
SPIDER: Flexible Matching in Databases

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Amit Marathe
AT&T Labs–Research

marathe@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
We present a prototype system, SPIDER, developed at AT&T Labs–
Research, which supports flexible string attribute value matching in
large databases. We discuss the design principles on which SPIDER

is based, describe the basic techniques encompassed by the tool and
provide a description of the demo.

1. INTRODUCTION
The efficiency of every information processing infrastructure is

greatly affected by the quality of the data residing in its databases
(see, e.g., [4]). Poor data quality is the result of a variety of reasons,
including data entry errors (e.g., typing mistakes), poor integrity
constraints and lack of standards for recording database fields (e.g.,
addresses). Data quality issues could instigate a variety of busi-
ness problems, such as inefficient customer relationship manage-
ment (e.g., inability to retrieve a customer record during a service
call), billing errors and distribution delays.

Every large organization maintaining a multitude of databases is
likely to face data quality problems. A very typical problem en-
countered in such settings is that customer information (names of
individuals, names of corporations, addresses) is represented differ-
ently across related databases. Similar problems exist with product
names, product descriptions, etc. Such information consists pri-
marily of strings. As a result, there is a pressing need for technolo-
gies that enable flexible (fuzzy) matching of string information in
a database. At AT&T Labs–Research, we have been developing a
prototype system called SPIDER to address various aspects of data
quality. In this demonstration of our tools we will be exhibiting
the support provided for flexible attribute value matching in large
databases. We will briefly outline the design principles on which
SPIDER is based, describe the basic techniques encompassed by the
tool and provide a description of the demo.

2. DESIGN PRINCIPLES
Trends in data quality research and development have evolved in

two main directions. The first one is based on the use of proprietary
technology that requires exclusive access to the data. A variety of
companies (including, e.g., [1, 2]) provide tools that operate on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

data to identify quality problems using a multitude of technologies.
Such tools commonly extract data out of relational databases and
apply proprietary algorithms.

The second direction makes use of declarative specifications of
data quality tasks. Data quality algorithms and techniques operate
on data directly in the relational database, and are often expressed
as SQL statements (see, e.g., [3, 5, 6, 7]). Such an approach has
the advantage of not requiring extraction of the data outside the
database which can be a serious concern in large enterprises. More-
over it can readily leverage query optimization and execution pro-
vided by the database. Our SPIDER tool falls in this category. At
a very high level, SPIDER interfaces with any relational database,
issues declarative statements to preprocess any information it re-
quires and is capable of expressing operations necessary to enable
flexible matching in a declarative way.

3. DESCRIPTION
SPIDER, due to its design principles, is very versatile in terms

of correlating and manipulating databases. Its main features are
described in the following subsections.

3.1 Core Technology
In order to enable flexible matching on strings (customer names,

product names, addresses, etc.), there is a need for principled tech-
niques to quantify the closeness of corresponding relational attribute
values. A variety of predicates exist for such a purpose, includ-
ing edit distance and tf-idf cosine similarity, for which efficient
declarative specifications and realizations on relational databases
have been proposed [3, 5, 6, 7]. In applying these predicates to our
application data, we have found that tf-idf cosine similarity works
much better than edit distance.

Let Base denote the table with a string-valued attribute sva
against which flexible matching needs to be performed, and let
Search denote the table containing the search strings (this may
consist of just a single record with a single attribute value, or may
be more complex). Flexible string matching is done in two stages,
using the techniques described in [7].

� At pre-processing time, the Base table is indexed, and q-
gram tokens are extracted from each string in Base.sva. A
variety of auxiliary tables get created to compute the idf val-
ues of each token, and ultimately to associate each database
string with a (normalized) weight vector (incorporating both
tf and idf) corresponding to the tokens extracted from it.

� At query time, a similar process is first done with respect
to the Search table. Then, an SQL query that operates on
the auxiliary tables created from Base and Search is exe-
cuted, which identifies the matching records, along with their

876

Figure 1: Double column flexible matching

similarity score. Essentially, this query computes the cosine
similarity of the weight vectors of the search string with the
weight vectors of the database strings in Base.sva, taking
the weights of the common tokens into account.

3.2 Flexible String Matching
After a table has been indexed, SPIDER can perform flexible

string matching on any indexed attribute. It is frequently the case
that tables have many string valued attributes and what is desired
is a multi-column search, which, given a sequence of strings (e.g.,
company name and address), returns all database tuples “close” to
the search strings. A multi-column search can be thought of as a
series of single-column searches along with a combining function.

SPIDER asks the user to input one or more search strings and a
similarity threshold. It returns all tuples whose tf-idf cosine simi-
larity score is greater than the given threshold. For multi-column
matching, the user can also specify a combining function which is
used to merge the results of the single-column sub-searches. A va-
riety of techniques are available for this purpose, including static
weighting and various variants of dynamic weighting. In static
weighting, each search attribute is assigned a fixed weight, while
in dynamic weighting the relative weights of the search attributes
are adjusted on a per-tuple or per-search basis [7].

Figure 1 presents a sample results page of SPIDER for the case of
a query using the cosine similarity function against two attributes of
a table. The search strings (name and address), a similarity thresh-
old and the attribute specifications are provided, and the results are
displayed. Note that, using our tf-idf cosine similarity, we can also
take care of small edit errors (“worldcom” in the search string vs
“worldco” in the database string).

3.3 Result Explanation
When trying to understand any fuzzy matching algorithm, there

is a need for an explain feature that can be used to validate the
results returned. This is important not just for debugging but also
from a user experience perspective.

When local metrics like edit-distance are used, an explain feature
is of limited utility because the validity of a result is just a matter
of checking whether a locally testable predicate is satisfied by a
pair of strings. With global metrics like tf-idf cosine similarity, the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20

N
or

m
al

iz
ed

 W
ei

gh
ts

Tokens

Search Weights
Tuple Weights

Figure 2: Result explanation

score of a tuple depends not only on the search string but also on
all the other tuples in the indexed table. It is for global metrics
like these that an easily available explanation of the results can go
a long way in helping users develop a feel for the behavior of the
metric and thereby assist them in evaluating the appropriateness of
the metric to the problem at hand.

In SPIDER, each result is presented along with a hyperlink. Click-
ing on the hyperlink takes the user to a new page which displays
the normalized weights for all tokens in the search and database
strings along with their raw idf weights. This allows the user to
see at a glance the tokens common to the two strings, and how they
contribute to the final score. The user can also quickly determine
whether a low score is due to a lack of common tokens or due to
the absence of some high weight token from the search string.

Figure 2 presents a sample explanation page of the similarity be-
tween the search string “Microsoft” and the database string “Met-
rosoft Inc”. It can be seen that there are quite a few high-weight
tokens that are not common to the two strings. That accounts for
the relatively low similarity score of 0.62 for the database string.

3.4 Query Refinement
At times, it may be necessary to increase/decrease the impor-

tance of particular tokens in the search string. For example, when
searching by customer names we may want to emphasize the last
name (as opposed to the first name). In these instances, we want
the ability to change the weights of some search tokens from their
default tf-idf weight. Such a feature will enable users to run a more
focused search while still retaining the basic properties of the tf-idf
cosine similarity metric.

SPIDER allows the user to indicate which tokens of the search
string should be considered for query refinement. The weights of
all these tokens are modified (based on a user-specified factor) and
the search weight vector is re-normalized. The before and after
results of this change can be seen side-by-side in the result pane.

Figure 3 shows the results for a query on the string “429 ridge
rd dayton nj”. The tokens derived from the first word of the query
have their weights increased by a factor of 10. It can be seen that
this adjustment has the effect of dropping some old matches while
picking up a few new matches. One issue worth noting is that, af-
ter the query refinement, the similarity score of the exact match
drops. The reason is that the weight vectors for the query and the
data strings are normalized using the l�-norm (length in the Eu-
clidean space) of the corresponding un-normalized weight vectors.
So the similarity score is 1 for some database string if and only if its
weight vector is identical to the search weight vector. Since query
refinement changes the search weight vector but not the database

877

Figure 3: Query refinement

string weight vectors, query refinement downgrades some matches
while raising the scores of others. This can also be understood us-
ing the result explanation feature, described earlier.

3.5 Data Refinement
While the similarity metric used in SPIDER takes into account

the frequencies of all tokens (rare tokens get a high weight and
common tokens get a low weight), it does not consider the joint
distribution of sets of tokens. For example, in a table of customer
names, “john” and “kumar” might be common first and last names
but “john kumar” may be an uncommon name. In such a scenario,
we would like the ability to adjust the weight vector of names close
to “john kumar” to incorporate the rarity of that combination. The
tuples which contain “john” (or “kumar”) but are not close to “john
kumar” would not be affected. This makes for a fine-grained mech-
anism to dynamically adjust the tuple weights so as to emphasize
particular rare combinations of common tokens.

SPIDER allows the user to dynamically enter such infrequent co-
occurrences of common substrings. For each such string it searches
the database for appropriate tuples. The user can select any combi-
nation of these tuples to participate in the weight adjustment. The
weights of the “frequent” tokens in each selected tuple, and only in
these tuples, are increased by a user specified parameter. Finally, all
the selected tuples have their weight vectors re-normalized. Subse-
quent searches run against this modified database.

3.6 Synonym Table
It is often the case that the same entity is represented in multiple

ways inside the database. For example, “1 ATT Way Bedminster
NJ” and “900 Route 202/206 Bedminster NJ” are both valid ad-
dresses for ATT’s headquarters. We would like our fuzzy matching
algorithms to be aware of such semantics, so that an entity can be
searched for using any of its representations. Furthermore, we also
want this semantic matching to be robust in dealing with errors and
multiple conventions (see, e.g., [7]).

Semantic equivalences are represented in SPIDER through a syn-
onym table. The user can add pairs of strings to this table. Every
search string is first checked against this table to pick up any equiv-
alent strings, which are then appended to the search string. This

augmented string is then used for a regular tf-idf cosine similarity
search on the database,

4. USE CASES
This section outlines some possible scenarios for how users might

interact with SPIDER. We will name the users Alice and Bob.
Consider a database table where the address components (street,

city, state) are in separate columns. For simplicity of matching, the
address components are concatenated into a single string. Alice
starts by searching for the address “180 Avenue of the Americas
New York NY”. After looking at the results and drilling down to
the explanation of a few scores, she observes that the city-state sub-
string “New York NY” is not contributing much to the score. This
is probably because the database has many addresses from New
York City. Alice is not interested in out-of-state addresses, so she
decides to use query refinement to increase the importance of the
city-state substring in the search. This has the effect of discounting
addresses which previously matched on the street part but did not
match on the city-state part.

The results after query refinement are more to her liking. How-
ever, Alice notices that an expected address “180 6th Avenue New
York NY” is not among the search results. To correct this false neg-
ative, she enters “6th Avenue New York NY” and “Avenue of the
Americas New York NY” as a pair into the synonym table. After
this addition, addresses on “6th Avenue” in New York City can be
searched using the street name synonym “Avenue of the Americas”
(and vice versa).

During another search on “451 New Jersey Ave Madison Wis-
consin”, Bob comes across the high-scoring address “451 Wiscon-
sin Ave Madison New Jersey”. Obviously, the search algorithm is
not distinguishing between different parts of the address. To evalu-
ate an alternative approach, Bob decides to search the address com-
ponents of street, city and state separately, based on per-column
SPIDER indexes. He then tries out multi-column matching with
static and dynamic weights. The results are tighter than before but
the downside is that the search string is no longer free-form: it must
be entered as three distinct fields.

5. CONCLUSION
SPIDER is a prototype system that supports flexible string at-

tribute value matching. Given the declarative (SQL based) nature
of its flexible matching, SPIDER can easily support many variations
of the basic single-column matching, including multiple column
matching, and the use of synonym tables. Given the global nature
of the tf-idf cosine similarity function used effectively in SPIDER,
our tools can effectively support query and data refinement capa-
bilities. The result explanation utility provides considerable help to
the user in understanding the flexible matching methodology.

6. REFERENCES
[1] Dataflux Inc. www.dataflux.com.
[2] Netrics Inc. www.Netrics.com.
[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and

efficient fuzzy match for online data cleaning. Proceedings of
SIGMOD, 2003.

[4] T. Dasu and T. Johnson. Exploratory data mining and data cleaning.
John Wiley, 2003.

[5] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost)
for free. Proceedings of VLDB, 2001.

[6] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in
an RDBMS for web data integration. Proceedings of WWW, 2003.

[7] N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching
against large databases in practice. Proceedings of VLDB, 2004.

878

