Data Fusion in Three Steps:
Resolving Inconsistencies at Schema-, Tuple-, and Valuewvel

Felix Naumanh Alexander Bilké Jens Bleiholdéer Melanie Weis
' Humboldt-Universitat zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
{naumann| bl ei ho| mnei s} @ nf or mati k. hu- berlin. de

2 Technische Universitat Berlin
Strasse des 17. Juni 135, 10623 Berlin, Germany
bil ke@s. tu-berlin.de

Abstract

Heterogeneous and dirty data is abundant. It is stored urdiéerent, often opaque schemata, it rep-
resents identical real-world objects multiple times, dagsduplicates, and it has missing values and
conflicting values. Without suitable techniques for inimig and fusing such data, the data quality of
an integrated system remains low. We present a suite of mi&thombined in a single tool, that allows
ad-hoc, declarative fusion of such data by employing scheraizhing, duplicate detection and data
fusion.

Guided by a SQL-like query against one or more tables, wegawdn three fully automated steps:
First, instance-based schema matching bridges schematardgeneity of the tables by aligning cor-
responding attributes. Next, duplicate detection techegjfind multiple representations of identical
real-world objects. Finally, data fusion and conflict restibn merges each duplicate into a single,
consistent, and clean representation.

1 Fusing Heterogeneous, Duplicate, and Conflicting Data

The task of integrating and fusing data involves the satutidb many different problems, each one in itself
formidable: Apart from the technical challenges of acegssemote data, heterogeneous schemata of different
data sets must be aligned, multiple but differing represt@nts of identical real-world objects (duplicates) must
be discovered, and finally the duplicates must be fused tgeptea clean and consistent result to a user. In
particular this final step is seldomly or inadequately adsked in the literature. Figure 1 shows the three steps
and the inconsistencies they bridge.

Each of these tasks has been addressed in research inthvatuaast to some extent: (i) Access to remote
sources is now state of the art of most integrated informatistems, using technigues such as JDBC, wrap-
pers, Web Services etc. Such technical heterogeneitiamageldressed in this article and we assume JDBC or

Copyright 0000 IEEE. Personal use of this material is perait However, permission to
reprint/republish this material for advertising or promanal purposes or for creating new collective
works for resale or redistribution to servers or lists, orreuse any copyrighted component of this
work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

[: Application :]

T

) Resolve inconsistencies at value level
Step 3: ’ Data Fusion ‘ (data conflicts)
, T) Resolve inconsistencies at tuple level
Step 2: ’ Duplicate Detection ‘ (duplicates)
T - Resolve inconsistencies at schema level
Step 1: ’ Schema Matching ‘

(schematic heterogeneity)

S —
Data sources I

Figure 1: The three steps of data fusion

file-based access to the relational data sources. (ii) Safeheterogeneity has been a research issue for at least
two decades, first in the context of schema integration aed th automatically generate schema mappings.
Especially recently, schema matching techniques have meede progress in automatically detecting corre-
spondences among elements of different schemata. (iii)i€ate detection is successful in certain domains, in
particular in customer relationship management whereichipl customers and their contact information must
be detected, and several research projects have preseeliesuited domain-independent algorithms. Other
research directions have developed domain-independendaghes. All are usually performed as an individual
task, such as a separate cleansing step in an ETL procedere. w¢ bed duplicate detection into a domain-
independent ad-hoc querying environment. (iv) Data fudien the step of actually merging multiple, duplicate
tuples into a single representation of a real world objeag dnly marginally been dealt with in research and
hardly at all in commercial products. The particular problées in resolving value-level contradictions among
the different representations of a single real-world abjec

We have combined all these techniques under the umbrellaeofiumboldt Merger (HumMer) — a one-
stop solution for fusing data from heterogeneous sourdes\[8nique feature of HumMer is that all steps are
performed in an ad-hoc fashion at run-time, initiated by er ugiery to the sources; in a sense, we perfadn
hoc, automatic, and virtual ET1Apart from the known advantages of virtual data integra(iop-to-dateness,
low storage requirement), this on-demand approach allows&ximum flexibility: New sources can be queried
immediately, albeit at the price of not generating as pédfaery results as if the integration process were defined
by hand. To compensate, HumMer optionally visualizes eatgimediate step of data fusion and allows users
to interfere: The result of schema matching can be adjusitgdies discovered as being border-line duplicates
can be separated and vice versa, and finally, resolved dafiectsocan be undone and resolved manually.

Ad-hoc and automatic data fusion is useful in many scena@aalog integration is a typical one-time
problem for companies that have merged, but it is also oféstefor shopping agents collecting data about
identical products offered at different sites. A custont@yping for CDs might want to supply only the different
sites to search on. The entire integration process, fromnfindorresponding metadata, to detecting entries
for identical CDs, and finally to fuse all conflicting data,sgibly favoring the data of the cheapest store, is
performed under the covers. In such a scenario, a schemaingmomponent is of special importance, as
many web sites use different labels for data fields or evemibel$ at all.

Another application made possible only by automatic das@éfusystems like HumMer is the provision of
online data cleansing services. Users of such a servicdyssupmit sets of heterogeneous and dirty data and
receive a consistent and clean data set in response. Sucticede useful for individuals trying to compare
different data sets, but also for organizations not waningmploy complex ETL procedures for all data sets.

Finally, an important application is disaster data manag@min an area affected by a disaster, data about

damages, missing persons, hospital treatments etc. is aftkected multiple times (causing duplicates) at dif-
ferent levels of detail (causing schematic heterogeneity) with different levels of accuracy (causing data
conflicts). Fusing such data with the help of a graphical ugerface can help speed up the recovery process
and for instance expedite insurance pay-outs or deteatanse fraud.

2 Components for Data Fusion

HumMer combines several larger research projects undeumeella. In the following sections we describe
each project in some detail. Related work is referencesnnitiently, but we point out that this article can be no
means be a complete survey for each of the vast fields of schettding, duplicate detection, and data fusion.

2.1 Schema Matching and Data Transformation

When integrating autonomous data sources, we must assanhéehély do not conform to the same schema.
Thus, the first phase in the integration process is the rigsolaf schematic heterogeneity. This phase proceeds
in two sub-steps: schema matching, i.e., the identificatfemantically equivalent schema elements, and data
transformation, i.e., the bringing the data under a singtaraon schema.

Schema matchinig the (semi-automatic) process of detecting attributeespondences between two het-
erogeneous schemata. Various approaches that expleitatiffkinds of information [19], i.e., schema informa-
tion [15], instances [17], or additional metadata [2], heeen proposed. As we assume the databases to contain
duplicates according to our scenarios, we apply the DUMARS@ matching algorithm [4]: First, the DUMAS
efficiently detects a few duplicates in two (or more) unadigrdatabases and then derives a schema matching
based on similar attribute values of duplicates. This kegiid shown in Figure 2 where two detected duplicate
tuples from different sources are used to find a schema nmgichi

A B C D E
r3‘ Suzy‘ Klein \ f‘ (358) 243 63 21 \ (358) 243 63 21

R

53\ KIein‘ suzy \ 358—2436321‘ UNIX \
B’ F E’ G

Figure 2: Schema matching using duplicates

Duplicate detection in unaligned databases is more diffibah in the usual setting, because attribute corre-
spondences are missing, i.e., it is not known which atteilvalues to compare. However, the goal of this phase
is not to detect all duplicates, but only as many as requioeds¢hema matching. Detectiradl duplicates is
left to the next HumMer component. DUMAS considers a tupla amgle string and applies a string similarity
measure to extract the most similar tuple pairs. From tharindtion retrieval field we adopt the well-known
TFIDF similarity for comparing records. Experimental evaluation showstti@tmost similar tuples are in fact
true duplicates.

These duplicates can be used for schema matching. If twocdtgltuples have the same or a sufficiently
similar attribute value, we assume that these attributeespond. Because two non-corresponding attributes
might have a similar value by chance, we use several duptidastead of only one. Two duplicates are com-
pared field-wise using th8oftTFIDF similarity measurg/], resulting in a matrix containing similarity scores
for each attribute combination. The matrices of each dafdi@re averaged, and the maximum weight match-
ing is computed, resulting in a set of 1:1 correspondencasre€§pondences with a similarity score below a

given threshold are pruned. HumMer allows users to manwaly missing or delete false correspondences
simultaneously across multiple data sources.

Like most related approaches, the matcher currently irzatpd into HumMer is restricted to 1:1 correspon-
dences. However, we have also developed a matcher thakeiscatietect complex 1:n or m:n correspondences
based on the detected duplicates. The underlying idea snibine source or target attributes and merge their
respective matrix rows or columns in the matching step. Tiperdhm searches through the space of similarity
matrices using greedy pruning, i.e., if a merge does notorwthe overall matching, that branch of the search
tree is not further considered.

In addition to complex matchings, we have also devised aicatptbased matcher for schemata consisting
of multiple tables. The algorithm starts with a few corresences and crawls though the schemata by joining
neighboring tables. In each step, additional correspareteare detected using the DUMAS matcher, which are
used in the following steps to add more tables.

Thus with the schema matching step, schematic inconsisteace detected and “marked” with appropriate
correspondences. In the next sub-step the inconsisteasdesvercome by transforming the data so that it
appears under a single common schema.

The following transformationphase is straightforward because we assume only unioniypgration:
Without loss of generality, we assume that one schema isrédferped schema, which determines the names
of attributes that semantically appear in multiple sourdde attributes in the non-preferred schema that partic-
ipate in a correspondence are renamed accordingly. Aksatgiceive an additionaburcelDattribute, which is
required in later stages. Finally, the full outer union dftables is computed.

If correspondences cross multiple relations of sourcergetaschema joins are necessary and a Clio-style
data transformation becomes necessary. In this paper wenagbat integration is to be performed over relations
talking about same types of objects. Only then does duplidatection and conflict resolution as described in
the next sections make sense. Any more complex transfarnsashould be performed in beforehand.

2.2 Duplicate Detection

Duplicate detection is a research area with a long traditieginning with early work on record linkage [11],
among many others a prominent technigue for domain-depéidglicate detection is the sorted neighborhood
method [14]. More recently, several approached have erddlge regard not only data in a single table, but
also data in related tables (or XML elements) to improve eamu[1, 10, 21].

In [24] we introduce an algorithm that detects duplicateXL documents. More precisely, duplicate
XML elements are detected by considering not only their tedes, but also those of selected children, i.e.,
elements involved in a 1:N relationship with the currentysidered element. We map this method to the rela-
tional world (similar to [1]) to detect duplicates in a tabiging not only its attribute values, but also “interesting”
attributes calledlescriptions from relations that have some relationship to the currplet In this section, we
first describe how descriptions are selected. Then, wednt®the duplicate detection procedure that compares
tuples based on their descriptions.

2.2.1 Description Selection

Generally, we consider attributes interesting for dupdicdetection being attributes that are (i) related to the
currently considered object, (ii) useable by our similanteasure, and (iii) likely to distinguish duplicates from
non-duplicates. We developed several heuristics to selett attributes in [25], based on descendant depth,
data type, content model, optionality of elements, etchénrelational data integration scenario descriptions are
determined as follows: The attributes related to the ctyreronsidered object are attributes of the integrated
table and attributes of “children tables”. We consider akloén all tables that contain foreign keys referencing

the tables matched in the previous step. For efficiency, mi the children tables to direct children only, i.e.,
no descendants reached by following more than one refegeosonsidered.

The default description selection proposed by HumMer isstiteof corresponding attributes between the
two schemas, i.e., those that include values for tuples tvoth sources, opposed to values of non-matching
attributes, which are padded with NULL values. Indeed, NUalues do not distinguish duplicates from non
duplicates and thus such attributes should not be includétki description.

The heuristic of selecting only matched attributes as datsmns applies both to the already matched tables
and attributes from their children tables. Therefore, thiddeen tables need to be matched and integrated as
well. Currently, children tables are matched pairwiselg #re transitive closure over these pairwise matches is
the final result. More specifically, let tabld$ and T’ be the two matched tables, and {&t, 1, ..., 7} x} and
{T»1,..., T, } be their respective children tables. Then, every pair dé&ll’ ;, 72 ;),1 <i < k,i <j<m
is matched. A given threshold determines if a pair of chitdia@bles correspond at all as shown in Figure 3. If
they do, their data in the matched attributes can be usedifdicdte detection as well.

MOVIE FILM
P TOLE f-------- o NAME |
YEAR _[-------- | DATE
DURATION RATING

ACTOR ACTORS

NAME
L MOVIE

NAME
FILM

ACTRESS | / { [PROD-COM
NAME -° ./ NAME
4 MoOVIE |- FILM

Children Tables

Figure 3: Matching children tables to improve duplicateedgbn

Once the descriptions is determined automatically, Humptevides a comfortable means to modify the
selection of interesting attributes proposed by our héasis

2.2.2 Duplicate Detection

After finalizing the selection of descriptions of an objeciples are compared pairwisely using a thresholded
similarity approach. More specifically, using a similanteasuresim(t,t2) that computes the similarity be-
tween two tupleg; andt,, we classify a tuple pair as sure duplicate, possible datgjcor non-duplicate, using
two thresholddl;,,. andf,s, in the following duplicate classifier.

t1 andt, sure duplicates igim(t1,t2) > Osure
I'(t1,t2) = ¢ t1 andty possible duplicates #,,ss < sim(ti,t2) < Osure
t1 andty non-duplicates otherwise

The currently used similarity measusém() is proposed in [25] and takes into account (i) matched vs.
unmatched attributes, (ii) data similarity between madchttributes using edit distance and numerical distance
functions, (iii) the identifying power of a data item, meesdi by a soft version of IDF, and (iv) matched but
contradictory vs. non-specified (missing) data; conttadycdata reduces similarity whereas missing data has
no influence on similarity. The number of pairwise compargsare reduced by applying a filter and comparing
only the remaining pairs. The filter used in combination waitin similarity measure is the filter proposed in [25]
that is defined as an upper bound to the similarity measuracéjéf sim(t1,t2) < filter(ti,t2) < Oposs, then
we can classify paifty, t2) as non-duplicate without computing the actual similaritgasure, which is more
complex to compute than the filter.

Pairs classified as possible duplicates are presented tesénen descending order of similarity. The user
can then manually classify the pair as sure duplicate orchgolicate. Using the descending order of similarity,

5

users can often conclude that after classifying severas @& non-duplicates, the remaining pairs, which are
less similar, are also non duplicates.

When all pairs of sure duplicates are finally available, thegitive closure over duplicate pairs is formed
to obtain clusters of objects that all represent a singlewedd entity. The output of duplicate detection is
the same as the input relation, but enriched bybjectID column for identification. Thus, inconsistencies at
tuple-level are resolved: The identity of each object asdntiltiple representations is know. Conflicts among
duplicates are resolved during conflict resolution.

2.3 Conflict Resolution

The last step in a data integration process, atliema matchingndduplicate detectiortnas been done, is to
combine the different representations of a single real dvobject into one single representation. This step is
referred to aglata fusionand aims at resolving the still existing conflicts (uncerti@s and contradictions) in
the attribute values. First we show a query language to fypfecieach attribute a functions to resolve conflicts.
Thereafter we present initial ideas to optimize querieslinug data fusion.

2.3.1 Specifying data fusion

We considedata fusionas a step in the integration process that is guided by anri@x@er. The user specifies
how the different representations and their values are imsddtermining the final representation, whereas a
specific information system, like our HumMer system, caroat the fusion itself. In fusing data from different
sources, a user can follow one of several different strasetijiat are repeatedly mentioned in literature [12, 16,
18, 20, 22] and categorized in [6]. Example strategies are:

e CONSIDER ALL POSSIBILITIES Conflicts ardgnoredand all possible combinations of values (occasion-
ally creating ones that have not been present in the sousfereh are passed on to the user, who finally
decides about which “possible world” to choose.

e TRUST YOUR FRIENDS Specific conflicts aravoidedby taking a preference decision beforehand and
using only values from a specific source, leaving aside tbesjply conflicting) values from other sources.

e CRY WITH THE WOLVES. Choosing the value that is most often used, resultge$olvinga conflict by
taking one of the existing values and following the idea twatect values prevail over incorrect ones.

e MEET IN THE MIDDLE: Another possible way aksolvingthe conflict is in creating a new value that is a
compromise of all the conflicting values, e.g., an average sgveral numeric values.

Data fusion in the HumMer system is implemented as a relatioperator. It takes as input a number of
tables containing multiple representations of a real woljkct and gives as output one table with exactly one
representation for each real world object. This is done byging and aggregation, hereby using a global key to
group the representations. The key needs to be provideddigdie detection techniques applied before on the
data. In each group conflicts may arise in each column thattigsed for grouping. These conflicts are resolved
per column by applying a conflict resolution function to ttedad Functions that can be used do not only include
the standard SQL aggregation functions (min, max, sum, but)other more elaborate functions as well, for
instance functions that not only use the conflicting valmeddtermining a final value, but also other data from
the same attribute, data from other attributes or metadagavan by the query context (e.g., statistics, meta data
of sources, etc.). The HumMer system is extensible allowisegy defined conflict resolution functions. In the
following a brief list of some functions that could be used:

e MAX / MIN: Returns the maximum/minimum value of the conflicting dathugs.

e GROUP. Returns a set of all conflicting values and leaves resaitttiche user.
e SHORTEST/ LONGEST. Chooses the value of minimum/maximum length.

e VOTE: Returns the value that appears most often among the presieiets. Ties could be broken by a
variety of strategies, e.g., choosing randomly.

e FIRST/ LAST: Takes the first/last value of all values, even if it is@LL value.

e COALESCE Takes the firsNON-NULL value appearing.

e CHOOSHSOURCBH: Returns the value supplied by the specific source.

e MOSTRECENT:. Recency is evaluated with the help of another attributetloerometadata.

The fusion operation is expressed with the help of the EBY statement as described in [5]. Defaults, such
as using ©ALESCEas the default conflict resolution function or using the oafahe tables given as preference
judgement, as well as implicitly removing subsumed tupleake it easy to specify conflict resolution in an
SQL-like syntax. By issuing such auBE By statement the user is able to accomplish many of the differen
possible fusion strategies. An example for@skE By statement is:

SELECT Name, RESOLVE(Age, max), RESOLVE(Address, choose(EE _Students))
FUSE FROM EE_St udents, CS_Students
FUSE BY (Nane)

This statement fuses data two student tables, leaving nestuple per student. Students are identified by their
name, conflicts in the age of the students are resolved bygdake max (assuming that people only get older),
and conflicts in the address are avoided by choosing the ssldrem source EEStudents (implementing a
TRUST YOUR FRIENDSStrategy).

2.3.2 Optimizing data fusion

In an information integration scenario &€ By statement could be seen as a mediator, composing different
sources and shaping a consistent view on these sourcesyif@usuch a view results in a query tree combining
other relational operators and the fusion operator (eiguré 4). The sources used in the view may themselves
be complex queries involving other relational operatoraels

0 Age=20

(bName,ma:E(Age) ,choose(Address,EE)

EE:NName CS

STUDENT ADDRESS

Figure 4: Query on two tables EE and CS involving Fusion afetten, assuming dirty tables CS and Student,
and clean table Address (one address per name)¢ Diperator denotes fusion

For ad-hoc queries efficiency is important. To support algiebquery optimization we analyze different
properties of the conflict resolution functions, e.g., camativity, order dependance, decomposability, etc.
These play an important role when deciding whether a fusmeraior can be pushed down below a join, or

7

a selection can be pushed down below a fusion, etc. Rulesfmmdposable, order- and duplicate insensitive
functions, such as max and min, can be taken from the literain optimization of grouping and aggregation
([13, 23]) and used in pushing down fusion beyond joins. Wilke, rules for selection pushdown below Group
By for these kinds of functions also apply to fusion [8].

An example for such a transformation is in Figure 5, wherdyesglection and fusion decreases the car-
dinality of intermediate results. We are currently invgating rules for the more complex functions vk,
CHOOSE etc.), eventually making it necessary to use an extendatiomal algebra that is order-aware. The
rules will be included into the query optimizer of the HumMststem. Choosing among different equivalent
plans in a cost based fashion (physical query optimizat®lurrently only supported in the HumMer system
by using a tuple-based cost model.

0 Age=20

(bName?maw(Age) ,choose(Address,EE)

/\

XName ¢Name,maz(Age)

¢Name,maw(Age) ADDRESS 0 Age>20

0 Age>20 T Name,Age

STUDENT CS

Figure 5: Query from Figure 4, optimized, decreasing the sizintermediate results by pushing selection and
fusion down the tree. The¢ operator denotes fusion

3 Composing the Individual Steps

The Humboldt Merger is implemented as a stand-alone Jav&aippn. The underlying engine of the entire
process is the XXL framework, an extensible library for tirij database management systems [9]. This
engine together with some specialized extensions haraldsstand performs the necessary table fetches, joins,
unions, and groupings. On top of the process lies a graphi&ed interface that drives the user experience.
HumMer combines the techniques described in the previoctsoseto achieve all phases of data fusion in a
single system. A metadata repository stores all registeoedces of data under an alias. Sources can include
tables in a database, flat files, XML files, web services, a@tceSve assume relational data within the system,
the metadata repository additionally stores instructimngansform data into its relational form. This section
briefly describes the architecture and dataflow within treesy, as shown in Fig. 6.

HumMer works in two modes: First, querying via a basic SQleiiface, which parsesUse By queries
and returns the result. Second, querying via a wizard ggidigers in a step by step fashion: Given a set of
aliases as chosen by the user in a query, HumMer first gesdtaeelational form of each and passes them to
the schema matching component. There, columns with samagieshare identified and renamed accordingly,
favoring the first source mentioned in the query. The resuttsualized by aligning corresponding attributes on
the screen. Users can correct or adjust the matching ré&atia transformation adds an extra sourcelD column
to each table to store the alias of the data source and perfaifail outer union on the set of tables.

The resulting table is input to duplicate detection. If s®uables are part of a larger schema, this component
consults the metadata repository to fetch additional tadtel generate child data to support duplicate detection.
First, the schema of the merged table, along with other sahkgt still might reside in the databases is visualized

GUI {2 Adjust |3.Adjust 4.Confirm |5. Specify 6.Browse
1.Choose | matching} duplicate duplicates{ resolution result
sources ! i definition i functions set

Schema Clean &
Source : : Probable .
N i| correspon-|: " consistent

list : duplicates
1{_dences result set
— ' ' '
R 1L JC JCL JC 1T
‘ ‘ : N

tion : :
\ Schema - i i ‘))
JﬁMatchingﬁ Duplicate Detection E:E> Conflict resolution

J
XXL DBMS
S — e R e S e e R e e

Figure 6: The HumMer framework fusing heterogeneous dasesingle process

Duplicate
definition

Sample
conflicts

as a tree. Heuristics determine which attributes shouldslee @or duplicate detection. Users can optionally
adjust the results of the heuristics by hand within the seheffhe duplicate detection component adds yet
another column to the input table — an objectID column degigg tuples that represent the same real-world
object. The results of duplicate detection are visualizetthiee segments: Sure duplicates, sure non-duplicates,
and unsure cases, all of which users can decide upon indiydor in summary.

The final table is then input to the conflict resolution phageere tuples with same objectID are fused into
a single tuple and conflicts among them are resolved acagptdithe query specification. At this point, the
relational engine also applies other query predicates. fifla¢ result is passed to the user to browse or use
for further processing. As an added feature, data valuebeamwlor-coded to highlight uncertainties and data
conflicts. Also HumMer collects lineage information for ba@lue, so that users can see the original conflicting
values and their data source. Figure 7 shows a screen shus dh@al view.

4 Outlook

We conclude by reiterating the observation that surpriittig work has been done in the field of data fusion to
improve the quality of data. A survey of the field of duplicaletection, which would be an obvious place for
authors to at least indicate what is to be done once dupieatedetected, yielded no satisfactory approaches. In
fact, a common synonymous term for duplicate detection ugplidate elimination”, which precisely describes
what many authors propose: Simply remove all but one reptatee of a duplicate group.

In the field of data integration there are indeed a few cor@pproaches to data fusion as cited exemplarily
in Section 2.3. Those results have not yet moved to comniatatabases and applications yet, despite great
efforts of vendors to extend databases to wrap heterogsrta sources. Data fusion in real-world applications
is mostly performed manually or is hard-coded into propngtapplications or ETL scripts. We believe that
inclusion of data fusion capabilities into the DBMS kerreepromising.

Acknowledgments. Christoph Bohm and Karsten Draba were very helpful in immgating HumMer. This
research was supported by the German Research Society (2R go. NA 432 and GRK 316).

T e u“n‘IZ
File Extra Help

Result
Fusion default ‘vi Execute
Conflic back next
4 5. Result
siD ISEN TITLE PUBLISHER | RELEASE|...|...{ID|...{I..d...|...
CONCAT CO_ALESCE WOTE COALESCE COALESCE e o e Y J

= 3-8273-7044-2F Der Latex Begle % Pearson St.. = 20(A R |

4 Springer V.. R S
~ 3-540-5 st “ Springer V.. & 18 H A

4 3-486-25706 1 N..“ 60.0 ° Oldenbourg" S

“ 3-2385-4356-3¢ av es e O'Reilly® - -t

20 & D atterns 2 Addison W... e
2 Addison W... - ECCEEECRERa

1

= 1565-4356-3 et

1-55860-482-0/¢ =
¥ 0-471-25311-1 00 S A e

0-471-25311-1 1

0-471-25311-1]

& Springer V... ot

MIT Press/® | 41

4 0-201-39829-X odern Informatio.. 75.0 © Addison W... k “t

“ 0-201-12037- ductio Al..| 2 Addison W..[& 19 w1
.................. wt) |

4..." »
..;s.. Rows: 0:35 Duplicate Contradiction Uncertainty Unique

Figure 7: Screenshot of HumMer

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Elimingtfuzzy duplicates in data warehousesPhoceedings of
the International Conference on Very Large Databases (V),BBBng Kong, China, 2002.

[2] S. Bergamaschi, S. Castano, and M. Vincini. Semantiegrdtion of semistructured and structured data sources.
28(1):54-59, 1999.

[3] A. Bilke, J. Bleiholder, C. Bhm, K. Draba, F. Naumann, add Weis. Automatic data fusion with HumMer. In
Proceedings of the International Conference on Very Largéabases (VLDB)005. Demonstration.

[4] A. Bilke and F. Naumann. Schema matching using dupliEate Proceedings of the International Conference on
Data Engineering (ICDE)pages 69-80, Tokyo, Japan, 2005.

[5] J. Bleiholder and F. Naumann. Declarative data fusiogntax, semantics, and implementation. Advances in
Databases and Information Systems (ADBT&)lin, Estonia, 2005.

[6] J. Bleiholder and F. Naumann. Conflict handling stra#gedn an integrated information system. Rroceedings of
the International Workshop on Information Integration twe Web (IIWeh)Edinburgh, UK, 2006.

[7] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparefcstring distance metrics for name-matching tasks.
In Proceedings of IJCAI-03 Workshop on Information Integratbn the Web (IIWebpages 73-78, 2003.

[8] U. Dayal. Processing queries over generalization hidrias in a multidatabase system.Rroceedings of the Inter-
national Conference on Very Large Databases (VLOR)ges 342—-353, Florence, Italy, 1983. Morgan Kaufmann.

[9] J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich, J. KramT. Schafer, M. Schneider, and B. Seeger. XXL - a library
approach to supporting efficient implementations of adedrdatabase queries. Broceedings of the International
Conference on Very Large Databases (VLDiges 3948, 2001.

10

[10] X. Dong, A. Halevy, and J. Madhavan. Reference recat@in in complex information spaces. Rroceedings of
the ACM International Conference on Management of Data (8I®), pages 85-96, 2005.

[11] I. Fellegi and A. Sunter. A theory of record linkagkurnal of the American Statistical Associatj@4(328), 1969.

[12] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: efficienanagement of inconsistent databasesSIBMOD '05:
Proceedings of the 2005 ACM SIGMOD international confeeean Management of datpages 155-166, New
York, NY, USA, 2005. ACM Press.

[13] A. Gupta, V. Harinarayan, and D. Quass. Aggregateypascessing in data warehousing environments/LDB,
pages 358-369, 1995.

[14] M. A. Hernandez and S. J. Stolfo. Real-world data igydiData cleansing and the merge/purge probldbata
Mining and Knowledge Discover#(1):9-37, 1998.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic satmeatching with Cupid. IIProceedings of the International
Conference on Very Large Databases (VLDByme, Italy, 2001.

[16] A. Motro, P. Anokhin, and A. C. Acar. Utility-based rdation of data inconsistencies. Proceedings of the 2004
international workshop on Information quality in inforniatal systemspages 35-43. ACM Press, 2004.

[17] F. Naumann, C.-T. Ho, X. Tian, L. Haas, and N. MegiddatriBtite classification using feature analysisPiloceed-
ings of the International Conference on Data Engineerif@¥E), San Jose, CA, 2002. Poster.

[18] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-MaliObject fusion in mediator systems.Rroceedings of the
International Conference on Very Large Databases (VL[pRpes 413—-424, Bombay, India, 1996.

[19] E. Rahm and P. A. Bernstein. A survey of approaches toraatic schema matchiniyLDB Journa) 10(4):334-350,
2001.

[20] E. Schallehn, K.-U. Sattler, and G. Saake. Efficientilgirity-based operations for data integratiodata Knowl.
Eng, 48(3):361-387, 2004.

[21] P. Singla and P. Domingos. Object identification witliiatite-mediated dependences.Buaropean Conference on
Principles of Data Mining and Knowledge Discovery (PKDPages 297-308, 2005.

[22] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu,Rajput, T. Rogers, R. Ross, and C. Ward. Hermes: A
heterogeneous reasoning and mediator system. Technpeat,r&niversity of Maryland, 1995.

[23] A.Tsoisand T. K. Sellis. The generalized pre-grougiagsformation: Aggregate-query optimization in the pres
of dependencies. MLDB, pages 644—655, 2003.

[24] M. Weis and F. Naumann. Detecting duplicate objectsil>documents. IrProceedings of the SIGMOD Interna-
tional Workshop on Information Quality for Information $ms (IQIS)Paris, France, 2004.

[25] M. Weis and F. Naumann. DogmatiX tracks down duplicateXML. In Proceedings of the ACM International
Conference on Management of Data (SIGMQOfgges 431-442, Baltimore, MD, 2005.

11

