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Abstract

The paper presents a data cleansing technique for
string databases. We propose and evaluate an
algorithm that identifies a group of strings that
consists of (multiple) occurrences of a correctly
spelled string plus nearby misspelled strings. All
strings in a group are replaced by the most fre-
qguent string of this group. Our method targets
proper noun databases, including names and ad-
dresses, which are not handled by dictionaries.

At the technical level we give an efficient solu-
tion for computing the center of a group of strings
and determine the border of the group. We use in-
verse strings together with sampling to efficiently
identify and cleanse a database. The experimental
evaluation shows that for proper nouns the cen-
ter calculation and border detection algorithms
are robust and even very small sample sizes yield
good results.

Introduction

Figure 1 illustrates the setting for strings george, syd-
ney, and jacob, together with misspelling of these strings.
We describe a solution to group misspellings of a string by
identifying the border and center of a hyper-sphere.

[ ]
george @
[ ]

Figure 1: Database of Proper Nouns with Misspellings

The border detection algorithm is based on $tiéng
proximity graph(cf. Section 4.1), which captures the prop-
erties of proper noun databases with misspellings. The
string proximity graph shows that in the immediate neigh-
borhood of a string the number of strings is growing be-
cause of the misspellings. As we further increase the neigh-
borhood the number of strings does not grow. There are no
misspellings in this area and the other strings are further

ward a number of problems that do not exist in the numeri@Vay because of the high-dimensional nature of the string

domain. However, besides the added complexity, strings
also offer unique opportunities. In this paper we describe
solution that takes advantage of the high-dimensionalkspac
to clean databases of proper nouns, i.e., strings that do nafle!-

occur in dictionaries.

Since strings are elements of a high-dimensional spac
the distance between any two strings is typically large. At

pace. The point at which the clusters stops to grow indi-

gates the border of a group of misspelled strings.

The computation of the border and center is done in par-
We start with a random string that has not yet been
processed and identify all strings that are within distance
ane from this string. Next we adjust the center of the clus-
er and increase the radius. The adjustment of the center
akes the method more robust, so that it also applies to

exception are misspelled strings, which tend to be locate
near correctly spelled strings. The combination of thesd
two properties means that small hyper-spheres can be us
to cluster a string database. The hyper-spheres are far fro
each other, and each hyper-sphere encloses the correc
spelled string and the nearby misspelled strings.

roups of strings that are not far away from each other. As

qon as an increase of the radius does not further increase
e number of strings we have found a group and proceed
ith another string that has not yet been processed. The

process stops when all the strings have been grouped.

The contributions of the paper are the following:

e We introduce a new cleansing technique for string data
with typos. The solution is based on the (i) border de-
tection and (ii) the center adjustment. The computa-
tion of the distance between strings is done with the
help of g-grams of strings (substrings of length q).
The center of the cluster is modeled as a bag of the
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most frequent substrings of length q of the strings inapproximate string selectivity, and use the result to detec
the group. Thus, the center reflects the substrings thatorder of the cluster. Then inverse strings can be used to
are common for the strings and neglects substringsluster and cleanse the data.
that are the result of infrequent misspelling. There is a large body of work in the area of the simi-
] ) ] larity metrics for string attributes. Such measures inelud
e We use inverse strings (IS) to determine close-byg(it distance [8] g-grams, cosine similarity [6, 3, 7] and

strings and to compute the border of the cluster. In+ts variants [5, 14]. Ananthakrishna [1] proposes a textual
verse strings associate with each g-gram the string IDgjmilarity function for strings.

that contain the g-gram. Even with inverse strings the

computational complexity of the border detection is 3 Background

combinatorial wrt the length of the center string and

radius of the cluster. We use sampling to approximate3.1 Q-grams

the bord_er detection. This yields a linear complexity pefinition 3.1 [g-grams.] The g-grams of a string are

wrt the size of the sample. obtained by sliding a window of sizgover the characters
e We provide experimental result for the border detec‘\?\fear.\a\?énfcee\}/vitr ?ﬁ;;gg‘rg'?r? ar\l\?eég;tré?ls?ﬁeoét:ihne sl;rlng

tion and data cleansing algorithms. We show that the fixing it with an ; d suff 9 by
border detection is robust and that even small samPrefixing it with ¢ — 1 occurrences of # and suffixing it
ple sizes ensure good approximations of the border o ith g —1 occurrences of 3. We assume that symbols # and
clusters and a low cleansing error. do not occur in the input strings.

2Example 3.1[g-grams.] Leta = george and q=2. The

The organization of the paper is the following. Section )
g-grams of stringy are

presents related work. Q-grams and inverse strings are r

viewed in section 3. Border detection and computation of B(george = {#g", ge', eot, orl,rgt, ge2, e$'}.

the center string are introduced in section 4. Approxima-

tion of the border with the help of IS data structure andin order to distinguish different occurrences of the same

sampling are described in section 5. Section 6 presents tiegram we associate each g-gram with a sequence num-

algorithm of the cleansing of the data. We give an experiber (displayed as a superscript). For example, 2-gyain

mental evaluation in section 7. Finally, section 8 conctude denotes the substring at the beginning of the string, and

the paper and offers future work. 2-gramge? denotes the substring at the end of the string
(positions 5-6 of the input string).

2 Related Work
3.2 String Overlap

Fuzzy retrieval is the closest related work to our approach. ) _
Fuzzy retrieval algorithms get as input a string and threshOverlaps of g-grams quantify the closeness of strings. The
old, and output strings that are within the given thresholdmore two bags overlap, the closer the strings are to each
Chaudhuri et al. [2] introduce an algorithm that retrievesother. We define the overlap of two strings as the number
tuples that exactly match the query string with a high prob-of g-grams they share.
ability. Jagadish et al [10] and Ciaccia et al. [4] propose
family of index structures that support exact, prefix, and a
proximate queries on multi-string attributes. Jin et aP][1
propose an index structure that supports mixed typesgstrin o(a, B) = |B(a) N B(B)],
and non-string) of attributes for approximate retrieval.

Automatic spell checking techniques [13, 9] compare awhere| X | denotes the cardinality of séf.
potentially misspelled word with the words in a dictionary ) )
or a model based on the dictionary. They output a correc- Our clustering strategy is based on the overlap between
tion (or a set of corrections) for a given error threshold orStrings. We cluster strings together if they have a high-over
r number of requested answersr i given the dictionary  lap, and we assign strings to different clusters if the ayerl
(or the model) is queried a number of times for differentPetween strings is low.
incremental thresholds until the sizes reached. In this Example 3.2 [Overlap of strings.] Let; — jacob,ay —
paper we show how to automatically compute the thresh:, P ~ svndni p_ dg Ih 1= a2 =
old (border of the cluster). jacop, 1 = syndni,f = syndny. Then

Efficient approximation of selectivity for a given string o(jacohjacop) = |{#j', ja', ac',co'}| =4
and edit distance (overlap threshold) is investigated 1. [1
This provides important statistical information about theSince the overlap between the strings is high, we assign
string data. In this paper we focus on precise computatio@anda; to one cluster. Similarly, sinegsydny, sydni) = 4,
of the center and the border of a cluster, though both oup; andg: are clustered together. On the other hand, since
border detection and approximate selectivity solutioms ca o(sydny, jacob) = 0, stringsa, as, 51, 82 are not put into
be combined. Our border detection algorithm can query foone cluster.

®efinition 3.2 [Overlap of stringsy and3]. Let o and
Pbe two strings. Then the overlap of the strings is



3.3 Inverse Strings 4.1 Border Detection

Inverse strings associate with each g-gramil string IDs ~ Assume a center string of a cluster. The border detec-

that contairk as a g-gram. tion algorithm aims to find the smallest radius that separate
strings of this cluster from strings of other clusters. 8inc
Definition 3.3 [Inverse string.] Letas,...,a, be a  Wecompare strings with the help of overlaps, this border is
dataset and: be a g-gram. The inverse string is the setthe smallest overlap that separates the cluster from other
of all strings (string IDs) that have as a g-gram: cluster.
The border is computed by examinif@,;(¢)| = [{« :
IS(k) = {a; : k € B(ay)} o(a, ¢) > d}|, i.e., the number of strings that have an over-

lap of at leastl with ¢. Consider the following example.
Example 3.3 [Inverse string.] Let the input database con-
sists of six stringso; = jacob, as = jacop, as = jakob, Example 4.1 [Border detection.] We continue examle 3.3.
ay = sydny, as = sydni, ag = sydney. The bags of Let({ = jacob, g=2. We compute the database strings that
2-grams for each string are: have all 2-grams in common (overlapdis= 6) with jacob:
Cs(jacob = {1}, the database strings that have all but
one 2-gramC5(jacob) = {4 }. Similarly:

B(en) = B(jaco) — ={#j",ja',ac’,co’,0b",b$"} cob

Blos) = Blacop  ={#",ja*,ac",co',op" 8"} et C poven)

B(as) = B(jakob) — ={#j",ja',ak", ko",ob",b$"} Co(jacob = {ai, a0, a3}

B(au) = B(sydny  ={#s",sy",yd", dn',ny",y$"} Cijacoh = {ay, a9, a3}

B(as) = B(sydni :{#sl syt, yd*, dn', nit i$1} Cojacoh) = {ai, 2,03, 04, 05, ac}.

B(as) = B(sydney ={#s", sy’,yd", dn", ne', ey’, y$'} Figure 2 shows the size 0f;(jacob)| as overlap de-

creases (cf. AxisX from right to left). For large overlaps

(o = 5—6) the size of the cluster increases. Then the cluster
The inverse string structure for all 2-grams is: size stops to increase for a range of the overlaps ( —4).

This is an indication that the border of the cluster has been

reached. As the overlap is further decreased the cluster

IS(#7') = {on, 02,03} IS(#s') ={au, a5, a6} starts to include points from other clusters resulting in a
1S(ja") = {a1, 02,03} IS(sy’)  —={as,as,as} very fast increase of its size £ 0 — 1).

IS(ac') = {an, 02,03}  IS(yd') ={au,as, a6} Q

IS(co") = {an,a2,a3} IS(dn') ={ou,as,a6} 3

IS(ob") = {a1,a2,a3} IS(ny') ={as} (q-i

15(b8") = {ou, a3} IS(y$')  ={as,ae} =

15(ak") = {os} IS(ni')  ={as} ©

1S(p$") = {az} 15G8")  ={as} N

1S(ko") = {as} IS(ne')  ={as} N

15(0p*) = {02} IS(ey')  =fas) ol1 23458 +

Overlap

The inverse strings data structure pre-clusters strings.
Intuitively, the example database consists of two clusters
with data distributed around centers = jacob andvy; = We compute the largest range of a constant size of the
sydney. The inverse strings structure reflects the clusterg, ster (cfo = 1 — 4in Figure 2), and take the right end of
part of inverse strings consists of string IDs from the firstiq interval as the border.
cluster (cf. the first column), while the other parts comssist  The porder detection algorithm takes a center stting
of the IDs of the second cluster (cf. the second column). 414 finds the bordér of the cluster. We extend the notion

of border detection for a bag of g-grams. lget 2. Then
4 Cluster Computation the following expressions are equivalent:

Figure 2: The String Proximity Graph

This section presents our clustering technique. First, we (i) b is the border for center string= jacob
formalize the computation of the bordiefor each cluster

(cf. Section 4.1). Second, we formalize the computation of (i) b is the border for the 2-grani3(jacob =
center¢ of the cluster (cf. Section 4.2). {#5',7a', act, co', ob*, b$1}.



The extension of the border detection allows us toExample 4.2 [Computation of the center for a given set of
query for borders of centers that do not necessarily corbags.] We continue Example 4.1. Let, as, andas be
respond to a database string (for example for a ba@ set of strings. Then the set of bags for the strings is the
{#51, ja',aX", co', 0b",b$'}). The motivation for this following:
generalization comes from the computation of the center
for a cluster and is discussed in detail in Section 4.2. B(ay) = B(jacob) =  {#j!, ja',act, co’,ob', b$'}

B(az) = B(jakob) = {#j!,ja',ak?, ko', ob', b$'}

The following summarizes and defines the detection of B(az) = B(jacap = {#j',jat,acl, cal,ap’, p$t},

the border.
Our aim is to find a bag that represents bdgfgy, ),
Definition 4.1 [Detection of the Border.] LeB be a (cen- B(az2), andB(«3). We compute such a bag in the follow-
ter) bag andCy(B) = {a : o(B(a),B) > o}, o = ingway. We compute the overall histogram for the set of
|B|,|B| = 1,|B] = 2,...,0. Letij,i; 4+ 1,...,4; + ky, bags, and neglect the infrequent 2-grams. The histogram of
the longest sequence of unvarying sizes of the cluster:  all 2-grams is presented in Figure 4 with the 2-grams in the
second row, and the number of occurrences of the 2-gram
|Ci,(B)| = |Ci;41(B)| = --- = |Cij+kij (B)]. in the first row.

3 3 3 3 2 1
#50 | ja' | act | ob' | 08T | co'

Then the border of the cluster with centelis b = i;.

4.2 Computation of the Center

1 1 1 1 1
The border detection algorithm provides a simple and ef- ak™ | ko' | ca® | ap’ | p$T

fective strategy to compute clusters in string data. One
starts with a string in the database and selects the border
that separates the cluster from the other clusters. If the Figure 4: Histogram of 2-grams

initial string was chosen close to the center of the cluster, ) ) )

the border detection will yield good and robust results (cf. ~The size of the center bag of 2-grams is determined by
¢ = jacob, Figure 3(a)). If one chooses the initial string the average siz& of the input bags3(a1), B(az), and
close to the border, two separate clusters might be assigndd(cs). Therefore, the center bag is the following:

to one cluster (cf( = jocop, Figure 3(a)).

B® = {#j17ja’11aclaOblab$lacOI}.

Note that the center bag might consist g-grams that cor-
respond to typos in the input dataset. These occurrences do
_ not decrease the quality of clustering. In fact, the opposit
zyd‘1e| sydnei holds, since we are looking for a center bag that represents
o e all the strings in the cluster as precisely as possible.

sydney The following formalizes the computation of the center

bag for a set of input bags.
Definition 4.2 [Center bag.] LetB;, B, ..., B; be a set

(a) Cluster with Center String = jacob of input bags. Let

jazab
jacab L b A= |B1|+|B2|+"'+|Bk|
[y iacob L
jakop ~ Jacob e zycmei sydnei _
4 ° _®  jocop L be the average size of ba§s, Bo, ..., B. Let
jacgp jacub sydney

. o h(k) =[{B;: k € Bi}|
(b) Cluster with Center String = jocop
be the histogram value of g-gram Let k1, ko, . . ., Ky, bE
Figure 3: Border Detection for Different Center Strings  an ordered sequence of g-gramsXfu B, U- - - U By, such

. . thath(k;) > h(kiy+1). Then the center bag is the set of
The computation of the exact center for a given bag qu-grams:

strings B is expensive. One needs to compute distances
between all strings i? and choose the one that minimizes
the sum of distances from the center to other strings fro : :

B. We transform all strings into the space of bags of qr?j Sampling of Inverse Strings

grams, and find the center bag there. The following examin this section we show how to use inverse strings to iden-
ple illustrates the computation. tify strings that have an overlap with the center string &ov

B = {Fal,ﬁg,...,/iA}.



a given threshold. First, we develop a mathematical for- The computation of approximated strings is done in
mula that shows how to identify strings of high overlap. three steps. First, we gener&te= 3 random 5-tuples from
The result has combinatorial complexity. Second, we apB:

proximate the computation of high overlap strings with a

help of sampling. k' = (k1,..., k) = (ja',ac', co', ob*, b$')

The IS data structure allows to quickly identify database K2 = (k2,...,K2) = (#5', act, co', ob', b$")
strings that have selected g-grams in common. For exam- 3 3 3 1111
ple, if one wants to find all string IDs that share all 2-grams K% = (KY,...,k5) = (#J,ja ,ac’,co", 0b")

with the string jacob, one needs to compute the following

expression:
IS(#5Y) N1S(jal) N1S(act) N IS(cot) NIS(ob') N IS(b$Y)

Similarly, if one wants to identify strings that contain all

but one 2-gram of jacob, one needs to compute the follow
ing:
1S(jat) N IS(act) N 1S(co’) M IS(ob?) M Isst) |
18(#5Y) N IS(act) N IS(co’) M IS(obd) M Isest) |
15(#55) N 1S(Gat) N IS(cot) nIS(ob) n1sest) |
15(#5%) N 1S(ja') N 1S(ach) n1s(ebt) n1sest) |
15(#55) N I1S(Gal) N IS(act) N IS(cot) n1sesh) |

IS(#51) N I1S(al) N IS(act) N IS(cot) N I15(ob)

Definition 5.1 [Computation of strings of high overlap
with the help of the IS data structure.] L& be a cen-
ter bag, such thaty, ko, ..., k, € B, ando be the overlap
threshold. Let

O(K1,--- ko) = IS(k1) NIS(k2) N+ NIS(Kko). (1)
The IDs of strings that have at least-grams fromB can
be computed with the following equation:

U

K1,K2,...,ko €EB

)

O(Hl,.“ (2)

7‘%0)

wherekq, ko, . . ., Kk, are different g-grams aB.

The computation of the strings of high overlap with the
help of the IS data structure is expensive. LBt be the
size of the bag of g-grams, anrdbe the desired overlap

threshold. Then the computational complexity of the com-

putation iso - (‘B|) number of set operations (cf. equa-
tion (2)). We approximate the computation of equation (2)

with the help of sampling. We select a small sample of

different o-tupleg ki, k%,..., k1), i = 1,2,...,S, where

S is the size of the sample, and compute the union of the

intersections:

S
U IS(kY) N IS(kS) N

=1

SNIS(kE) (3)
Example 5.1 [Computation of strings of high overlap with
the help of the IS data structure and sampling.]
continue example 4.2. Let the center bag Be =
{44, jat, act, cot, ob, b$1} (the bag of string jacob). Let
the overlap threshold he= 5 (all 2-grams except one) and
let the sample size b = 3.

We

Second, we compute the intersections forikeples:

Ui(k") = 1S(ja") N 1S(ac’) N I1S(co') N 1S(ob") N IS(bS")
= {1, 22,03} N{a1, 2,03} N {a1, a2, a3}

N {04170627063} N {04170627063} N {Oél}

- ={a1}.
Similarly, Uy (k?) = {a1} andU; (%) = {a1}. Finally,
we compute the union;

UrEHUUKR)UU(K) = {ar}.

Therefore, the approximate database strings with over-
alpo = 5 and higher to the center string jacob &re }.

6 Algorithm

This section presents the algorithm of our data cleansing
method. The algorithm cleanses data in 4 steps. First the
algorithm initializes the variables (cf. block 1, Figure 5)
then it clusters the string data (cf. block 2), merges oyerla
ping clusters (cf. block 3), and finally it replaces the gjgn

of a cluster with the most frequent string of the cluster (cf.
block 4).

TTpUT:
D= {ay,ag,...,
g:size of g-grans
S:sanple size

ap }:database of strings

Qut put :
..... an: cleansed strings
Body:
1. Initialize the clustered strings
ClusteredStrings=@, Custers = 0
2. Scan database strings. For each o« € D do
2.1 1f o € AusteredStrings then start a newiteration with the
next DB string (go to step 2). Otherwi se conmpute initial
center bag: B = B(«), max border: by, = |B]|. Initialize
the current cluster O =0
2.2 For each overlap threshold o = by, — 1,...,1 do
2.2.1 Conpute approximate strings with center bag B
and overlap threshold o. For i =1,2,..., S
2.2.1.1 Generate kp,..., ko O-tuple of g-grams
2.2.1.2 Conpute the overlap strings
O=0UO(Ky,. -, ko) (cf. Eq (1))
Update the center of the cluster.
2.2.2.1 For each o« € O, for each k € B(«a) do
update histogram h[x] « h[x] + 1
2 Sort h[k] in descdending order
3 Conpute the average length of the strings
A=3,ecp len(a)/|B|
2.2.2.4 Assign lhe top A g-grams of the histogram
to the center bag B
2.2.3 Record the cluster for overlap o:
2.2.3.1 Cluster[o] = B
2.3 Find the | ongest sequence 7b i
such that |Custer[i}]] =
2.4 Update the clustered slrlngs
CQustered.Strings = Custered-Strings U O uster[i]
2.5 Insert a new cluster to the set of clusters
Custers = Clusters U {Custer[i;]}
2.6 Enpty hlx], O, B
3. Merge overlapping clusters. For each C;, Cj € Clusters do
if C;NCj#0 then C; — C; UC,
4. dean the clusters. For each cluster C; € Custers do
4.1 Find the nost frequent string ¢ in C
Replace all strings o € C; with ¢.

N

2.2.2.
2.2.2.

b ..... p+ A
|a uster [wb + Al

Figure 5: Data Cleansing Algorithm



Block 2 (cf. Figure 5) clusters the string data. It starts (iv) Similar strategy to (ii), though intersections are arg

with a non clustered string: (block 2.1) and computes nized into a bushy tree:
string IDs that have overlap with the center string (cf. Fig-
ure 2) for different overlap thresholds. For each over- ((15(51) 015(52)) N ([S(,%) 015(54)))

lap o the algorithm computes the strings of high overlap
(block 2.2.1), and adjusts the center bag of the cluster (cf.

The following recurrent equations formalizes the
block 2.2.2, Section 4.2). Then the method detects the bor- g q

. computation:

der of the cluster (block 2.3), inserts the newly found clus-
ter (block 2.4), and removes the IDs of clustered strings IN? — I(k;)
from the database (block 2.5). Four data containers are . o .

i i i IN] | — INJ |\ nIN§
used to implement the clustering step: histogram of g- it+1 2i—1 2i
grams for the current clustéfx] (cf. definition 4.2), center IN-EO/QjJ - INfo/zu A INfO—/IjSlJ iff 27 Jo
bag B, set of strings that have overla@and higher wrt the

center bagB (the container increases aslecreases), and
set of strings for each overlap threshol@he container is

not affected by the increase of. All containers are main

memory data structures and are implemented as sorted as- IS(k1) M-+ NIS(k,) = INI82°.
sociated containers for fast point-queries.

Block 3 merges overlapping clusters and block 4
cleanses cluste_rs vv_|th the most frequent string of the clus- gy (i) outperformed the other strategies by at least 30%.
ter (the reasoning is that most of the strings are entere L :

) herefore, we used strategy (ii) in our experiments. How-
correctly, and the data consists only of a smaller number . . - .
. . ; ; . ever, other alternatives might be more beneficial for dis-
of strings with typos). Alternatively, one can identify the _ . . . . : .

; d tributed environment and in connection with caching tech-
string ¢ that shares the largest number of g-grams with theni ues (cf. strategy (iv))
center bag, and use striggas the correct string for cleans- q ’ 9y ’
ing. = . t

The intersection of inverse strings'(x1)N- - -NIS(kq) Xperiments
(Block 2.2.1.2) is the most expensive part of the algorithm.we organize the experiments in two sub-sections. First, we
We implemented and tested four different approaches of thevaluate border detection criteria (cf. Section 7.1) aedth
computations of the intersection. Let, s2,...,%, be @ we evaluate our cleansing method (cf. Section 7.2). We use
sequence of the g-grams of a center string (in some randogynthetic datasets with different parameters in our exper-
order). Then the implemented strategies are the followingiments. Three classes of databases were generated in the

experiments: (i) a class of databases with different number

(i) Scan all inverse strings simultaneously, i.e.,det  of clusters fc), (ii) a class of databases with different clus-

(i(k1),i(k2), ..., 1(Ko)) be an index vector that scans ter sizes {s), and (iii) a class of databases with different

(IS(k1),15(k2),...,15(k,)). If all the components radius of clustersradius). All datasets were generated in

of indexi point to the same string ID, then the cluster the following way. First we generated: number of cen-

size is incremented, and all components afe incre-  ter strings far away from each other. Then for each center

mented. Otherwise, only indeXx;) is incremented, string we generatecs number of strings ir edit distancé

if I5(k;) contains the smallest string ID. Note that from the center string, whefe< e < radius.

we require that inverse strings are ordered according

to the string ID. 7.1 Border Detection

wherei = 1,2,...,|0/27]|,j = 1,...,logy 0. Then
the intersection can be rewritten as follows:

The results on different datasets has showed that strat-

(i) Organize the computation of the intersection as a sefi9uré 6 shows the experiments for our border detection

quence of intersections of two inverse strings, for e.g. 2lg0rithm for different number of clusters (cf. Figure §(a)
cluster sizes (cf. Figure 6(b)), radius of the cluster (id-F

1S(k YA IS IS ATIS ure 6(c)), and sample size (cf. Figure 6(d)). All figures
((F5(k1) (k2)) (ka)) (a) varies overlap from around = |B| = 35to o = 1 (cf.
) ) ) Axis X from right to left in Figure 6).Y axis reports the
The strategy can be formalized in the following way. fraction of the size of the cluster that is covered by the

Let IN;y1 = IN; N IS(Kit1), i = 2,...,0,IN1 = overlap threshold. There are three intervals of overlaps
IS(k1), then in the graphs: an interval. of overlapso that does not
cover the entire cluster (cf. intervab—17, Figure 6(b)),

IS(k1) NIS(k2) M-+ N IS(Ko) = INo(ko) interval I_ of overlaps that cover exactly the cluster (cf.

rage 164, Figure 6(b)), and interval. of overlaps that

(III) The same strate.gy as (") thoth the Seql.'lenc.e IS ledit distance between stringand string3 is the smallest number of
sorted started with the smallest inverse string, i.€.character- insertions, deletions, and substitutionsiredun order to get

[IS(ki)| < |IS(Kig1)]- string o from string3.




cover more strings than there are in the cluster (cf. rang&.2 Cleansing
3-0, Figure 6(b)). The border detection works if there is a
(relatively long) interval of overlaps that covers the téuis
exactly.

We evaluate our cleansing algorithm for different cluster
sizes (cf. sub-section 7.2.1) and different number of clus-
ters (cf. sub-section 7.2.2). Two measurement are recorded
for the experiments: relative error (recorded in relative
number of misclustered strings compared to the total num-
ber of strings in the clusters) and clustering time (secpnds

nc=10 —

nc=100 ======= 7
nc=1000 -
nc=50000 -

7.2.1 Different Cluster Sizes
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Cluster Size, %
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0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 As the cluster size increases, the relative clusteringrerro
Overlap Threshold o Overlap Threshold o decreases (cf. Figure 7(a)). This is because the border de-
(a) Number of Clusters (b) Cluster Size tection algorithm is very effective, and the number of cor-
3 rectly clustered strings increases vs. the total number of
s 251 1 s strings in the cluster.
§ 2 1 ¢
2 15 b 1 . 03 T T T — 4000
osr | g 0.2 £ 2500
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 g 015 o 200 3
Overlap Threshold o Overlap Threshold o % 0.1 '§ 1288 :
(c) Radius of Clusters (d) Sample Size 0RO § 508 £ ) L
250 500 750 1000 250 500 750 1000
. o Cluster Si. Cluster Si.
Figure 6: Border Detection ueerse Leerse
(a) Relative Error (b) Clustering Time
Border detection algorithm successfully identifies bor- Figure 7: Different Cluster Sizes

ders of clusters provided a sufficient sample size.

The robustness of the algorithm is not affected by the The clustering time increases linearly as the number of
cluster size (cf. Figure 6(b)). Indeed, the length of inter-Strings per cluster increases (cf. Figure 7(b)). However a
val I_ depends on the distance between the borders of th@wer sample size does not necessarily mean a faster clus-

clusters and does not depend on the cluster size. tering time. This is because inadequately small sample size

N . .increases the number of total clusters, and in turn inceease
The robustness of the border detection is almost invari- . ) .
the number of iterations of the algorithm.

ant to the number of clusters (cf. Figure 6(a)). As the num- The default : i thi . f . ¢
ber of clusters increases from to 50, 000 the start of in- € detault parameters in tis series ot experiments
were: length of strings~ 30, number of clustenc = 100,

terval I_ shifts from16 to 13. However, the impact of the . .

shift is negligible compared to the length bf, and there- cluster radius adius = 3.
fore the border detection ensures robust results.

Radius of clusters (cf. Figure 6(c)) and sample size/-2-2 Different Number of Clusters

(cf. Figure 6(d)) impacts more significantly the robustnessryg relative error increases very slightly as the number of
of border detection. The length ¢t proportionally de-  gyings increases, (cf. Figure 8(a)). This is because the
creases as the radius decreases (by two for each decre%rp borders between the inverse strings of different clus
in radius). Decrease of the sample size lowers the shapgs gets blurred as the number of clusters increases. Note

of the curve, decreases the lengthlof, and in turn de- 4t our sampling technique is very effective: even a very
creases the robustness of the border detection. Howev&l, |l increase of the sample size (¢f.= 10 andss = 20)

we want to have the sample size as small as possible, Sin%‘r’gnificantly reduces the relative error.
the smaller sample size means a lower computational time
of data cleansing. 05

0.4
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5000 | 5530 T E
3000 |

2000 |
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Figure 6(d) confirms that very small samples can be
used to approximate the border detection robustlyqef-
10 with the total numbe(’?) ~ 4.5 x 10° of intersection
computations (cf. equation (1)) for the overlap threshold

0.3
0.2

Relative Error, %

0.1

Clustering Time, (sec)

0 = 17') 0 0 250 500 750 1000 0 250 500 750 1000
The default parameters in the series of experiments Number of Clusters mber of Clusters
were: length of strings~ 30, number of clusterc = 100, (2) Relative Error (b) Clustering Time

cluster sizecs = 50, sample sizess = 100, cluster radius ) ) _
radius = 3. Figure 8: Different Cluster Sizes



The clustering time (cf. Figure 8(b)) increases linearlythresholdb from the center of the cluster are assigned to
as the number of clusters increases. In contrast to the clusne cluster. Experiments show that the border detection is
ter size experiment (cf. Section 7.2.1) the clustering timerobust provided a sufficient sample size.
for smaller samples does not exceed the clustering time for There are a number of research directions for future
larger samples, since the number of clusters is very largaiork. One can further progress the IS data structure. Our

compared to the size of the clusters. investigation indicates that very few g-grams of the center
strings are sufficient to identify strings of the cluster. An
7.3 Real World Data algorithm that robustly finds the identifying q-grams of the

. . . . cluster is an interesting challenge.
This section evaluates the border detection algorithm for The data cleansing method is robust if the distance be-

real world company names (database with around 15 cha. ween the clusters is large compared to the diameters of the
acter long strings) and company addresses (database wi lusters. In order to improve the precision for databases
around 30 character long strings). Both databases con-

sists of clusters that are far away from each other and with small dista_nces between the clusters one can introduce
: L . 4 number of string representatives for each cluster.

small number of strings within the clusters (cf. Figure 9).

There is a large range of overlap levels for which the clus-
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