1 = ?

P1

P2

P3

Dave White

Don White

Susan Grey

John Black

Intel

CMU

MIT

Joe BrownP4

Liz Pink

P5

P62

w3

w 4

Figure 7: Computing c1 = c(P2, ‘Dave White’):
G̃ = G− ‘1’.

c1 = ?

P1

P2

P3
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Don White

Susan Grey

John Black
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Joe BrownP4

Liz Pink

P5

P62

0 
(z

er
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1

Figure 8: Computing c1 = c(P2, ‘Dave White’):
under assumption that path (P2 �
‘Dave White’) exists. Edge ‘2’ � ‘Dave’
exists, therefore edge ‘2’ � ‘Don’ does not exist.

simple paths in graph G̃ between P2 and ‘Dave White’. Let us set L = ∞, then there is only one such
path: p1 = P2 � Susan � MIT � John � P1 � Don � P4 � Joe � P5 � Liz � P6 � ‘2’ � Dave White.
The discovered connection is too long to be meaningful in practice, but we will consider it for pedagogical
reasons. To compute the connection strength of path p1 we first compute the probability that path p1
exists. Path p1 exists if and only if edge between ‘2’ and ‘Dave White’ exists, so the probability that p1
exists is w3. Now we assume that p1 exists and will compute the probability to follow p1 given that p1
exists on the graph shown in Figure 8. That probability is 1

2 . So c(p1) =
w3
2 . The same result can be

obtained by directly applying Equation (1). After computing c2, c3, and c4 in a similar fashion we have:

1. c1 = c(P2, ‘Dave White’) = c(p1) = w3
2 .

2. c2 = c(P2, ‘Don White’) = c(P2 � Susan � MIT � John � P1 � ‘Don White’) = 1.
3. c3 = c(P6, ‘Dave White’) = w1

2
4. c4 = c(P6, ‘Don White’) = 1

Notice, the toy database is small and ‘MIT’ connects only two authors. In more realistic examples,
‘MIT’ will connect many authors, so connections via ‘MIT’ will be weak.

A C DB E

F

G

1

Source DestinationPath: A,B,C,D,E

1 1 1

0.8

0.2

1

Figure 9: Comparing WM and PM.

Comparing WM and PM. To illustrate the differences between WM and PM let us consider an
example shown in Figure 9. The objective is to compute the connection strength of path p = A � B �

C � D � E. Edges FB and FD are option-edges of choice node F .
For WM we use Equation (1) to compute c(p) as c(p) = 1 · 1

1+0.8 · 1 · 1
1+0.2 =

25
54 . Unlike WM, the

probabilistic model (PM) treats edge weights not as weights but as probabilities that those edges exist. For
a particular path p being considered PM identifies the group of edges Ep that can affect c(p). PM iterates
over possible combinations of which edge in Ep exists and which does not, and for each combination
computes the probability to follow the path being considered. Appendix A discusses PM in detail and
proposes several optimizations to speedup the computations.
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For the case in Figure 9, PM will consider two mutually exclusive cases: edge BF exists and edge FD
exists. First assume that edge BF exists. The probability of that is 0.8. If BF exists, the probability to
follow p is 1

2 . Then PM will assume that edge FD exists. The probability of that is 0.2. The probability
to follow p if FD exists is 1

2 . So the total probability to follow path p is c(p) = 0.8/2 + 0.2/2 = 0.5.

4.2 Determining equations for option-edge weights

Given the connection strength measures c(xi, yj) for each unresolved reference xi.rk and its options yj,
we can use the context attraction principle to determine the relationships between the weights associated
with the option-edges in the graph G. Note that the context attraction principle does not contain any
specific strategy on how to relate weights to connection strengths. Any strategy that assigns weight such
that if cl ≥ cj then wl ≥ wj is appropriate, where cl = c(xi, yl) and cj = c(xi, yj). In particular, we
use the strategy where weights w1, w2, . . . , wN are proportional to the corresponding connection strengths:
wj · cl = wl · cj. Using this strategy weight wj (j = 1, 2, . . . , N) is computed as:

wj =
{ cj

c1+c2+···+cN
if (c1 + c2 + · · ·+ cN ) > 0;

1
N if (c1 + c2 + · · ·+ cN ) = 0. (3)

For instance, for the toy database we have:

1. w1 = c1/(c1 + c2) = w3
2 /(1 +

w3
2 )

2. w2 = c2/(c1 + c2) = 1/(1 + w3
2 )

3. w3 = c3/(c3 + c4) = w1
2 /(1 +

w1
2 )

4. w4 = c4/(c3 + c4) = 1/(1 + w1
2 )

4.3 Determining all weights by solving equations.

Given a system of equations relating option-edge weights as derived in Section 4.2, our goal next is to
determine values for the option-edge weights that satisfy the equations. Before we discuss how such
equations can be solved in general, let us first solve the option-edge weight equations in the toy example.
These equations, given an additional constraint that all weights should be in [0, 1], have a unique solution
w1 = 0, w2 = 1, w3 = 0, and w4 = 1. Once we have computed the weights, RelDC will interpret these
weights to resolve the references. In the toy example, weights w1 = 0, w2 = 1, w3 = 0, and w4 = 1 will
lead RelDC to resolve ‘D. White’ in both P2 and P6 to ‘Don White’.
In general case, Equations (3), (1), and (2) define each option weight as a function of other option

weights: wi = fi(w). The exact function for wj is determined by Equations (3), (1), and (2) and by the
paths that exists between v[xi] and v[yj ] in G. Often, in practice, fi(w) is constant leading to the equation
of the form wi = const.
The goal is to find such a combination of weights that “satisfies” the system of wi = fi(w) equations

along with the constraints on the weights. Since a system of equations, each of the type wi = fi(w), might
not have an exact solution, we transform the equations into the form fi(w) − δi ≤ wi ≤ fi(w) + δi. Here
variable δi, called tolerance, can take on any real nonnegative value. The problem transforms into solving
the NLP problem where the constraints are specified by the inequalities above and the objective is to
minimize the sum of all δi’s.7 Such a system of equations always has a solution. This is because functions
fi’s by the nature of their construction are such that 0 ≤ fi(w) ≤ 1, for all w and i. Hence, if all deltas are
one: δi = 1, for all i, then the assignment where wi = 0 for all i is a solution that satisfies the constraints
of the NLP problem. The goal, of course, is to find a better solution by requiring that

∑
i δi is minimized.

The straightforward approach to solving the resulting NLP problem is to use one of the off-the-shelf
math solver such as SNOPT. Such solvers, however, do not scale to large problem sizes that we encounter

7Additional constraints are: 0 ≤ wi ≤ 1, δi ≥ 0, for all wi, δi.

13



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

in data cleaning as will be discussed in Section 5. We therefore exploit a simple iterative approach, which is
outlined below. The iterative method first iterates over each reference xi.rk and assigns weight of 1

|CS[xi.rk]|
to each wj . It then starts its major iterations in which it first computes c(xi, yj) for all i and j, using
Equation (2). After all c(xi, yj) values are computed, they are used to compute all wj ’s using Equation (3).
Note that the values of wj ’s will change from 1

|CS[xi.rk]| to new values. The algorithm performs several
major iterations until the weights converge (the resulting changes across iterations are negligible) or the
algorithm is explicitly stopped.
Let us perform one iteration of the iterative method for the example above. First w1 = w2 = 1

2 and
w3 = w4 = 1

2 . Next c1 =
1
4 , c2 = 1, c3 =

1
4 , and c4 = 1. Finally, w1 =

1
5 , w2 =

4
5 , w3 =

1
5 , and w4 =

4
5 . If

we stop the algorithm at this point and interpret wj ’s, then the RelDC’s answer is identical to that of the
exact solution: ‘D. White’ is ‘Don White’.
Note that the above described iterative procedure computes only an approximate solution for the system

whereas the solver finds the exact solution. Let us refer to iterative implementation of RelDC as Iter-RelDC
and denote the implementation that uses a solver as Solv-RelDC. For both Iter-RelDC and Solv-RelDC,
after the weights are computed, those weights are interpreted to produce the final result, as discussed
in Section 4. It turned out that the accuracy of Iter-RelDC (with a small number of iterations, such as
10–20) and of Solv-RelDC is practically identical. This is because even though the iterative method does
not find the exact weights, those weights are close enough to those computed using a solver. Thus, when
the weights are interpreted, both methods obtain similar results.

4.4 Resolving references by interpreting weights.

When resolving references xi.rk and deciding which entity among y1, y2, . . . , yN from CS[xi.rk] is d[xi.rk],
RelDC chooses such yj that wj is the largest among w1, w2, . . . , wN . Notice, to resolve xi.rk we could have
also combined wj weights with feature-based similarities FBS(xi, yj) (e.g., as a weighted sum), but we do
not study that approach in this paper.

5 Key optimizations of RelDC

In this section we present only key optimizations of RelDC. A more complete list of optimizations, their
taxonomy and analysis are presented in Appendix B. As far as optimization techniques are concerned,
the RelDC procedure can be logically divided into two phases: the relationship discovery (a.k.a. AllPaths)
phase and the weight computation phase. For RelDC, AllPaths is the major bottleneck, so most of the
optimizations are for the AllPaths part of RelDC. We will conclude this section with the computational
analysis of RelDC.

5.1 Constraining the problem

This section lists several optimizations that improve the efficiency of RelDC by constraining/simplifying
the problem.

Limiting paths length. AllPaths algorithm can be specified to look only for paths of length no greater
than a parameter L. This optimization is based on the premise that longer paths tend to have smaller
connection strengths while RelDC will need to spend more time to discover those.

Weight cut-off threshold. This optimization can be applied after a few iterations of Iter-RelDC. When
resolving reference xi.rk, see Figure 2, Iter-RelDC can use a threshold to prune several yj’s from CS[xi.rk].
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If the current weight wj is too small with respect to the rest of weights w1, w2, . . . , wj−1, wj+1, . . . , wN ,
then RelDC will assume yj cannot be d[xi.rk] and will remove yj from further consideration.
The threshold is computed per choice basis. For cho[xi.rk] it is computed as T = α · 1N , where α is a

real number (a fixed parameter) from interval [0, 1).8 Consequently, RelDC permanently assigns weight of
zero to those edges ej ’s which currently have weight wj : wj < T . This means that RelDC decides that
the yj’s corresponding to those wj’s cannot be d[xi.rk]. This optimization improves efficiency since RelDC
will not recompute the connection strengths between xi and those zero-weight yj ’s any longer.

Restricting path types. The analyst can specify path types of interest (or for exclusion) explicitly.9

For example, the analyst can specify that only paths of type node type1 � node type2 � node type4 �

node type1 are of interest. Some of such rules are easy to specify, however it is clear that for a generic
framework there should be some method (e.g., a language) for an analyst to specify more complex rules.
Our ongoing work addresses the problem of such a language.

5.2 Depth-first and greedy implementation of AllPaths.

We have considered two approaches for implementing AllPaths algorithm: the depth-first and greedy.10

While the depth-first implementation is straightforward, the greedy implementation deserve more in-depth
discussion. The depth-first implementation of AllPaths is a good choice of an algorithm for discovering all
L-short simple paths if skipping of paths is not allowed. This is because it requires small amount of space
(just to keep one intermediate path) and its decision of which node to expand next is performed in O(1)
time.
However a greedy implementation might be a better option if one is interested in fine-tuning the accuracy

vs. performance trade-off and decides to restrict the running time of the AllPaths algorithm. If one decides
to stop a depth-first version of AllPaths algorithm abruptly at one point, certain important paths can still
be not discovered. To address this drawback, a greedy version of the algorithm discovers the most important
paths first and least important last.

5.2.1 Data structures for the greedy implementation

When looking for all L-short simple paths of type u � v, the greedy version maintains not just one
intermediate path (like the depth-first version), but several. It uses two main data structures: a paths
storage and a priority queue.
Each path is stored as a list, in reverse order. The paths storage is organized as a set of overlapping

lists as follows. Since all of the paths start from u, many of the paths share common prefix. Thus to store
paths say p1 = u � 1, p2 = u � 1 � 2, p3 = u � 1 � 2 � 3, and p4 = u � 1 � 2 � 4 it is not necessary
to keep four separate lists of lengths 1, 2, 3, and 3 respectively. A more efficient solution is to create a list
1 � u and make p1 point to it. Then create a list 2 � p1 and make p2 point to it. And so on: for p3 the list
is 3 � p2 and for p4 it is 4 � p2. The combined length of the data structure is just 4 nodes (versus 9 nodes
if keeping separate lists). Also notice when the greedy algorithm expands path u

p1� v to path u
p1� v � x,

at that point it knows the exact location of (i.e., a pointer to) path u
p1� v in paths storage. Path u

p1� v

is a prefix of path u
p1� v � x, but the algorithm does not need to spend time searching for its location in

the paths storage, since it knows the pointer to p1.
8The typical choices for α in our experiments were 0.0 (i.e., the optimization is not used), 0.2 and 0.3.
9This optimization has not been used in our experiments.

10All of the optimizations mentioned in this paper can be applied to both of these approaches.
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5.2.2 Greedy algorithm

The algorithm maintains pointers to intermediate paths that can be expanded next in the priority queue.
The key in that queue is the path connection strength. The algorithm retrieves from the priority queue the
best intermediate path u

p1� x to expand next. By examining all direct neighbors of x, the algorithm then
identifies nodes z1, z2, . . . , zn such that paths u

p1� x � zi are legal paths in the context of RelDC approach.
Those paths are added to the paths storage as lists zi � p1 (i = 1, 2, . . . , N). Then the algorithm inserts
pointers to paths u

p1� x � zi (i = 1, 2, . . . , N) into the priority queue with key c(u
p1� x � zi), where

c(u
p1� x � zi) is the connection strength of path u

p1� x � zi.11 Thus the greedy implementation discovers
most important paths first and least important paths last.

5.2.3 Comparing complexity of greedy and depth-first implementations.

Assume both version uses the same path length limit L. The difference in computational complexity be-
tween depth-first and greedy implementations of AllPaths arises at two points: (1) when the algorithm
decides which path to expand next and (2) during the process of expanding paths (analyzing direct neigh-
bors).
For the depth-first implementation, it takes O(1) time to decide which path to expand next and it

takes O(degree(v)) time to expand path u � v further. The greedy implementation uses priority queue
[13] in order to pick the best path to expand next. If n is the size of the priority queue, get procedure
takes O(lg n) time and insert procedure takes O(lg n) time as well [13]. That is why for the greedy
implementation, it takes O(lg n) time to decide which path to expand next since it uses get operation
to retrieve the “best” path from the priority queue. It takes O(degree(v) · lg (n + degree(v))) to expand
path u � v further, since it not only examines neighbors (like depth-first method) but also puts the new
feasible paths u� v � x into the priority queue.
Thus, if the goal is to discover all L-short simple paths without skipping any paths, the depth-first version

is expected to show better results than the greedy version. However, since the greedy version discovers the
most important path first, it should be a better choice in terms of the accuracy vs. performance trade-off
than its depth-first counterpart. That is, the greedy version is expected to be better if the execution time
of the algorithm needs to be restricted. The time and space required by the greedy implementation can
be restricted by using several thresholds to limit the number of nodes that can be expanded, the number
of edges that can be analyzed, paths length, and the total number of paths observed.

5.3 NBH optimization: utilizing neighborhoods for path pruning.

he NBH optimization is probably the most important performance optimization presented in this paper.
It consistently achieves 1–2 orders of magnitude performance improvement under variety of conditions.12

The neighborhood of a node v0 of radius r0 is the set of all the nodes that are reachable from v0 via at
most r0 edges. Each member of the set is tagged with “the minimum distance to v0” information. The
intuitive definition presented above can be rephrased formally: for graph G(V,E), the neighborhood of
node v0 of radius r0, Nr0(v0), is a set of pairs:

Nr0(v0) = {(v, d) : v ∈ V, d = min dist(v, v0), d ≤ r0}.

11Notice, the connection strength c(u
p1� x � zi) can be computed incrementally: as c(u

p1� x) – which is already known,
multiplied by the probability to follow edge (x, zi).

12When the NBH optimization is used, the 1-to-N implementation of AllPaths optimization (from Section B.2.2) is not
applicable and the GraphReach optimization (from Section B.2.2 as well) has little additional effect (for the tested datasets).
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Figure 10: Neighborhood information

Recall, when resolving reference xi.rk, the algorithm will need to invoke AllPaths for N pairs – to
compute PL(xi, yj) (j = 1, 2, . . . , N) see Figure 2. This computation can be optimized by exploiting the
neighborhood information of node xi to prune certain paths as follows, see Figure 10.
When resolving a particular reference xi.rk, the algorithm first computes the neighborhood Nr(v[xi])

of v[xi] of radius r, where r ≤ L. Then for each option yj (j = 1, 2, . . . , N) it finds all simple paths
from v[yj ](source) to v[xi](destination). Assume the algorithm currently processes one of the N options,
say v[yj ], i.e. it is in the process of computing PL(xi, yj). Assume the algorithm is at some intermediate
stage where it currently observes intermediate path p1 : v[yj ]

p1� x of length m (i.e., m edges), where node
x �= v[xi]. If m is such that (m+ r) < L, then the algorithm proceeds as usual. However, if (m+ r) ≥ L,
then x must be inside Nr(v[xi]). If it is not inside, then path p1 is pruned, since there cannot be an L-short
path v[yj]

p1� x
p2� v[xi] for any path p2 : x

p2� v[xi]. Further, if x is inside Nr(v[xi]), then it is possible to
retrieve from Nr(v[xi]) the minimum distance d between x and v[xi]. This distance d should be such that
(m+ d) ≤ L: otherwise path p1 is pruned since there cannot be an L-short path v[yj ] p1� x

p2� v[xi] for any
path p2 : x

p2� v[xi].
After processing reference xi.rk in such a fashion, neighborhood Nr(v[xi]) is discarded and memory it

occupied is freed.
The NBH optimization can be improved further. Let us introduce a new term – the actual radius of

neighborhood Nr0(v0):
ract = max

v:(v,d)∈Nr0 (v0)
(min dist(v0, v)).

While usually ract = r0, sometimes13 ract < r0. This happens when nodes from the neighborhood of v0
and their incident edges form a cluster which is not connected to the rest of the graph (or this cluster is
the whole graph). In this situation Nract(v0) is equal to Nr(v0),∀r ∈ [ract,∞). In other words, we know
the neighborhood of v0 of radius r = ∞. Regarding searching all simple paths as described above, this
means that all intermediate nodes must always be inside the according neighborhood. The above methods
for exploiting neighborhoods to prune certain paths should be modified to achieve the speedup as follows.
After computing Nr(v[xi]) the following operation needs to be inserted: if ract < r then r ←∞.

5.4 Storing discovered paths explicitly.

Once the paths are discovered on the first iteration, they can be exploited for speeding up the subsequent
iterations when those paths need to be rediscovered again. One solution would be to store such paths
explicitly in memory, if there is enough such, or on disk. After paths are stored, the subsequent iterations
do not rediscover them, but rather work with the stored paths. Next we present several techniques that
reduce the storage overhead of storing paths explicitly.

13Naturally, the greater the r0 the more frequently this is likely to occur.
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Path compression. We store paths because we need to recompute the connection strengths of those
paths (on subsequent iterations), which can change as weights of option-edges change. One way of com-
pressing path information is to find fixed-weight paths. Fixed-weight paths are paths the connection
strength of which will not change because it does not depend on any other system variables that can
change. Rather than storing a path itself, it is more efficient to store the (fixed) connection strength of
that path, which, in turn, can be aggregated with other fixed connection strengths. For WM model, a path
connection strength is guaranteed to be fixed if none of the intermediate nodes on the path are incident to
an option-edge (the weight of which might change).

Storing graph instead of paths. Instead of storing paths one by one, it is more space efficient to
store the connection subgraphs. The collection of all L-short simple paths PL(u, v) between nodes u and
v defines the connection subgraph G(u, v) between u and v. Storing G(u, v) is more efficient because in
PL(u, v) some of the nodes can be repeated several times, whereas in G(u, v) each node occurs only once.
Notice, in all cases, we store only nodes: edges need not be stored since they can be restored from the
original graph G. There is a price to pay for storing only G(u, v): the paths need to be rediscovered.
However this rediscovering happens in a small subgraph G(u, v) instead of the whole graph G.

5.5 Computational complexity of RelDC.

The procedure that computes c(u, v) greedily, provided in Section 5.2, discovers L-short simple u� v paths
such that it finds paths with the highest connection strength first and with the lowest last. It achieves that
by maintaining the current connection strength for intermediate paths and by using a priority queue to
retrieve the best (in terms of connection strength) intermediate path to expand next. This procedure has
several thresholds that limit the number of nodes it can expand, the total number of edges it can examine,
the length of each path, the total number of u-v paths it can discover, and the total number of all paths it
can examine. Those thresholds can be specified as constants, or as functions of |V |, |E|, and L. If they are
constants, then the time and space complexity of c(u, v) is limited by constants Ctime and Cspace. Assume
there are Nref references that need to be disambiguated, typically Nref = O(|V |). The average cardinality
of their choice sets is typically a constant, or O(|V |). Thus, Iter-RelDC will call c(xi, yj) procedure for at
most O(|V |2) pairs of (xi, yj) per iteration. Therefore the time complexity of an iteration of Iter-RelDC
is O(|V |2) multiplied by the complexity of the c(u, v) procedure, plus the cost to construct all choice sets
using an FBS approach, which is at most O(|V |2). Notice, once c(u, v) is computed for one pair, its space
can be reused for the next pair. Hence the space complexity is O(|V | + |E|) to store the graph plus the
space complexity of one c(u, v) procedure.

6 Experimental Results

In this section we experimentally study RelDC using two real (publications and movies) and synthetic
datasets. RelDC was implemented using C++ and SNOPT solver [2]. The system runs on a 1.7GHz
Pentium machine. We test and compare the following implementations of RelDC:

1. Iter-RelDC vs. Solv-RelDC. The prefixes indicate whether the corresponding NLP problem dis-
cussed in Section 4.3 is solved iteratively or using a solver. If none of those prefixes is specified,
Iter-RelDC is assumed by default. Solv-RelDC is applicable only to more restricted problems (e.g.,
smaller graphs and smaller values of L) than Iter-RelDC. Solv-RelDC is also slower than Iter-RelDC.

2. WM-RelDC vs. PM-RelDC. The prefixes indicate whether the weight-based model (WM), de-
scribed in Section 4.1.2, or probabilistic model (PM), described in Appendix A in appendix, has been
used for computing connection strengths. By default WM-RelDC is assumed.

18



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

3. DF-RelDC vs. GRD-RelDC. The prefixes specify whether the depth-first (DF) or greedy (GRD)
implementation of AllPaths is used. By default DF-RelDC is assumed.

4. Various optimizations of RelDC can be turned on or off. By default, optimizations from Section 5
are on.

In each of the RelDC implementations, the value of L used in computing the L-short simple paths
is set to 7 by default. In this section we will demonstrate that WM-DF-Iter-RelDC is on of the best
implementations of RelDC in terms of both accuracy and efficiency. That is why the bulk of our experiments
use that implementation.

6.1 Case Study 1: the publications dataset

6.1.1 Datasets

In this section we will introduce RealPub and SynPub datasets. Our experiments will solve author matching
(AM) problem, defined in Section 2, on these datasets.

RealPub dataset. RealPub is a real data set constructed from two public-domain sources: CiteSeer[1]
and HPSearch[3]. CiteSeer can be viewed as a collection of research publication, HPSearch as a collec-
tion of information about authors. HPSearch can be viewed as a set of 〈id, authorName, department,
organization〉 tuples. That is, the affiliation consists of not just organization like in Section 2, but also
of department. Information stored in CiteSeer is in the same form as specified in Section 2, that is 〈id,
title, authorRef1,authorRef2,. . . , authorRefN〉 per each paper.

CiteSeer Paper ID Author Name
51470 Hector Garcia-Molina
51470 Anthony Tomasic
351993 Hector Garcia-Molina
351993 Anthony Tomasic
351993 Luis Gravano
641294 Luis Gravano
641294 Surajit Chaudhuri
641294 Venkatesh Ganti
273193 Venkatesh Ganti
273193 Johannes Gehrke
273193 Raghu Ramakrishnan
273193 Wei-Yin Loh

Table 2: Sample content of the publication table derived from CiteSeer.

Author ID Author Name Organization Department
1001 Hector Garcia-Molina Stanford cs.stanford
1002 Anthony Tomasic Stanford cs.stanford
1003 Luis Gravano Columbia Univ. cs.columbia
1004 Surajit Chaudhuri Microsoft research.ms
1005 Venkatesh Ganti Microsoft research.ms
1006 Johannes Gehrke Cornell cs.cornell
1007 Raghu Ramakrishnan Univ. of Wisconsin cs.wisc
1008 Wei-Yin Loh Univ. of Wisconsin stat.wisc

Table 3: Sample content of the author table derived from HPSearch. Author from CiteSeer not found in
HPSearch are also added.

Tables 2 and 3 show sample content of two tables derived from CiteSeer and HPSearch based on
which the corresponding entity-relationship graph is constructed for RelDC. Figure 11 shows a sample
entity-relationship graph that corresponds to the information in those two tables.
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Figure 12: E/R diagram for RealPub

paper_id: int
authorRef1: string
...
authorRefN: string

auth_id: int
authorName: string
deptRef: int

dept_id: int
deptName: string
orgRef: int

org_id: int
orgName: string

paper author author department department organization

#1

[1]

#2 #3 #4

[2] [3]

paper entity author entity department entity organization entity

Figure 13: No affiliation in paper entities, thus FBS cannot use affiliations.

The various types of entities and relationships present in RealPub are shown in Figure 13. RealPub
data consists of 4 types of entities: papers (255K), authors (176K), organizations (13K), and departments
(25K). To avoid confusion we use “authorRef” for author names in paper entities and “authorName” for
author names in author entities. There are 573K authorRef’s in total. Our experiments on RealPub will
explore the efficiency of RelDC in resolving these references.
To test RelDC, we first constructed an entity-relationship graph G for the RealPub database. Each

node in the graph corresponds to an entity of one of these types. If author A is affiliated with department
D, then there is (v[A], v[D]) edge in the graph. If department D is a part of organization U , then there is
(v[D], v[U ]) edge. If paper P is written by author A, then there is (v[A], v[P ]) edge. For each of the 573K
authorRef references, feature-based similarity (FBS) was used to construct its choice set.
In the RealPub data set, the paper entities refer to authors using only their names (and not

affiliations). This is because the paper entities are derived from the data available from CiteSeer which
did not directly contain information about the author’s affiliation. As a result, only similarity of author
names was used to initially construct the graph G.
This similarity has been used to construct choice sets for all authorRef references. As the result, 86.9%

(498K) of all authorRef references had choice set of size one and the corresponding papers and authors
were linked directly. For the remaining 13.1% (75K) references, 75K choice nodes were created in the graph
G. RelDC was used to resolve these remaining references. The specific experiments conducted and results
will be discussed later in the section. Notice that the RealPub data set allowed us to test RelDC only
under the condition that a majority of the references are already correctly resolved. To test robustness
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of the technique we tested RelDC over synthetic data sets where we could vary the uncertainty in the
references from 0 to 100%.

SynPub dataset. We have created two synthetic datasets SynPub1 and SynPub2, that emulate Re-
alPub. The synthetic data sets were created since, for the RealPub dataset, we do not have the true
mapping between papers and the authors of those papers. Without such a mapping, as will become clear
when we describe experiments, testing for accuracy of reference disambiguation algorithm requires a man-
ual effort (and hence experiments can only validate the accuracy over small samples). In contrast, since
in the synthetic data sets, the paper-author mapping is known in advance, accuracy of the approach can
be tested over the entire data set. Another advantage of the SynPub dataset is that by varying certain
parameters we can manually control the nature of this dataset allowing for the evaluation of all aspects of
RelDC under various conditions (e.g., varying level of ambiguity/uncertainty in the data set).
Both the SynPub1 and SynPub2 datasets contain 5000 papers, 1000 authors, 25 organizations and 125

departments. The average number of choice nodes that will be created to disambiguate the authorRef’s
is 15K (notice, the whole RealPub dataset has 75K choice nodes). The difference between SynPub1 and
SynPub2 is that author names are constructed differently: SynPub1 uses unc1 and SynPub2 uses unc2 as
will be explained shortly.

6.1.2 Accuracy experiments

In our context, accuracy is the fraction of all authorRef references that are resolved correctly. This
definition includes references that have choice sets of cardinality 1.

Experiment 1 (RealPub: manually checking samples for accuracy). Since the correct paper-
author mapping is not available for RealPub, it is infeasible to test the accuracy on this dataset. However
it is possible to find a portion of this paper-author mapping manually for a sample of RealPub by going to
authors web pages and examining their publications.
We have applied RelDC to RealPub in order to test the effectiveness of analyzing relationships. To

analyze the accuracy of the result, we concentrated only on the 13.1% of uncertain authorRef references.
Recall, the cardinality of the choice set of each such reference is at least two. For 8% of those references there
were no xi � yj paths for all j’s, thus RelDC used only FBS and not relationships. Since we want to test
the effectiveness of analyzing relationships, we remove those 8% of references from further consideration as
well. We then chose a random samples of 50 papers that were still left under consideration. For this sample
we compared the reference disambiguation result produced by RelDC with the true matches. The true
matches for authorRef references in those papers were computed manually. In this experiment, RelDC was
able to resolve all of the 50 sample references correctly! This outcome is in reality not very surprising since
in the RealPub data sets, the number of references that were ambiguous was only 13.1%. Our experiments
over the synthetic data sets will show that RelDC reaches very high disambiguation accuracy when the
number of uncertain references is not very high.
Ideally, we would have liked to have performed further accuracy tests over RealPub by either testing

on larger samples (more than 50) and/or repeating the test multiple times (in order to establish confidence
levels). However, due to the time-consuming manual nature of this experiments, this was infeasible at the
time of writing of the paper.

Experiment 2 (RealPub: accuracy of identifying author first names). We conducted another
experiment over the RealPub data set to test the efficiency of RelDC in disambiguating references which
we describe below. We first remove from RealPub all the paper entities which have an authorRef in format
“first initial + last name”. This leaves only papers with authorRef’s in format “full first name + last
name”. Then we pretend we only know “first initial + last name” for those authorRef’s. Next we run

21



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

0

20

40

60

80

100

1 2 3

P
er

ce
nt

ag
e 

of
 fi

rs
t n

am
es

 id
en

tif
ie

d 
co

rr
ec

tly

1: FBS
2: Solver-RelDC, L=4
3: Iterative-RelDC, L=8

35
.9

%

55
.6

% 63
.2

%

Figure 14: RealPub: Identifying first names

FBS and RelDC and see if they would identify correctly an author with the right full first name. In this
experiment, for 82% of the authorRef’s the cardinality of their choice sets is 1 and there is nothing to
resolve. For the rest 18% the problem is more interesting: the cardinality of their choice sets is at least 2.
Figure 22(a) shows the outcome for those 18%.
Notice that the reference disambiguation problem tested in the above experiment is of a limited nature

– the tasks of identifying the correct first name of the author and the correct author are not the same in
general.14 Nevertheless, the experiment allows us to test the accuracy of RelDC over the entire database
and does show the strength of the approach.

Accuracy on SynPub. The next set of experiments tests accuracy of RelDC and FBS approaches on
SynPub dataset. “RelDC 100%” (“RelDC 80%”) means for 100% (80%) of author entities the affiliation
information is available. Once again, paper entities do not have author affiliation attributes, so FBS cannot
use affiliation, see Figure 13. Thus those 100% and 80% have no effect on the outcome of FBS. Notation
“L=4” means RelDC explores paths of length no greater than 4.

Experiment 3 (Accuracy on SynPub1). SynPub1 uses uncertainty of type 1 defined as follows.

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

RelDC 100%, Iterative, L=8
RelDC 80%, Iterative, L=8

FBS
RelDC 100%, Iterative, L=4
RelDC 80%, Iterative, L=4

Figure 15: SynPub1: Accuracy vs. unc1
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Figure 16: SynPub1: The accuracy results for
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PM model are comparable.

14That is, it is not enough to correctly identify that ‘J.’ in ‘J. Smith’ corresponds to ‘John’ if there are multiple ‘John
Smith”s in the dataset.

22



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

There are Nauth = 1000 unique authors in SynPub1. But there are only Nname ∈ [1, Nauth] unique
authorName’s. We construct the authorName of the author with ID of k (k = 0, 1, . . . , 999) as “name”
concatenated with (k mod Nname). Each authorRef specifies one of those authorName’s. Parameter unc1
is unc1 = Nauth

Nname
ratio. For instance, if Nname is 750, then the authors with IDs of 1 and 751 have the same

authorName: “name1”, and unc1 = 1000
750 = 1

1
3 . In SynPub1 for each author whose name is not unique, one

can never identify with 100% confidence any paper this author has written. Thus the uncertainty for such
authors is very high.
Figure 15 studies the effect of unc1 on accuracy of RelDC and FBS. If unc1 = 1.0, then there is no

uncertainty and all methods have accuracy of 1.0. As expected, the accuracy of all methods monotonically
decreases as uncertainty increases. If unc1 = 2.0, the uncertainty is very large: for any given author there
is exactly one another author with the identical authorName. For this case, any FBS have no choice but to
guess one of the two authors. Therefore, the accuracy of any FBS, as shown in Figures 15, is 0.5. However,
the accuracy of RelDC 100% (RelDC 80%) when unc1 = 2.0 is 94%(82%). The gap between RelDC 100%
and RelDC 80% curves shows that in SynPub1 RelDC relies substantially on author affiliations for the
disambiguation.

Comparing the RelDC implementations. Figure 16 shows that the accuracy results of WM-Iter-RelDC,
PM-Iter-RelDC, WM-Solv-RelDC implementations are comparable. Figure 17 shows that Iter-RelDC is
the fastest implementation among them. The same trend has been observed for all other tested cases.

Experiment 4 (Accuracy on SynPub2). SynPub2 uses uncertainty of type 2. In SynPub2, authorName’s
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(in author entities) are constructed such that the following holds, see Figure 13. If an authorRef reference
(in a paper entity) is in the format “first name + last name” then it matches only one (correct) author.
But if it is in the format “first initial + last name” it matches exactly two authors. Parameter unc2 is the
fraction of authorRef’s specified as “first initial + last name”. If unc2 = 0, then there is no uncertainty
and the accuracy of all methods is 1. Also notice that the case when unc2 = 1.0 is equivalent to unc1 = 2.0.
There is less uncertainty in Experiment 4 then in Experiment 3. This is because for each author there is

a chance that he is referenced to by his full name in some of his papers, so for these cases the paper-author
associations are known with 100% confidence.
Figure 18 shows the effect of unc2 on the accuracy of RelDC. As in Figure 15, in Figure 18 the accuracy

decreases as uncertainty increases. However this time the accuracy of RelDC is much higher. The fact
that curves for RelDC 100% and RelDC 80% are almost indiscernible until unc2 reaches 0.5, shows that
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RelDC relies less heavily on weak author affiliation relationships but rather on stronger connections via
papers.

6.1.3 Other experiments
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Figure 19: SynPub: Accuracy vs. frac avail. affiliation

Experiment 5 (Importance of relationships). Figure 19 studies what effect the number of relation-
ships and the number of relationship types have on the accuracy of RelDC. When resolving authorRef’s,
RelDC uses three types of relationships: (1) paper-author, (2) author-department, (3) department-organization.15

The affiliation relationships (i.e., (2) and (3)) are derived from the affiliation information in author entities.
The affiliation information is not always available for each author entity in RealPub. In our synthetic

datasets we can manually vary the amount of available affiliation information. The x-axis shows the
fraction ρ of author entities for which their affiliation is known. If ρ = 0, then the affiliation relationships
are eliminated completely and RelDC has to rely solely on connections via paper-author relationships. If
ρ = 1, then the complete knowledge of author affiliations is available. Figure 19 studies the effect of ρ
on accuracy. The curves in this figure are for both SynPub1 and SynPub2: unc1 = 1.75, unc1 = 2.00,
and unc2 = 0.95. The accuracy increases as ρ increases showing that RelDC deals with newly available
relationships well.

Experiment 6 (Longer paths). Figure 20 examines the effect of path limit parameter L on the accu-
racy. For all the curves in the figure, the accuracy monotonically increases as L increases with the only
one exception for “RelDC 100%, unc1=2” and L = 8. The usefulness of longer paths depends on the
combination of other parameters. For SynPub, L of 7 is a reasonable compromise between accuracy and
efficiency.

Experiment 7 (The neighborhood optimization). We have developed several optimizations which
make RelDC 1–2 orders of magnitude more efficient. Figure 22 shows the effect of one of those optimiza-
tions, called NBH (see Section 5.3), for subsets of 11K and 22K papers of CiteSeer. In this figure, the
radius of neighborhood is varied from 0 to 8. The radius of zero corresponds to the case where NBH is not
used. Figure 23 shows the speedup achieved by NBH optimization with respect to the case when NBH is
off. The figure shows another positive aspect of NBH optimization: the speed up grows as the size of the
dataset and L increase.

15Note, there is a difference between a type of relationship and a chain of relationships: e.g. RelDC can discover paths like:
paper1-author1-dept1-org1-dept2-author2.
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Experiment 12 that studies the path coloring optimizations is presented in Section B.2.3.

Experiment 8 (Efficiency of RelDC). To show the applicability of RelDC to a large dataset we have
successfully applied it to clean RealPub with L ranging from 2 up to 8. Figure 21 shows the execution
time of RelDC as a function of the fraction of papers from RealPub dataset, e.g. 1.0 corresponds to all
papers in RealPub (the whole CiteSeer) dataset.

Experiment 9 (Greedy vs. Depth-first AllPaths implementations). This experiment compares
accuracy and performance of greedy and depth-first versions of RelDC. As the name suggests, the depth-
first version discovers exhaustively all paths in a depth-first fashion. RelDC has been heavily optimized
and this discovery process is very efficient. The greedy implementation of AllPaths discovers paths with
the best connection strength first and with the worst last. This gives an opportunity to fine-tune in a
meaningful way when to stop the algorithm by using various thresholds. Those thresholds can limit, for
example, not only path length but also the memory that all intermediate paths can occupy, the total
number of paths that can be analyzed and so on.
Figures 24 and 25 study the effect of Nexp parameter on the accuracy and efficiency of GRD-RelDC
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and DF-RelDC. Parameter Nexp is the upper bound on the number of paths that can be extracted from
the priority queue for GRD-RelDC. The AllPaths part of GRD-RelDC stops if either Nexp is exceeded or
the priority queue is empty.
The series in the experiment are obtained by varying: (1) DF vs. GRD, (2) path length limit L = 5

and L = 7 and (3) the amount of affiliation information 100% and 80%. Since DF-RelDC does not use
Nexp parameter, all DF-RelDC curves are flat. Let us analyze what behavior is expected from GRD-RelDC
and then see if the figures corroborate it. We will always assume that path length is limited for both
DF-RelDC and GRD-RelDC.
If Nexp is small then GRD-RelDC should discover only a few paths and its accuracy should be close to

that of FBS. If Nexp is sufficiently large, then GRD-RelDC should discover the same paths as DF-RelDC.
That is, we can compute mij = |PL(xi, yj)|, where |PL(xi, yj)| is the number of paths in PL(xi, yj). Then
if we choose Nexp such that Nexp ≥ m, where m = maxi,j(mij), then the set of all paths that GRD-RelDC
will discover will be identical to that of DF-RelDC. So, the accuracy of GRD-RelDC should stabilize and
be equal to that of DF-RelDC. The execution time of GRD-RelDC should stabilize as well and, at that
point, be larger than the execution time of DF-RelDC. Thus the accuracy of GRD-RelDC is expected to
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increase monotonically and then stabilize as Nexp increases. The execution time of GRD-RelDC is expected
to behave the same way.
The curves in Figures 24 and 25 behave as expected except for one surprise: when L = 5, GRD-RelDC

is actually faster than DF-RelDC. It is explained by the fact that when L = 5, NBH optimization prunes
very effectively many paths. That keeps the priority queue small. Thus the performance of DF-RelDC
and GRD-RelDC becomes comparable. Notice, in all of the experiments NBH optimization was turned
on, because the efficiency of any implementation of RelDC with NBH off is substantially worse than the
efficiency of any implementation with NBH on.
Figure 26 combines Figures 24 and 25. It plots the achieved accuracy by DF- and GRD-RelDC 100%

when L = 5 and L = 7 as a function of time. Using this figure it is possible to perform a retrospective
analysis of which implementation has shown the best accuracy when allowed to spend only at most certain
amount of time t on the cleaning task. For example, in time interval [0, 17.7) RelDC cannot achieve better
accuracy than FBS, so it would be more efficient to just use FBS. In time interval [17.7, 18.6) it is better
to use GRD-RelDC with L set to 5. If one is allowed to spend only [18.6, 41) seconds, it is better to use
GRD-RelDC with L set to 5 for only 18.6 seconds. If you intend to spend between 41 and 76.7 seconds it
is better to use GRD-RelDC with L set to 7. If you can spend 76.7 seconds or more, it is better to run
DF-RelDC with L set to 7 which will terminate in 76.7 seconds.

6.2 Case Study 2: the movies dataset

6.2.1 Dataset

RealMov is a real public-domain movies dataset described in [38] which has been made popular by the
textbook [16]. Unlike RealPub dataset, in RealMov all the needed correct mappings are known, so it is
possible to test the disambiguation accuracy of various approaches more extensively. However, RealMov
dataset is much smaller compared to the RealPub data set. RealMov contains entities of three types: movies
(11, 453 entities), studios (992 entities), and people (22, 121 entities). There are five types of relationships in
the RealMov dataset: actors, directors, producers, producingStudios, and distributingStudios. Relationships
actors, directors, and producers map entities of type movies to entities of type people. Relationships
producingStudios and distributingStudios map movies to studios.

movies

people

studios

Spellbound

Roman Holiday

Mission Impossible

Paula Wagner

David Selznick

Alfred Hitchcock

William Wyler

Brian De Palma

Eddie Albert

Henry Czerny

Tom Cruise

Ingrid Bergman

Gregory Peck

Audrey Hepburn

movie-producingStudio movie-distributingStudio

A D P

movie-actor movie-director movie-producer

D

D

P

P

A

A

A

A

A

A

A

P

D

P

Paramount

Selznick Pictures United Artists

A

Cinecitta

Figure 27: Sample entity-relationship graph for movies dataset.

Figure 27 presents a sample graph for RealMov dataset. Tables 4, 5, 6, and 7 demonstrate sample
content of the people, movies, studios and cast tables derived from the movies dataset. The sample graph
in Figure 27 is constructed from those tables.
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Figure 28: E/R diagram for RealMov.

Stage name DOW Name at birth Gen DOB Role Orig Notes
Tom Cruise 1981-1989 Thomas Cruise Mapother IV M 1962 Hero Am
B.dePalma 1968-1987 Brian De Palma M
Paula Wagner F Am
Henry Czerny M 1959 Ca
Wyler 1925-1959 William Wyler 1902 Am Or(Ge)
Audrey Hepburn 1951-1981 Audrey Hepburn-Ruston F 1929 pert Be
Eddie Albert 1938-1982 Eddie Albert Heimberger M 1908 honest Joe Am
Gregory Peck 1943-1982 Gregory Peck M 1916 likeable Am
Ingrid Bergman 1934-1978 Ingrid Bergman F 1915 strong beauty Sw
Hitchcock 1925-1976 Alfred Hitchcock 1899 Br Ty(Susp , Nior)
Selznick David O. Selznick 1902 Ru Ww(Hitchcock)

Table 4: The people table. Some of the notation used: DOW (dates of work), Gen (gender), DOB (date of
birth), type (kinds of roles actor played), orig (origin), Am (America).

ID Title Year Director Producer Studio Color Genre
BdP30 Mission Impossible 1996 B.dePalma Tom Cruise, Paula Wagner Paramount col Action
WW67 Roman Holiday 1953 Wyler Wyler Cinecitta, Paramount bnw Romantic
H42 Spellbound 1945 Hitchcock Selznick Selznick Pictures bnw Suspect

Table 5: The movies table.

Name Full name City Country First Last Founder Successor
Paramount Paramount Corp. Los Angeles USA 1916 1993 W. Hodkinson Paramount, Viacom
Cinecitta Rome Italy 1937
Selznick Selznick Pictures Hollywood USA 1936 1944
U.A. United Artists Hollywood USA 1919 1983 Chaplin, Pickford, etc. MGM-UA

Table 6: The studios table.

Movie ID Actor name
BdP30 Tom Cruise
BdP30 B.dePalma
BdP30 Paula Wagner
BdP30 Henry Czerny
WW67 Wyler
WW67 Audrey Hepburn
WW67 Eddie Albert
WW67 Gregory Peck
H42 Gregory Peck
H42 Ingrid Bergman
H42 Hitchcock
H42 Selznick

Table 7: The cast table.

6.2.2 Accuracy experiments

Experiment 10 (RealMov: Accuracy of disambiguating director references). In this experiment
we study the accuracy of disambiguating references from movies to directors of those movies.
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Figure 29: RealMov: disambiguating director
references. The size of the choice set of each
uncertain reference is 2.
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Figure 30: RealMov: disambiguating director
references. The pmf of sizes of choice sets of
uncertain references is given in Figure 31.
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erences. The size of the choice set of each un-
certain reference is 2.
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Figure 33: RealMov: disambiguating studio ref-
erences. The pmf of sizes of choice sets of un-
certain references is given in Figure 31.

Since in RealMov each reference, including each director reference, already points directly to the right
match, we artificially introduce ambiguity in the references manually. Similar approach to testing data
cleaning algorithms have also been used by other researchers, e.g. [7]. Given the specifics of our problem,
to study the accuracy of RelDC we will simulate that we used FBS to determine the choice set of each
reference but FBS was uncertain in some of the cases.
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To achieve that, we first choose a fraction ρ of director references (that will be uncertain). For each
reference in this fraction we will simulate that FBS part of RelDC has done its best but still was uncertain
as follows. Each director reference from this fraction is assigned a choice set of N people. One of those
people is the true director, the rest (N − 1) are chosen randomly from the set of people entities.
Figure 30 studies the accuracy as ρ is varied from 0 to 1 and where N is distributed according to the

probability mass function (pmf) shown in Figure 31, see [24] for detail. Figure 29 is similar to Figure 30
but N is always 2. The figures show that RelDC achieves better accuracy than FBS. The accuracy is 1.0
when ρ = 0, since all references are linked directly. The accuracy decreases almost linearly as ρ increases
to 1. When ρ = 1, the cardinality of the choice set of each reference is at least 2. The larger the value of L,
the better the results. The accuracy of RelDC improves significantly as L increases from 3 to 4. However,
the improvement is less significant as L increases from 4 to 5. Thus the analyst must decide whether to
spend more time to obtain higher accuracy with L = 5, or whether L = 4 is sufficient.

Experiment 11 (RealMov: Accuracy of disambiguating studio references). This experiment is
similar to the previous Experiment 10, but now we disambiguate producingStudio references, instead of
director references. Figure 32 corresponds to Figure 29 and Figure 33 to Figure 30. The RelDC’s accuracy
of disambiguating studio references is even higher.

7 Related Work

Many research challenges have been explored in the context of data cleaning in the literature: dealing with
missing data, handling erroneous data, record linkage, and so on. The closest to the problem of reference
disambiguation addressed in this paper is the problem of record linkage. The importance of record linkage
is underscored by the large number of companies, such as Trillium, Vality, FirstLogic, DataFlux, which
have developed (domain-dependent) record linkage solutions.
Researchers have also explored domain-independent techniques [31, 15, 20, 35, 5, 28]. Their work can

be viewed as addressing two challenges: (1) improving similarity function, as in [6, 23]; and (2) improving
efficiency of linkage, as in [7]. Typically two-level similarity functions are employed to compare two records.
First, such a function computes attribute-level similarities by comparing values in the same attributes of
two records. Next the function combines the attribute-level similarity measures to compute the overall
similarity of two records. A recent trend has been to employ machine learning techniques, e.g. SVM, to
learn the best similarity function for a given domain [6]. Many techniques have been proposed to address
the efficiency challenge as well: techniques that use specialized data structures (e.g. specialized indexes
[7]), merge/purge, sorting and window based techniques.
Those domain-independent techniques deal only with attributes. The only work we are aware of that

can be viewed as using relationships for data cleaning is [5, 26]. In [5] Ananthakrishna et al. employs co-
occurrence similarity function to compare contextual attributes for a case with hierarchical relationships.
In [26] Lee et al. develop a association-rules mining based method where similarity of records is determined
by similarity of the context attributes. Also, in DKDM04, Getoor et al. proposes a method that solves
the author matching problem using the notion of context and clustering techniques. The method requires
“seeding” of clusters which makes it of limited applicability in practice. To summarize, previous approaches
to data cleaning that explored relationships have either addressed other data cleaning problems (not
reference disambiguation) or have only considered specific types of relationships (e.g. hierarchy). None
of those approaches discovers relationship chains and their analysis is limited to directly linked entities.
RelDC is the first data cleaning framework that employs systematic relationship analysis for the purpose
of cleaning.
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8 Conclusion

In this paper we have shown that analysis of inter-object relationships is important for data cleaning and
demonstrated one approach that utilizes relationships. As future work we plan to apply similar techniques
to the problem of record linkage and to develop an approach which, given a sample resolved graph, would
automatically determine which relationships are irrelevant for a particular disambiguation task.
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Appendix

A Probabilistic model for computing connection strength

In Section 4.1.2 we have presented the weight based model (WM) for computing connection strength. In
this section we study a different connection strength model, called the probabilistic model (PM). In the
probabilistic model an edge weight is treated not as “weights” but as “probabilities” that the edge exists.

Notation Meaning
x∃ event “x exists” for (edge,path) x
x�∃ event “x does not exist” for (edge,path) x
x� event corresponding to following (edge,path) x

dep(e1, e2) if events e1 and e2 are independent, then dep(e1, e2) = true, else dep(e1, e2) = false
P(x∃) probability that (edge,path) x exists
P(x�) probability to follow (edge,path) x

P the path being considered
vi ith node on path P
Ei (vi, vi+1) edge on path P
Eij edge labeled with probability pij

aij aij = 1 iff. E∃
ij ; and aij = 0 iff. � E∃

ij

ai0 = 1 dummy variables: ai0 = 1 for any i
pi0 = 1 dummy variables: pi0 = 1 for any i
opt(E) if edge E is an option-edge, then opt(E) = true, else opt(E) = false
cho[E] if edge E is an option-edge, then cho[E] denotes the choice node associated with E

a, as a vector a = (a10, a11, . . . , aknk
)

a, as a set a = {aij : i = 1, 2, . . . , k; j = 1, 2, . . . , ni}
a, as a variable at each moment variable a is one instantiation of a as a vector

Table 8: Probabilistic model: Terminology

A.1 Preliminaries

Notation. Let us introduce notation that we will use in this section, see Table 8. We will operate with
probabilities of certain events. Notation P(A) refers to the probability of event A to occur. We use E∃

to denote event “E exists” for edge E. Similarly, we use E∃ for event “E does not exist”. So, P(E∃)

33



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

refers to the probability that E exists. We will consider situations where the algorithm decides what is the
probability to follow a specific edge E, usually in the context of a specific path. This probability is denoted
as P(E�), where E� denote the event of going via edge E. Notation P denotes the path being considered.
To discuss dependence of events e1 and e2 we will use dep(e1, e2) functions. Function dep(e1, e2) returns
true if two events are dependent and false if they are independent.

A C DB E
1

Source DestinationPath: A,B,C,D,E

1 1 1

0.
8 0.2

F G

Figure 34: Toy example: independent case

A C DB E

F

G

1

Source DestinationPath: A,B,C,D,E

1 1 1

0.8

0.2

1

Figure 35: Toy example: dependent case

Introductory examples. We will introduce PM by analyzing two examples shown in Figures 34 and
35. Let us consider how to compute the connection strength when edge weights are treated as probabilities
that those edges exist. Each figure show a part of a small sample graph with path P=A�B�C�D�E
which will be of interest to us.
In Figure 34 we assume the events “edge BF is present” and “edge DG is present” are independent.

The probability of the event “edge BF is present” is 0.8. The probability of the event “edge DG is present”
is 0.2. In Figure 35 node F represents a choice created to resolve a reference xi.rk of entity xi represented
by node G. Nodes B and D are options of choice F . That is, semantically, xi.rk can correspond to only
one: either B with probability 0.8 or D with probability of 0.2. Events “edge BF exists” and “edge DF
exists” are mutually exclusive (and hence strongly dependent): if one edge is present the other edge must
be absent due to the semantics of the choice node.
PM computes the connection strength of a path as the probability to reach the destination from the

source by following this path. In PM computing connection strength becomes a two step process. First
of all, path P should exist in the first place, which means each of its edges should exist. Thus the first
step is to compute the probability P(P∃) that path P exists. For the path P in Figures 34 and 35,
probability P(P∃) is equal to P(AB∃ ∩ BC∃ ∩ CD∃ ∩DE∃). If the existence of each edge in the path is
independent from the existence of other edges, e.g. like for the cases shown in Figures 34 and 35, then
P(AB∃ ∩ BC∃ ∩ CD∃ ∩DE∃) = P(AB∃) · P(BC∃) · P(CD∃) · P(DE∃). Since all of the edges of path P
are labeled with 1’s in both figures, the probability that P exists is 1. Now the second step is to consider
the probability P(P�|P∃) to follow path P, given that P exists. Once this probability is computed,
it is easy to compute our goal – the probability to follow path P, which we use as our measure of the
connection strength of path P: c(P) = P(P�) = P(P∃) · P(P�|P∃). The probability P(P�|P∃) is
computed differently for the cases in Figures 34 and 35. This will lead to different values for the connection
strength of P.

Example A.1.1 (Independent edge existence). Let us first consider the case where the existence of
each edge is independent from the existence of the other edges. In Figure 34 two events “BF exists” and
“DG exists” are independent. The probability to follow path P is the product of probabilities to follow
each of the edges on the path: P(P�|P∃) = P(AB�|P∃) · P(BC�|P∃) · P(CD�|P∃) · P(DE�|P∃).
Given path P exists, the probability to follow edge AB in path P is one. The probability to follow edge
BC is computed as follows. With probability 0.2 edge BF is absent, in which case the probability to
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follow BC is 1. With probability 0.8 edge BF is present, in which case the probability to follow BC is 1
2

– because there are two links, BF and BC, that can be followed. Thus the total probability to follow BC
is 0.2 · 1 + 0.8 · 12 = 0.6. Similarly, the probability to follow CD is 1 and the probability to follow DE is
0.8 · 1 + 0.2 · 12 = 0.9. The probability to follow path P, given it exists, is the product of probabilities to
follow each edge of the path which is equal to 1 · 0.6 · 1 · 0.9 = 0.54. Since for the case shown in Figure 34
path P exists with probability 1, the final probability to follow P is c(P) = P(P�) = 0.54.

Example A.1.2 (Dependent edge existence). Let us now consider the case where the existence of an
edge can dependent on the existence of the other edges. For the case shown in Figure 35 edges BF and DF
cannot exist both at the same time. To compute P(P�|P∃) we will consider two cases separately: BF ∃

and BF 	∃. That way we will be able to compute P(P�|P∃) as P(P�|P∃) = P(BF ∃|P∃) · P(P�|P∃ ∩
BF 	∃) + P(BF 	∃|P∃) · P(P�|P∃ ∩BF 	∃).
Let us first assume BF ∃ (i.e., edge BF is present) and then compute P(BF ∃|P∃) ·P(P�|P∃ ∩BF 	∃).

For the case of Figure 35, if no assumptions about the presence or absence of DF have been made yet,
P(BF ∃|P∃) is simply equal to P(BF ∃) which is equal to 0.8. If BF is present then DF is absent and
the probability to follow P is P(P�|P∃ ∩ BF 	∃) = 1 · 12 · 1 · 1 = 1

2 . Now let us consider the second case
BF 	∃ (and thus DF ∃). The probability P(BF 	∃|P∃) is 0.2. For that case P(P�|P∃ ∩ BF 	∃) is equal to
1 · 1 · 1 · 12 = 1

2 . Thus P(P
�|P∃) = 0.8 · 12 + 0.2 · 12 = 0.5. So c(P) = P(P�) = 0.50, which is different

from that of the previous experiment.

A.2 Independent edge existence

Let us consider how to compute path connection strength in general case, assuming the existence of each
edge is independent from existence of the other edges.

A.2.1 General formulae
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Figure 36: Independent edge existence. Computing
c(v1 � v2 � · · · � vk). All edges shown in the figure
are “possible to follow” edges in the context of the
path. Edges that are not possible to follow are not
shown.
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Figure 37: The case in this figure is similar to that of
Figure 36 with an additional assumption that path
P exists.

In general, any path P can be represented as a sequence of k nodes P = 〈v1, v2, . . . , vk〉 or as a
sequence of k−1 edges P = 〈E10, E20, . . . , E(k−1)0〉, see Figure 36. Here, Ei0 = (vi, vi+1) and P(E∃

i0) = pi0

(i = 1, 2, . . . , k− 1). The goal is to compute the probability to follow path P, which is the measure of the
connection strength of path P:

c(P) = P(P�) = P(P∃) · P(P�|P∃) (4)

The probability that P exists is equivalent to the probability that each of its edges exists:

P(P∃) = P(
k−1⋂
i=1

E∃
i ) (5)
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Given our assumption of the independence, P(P∃) can be computed as:

P(P∃) =
k−1∏
i=1

P(E∃
i ) =

k−1∏
i=1

qi (6)

So, to compute P(P�) we now need to compute P(P�|P∃). Let us see what changes in Figure 36 if
we assumeP∃. Given that qi is defined as qi = P(E∃

i ), the new label q̃i is computed as q̃i = P(E
∃
i |P∃) = 1.

Similarly, each pij is defined as pij = P(E∃
ij). Thus each new label p̃ij can be computed as p̃ij = P(E∃

ij |P∃).
Therefore, given our assumption of independence p̃ij = pij. The new labeling is shown in Figure 37.
Let us define a variable aij for each edge Eij (labeled pij) as follows: (aij = 1) if and only if (E∃

ij);
also (aij = 0) if and only if (E

	∃
ij). Also, for notational convenience, let us define a set of dummy variables

ai0 and pi0: ai0 = 1 and pi0 = 1 (i = 1, 2, . . . , k − 1).16 Let a denote a vector consisting of all aij ’s: a =
(a10, a11, . . . , ak−1,nk−1

). Let A denote the set of all possible instantiations of a, i.e. |A| = 2n1+n2+···+nk−1 .
Then probability P(P�|P∃) can be computed as:

P(P�|P∃) =
∑
a∈A

{
P(P�|a ∩P∃) · P(a|P∃)

}
(7)

where P(a|P∃) is the probability of instantiation a to occur while assuming P∃. Given our assumption
of independence of probabilities, P(a|P∃) = P(a). Probability P(a) can be computed as

P(a|P∃) = P(a) =
∏

i=1,2,...,k
j=0,1,...,ni

p
aij

ij · (1− pij)1−aij . (8)

Probability P(P�|a∩P∃), which is the probability to go via P given (1) a particular instantiation of a;
and (2) the fact that P exists, can be computed as:

P(P�|a ∩P∃) =
k−1∏
i=1

1
1 +

∑ni
j=1 aij

≡
k−1∏
i=1

1∑ni
j=0 aij

. (9)

Thus

P(P�) =

(
k−1∏
i=1

qi

)
·
∑

a∈A


[

k−1∏
i=1

1∑ni
j=0 aij

]
·
∏

ij

p
aij

ij · (1− pij)1−aij



 (10)

A.2.2 Computing path connection strength in practice

Notice, Equation (10) iterates through all possible instantiations of a which is impossible to compute in
practice given |A| = 2n1+n2+···+nk−1 . This equation must be simplified to make the computation feasible.

Computing P(P�|P∃) as
∏k−1

i=1 P(E
�

i |P∃). To achieve the simplification, we will use our assumption
of independence of probabilities which allows us to compute P(P�|P∃) as the product of the probabilities
to follow each individual edge in the path:

P(P�|P∃) =
k−1∏
i=1

P(E�

i |P∃). (11)

16Intuitively (1) ai0 = 1 corresponds to the fact that if P∃ then E∃
i ; and (2) pi0 = 1 corresponds to pi0 = P(E∃

i |P∃) = 1.
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Let ai denote vector (ai0, ai1, . . . , aini), that is a = (a1,a2, . . . ,ak−1). Let Ai denote all possible instanti-
ations of ai. That is, A = A1 × . . . ×Ak−1 and |Ai| = 2ni . Then

P(E�

i |P∃) =
∑

ai∈Ai


[

1∑ni
j=0 aij

]
·
 ni∏

j=0

p
aij

ij · (1− pij)1−aij

 (12)

Combining Equations (4), (11) and (12) we have:

P(P�) =

(
k∏

i=0

qi

)
·

k∏
i=1

 ∑
ai∈Ai


[

1∑ni
j=0 aij

]
·
 ni∏

j=0

p
aij

ij · (1− pij)1−aij


 (13)

The effect of transformation. Notice, using Equation (10) the algorithm will need to perform |A| =
2n1+n2+···+nk−1 iterations – one per each instantiation of a. Using Equation (13) the algorithm will need to
perform |A1|+ |A2|+ · · ·+ |Ak−1| = 2n1 +2n2 + · · ·+2nk−1 iterations. Furthermore, each iteration requires
less computation. These factors lead to a significant improvement.

Handling weight-1 edges. The formula in Equation (12) assumes 2ni iterations will be needed to

vi vi+1
1

pn
i -

m

1
vi-1

p 1p i

ni - m

1 11

m

... ...

... ...

Figure 38: Probability to follow edge Ei = (vi, vi+1)

compute P(E�

i |P∃).This formula can be modified further to achieve more efficient computation as follows.
In practice, some of the pij’s, or even all of them, are often equal to 1. Figure 38 shows the case where m,
0 ≤ m ≤ ni, edges incident to node vi are labeled with 1. Let ãi denote vector (ai0, ai1, . . . , ai(ni−m)) and
let Ãi be the set of all possible instantiations of this vector. Then Equation (12) can be simplified to:

P(E�

i |P∃) =
∑

ãi∈Ãi


[

1
m+

∑ni−m
j=0 aij

]
·
ni−m∏

j=0

p
aij

ij · (1− pij)1−aij

 (14)

The number of iteration is reduced from 2ni to 2ni−m.

Computing P(E�

i |P∃) as
∑k

j=0
1

1+j ·P(si = j). Performing 2ni−m iterations can still be expensive for
the cases when (ni −m) is large. Next we discuss several methods to deal with this issue.

Method 1: Do not simplify further. In general, the value of 2ni−m can be large. But for a particular instance
of a cleaning problem it can be that (a)2ni−m is never large or (b) 2ni−m can be large but bearable and
the cases when it is large are infrequent. In those cases further simplification might not be required.
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Method 2: Estimate answer using results from Poisson trials theory. Let us denote the following sum
as si: si =

∑ni
j=1 aij . From a basic probability course we know that the binomial distribution gives the

number of successes in n independent trials where each trial is successful with the same probability P
[19]. The binomial distribution can be viewed as a sum of several i.i.d. Bernoulli trials. The Poisson trials
process is similar to the binomial distribution process where trials are still independent but not necessarily
identically distributed, i.e. the probability of success in ith trial is pi. We can modify Equation (13) to
compute P(E�

i |P∃) as follows:

P(E�

i |P∃) =
k∑

l=0

1
1 + l

· P(si = l) (15)

Notice, for a given i we can treat ai1, ai,2, . . . , aini as a sequence of ni Bernoulli trials with probabilities of
success P(aij = 1) = pij. One would want to estimate P(si = l) quickly, rather than compute it exactly
via iterating over all cases when (si = l). That is, one straightforward (and exact) method to compute
P(si = l) is:

P(si = l) =
∑

ai∈Ai
si=l

ni∏
j=0

p
aij

ij · (1− pij)1−aij

For example, if pij = p for each j = 1, 2, . . . , ni, then we have a binomial distribution case and can compute
P(si = l) quickly, and in this case exactly, as C l

ni
pl(1− p)ni−l.

In certain cases it can be possible to utilize the Poisson trials theory to estimate P(si = l). For example,
if each pij is small then from the probability theory we know that

P(si = l) =
λle−λ

l!

{
1 +O

(
λ max

j=1,2,...,ni

pij +
l2

λ
max

j=1,2,...,ni

pij

)}
, where λ =

ni∑
j=1

pij . (16)

One can also utilize the following “Monte-Carlo like” method to compute P(si = l). The idea is to have
several runs. During run numberm, the method decides by generating a random number (“tossing a coin”)
if edge Eij is present (variable aj will be assigned 1) or absent (aj = 0) for this run based on the probability
pij. Then the sum Sm =

∑ni
j=1 pij is computed for that run. After n runs the desired probability P(si = l)

is estimated as the number of Si’s which are equal to l, divided by n.
Method 3: Use linear cost formula. The third approach is to use a cut-off threshold to decide if the

cost of performing 2ni−m iterations is acceptable. If it is acceptable then compute P(E�

i |P∃) precisely,
using iterations. If it is not acceptable (typically, rare case), then try to use Equation (16). If that fails,
use the following (linear cost) approximation formula. First compute the expected number of edges µi

among ni edges Ei1, Ei,2, . . . , Eini , where P(E
∃
ij) = pij, as follows: µi = m+

∑ni−m
j=1 pij. Then since there

are 1 + µi possible links to follow on average, the probability to follow Ei can be coarsely estimated as:

P(E�

i |P∃) ≈ 1
1 + µi

=
1

m+
∑ni−m

j=0 pij

(17)

A.3 Dependent edge existence

In this section we discuss how to compute connection strength if occurrence of edges is not independent. In
our model, dependence between two edges arises only when those two edges are option-edges of the same
choice node. We next show how to compute P(P�) for those cases.
There are two principal situations we need to address. The first is to handle all choice nodes on the

path. The second step is to handle all choice nodes such that a choice node itself is not on the path but at
least two of its option nodes are on the path. Next we address those two cases.
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A.3.1 Choice nodes on the path
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Figure 39: Choice node on the path
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Figure 40: Choice node on the path: illegal path

The first case of how to deal with choice nodes on the path is a simple one. There are two sub-cases in
this case illustrated in Figures 39 and 40.
Figure 39 shows a choice node C on the path which resolves some reference of the entity represented by

node B and which have options D, G, and F . Recall, we compute P(P�) = P(P∃) · P(P�|P∃). When
we compute P(P∃) each edge of path P should exist. Thus edge CD must exist, which means edges
CG and CF do not exist. Notice, this case is equivalent to the case where (a) edges CG and CF are not
there (permanently eliminated from consideration); and (b) node C is just a regular (not a choice) node
connected to D via an edge (in this case the edge is labeled 0.2). If we now consider this equivalent case,
then we can simply apply Equation (13) to compute the connection strength.
In general, all choice nodes on the path, can be “eliminated” from the path one by one (or, rather,

“replaced with regular nodes”) using the procedure above.
Figure 40 shows a choice node C on the path which have options B, F , and D, such that B � C � D

is a part of the path P. Semantically, edges CB, CF , and CD are mutually exclusive: any two of those
edges cannot exist at the same time. Since BC and CD are mutually exclusive, path P can never exist.
Such paths are said to be illegal and they are ignored by RelDC.

A.3.2 Options of the same choice node on the path

Assume now we have applied the procedure from Section A.3.1 and all choice nodes are “eliminated” from
path P. At this point the probability P(P∃) can be computed as P(P∃) =

∏k−1
i=1 qi. The only case that
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Figure 41: Options of the same choice node on the path

is left to be considered is where a choice node itself is not on the path but at least two of its options are on
the path. An example of this case is illustrated in Figures 35 and 41. In Figure 41 choice node F has four
options: G, B, D, and H, two of which B and D belong to the path being considered. After choice nodes
are eliminated from the path, the goal becomes to create a formula similar to Equation (13), but for the
general “dependent” case.
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Let as define two sets f and d – of ‘free’ and ‘dependent’ aij ’s as follows:

f = {aij : ∀l, k where l �= i or k �= j ⇒ dep(aij , al,k) = false}
d = {aij : ∃l, k where l �= i or k �= j ⇒ dep(aij , al,k) = true} (18)

Notice, a = f ∪ d and f ∩ d = ∅. If d = ∅, then there is no dependence and the solution is given by
Equation (13), otherwise we proceed as follows. Similarly to ai we can define fi and di as follows:

fi = {aij : aij ∈ f , j = 0, 1, . . . , ni}
di = {aij : aij ∈ d, j = 1, 2, . . . , ni}

(19)

Notice, ai = fi ∪ di and fi ∩ di = ∅. We define D as the set of all possible instantiations of d, and Fi as
the set of all possible instantiations of fi. Then

P(P�) =

(
k−1∏
i=1

qi

)
︸ ︷︷ ︸
P(P∃)

×
∑
d∈D

{[
k−1∏
i=1

( ∑
fi∈Fi

{[
1∑ni

j=0 aij

]
·
[ ∏

j:aij∈fi

p
aij

ij · (1− pij)1−aij

]})]
︸ ︷︷ ︸

Ψ(d)

·P(d)
}

(20)

Equation (20) iterates over all feasible instantiations of d and P(d) is the probability of a specific
instance. Equation (20) contains term

∑
d∈D {Ψ(d) · P(d)} . What this achieves is that a particular in-

stantiation of d “fixates” a particular combination of all “dependent” edges, and P(d) corresponds to the
probability of that combination. Notice, Ψ(d) directly corresponds to P(P�|P∃) part of Equation (13).
To compute P(P�) in Equation (20), we only need to specify how to compute P(d).

Computing P(d). Recall, we now consider cases where aij is in d only because there is (at least one)
another ars ∈ d such that dep(E∃

ij , E
∃
rs) = true and cho[Eij ] = cho[Ers]. Figure 35 is an example of

such a case. So, for each aij ∈ d we can identify choice node v∗l = cho[Eij ] and compute set Cl =
{ars ∈ d : cho[Ers] = v∗l }. Then, for any two distinct elements aij ∈ Cl and ars the following holds:
dep(E∃

ij , E
∃
rs) = true if and only if ars ∈ Cl.

In other words, we can split set d into non intersecting subsets d = C1 ∪C2 ∪ · · · ∪Cm. The existence
of each edge Eij such that aij is in one of those sets Cl depends only on the existence of those edges Ers’s
whose ars is in Cl as well. Therefore P(d) can be computed as P(d) = P(C1)×P(C2)× · · ·×P(Cm). Now,
to be able to compute Equation (20), we only need to specify how to compute P (Ci) (i = 1, 2, . . . ,m).

p
k+1p 1

pn

1
p k

... ...

first k options on P 

path P

last (n-k) options not on P 

u1 uk un

v

v*

uk+1

l

Figure 42: Intra choice dependence.

Computing P (Ci). Figure 42 shows choice node v∗l with n options u1, u2, . . . , un. Each (v∗l , uj) edge
(j = 1, 2, . . . , n) is labeled with probability pi. As before, to specify which edge is present and which is
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absent, each option edge has variable ai associated with it. Variable ai = 1 if and only if the edge labeled
with pi is present, otherwise ai = 0. That is, P(ai = 1) = pi and p1 + p2 + · · ·+ pn = 1.
Let us assume, without loss of generality, that the first k (2 ≤ k ≤ n) options u1, u2, . . . , uk of v∗l

belong to path P while the other (n − k) options uk+1, uk+2, . . . , un do not belong to P, as shown in
Figure 42. In the context of Figure 42, computing P (Cl) is equivalent to computing the probability a
particular instantiation of vector (a1, a2, . . . , ak) to occur.
Notice, only one ai among a1, a2, . . . , ak, ak+1, ak+2, . . . , an can be 1, the rest are zeroes. First let us

compute the probability of instantiation a1 = a2 = · · · = ak = 0. For that case one of ak+1, ak+2, . . . , an

should be equal to 1. Thus P(a1 = a2 = · · · = ak = 0) = pk+1 + pk+2 + · · ·+ pn.
The second case is when one of a1, a2, . . . , ak is 1. Assume aj = 1, where 1 ≤ j ≤ k, then P(aj = 1) = pl.

To summarize:

P(a1, a2, . . . , ak) =
{
pj if ∃j ∈ [1, k] : aj = 1
pk+1 + pk+2 + · · ·+ pn if ∀j ∈ [1, k] : aj = 0

Now we know how to compute P (Ci) (i = 1, 2, . . . ,m), thus we can compute P(d). Therefore we have
specified how to compute path connection strength using Equation (20).

A.4 Computing the total connection strength.

The connection strength between nodes u and v is computed as a sum of connection strengths of all simple
paths between u and v: c(u, v) =

∑
P∈PL(u,v) c(P). Based on this connection strength the weight of the

corresponding edge will be determined. This weight will be treated as the probability of the edge to exist.
Let us give the motivation of why the summation of individual simple paths is performed. We associate

the connection strength between two nodes u and v with probability of reaching v from u via only L-
short simple paths. Let us name those simple paths P1,P2, . . . ,Pk, Let us call G(u, v) the subgraph
comprised of the union of those paths: G(u, v) =P1 ∪P2 ∪ · · · ∪Pk. Subgraph G(u, v) is a subgraph of
the complete graph G(V,E), where V is the set of vertices V = {vi : i = 1, 2, . . . , |V |} and E is the set
of edges E = {Ei : i = 1, 2, . . . , |E|}. Let us define ai as follows: ai = 1 if and only if edge Ei is present,
otherwise ai = 0. Let a denote vector (a1, a2, . . . , a|E|) and let A be the set of all possible instantiations of
a.
We need to compute the probability to reach v from u via subgraph P(G(u, v)�) which we treat as the

measure of the connection strength. We can represent P(G(u, v)�) as:

P(G(u, v)�) =
∑
a∈A

P(G(u, v)�|a) · P(a) (21)

Notice, when computing P(G(u, v)�|a) we assume a particular instantiation of a. So the complete
knowledge of which edges are present and which are absent is available, as if all the edges were “fixed”.
Assuming one particular instantiation of a, there is no dependence among edge existence events any longer:
each edge is either present with 100% probability or absent with 100% probability. Thus

P(G(u, v)�|a) =
k∑

i=1

P(P�

i |a) (22)
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and

P(G(u, v)�) =
∑
a∈A

P(G(u, v)�|a) · P(a)

=
∑
a∈A

[(
k∑

i=1

P(P�

i |a)
)
· P(a)

]

=
k∑

i=1

[∑
a∈A

(
P(P�

i |a) · P(a)
)]

=
k∑

i=1

P(P�

i )

(23)

Equation (23) shows that the total connection strength is the sum of the connection strength of all
L-short simple paths.

B Optimizations of RelDC

In this section we present several optimizations of RelDC. These optimizations make RelDC 1–2 orders of
magnitude more efficient.
RelDC spend most of its time discovering paths between nodes. This is not always true for Solv-RelDC:

in certain situations the solver can spend relatively significant portion of the execution time solving the
equations. However, we use an off-the-shelf math solver and cannot optimize it. So the bottleneck of
RelDC that can be optimized is the path discovering (a.k.a. AllPaths) part of RelDC. Hence, all of the
optimizations discussed in this section are for AllPaths part of RelDC.
Since our problem and the well-studied problem of the maximum network flow (MNF) bear some

similarity, we have considered utilizing MNF for our algorithm. Unfortunately, MNF treats “weights” in
a principally different way and cannot be applied. Thus we had to devise our own optimizations. Even
though in theory the number of L-short simple paths between two nodes can be large, in practice it is not
so. However, a näıve algorithm can make many redundant traversals while discovering those paths. We have
developed several optimizations that reduce the number of redundant traversals improving performance
by orders of magnitude.
In the rest of the section we discuss several important optimizations. We classify optimizations in three

large categories summarized below:

1. Constraining (simplifying) the problem

2. Algorithmic optimizations of RelDC

(a) Preprocessing optimizations

(b) Optimization for all (or only the first) iterations

(c) Speeding up the subsequent iterations (only Iter-RelDC)

3. Exploiting parallelism

A parallel implementation of Iter-RelDC is possible because, when processing choices during a particular
iteration, Iter-RelDC uses information (e.g. values of variables) only from the previous iteration. Therefore,
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all choice nodes can be divided into several groups and each CPU will be responsible for resolving all choice
nodes of one of the groups.17

B.1 Constraining the problem

The problem can be simplified by adding additional constraints. To speed up the data cleaning process as
well as to guide choice resolution, an analyst using such a system can specify rules to help avoid certain
computations. Rules can be classified along two dimensions: (i) domain dependence and (ii) purpose.
Rules can be general (domain independent) or ad-hoc (domain specific). In the purpose dimension we
distinguish resolution and speedup rules, though rules that serve both resolution and speed-up purposes
exist. Resolution rules guide the choice resolution process, while speed-up rules are needed to speed-up
the resolution process. We have discussed several rules the analyst can use to constrain the problem in
Section 5.1.

B.2 Algorithmic optimizations of AllPaths

This section presents optimizations for AllPaths algorithm. All optimizations are divided into three cate-
gories. Section B.2.1 describes one preprocessing optimization which is applied before the first invocation
of AllPaths. Section B.2.2 presents optimizations applicable to all iterations. Finally, optimizations for
speeding up the subsequent iterations (i.e., iterations number 2, 3,. . . ) of Iter-RelDC are presented in
Section B.2.3.

B.2.1 Preprocessing optimization

Before looking for all L-short paths, one can first try to determine whether there is at least one L-short
path in a more efficient manner as follows. During the preprocessing phase, “iteration zero” runs as any
other iteration except for it uses a faster ShortestPath algorithm instead of AllPaths. ShortestPath for
two nodes u and v operates by carefully expanding both neighborhoods of u and v. ShortestPath does
not maintain any intermediate paths and it does not return the shortest path. It returns whether or not
there is a path between u and v, by analyzing whether or not the neighborhoods of u and v overlap. If
ShortestPath determines there cannot be a path between u and v, then AllPaths will not find any paths
either. Thus the corresponding option-edge will be permanently assigned weight of zero and the connection
strength between u and v will not be recomputed on the next iterations.

B.2.2 Optimizations for all iterations

1-to-N implementation of AllPaths. When disambiguating reference xi.rk, RelDC needs to compute
the connection strength not only for one pair (xi, yj) but rather for N pairs (xi, yj) (j = 1, 2, . . . , N). Thus
far we have used the approach which computes all simple paths for those pairs in a pair by pair fashion.
A small modification of an implementation of AllPaths algorithm allows to achieve (more efficient) 1-to-N
path discovery in one run of AllPaths algorithm. When checking if the destination node yj is reached the
algorithm now instead checks if any one of y1, y2, . . . , yN is reached. To achieve that, all y1, y2, . . . , yN are
beforehand inserted into a hash table so the check of whether a destination is reached still takes O(1) time.

Utilizing neighborhoods for path pruning (NBH optimization). See Section 5.3.
17A parallel version of Iter-RelDC has been implemented but rarely used. That version needs to be improved: performance

on 3,4,. . . CPUs is worse than on 2 CPUs due to the caching and synchronization issues.
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Utilizing graph reachability for path pruning (GraphReach optimization). Graph reachability
(GraphReach) optimization is similar to the optimization that utilizes neighborhoods (NBH): it speeds
up the algorithm by pruning certain paths. GraphReach optimization is based on the fact that often the
graph on which the algorithm works is not random: it is either structured or can be made structured. This
is especially the case for graphs constructed from relational tables of relational databases.

Structured in this context means that a node of a certain type type1 can be reached from a different
node of type2 only via at least k edges. For instance, consider Figure 11. A traversal of at least 3 edges is
needed to reach any node of type paper from a node of type university.
The information about the minimum number of edges needed to be traversed from any node of one

type to reach any node of the second type can be stored in a table for all types and looked up when
needed. It is possible to exploit the reachability information to prune certain paths. For example, assume
the algorithm looks for L-short u � v paths. Assume the algorithm currently examines an intermediate
path p1 : u

p1� x of length m. From the reachability table the algorithm can look up the minimum number
of edges d needed to be traversed from a node of type type(x) to a node of type type(v). Then if d is such
that (m+ d) > L, then there cannot be an L-short path of type u

p1� x
p2� v for any path p2 : x

p2� v.
Comparing GraphReach and NBH. GraphReach and NBH are quite similar, let us take up the

differences between them. The advantage of GraphReach optimization over NBH optimization is that
GraphReach utilizes the inherent structure of the graph while NBH needs first to invest time in building
auxiliary data structures (i.e., neighborhoods). The advantage of NBH over GraphReach is that neighbor-
hoods in general contain more information for pruning than the knowledge of reachability. GraphReach
provides very general information about a lower bound of the minimum number of edges the algorithm
will need to traverse from current node before it might reach a node of type equal to the type of the des-
tination node. Neighborhoods, if available, provides information about the exact minimum distance (in
number of edges) to the destination node. Thus the algorithm is likely to make more redundant traversals
with GraphReach than with NBH. In our tests NBH optimization has shown significantly better results
than GraphReach optimization. However GraphReach optimization improves performance by an order of
magnitude when compared with the unoptimized version of RelDC.

Greedy implementation of AllPaths algorithm. See Section 5.2.

B.2.3 Optimizations for the subsequent iterations

(1) Storing discovered paths explicitly. See Section 5.4

(2) Path coloring. In this section we present a solution which on the first iteration of Iter-RelDC marks
the discovered paths in graph G in a certain way and then uses this information later on to speed up the
subsequent iterations of Iter-RelDC. The solution requires O(|V |) space overhead for graph G(V,E). Let us
first explain the general idea behind the path coloring technique and then show how it can be implemented
in practice.
During the first iteration, all L-short simple paths PL(xi, yj) between v[xi] and v[yj] (j = 1, 2, . . . , N)

will be found. The path coloring technique picks one color, color(xi, yj), among C available colors per each
(xi, yj) pair. It then marks all paths in PL(xi, yj) with the same color color(xi, yj). It also tries to assign
different colors to different pairs (xi, yj), however this is often not possible since often the number of such
pairs is greater than the number of colors C.
For example, the only path between v[xi] and v[y2] in Figure 43 is assigned red color, and paths between

v[xi] and v[yN ] are assigned blue color. Coloring of a path with a certain color means that all nodes on
the path are assigned this color. Each node can have multiple colors. For instance, a node can have colors
of blue and red at the same time, such as node v1 in Figure 43.
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Figure 43: Path coloring

During the subsequent iterations the coloring information can be utilized to prune certain paths by
utilizing the coloring that was used to mark the paths on the first iteration as follows. Assume the algorithm
looks for L-short u� v paths. Suppose that on the first iteration all the discovered paths of type u � v
have been marked with the red color. Assume the algorithm currently examines an intermediate path
p1 : u

p1� x all nodes of which have the red color so far. Suppose the algorithm examines the direct
neighbors of x and determines that path u

p1� x � y is legitimate. However, if node y does not have the
red color, then there cannot be an L-short path u

p1� x � y
p2� v for any path p2 : y

p2� v. This is because
otherwise that path would have been discovered on the first iteration and y would have been marked red.
For instance, in Figure 43 all v[xi]� v[y2] path have been assigned the red color by RelDC on the first

iteration. When looking for v[xi] to v[y2] paths on the second iteration the algorithm will first retrieve v1.
Next, when deciding where to go next, it can skip all the nodes except for v2 and so on. That way the
algorithm is capable of pruning of many redundant traversals.

Implementation of path coloring. Implementing the path coloring technique is surprisingly simple:
it requires only around 30–40 lines of codes. Path coloring requires each node to have an Cbit color field.
Consequently, it will require C · |V | bits of additional storage, so the number of colors C is limited in
practice. The color field of a node is implemented as an array of

⌈
C
8

⌉
bytes. If all bits are set to zero, then

the node has no color. If ith bit of the color fields is set to 1, then the node has color i. To test if a node
has color i (or to mark the node with color i), the algorithm computes

⌊
C
8

⌋
to determine the location of

the right byte in the color field and (color mod 8) to determine the location of the corresponding bit in
that byte.

Picking colors. When resolving references xi.rk’s the color is picked for each (xi, yj) pair once during
the first iteration. All L-short simple paths between xi and yj will be marked with the chosen color. The
colors should be picked such that in the end each color is used roughly equal number of times. That is, the
extreme case is when every node has the same single color which is equivalent to not using the coloring
optimization at all. The subsequent iteration should be able to determine which color was used during the
first iteration for each (xi, yj) pair. One way to implement that, is to make the first iteration store this
color explicitly, e.g. in a table, for each (xi, yj) pair. Our implementation instead utilizes a hash function
which maps the unique identifiers of xi and yj to an integer between 0 and C − 1 to create one of the C
colors. That way we do not need to keep a table for storing color assignments and achieve uniformity, i.e.,
each color is used roughly equal number of times. The (symmetric) hash function we use to pick color for
pair (xi, yj) is as follows

hash(u, v,C) = (u.id + v.id) mod C,

where id’s are unique node id’s.
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Limited number of colors. Because the number of colors is limited to C, the same color, in general,
will be assigned to multiple (xi, yj) pairs. Consequently, the algorithm with the coloring optimization,
might still explore paths which will not lead to the destinations. The larger the number of colors C the
more efficient the optimization. Naturally, this improvement is constrained since having more colors than
the number of (xi, yj) pairs is of little value.

Removing not colored nodes. If, after the first iteration of Iter-RelDC, a node does not have any
color, this means the node is not a part of any path and thus it can be removed from the graph. This will
speed up the algorithm further because now RelDC does not even have to retrieve the node to see that
it does not have the right color (has no color). However one should be careful: removing nodes means
decreasing the degree of its neighbor nodes, which can affect the system which measure the connection
strength. Thus it is imperative to store in nodes the weights of removed edges.
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Experiment 12 (The path coloring optimization). In this experiment we study the improvement of
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performance of AllPaths (not the complete RelDC) algorithm when path coloring optimization is used. All
experiments are on subsets of RealPub. The first invocation of AllPaths will color paths using C colors in
total. The second (and the rest of) invocation(s) of AllPaths will utilize the color information to rediscover
the paths more efficiently.
Figure 44 shows the effect of the number of colors on the speedup achieved by the path coloring tech-

nique. The speedup is measured as the execution time of AllPaths on the first iteration of Iter-RelDC
divided by that of the second iteration. The figure has six curves for six series of experiments. “NBH
ON/OFF” shows whether the NBH optimization was turned on or off. Notation 25K (50K) shows that the
size of the tested subset of RealPub was such that it contained only 25K (50K) of 573K auth name ref’s.
When NBH optimization is OFF, the path coloring technique shows significant improvement which, as
expected, increases when the number of colors increases but stabilizes when no more colors are needed.
When NBH optimization is ON the effect of the path coloring optimization is much less significant. This
is because NBH optimization performs very effective path pruning. As a result, when the other prun-
ing techniques which we have discussed are applied concurrently with NBH, they lead to only a small
improvement.
Figure 45 shows the effect of the number of colors on the execution time of the second invocation

of AllPaths algorithm. When NBH optimization is off, the path coloring technique shows significant
improvement. However, when NBH is on, it cannot improve the efficiency much further, thus the curves
remain mostly flat.
Figure 46 studies the achieved speedup as the size of the subset of RealPub increases. In this figure

x-axis show the number of references in the subset of RealPub being tested. Notation “C = 2” means two
colors were used. That is, each node can be in 4 states: (a) have no color, (b) have color 0, (c) have color
1, and (d) have two colors: 0 and 1. When NBH optimization is on, the path coloring does not lead to
a significant improvement: the curves are flat and close to 1. When NBH optimization is OFF, initially,
when the dataset size is small (the number of references is small) the graph is sparse and there are not
many path alternatives. Thus the path coloring technique leads to small speedup. The speedup improves
as graph becomes larger and denser. It then fluctuates: for C = 2 it fluctuates in [7.5, 12], for C = 100 in
[14, 16.5].
Figure 47 studies the efficiency of the path coloring optimization on AllPaths as the size of subsets of

RealPub increases. Notation “[1+2]” means the time of both the first and second invocations of AllPaths
is reported whereas notation “[2]” means the time of only second invocation is reported. The figure shows
that when NBH optimization is on, the number of colors has little effect on the performance and thus
the corresponding curves for 2 and 100 colors coincide. Also the figure shows that if both the first and
second invocations of AllPaths are considered, when L is 4, having 100 colors instead of 2 only marginally
improves performance, so the two curves coincide as well. This is because for L = 4 having just two colors
already significantly improves performance and the combined cost is largely determined by the cost of the
first invocation of AllPaths.

B.3 Summary: the most important optimizations.

Appendix B presents many optimizations. Some of those optimizations, like the path coloring and storing
paths explicitly optimizations, are mutually exclusive. Some of the optimizations lead to significant im-
provement under variety of conditions, while others work well only under certain conditions. Some do not
work well in combination with other optimizations. Naturally, the question arises: which are the most im-
portant optimizations that preferably work well under variety of conditions, specifically for large datasets?
Next we list the most important optimizations in the order of their significance. The optimization that
limits path length is important but rather straightforward, and thus it is not listed below.

47



D. Kalashnikov et al. Exploiting relationships for dom.-indep. data cleaning. TR-RESCUE-04-20 Sep 22, 2004

1. NBH optimization – the most important optimization. It allows to prune paths very effectively. In
fact, it does that so effectively that if other pruning-based optimizations are used, the additional
speed-up they achieve is typically under 20%. While it is possible that for certain cases using
another pruning-based optimization, called GraphReach, might be more efficient than using NBH
optimization, in general NBH is significantly better than GraphReach.

2. Storing paths explicitly on disk. This optimization allows to significantly reduce the processing cost
of iterations 2, 3, . . . of Iter-RelDC. However, the path coloring technique is often a better option for
smaller datasets.

3. ShortestPath and Weight cut-off optimizations. These optimizations allow to quickly filter out un-
likely options from choice sets.

C Alternative WM formulae

C.1 Addressing drawbacks of Equation (3)

One could argue that the formula in Equation (3) does not address properly the situation illustrated
in Figure 48. In the example in Figure 48, when disambiguating references xi.rk the choice set for this
reference CS[xi.rk] has three elements y1, y2, and y3. In Figure 48(a) the connection strengths cj = c(xi, yj)
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v[y2] v[xi]

v[y3]
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Figure 48: Motivation for Normalization method 2

(j = 1, 2, 3) are as follows: c1 = 0, c2 = 0, and c3 is a nonnegative value which is small. That is, RelDC has
not been able to find any evidence that d[xi.rk] is y1 or y2 and found insubstantial evidence that d[xi.rk]
is y3. However Equation (3) will compute w1 = 0, w2 = 0, and w3 = 1, one interpretation of which might
be that the algorithm is 100% confident y3 is d[xi.rk].
One can argue that in such a situation, since the evidence that d[xi.rk] is y3 is very weak, w1, w2, and

w3 should be roughly equal. That is, their values should be close to 1
3 in this case, as shown in Figure 48(b),

and w3 should be slightly greater than w1 and w2.
Figure 48(c) is similar to Figure 48(a), except for c3 is large with respect to other connection strengths

in the system. Following the same logic, weights w1 and w2 should be close to zero. Weight w3 should be
close to 1, as in Figure 48(d).
We can correct those issues with Equation (3) and achieve the desired weight assignment as follows.

We will assume that since y1, y2, and y3 are in the choice set CS[xi.rk] of reference xi.rk (whereas other
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entities are not in the choice set), in such situations there is always a very small default connection strength
α between each xi and yj. That is, Equation (3) is modified and the weights are assigned as follows.

wj =
(cj + α)∑

l=1,2,...,N (cl + α)
(24)

where α is a small positive weight: α∈R
+. Equation (24) corrects the mentioned drawbacks of Equation (3).
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