
Cleansing Databases of Misspelled Proper Nouns

Arturas Mazeika Michael H. Böhlen
arturas@inf.unibz.it boehlen@inf.unibz.it

Faculty of Computer Science, Free University of Bozen-Bolzano
Dominikanerplatz 3, I-39100 Bozen-Bolzano, Italy

Abstract

The paper presents a data cleansing technique for
string databases. We propose and evaluate an
algorithm that identifies a group of strings that
consists of (multiple) occurrences of a correctly
spelled string plus nearby misspelled strings. All
strings in a group are replaced by the most fre-
quent string of this group. Our method targets
proper noun databases, including names and ad-
dresses, which are not handled by dictionaries.

At the technical level we give an efficient solu-
tion for computing the center of a group of strings
and determine the border of the group. We use in-
verse strings together with sampling to efficiently
identify and cleanse a database. The experimental
evaluation shows that for proper nouns the cen-
ter calculation and border detection algorithms
are robust and even very small sample sizes yield
good results.

1 Introduction

The high-dimensional nature of the string space puts for-
ward a number of problems that do not exist in the numeric
domain. However, besides the added complexity, strings
also offer unique opportunities. In this paper we describe a
solution that takes advantage of the high-dimensional space
to clean databases of proper nouns, i.e., strings that do not
occur in dictionaries.

Since strings are elements of a high-dimensional space
the distance between any two strings is typically large. An
exception are misspelled strings, which tend to be located
near correctly spelled strings. The combination of these
two properties means that small hyper-spheres can be used
to cluster a string database. The hyper-spheres are far from
each other, and each hyper-sphere encloses the correctly
spelled string and the nearby misspelled strings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,requires prior
specific permission and/or a fee.

CleanDB, Seoul, Korea, 2006

Figure 1 illustrates the setting for strings george, syd-
ney, and jacob, together with misspelling of these strings.
We describe a solution to group misspellings of a string by
identifying the border and center of a hyper-sphere.

george

georqe

george

qeonqe

geonge

qeonge

georgue

sydny
sydney

sydni
gacob

jakab
gacop

jocob

jacop
jacob

jakob

jacab jacob

border

Figure 1: Database of Proper Nouns with Misspellings

The border detection algorithm is based on thestring
proximity graph(cf. Section 4.1), which captures the prop-
erties of proper noun databases with misspellings. The
string proximity graph shows that in the immediate neigh-
borhood of a string the number of strings is growing be-
cause of the misspellings. As we further increase the neigh-
borhood the number of strings does not grow. There are no
misspellings in this area and the other strings are further
away because of the high-dimensional nature of the string
space. The point at which the clusters stops to grow indi-
cates the border of a group of misspelled strings.

The computation of the border and center is done in par-
allel. We start with a random string that has not yet been
processed and identify all strings that are within distance
one from this string. Next we adjust the center of the clus-
ter and increase the radius. The adjustment of the center
makes the method more robust, so that it also applies to
groups of strings that are not far away from each other. As
soon as an increase of the radius does not further increase
the number of strings we have found a group and proceed
with another string that has not yet been processed. The
process stops when all the strings have been grouped.

The contributions of the paper are the following:

• We introduce a new cleansing technique for string data
with typos. The solution is based on the (i) border de-
tection and (ii) the center adjustment. The computa-
tion of the distance between strings is done with the
help of q-grams of strings (substrings of length q).
The center of the cluster is modeled as a bag of the

most frequent substrings of length q of the strings in
the group. Thus, the center reflects the substrings that
are common for the strings and neglects substrings
that are the result of infrequent misspelling.

• We use inverse strings (IS) to determine close-by
strings and to compute the border of the cluster. In-
verse strings associate with each q-gram the string IDs
that contain the q-gram. Even with inverse strings the
computational complexity of the border detection is
combinatorial wrt the length of the center string and
radius of the cluster. We use sampling to approximate
the border detection. This yields a linear complexity
wrt the size of the sample.

• We provide experimental result for the border detec-
tion and data cleansing algorithms. We show that the
border detection is robust and that even small sam-
ple sizes ensure good approximations of the border of
clusters and a low cleansing error.

The organization of the paper is the following. Section 2
presents related work. Q-grams and inverse strings are re-
viewed in section 3. Border detection and computation of
the center string are introduced in section 4. Approxima-
tion of the border with the help of IS data structure and
sampling are described in section 5. Section 6 presents the
algorithm of the cleansing of the data. We give an experi-
mental evaluation in section 7. Finally, section 8 concludes
the paper and offers future work.

2 Related Work
Fuzzy retrieval is the closest related work to our approach.
Fuzzy retrieval algorithms get as input a string and thresh-
old, and output strings that are within the given threshold.
Chaudhuri et al. [2] introduce an algorithm that retrieves
tuples that exactly match the query string with a high prob-
ability. Jagadish et al [10] and Ciaccia et al. [4] propose a
family of index structures that support exact, prefix, and ap-
proximate queries on multi-string attributes. Jin et al. [12]
propose an index structure that supports mixed types (string
and non-string) of attributes for approximate retrieval.

Automatic spell checking techniques [13, 9] compare a
potentially misspelled word with the words in a dictionary
or a model based on the dictionary. They output a correc-
tion (or a set of corrections) for a given error threshold or
r number of requested answers. Ifr is given the dictionary
(or the model) is queried a number of times for different
incremental thresholds until the sizer is reached. In this
paper we show how to automatically compute the thresh-
old (border of the cluster).

Efficient approximation of selectivity for a given string
and edit distance (overlap threshold) is investigated in [11].
This provides important statistical information about the
string data. In this paper we focus on precise computation
of the center and the border of a cluster, though both our
border detection and approximate selectivity solutions can
be combined. Our border detection algorithm can query for

approximate string selectivity, and use the result to detect
border of the cluster. Then inverse strings can be used to
cluster and cleanse the data.

There is a large body of work in the area of the simi-
larity metrics for string attributes. Such measures include
edit distance [8] q-grams, cosine similarity [6, 3, 7] and
its variants [5, 14]. Ananthakrishna [1] proposes a textual
similarity function for strings.

3 Background
3.1 Q-grams

Definition 3.1 [q-grams.] The q-grams of a stringα are
obtained by sliding a window of sizeq over the characters
of α. Since at the beginning and at the end of the string
we have fewer characters thanq, we extend the string by
prefixing it with q − 1 occurrences of # and suffixing it
with q−1 occurrences of $. We assume that symbols # and
$ do not occur in the input strings.

Example 3.1 [q-grams.] Letα = george and q=2. The
q-grams of stringα are

B(george) = {#g1, ge1, eo1, or1, rg1, ge2, e$1}.

In order to distinguish different occurrences of the same
2-gram we associate each q-gram with a sequence num-
ber (displayed as a superscript). For example, 2-gramge1

denotes the substring at the beginning of the string, and
2-gramge2 denotes the substring at the end of the string
(positions 5–6 of the input string).

3.2 String Overlap

Overlaps of q-grams quantify the closeness of strings. The
more two bags overlap, the closer the strings are to each
other. We define the overlap of two strings as the number
of q-grams they share.

Definition 3.2 [Overlap of stringsα andβ]. Let α andβ
be two strings. Then the overlap of the strings is

o(α, β) = |B(α) ∩B(β)|,

where|X | denotes the cardinality of setX .

Our clustering strategy is based on the overlap between
strings. We cluster strings together if they have a high over-
lap, and we assign strings to different clusters if the overlap
between strings is low.

Example 3.2 [Overlap of strings.] Letα1 = jacob,α2 =
jacop,β1 = syndni,β2 = syndny. Then

o(jacob, jacop) = |{#j1, ja1, ac1, co1}| = 4

Since the overlap between the strings is high, we assignα1

andα2 to one cluster. Similarly, sinceo(sydny, sydni) = 4,
β1 andβ2 are clustered together. On the other hand, since
o(sydny, jacob) = 0, stringsα1, α2, β1, β2 are not put into
one cluster.

3.3 Inverse Strings

Inverse strings associate with each q-gramκ all string IDs
that containκ as a q-gram.

Definition 3.3 [Inverse string.] Letα1, . . . , αn be a
dataset andκ be a q-gram. The inverse string is the set
of all strings (string IDs) that haveκ as a q-gram:

IS(κ) = {αi : κ ∈ B(αi)}

Example 3.3 [Inverse string.] Let the input database con-
sists of six strings:α1 = jacob, α2 = jacop, α3 = jakob,
α4 = sydny, α5 = sydni, α6 = sydney. The bags of
2-grams for each string are:

B(α1) = B(jacob) ={#j
1
, ja

1
, ac

1
, co

1
, ob

1
, b$1}

B(α2) = B(jacop) ={#j
1
, ja

1
, ac

1
, co

1
, op

1
, p$1}

B(α3) = B(jakob) ={#j
1
, ja

1
, ak

1
, ko

1
, ob

1
, b$1}

B(α4) = B(sydny) ={#s
1
, sy

1
, yd

1
, dn

1
, ny

1
, y$1}

B(α5) = B(sydni) ={#s
1
, sy

1
, yd

1
, dn

1
, ni

1
, i$1}

B(α5) = B(sydney) ={#s
1
, sy

1
, yd

1
, dn

1
, ne

1
, ey

1
, y$1}

The inverse string structure for all 2-grams is:

IS(#j
1) = {α1, α2, α3} IS(#s

1) ={α4, α5, α6}

IS(ja1) = {α1, α2, α3} IS(sy1) ={α4, α5, α6}

IS(ac
1) = {α1, α2, α3} IS(yd

1) ={α4, α5, α6}

IS(co1) = {α1, α2, α3} IS(dn
1) ={α4, α5, α6}

IS(ob1) = {α1, α2, α3} IS(ny
1) ={α4}

IS(b$1) = {α1, α3} IS(y$1) ={α4, α6}

IS(ak
1) = {α3} IS(ni

1) ={α5}

IS(p$1) = {α2} IS(i$1) ={α5}

IS(ko
1) = {α3} IS(ne

1) ={α5}

IS(op1) = {α2} IS(ey1) ={α5}

The inverse strings data structure pre-clusters strings.
Intuitively, the example database consists of two clusters
with data distributed around centersα1 = jacob andα5 =
sydney. The inverse strings structure reflects the clusters:
part of inverse strings consists of string IDs from the first
cluster (cf. the first column), while the other parts consists
of the IDs of the second cluster (cf. the second column).

4 Cluster Computation

This section presents our clustering technique. First, we
formalize the computation of the borderb for each cluster
(cf. Section 4.1). Second, we formalize the computation of
centerζ of the cluster (cf. Section 4.2).

4.1 Border Detection

Assume a center stringζ of a cluster. The border detec-
tion algorithm aims to find the smallest radius that separates
strings of this cluster from strings of other clusters. Since
we compare strings with the help of overlaps, this border is
the smallest overlapo that separates the cluster from other
cluster.

The border is computed by examining|Cd(ζ)| = |{α :
o(α, ζ) ≥ d}|, i.e., the number of strings that have an over-
lap of at leastd with ζ. Consider the following example.

Example 4.1 [Border detection.] We continue examle 3.3.
Let ζ = jacob, q=2. We compute the database strings that
have all 2-grams in common (overlap iso = 6) with jacob:
C6(jacob) = {α1}, the database strings that have all but
one 2-gram:C5(jacob) = {α1}. Similarly:

C4(jacob) = {α1, α2, α3}
C3(jacob) = {α1, α2, α3}
C2(jacob) = {α1, α2, α3}
C1(jacob) = {α1, α2, α3}
C0(jacob) = {α1, α2, α3, α4, α5, α6}.

Figure 2 shows the size of|Cd(jacob)| as overlapo de-
creases (cf. AxisX from right to left). For large overlaps
(o = 5−6) the size of the cluster increases. Then the cluster
size stops to increase for a range of the overlaps (o = 1−4).
This is an indication that the border of the cluster has been
reached. As the overlap is further decreased the cluster
starts to include points from other clusters resulting in a
very fast increase of its size (o = 0− 1).

S
iz

e
of

 th
e

C
lu

st
er

0 1 2 3 4 5 6
Overlap

Figure 2: The String Proximity Graph

We compute the largest range of a constant size of the
cluster (cf.o = 1− 4 in Figure 2), and take the right end of
the interval as the border.

The border detection algorithm takes a center stringζ
and finds the borderb of the cluster. We extend the notion
of border detection for a bag of q-grams. Letq = 2. Then
the following expressions are equivalent:

(i) b is the border for center stringζ = jacob

(ii) b is the border for the 2-gramsB(jacob) =
{#j1, ja1, ac1, co1, ob1, b$1}.

The extension of the border detection allows us to
query for borders of centers that do not necessarily cor-
respond to a database string (for example for a bag
{#j1, ja1, aX1, co1, ob1, b$1}). The motivation for this
generalization comes from the computation of the center
for a cluster and is discussed in detail in Section 4.2.

The following summarizes and defines the detection of
the border.

Definition 4.1 [Detection of the Border.] LetB be a (cen-
ter) bag andCd(B) = {α : o(B(α), B) ≥ o}, o =
|B|, |B| − 1, |B| − 2, . . . , 0. Let ij , ij + 1, . . . , ij + kij

the longest sequence of unvarying sizes of the cluster:

|Cij (B)| = |Cij+1(B)| = · · · = |Cij+kij
(B)|.

Then the border of the cluster with centerB is b = ij.

4.2 Computation of the Center

The border detection algorithm provides a simple and ef-
fective strategy to compute clusters in string data. One
starts with a string in the database and selects the border
that separates the cluster from the other clusters. If the
initial string was chosen close to the center of the cluster,
the border detection will yield good and robust results (cf.
ζ = jacob, Figure 3(a)). If one chooses the initial string
close to the border, two separate clusters might be assigned
to one cluster (cf.ζ = jocop, Figure 3(a)).

jacop

jakop

jacab
jazab

iacob

jacub

sydneizydnei

sydney

jacob
jocop

b

(a) Cluster with Center Stringζ = jacob

jacop

jakop

jacab
jazab

iacob
jacob

jocop
jacub

sydneizydnei

sydney

b

(b) Cluster with Center Stringζ = jocop

Figure 3: Border Detection for Different Center Strings

The computation of the exact center for a given bag of
stringsB is expensive. One needs to compute distances
between all strings inB and choose the one that minimizes
the sum of distances from the center to other strings from
B. We transform all strings into the space of bags of q-
grams, and find the center bag there. The following exam-
ple illustrates the computation.

Example 4.2 [Computation of the center for a given set of
bags.] We continue Example 4.1. Letα1, α2, andα3 be
a set of strings. Then the set of bags for the strings is the
following:

B(α1) = B(jacob) = {#j1, ja1, ac1, co1, ob1, b$1}
B(α2) = B(jakob) = {#j1, ja1, ak1, ko1, ob1, b$1}
B(α3) = B(jacap) = {#j1, ja1, ac1, ca1, ap1, p$1},

Our aim is to find a bag that represents bagsB(α1),
B(α2), andB(α3). We compute such a bag in the follow-
ing way. We compute the overall histogram for the set of
bags, and neglect the infrequent 2-grams. The histogram of
all 2-grams is presented in Figure 4 with the 2-grams in the
second row, and the number of occurrences of the 2-gram
in the first row.

3 3 3 3 2 1
#j1 ja1 ac1 ob1 b$1 co1

1 1 1 1 1
ak1 ko1 ca1 ap1 p$1

Figure 4: Histogram of 2-grams

The size of the center bag of 2-grams is determined by
the average sizeS of the input bagsB(α1), B(α2), and
B(α3). Therefore, the center bag is the following:

Bc = {#j1, ja1, ac1, ob1, b$1, co1}.

Note that the center bag might consist q-grams that cor-
respond to typos in the input dataset. These occurrences do
not decrease the quality of clustering. In fact, the opposite
holds, since we are looking for a center bag that represents
all the strings in the cluster as precisely as possible.

The following formalizes the computation of the center
bag for a set of input bags.

Definition 4.2 [Center bag.] LetB1, B2, . . . , Bk be a set
of input bags. Let

A =
|B1|+ |B2|+ · · ·+ |Bk|

k

be the average size of bagsB1, B2, . . . , Bk. Let

h(κ) = |{Bi : κ ∈ Bi}|

be the histogram value of q-gramκ. Let κ1, κ2, . . . , κm be
an ordered sequence of q-grams ofB1∪B2∪· · ·∪Bk such
thath(κi) ≥ h(κi+1). Then the center bagB is the set of
q-grams:

B = {κ1, κ2, . . . , κA}.

5 Sampling of Inverse Strings
In this section we show how to use inverse strings to iden-
tify strings that have an overlap with the center string above

a given threshold. First, we develop a mathematical for-
mula that shows how to identify strings of high overlap.
The result has combinatorial complexity. Second, we ap-
proximate the computation of high overlap strings with a
help of sampling.

The IS data structure allows to quickly identify database
strings that have selected q-grams in common. For exam-
ple, if one wants to find all string IDs that share all 2-grams
with the string jacob, one needs to compute the following
expression:

IS(#j1) ∩ IS(ja1) ∩ IS(ac1) ∩ IS(co1) ∩ IS(ob1) ∩ IS(b$1)

Similarly, if one wants to identify strings that contain all
but one 2-gram of jacob, one needs to compute the follow-
ing:

IS(ja
1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(ac

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(b$

1
)

[

IS(#j1) ∩ IS(ja1) ∩ IS(ac1) ∩ IS(co1) ∩ IS(ob1)

Definition 5.1 [Computation of strings of high overlap
with the help of the IS data structure.] LetB be a cen-
ter bag, such thatκ1, κ2, . . . , κo ∈ B, ando be the overlap
threshold. Let

O(κ1, . . . , κo) = IS(κ1) ∩ IS(κ2) ∩ · · · ∩ IS(κo). (1)

The IDs of strings that have at leasto q-grams fromB can
be computed with the following equation:

[

κ1,κ2,...,κo∈B

O(κ1, . . . , κo) (2)

whereκ1, κ2, . . . , κo are different q-grams ofB.

The computation of the strings of high overlap with the
help of the IS data structure is expensive. Let|B| be the
size of the bag of q-grams, ando be the desired overlap
threshold. Then the computational complexity of the com-
putation iso ·

(

|B|
o

)

number of set operations (cf. equa-
tion (2)). We approximate the computation of equation (2)
with the help of sampling. We select a small sample of
different o-tuples(κi

1, κ
i
2, . . . , κ

i
o), i = 1, 2, . . . , S, where

S is the size of the sample, and compute the union of the
intersections:

S
⋃

i=1

IS(κi
1) ∩ IS(κi

2) ∩ · · · ∩ IS(κi
o) (3)

Example 5.1 [Computation of strings of high overlap with
the help of the IS data structure and sampling.] We
continue example 4.2. Let the center bag beB =
{#j1, ja1, ac1, co1, ob1, b$1} (the bag of string jacob). Let
the overlap threshold beo = 5 (all 2-grams except one) and
let the sample size beS = 3.

The computation of approximated strings is done in
three steps. First, we generateS = 3 random 5-tuples from
B:

κ1 = (κ1
1, . . . , κ

1
5) = (ja1, ac1, co1, ob1, b$1)

κ2 = (κ2
1, . . . , κ

2
5) = (#j1, ac1, co1, ob1, b$1)

κ3 = (κ3
1, . . . , κ

3
5) = (#j1, ja1, ac1, co1, ob1)

Second, we compute the intersections for the5-tuples:

U1(κ
1) = IS(ja1) ∩ IS(ac

1) ∩ IS(co1) ∩ IS(ob1) ∩ IS(b$1)

= {α1, α2, α3} ∩ {α1, α2, α3} ∩ {α1, α2, α3}

∩ {α1, α2, α3} ∩ {α1, α2, α3} ∩ {α1}

= {α1}.

Similarly, U1(κ
2) = {α1} andU1(κ

3) = {α1}. Finally,
we compute the union:

U(κ1) ∪ U(κ2) ∪ U(κ3) = {α1}.

Therefore, the approximate database strings with over-
alpo = 5 and higher to the center string jacob are{α1}.

6 Algorithm
This section presents the algorithm of our data cleansing
method. The algorithm cleanses data in 4 steps. First the
algorithm initializes the variables (cf. block 1, Figure 5),
then it clusters the string data (cf. block 2), merges overlap-
ping clusters (cf. block 3), and finally it replaces the strings
of a cluster with the most frequent string of the cluster (cf.
block 4).
Input:

D = {α1, α2, . . . , αn}:database of strings
q:size of q-grams
S:sample size

Output:
α1, α2, . . . , αn:cleansed strings

Body:
1. Initialize the clustered strings

Clustered Strings=∅, Clusters = ∅
2. Scan database strings. For each α ∈ D do

2.1 If α ∈ Clustered Strings then start a new iteration with the
next DB string (go to step 2). Otherwise compute initial
center bag:B = B(α), max border: bm = |B|. Initialize
the current cluster O = ∅

2.2 For each overlap threshold o = bm − 1, . . . , 1 do
2.2.1 Compute approximate strings with center bag B

and overlap threshold o. For i = 1, 2, . . . , S
2.2.1.1 Generate κ1, . . . , κo o-tuple of q-grams
2.2.1.2 Compute the overlap strings

O = O ∪ O(κ1 , . . . , κo) (cf. Eq (1))
2.2.2 Update the center of the cluster.

2.2.2.1 For each α ∈ O, for each κ ∈ B(α) do
update histogram h[κ] ← h[κ] + 1

2.2.2.2 Sort h[κ] in descdending order
2.2.2.3 Compute the average length of the strings

A =
P

α∈B len(α)/|B|
2.2.2.4 Assign the top A q-grams of the histogram

to the center bag B
2.2.3 Record the cluster for overlap o:

2.2.3.1 Cluster[o] = B
2.3 Find the longest sequence ib, ib + 1, . . . , ib + ∆

such that |Cluster[ib]| = · · · = |Cluster[ib + ∆]|
2.4 Update the clustered strings

Clustered Strings = Clustered Strings ∪ Cluster[ib]
2.5 Insert a new cluster to the set of clusters

Clusters = Clusters ∪ {Cluster[ib]}
2.6 Empty h[κ], O, B

3. Merge overlapping clusters. For each Ci, Cj ∈ Clusters do

if Ci ∩ Cj 6= ∅ then Ci ← Ci ∪ Cj
4. Clean the clusters. For each cluster Ci ∈ Clusters do

4.1 Find the most frequent string ϕ in Ci.
Replace all strings α ∈ Ci with ϕ.

Figure 5: Data Cleansing Algorithm

Block 2 (cf. Figure 5) clusters the string data. It starts
with a non clustered stringα (block 2.1) and computes
string IDs that have overlap with the center string (cf. Fig-
ure 2) for different overlap thresholds. For each over-
lap o the algorithm computes the strings of high overlap
(block 2.2.1), and adjusts the center bag of the cluster (cf.
block 2.2.2, Section 4.2). Then the method detects the bor-
der of the cluster (block 2.3), inserts the newly found clus-
ter (block 2.4), and removes the IDs of clustered strings
from the database (block 2.5). Four data containers are
used to implement the clustering step: histogram of q-
grams for the current clusterh[κ] (cf. definition 4.2), center
bagB, set of strings that have overlapo and higher wrt the
center bagB (the container increases aso decreases), and
set of strings for each overlap thresholdo (the container is
not affected by the increase ofo). All containers are main
memory data structures and are implemented as sorted as-
sociated containers for fast point-queries.

Block 3 merges overlapping clusters and block 4
cleanses clusters with the most frequent string of the clus-
ter (the reasoning is that most of the strings are entered
correctly, and the data consists only of a smaller number
of strings with typos). Alternatively, one can identify the
stringζ that shares the largest number of q-grams with the
center bag, and use stringζ as the correct string for cleans-
ing.

The intersection of inverse stringsIS(κ1)∩· · ·∩IS(κd)
(Block 2.2.1.2) is the most expensive part of the algorithm.
We implemented and tested four different approaches of the
computations of the intersection. Letκ1, κ2, . . . , κo be a
sequence of the q-grams of a center string (in some random
order). Then the implemented strategies are the following:

(i) Scan all inverse strings simultaneously, i.e., leti =
(i(κ1), i(κ2), . . . , i(κo)) be an index vector that scans
(IS(κ1), IS(κ2), . . . , IS(κo)). If all the components
of indexi point to the same string ID, then the cluster
size is incremented, and all components ofi are incre-
mented. Otherwise, only indexi(κi) is incremented,
if IS(κi) contains the smallest string ID. Note that
we require that inverse strings are ordered according
to the string ID.

(ii) Organize the computation of the intersection as a se-
quence of intersections of two inverse strings, for e.g.:

((IS(κ1) ∩ IS(κ2)) ∩ IS(κ3)) ∩ IS(κ4)

The strategy can be formalized in the following way.
Let INi+1 = INi ∩ IS(κi+1), i = 2, . . . , o, IN1 =
IS(κ1), then

IS(κ1) ∩ IS(κ2) ∩ · · · ∩ IS(κo) = INo(κo)

(iii) The same strategy as (ii) though the sequence is
sorted started with the smallest inverse string, i.e.,
|IS(κi)| ≤ |IS(κi+1)|.

(iv) Similar strategy to (ii), though intersections are orga-
nized into a bushy tree:

(

(

IS(κ1) ∩ IS(κ2)
)

∩
(

IS(κ3) ∩ IS(κ4)
)

)

The following recurrent equations formalizes the
computation:

IN0
i ← I(κi)

IN j
i+1 ← IN j−1

2i−1 ∩ IN j−1
2i

IN j
⌊o/2j⌋ ← IN j

⌊o/2j⌋ ∩ IN j−1

⌊o/2j−1⌋ iff 2j 6 |o

wherei = 1, 2, . . . , ⌊o/2j⌋, j = 1, . . . , log2 o. Then
the intersection can be rewritten as follows:

IS(κ1) ∩ · · · ∩ IS(κo) = IN
log2 o
1 .

The results on different datasets has showed that strat-
egy (ii) outperformed the other strategies by at least 30%.
Therefore, we used strategy (ii) in our experiments. How-
ever, other alternatives might be more beneficial for dis-
tributed environment and in connection with caching tech-
niques (cf. strategy (iv)).

7 Experiments
We organize the experiments in two sub-sections. First, we
evaluate border detection criteria (cf. Section 7.1) and then
we evaluate our cleansing method (cf. Section 7.2). We use
synthetic datasets with different parameters in our exper-
iments. Three classes of databases were generated in the
experiments: (i) a class of databases with different number
of clusters (nc), (ii) a class of databases with different clus-
ter sizes (cs), and (iii) a class of databases with different
radius of clusters (radius). All datasets were generated in
the following way. First we generatednc number of cen-
ter strings far away from each other. Then for each center
string we generatedcs number of strings ine edit distance1

from the center string, where0 ≤ e ≤ radius.

7.1 Border Detection

Figure 6 shows the experiments for our border detection
algorithm for different number of clusters (cf. Figure 6(a)),
cluster sizes (cf. Figure 6(b)), radius of the cluster (cf. Fig-
ure 6(c)), and sample size (cf. Figure 6(d)). All figures
varies overlap from aroundo = |B| = 35 to o = 1 (cf.
Axis X from right to left in Figure 6).Y axis reports the
fraction of the size of the cluster that is covered by the
overlap thresholdo. There are three intervals of overlaps
in the graphs: an intervalI< of overlapso that does not
cover the entire cluster (cf. interval35–17, Figure 6(b)),
interval I= of overlaps that cover exactly the cluster (cf.
rage16–4, Figure 6(b)), and intervalI> of overlaps that

1edit distance between stringα and stringβ is the smallest number of
character- insertions, deletions, and substitutions required in order to get
stringα from stringβ.

cover more strings than there are in the cluster (cf. range
3–0, Figure 6(b)). The border detection works if there is a
(relatively long) interval of overlaps that covers the cluster
exactly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

nc=10
nc=100

nc=1000
nc=50000

(a) Number of Clusters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35
C

lu
st

er
 S

iz
e,

 %
Overlap Threshold o

cs=50
cs=100
cs=500

cs=1000

(b) Cluster Size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

radius=1
radius=2
radius=4
radius=6
radius=8

(c) Radius of Clusters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

ss=5
ss=10
ss=50

ss=100
ss=500

(d) Sample Size

Figure 6: Border Detection

Border detection algorithm successfully identifies bor-
ders of clusters provided a sufficient sample size.

The robustness of the algorithm is not affected by the
cluster size (cf. Figure 6(b)). Indeed, the length of inter-
val I= depends on the distance between the borders of the
clusters and does not depend on the cluster size.

The robustness of the border detection is almost invari-
ant to the number of clusters (cf. Figure 6(a)). As the num-
ber of clusters increases from10 to 50, 000 the start of in-
tervalI= shifts from16 to 13. However, the impact of the
shift is negligible compared to the length ofI=, and there-
fore the border detection ensures robust results.

Radius of clusters (cf. Figure 6(c)) and sample size
(cf. Figure 6(d)) impacts more significantly the robustness
of border detection. The length ofI= proportionally de-
creases as the radius decreases (by two for each decrease
in radius). Decrease of the sample size lowers the shape
of the curve, decreases the length ofI=, and in turn de-
creases the robustness of the border detection. However,
we want to have the sample size as small as possible, since
the smaller sample size means a lower computational time
of data cleansing.

Figure 6(d) confirms that very small samples can be
used to approximate the border detection robustly (cf.ss =
10 with the total number

(

35

17

)

≈ 4.5 × 109 of intersection
computations (cf. equation (1)) for the overlap threshold
o = 17!)

The default parameters in the series of experiments
were: length of stringsl ≈ 30, number of clusternc = 100,
cluster sizecs = 50, sample sizess = 100, cluster radius
radius = 3.

7.2 Cleansing

We evaluate our cleansing algorithm for different cluster
sizes (cf. sub-section 7.2.1) and different number of clus-
ters (cf. sub-section 7.2.2). Two measurement are recorded
for the experiments: relative error (recorded in relative
number of misclustered strings compared to the total num-
ber of strings in the clusters) and clustering time (seconds).

7.2.1 Different Cluster Sizes

As the cluster size increases, the relative clustering error
decreases (cf. Figure 7(a)). This is because the border de-
tection algorithm is very effective, and the number of cor-
rectly clustered strings increases vs. the total number of
strings in the cluster.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000 750 500 250

R
el

at
iv

e
E

rr
or

, %

Cluster Size

ss=10
ss=20
ss=30
ss=50

(a) Relative Error

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 1000 750 500 250

C
lu

st
er

in
g

T
im

e,
 (

se
c)

Cluster Size

ss=10
ss=20
ss=30
ss=50

(b) Clustering Time

Figure 7: Different Cluster Sizes

The clustering time increases linearly as the number of
strings per cluster increases (cf. Figure 7(b)). However a
lower sample size does not necessarily mean a faster clus-
tering time. This is because inadequately small sample size
increases the number of total clusters, and in turn increases
the number of iterations of the algorithm.

The default parameters in this series of experiments
were: length of stringsl ≈ 30, number of clusternc = 100,
cluster radiusradius = 3.

7.2.2 Different Number of Clusters

The relative error increases very slightly as the number of
strings increases, (cf. Figure 8(a)). This is because the
sharp borders between the inverse strings of different clus-
ters gets blurred as the number of clusters increases. Note
that our sampling technique is very effective: even a very
small increase of the sample size (cf.ss = 10 andss = 20)
significantly reduces the relative error.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 750 500 250 0

R
el

at
iv

e
E

rr
or

, %

Number of Clusters

ss=10
ss=20
ss=30
ss=50

(a) Relative Error

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1000 750 500 250 0

C
lu

st
er

in
g

T
im

e,
 (

se
c)

Number of Clusters

ss=10
ss=20
ss=30
ss=50

(b) Clustering Time

Figure 8: Different Cluster Sizes

The clustering time (cf. Figure 8(b)) increases linearly
as the number of clusters increases. In contrast to the clus-
ter size experiment (cf. Section 7.2.1) the clustering time
for smaller samples does not exceed the clustering time for
larger samples, since the number of clusters is very large
compared to the size of the clusters.

7.3 Real World Data

This section evaluates the border detection algorithm for
real world company names (database with around 15 char-
acter long strings) and company addresses (database with
around 30 character long strings). Both databases con-
sists of clusters that are far away from each other and a
small number of strings within the clusters (cf. Figure 9).
There is a large range of overlap levels for which the clus-
ter size is constant (cf.o=[20–7] for the company names
and o=[22–7] for the company addresses), and therefore
our border detection algorithm detects the border correctly
even for very small sample sizes. Our clustering algorithm
detected small clusters (1–3 strings per cluster) for the com-
pany names and larger clusters (3–30 strings per cluster) for
company addresses.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20

C
lu

st
er

 S
iz

e

Overlap Threshold o

ss=5
ss=10
ss=20
ss=50

(a) Company Names

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
iz

e

Overlap Threshold o

ss=5
ss=10
ss=20
ss=50

(b) Company Addresses

Figure 9: String Proximity Graph for Real World Data

Intuitively, our data cleansing algorithm produces good
cleansing results for string data with large distances be-
tween centers of clusters and small distances within the
clusters. Examples of such datasets are databases of com-
pany names and company addresses. Our data cleansing
algorithm is less applicable for natural language databases.
In such databases two strings that are close to each other
might have a very different meaning and therefore should
be assigned to different clusters (for example “air” and
“aim”, or “spouse” and “mouse”). In natural language
databases spelling based and dictionary based techniques
are more appropriate. For proper noun databases typically
no dictionaries exists and the proposed solution is the pre-
ferred choice.

8 Conclusions and Future Work
In this paper we present our results of a new data cleans-
ing algorithm. Data cleansing is done in two steps. First,
the string data is clustered by identifying center and border
of hyper-spherical clusters, and second, the cluster strings
are cleansed with the most frequent string of the cluster.
Clustering starts with a non-clustered string and computes
the borderb of the cluster. All strings within the overlap

thresholdb from the center of the cluster are assigned to
one cluster. Experiments show that the border detection is
robust provided a sufficient sample size.

There are a number of research directions for future
work. One can further progress the IS data structure. Our
investigation indicates that very few q-grams of the center
strings are sufficient to identify strings of the cluster. An
algorithm that robustly finds the identifying q-grams of the
cluster is an interesting challenge.

The data cleansing method is robust if the distance be-
tween the clusters is large compared to the diameters of the
clusters. In order to improve the precision for databases
with small distances between the clusters one can introduce
a number of string representatives for each cluster.

References
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating

fuzzy duplicates in data warehouses. InVLDB, pages 586–
597, 2002.

[2] S. Chaudhuri, K. Ganjam, V. Ganti, and R .Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
SIGMOD, pages 313–324, 2003.

[3] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estima-
tion for string predicates: Overcoming the underestimation
problem. InICDE:, pages 227–239, 2004.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB, pages 426–435, 1997.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison
of string metrics for matching names and records. InData
Cleaning Workshop in Conjunction with KDD, 2003.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. InVLDB, pages 491–
500, 2001.

[7] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
Text joins in an rdbms for web data integration. InWWW,
pages 90–101, 2003.

[8] D. Gusfield. Algorithms on strings, trees and sequences:
Computer science and computational biology. Cambridge
University Press, Cambridge, UK, 1997.

[9] V. J. Hodge and J. Austin. A comparison of standard spell
checking algorithms and a novel binary neural approach.
TKDE, 15(5):1073–1081, 2003.

[10] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective
multi-dimensional indexing for strings. InSIGMOD, pages
403–414, 2000.

[11] L. Jin and C Li. Selectivity estimation for fuzzy stringpred-
icates in large data sets. InVLDB, pages 397–408, 2005.

[12] L. Jin, C. Li, N. Koudas, and A. K. H. Tung. Indexing mixed
types for approximate retrieval. InVLDB, pages 793–804,
2005.

[13] K. Kukich. Technique for automatically correcting words in
text. ACM Comput. Surv., 24(4):377–439, 1992.

[14] S. Sahinalp, M. Tasan, J. Macker, and Z. Ozsoyoglu. Dis-
tance based indexing for string proximity search. InICDE,
2003.

