
Data Fusion in Three Steps:
Resolving Inconsistencies at Schema-, Tuple-, and Value-level

Felix Naumann1 Alexander Bilke2 Jens Bleiholder1 Melanie Weis1
1 Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin, Germany
{naumann|bleiho|mweis}@informatik.hu-berlin.de

2 Technische Universität Berlin
Strasse des 17. Juni 135, 10623 Berlin, Germany

bilke@cs.tu-berlin.de

Abstract

Heterogeneous and dirty data is abundant. It is stored underdifferent, often opaque schemata, it rep-
resents identical real-world objects multiple times, causing duplicates, and it has missing values and
conflicting values. Without suitable techniques for integrating and fusing such data, the data quality of
an integrated system remains low. We present a suite of methods, combined in a single tool, that allows
ad-hoc, declarative fusion of such data by employing schemamatching, duplicate detection and data
fusion.

Guided by a SQL-like query against one or more tables, we proceed in three fully automated steps:
First, instance-based schema matching bridges schematic heterogeneity of the tables by aligning cor-
responding attributes. Next, duplicate detection techniques find multiple representations of identical
real-world objects. Finally, data fusion and conflict resolution merges each duplicate into a single,
consistent, and clean representation.

1 Fusing Heterogeneous, Duplicate, and Conflicting Data

The task of integrating and fusing data involves the solution of many different problems, each one in itself
formidable: Apart from the technical challenges of accessing remote data, heterogeneous schemata of different
data sets must be aligned, multiple but differing representations of identical real-world objects (duplicates) must
be discovered, and finally the duplicates must be fused to present a clean and consistent result to a user. In
particular this final step is seldomly or inadequately addressed in the literature. Figure 1 shows the three steps
and the inconsistencies they bridge.

Each of these tasks has been addressed in research individually at least to some extent: (i) Access to remote
sources is now state of the art of most integrated information systems, using techniques such as JDBC, wrap-
pers, Web Services etc. Such technical heterogeneities arenot addressed in this article and we assume JDBC or

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or toreuse any copyrighted component of this
work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Data sources

Duplicate Detection

Schema Matching

Data Fusion

Application

Step 1:

Step 2:

Step 3:

Resolve inconsistencies at schema level

(schematic heterogeneity)

Resolve inconsistencies at tuple level

(duplicates)

Resolve inconsistencies at value level

(data conflicts)

Figure 1: The three steps of data fusion

file-based access to the relational data sources. (ii) Schematic heterogeneity has been a research issue for at least
two decades, first in the context of schema integration and then to automatically generate schema mappings.
Especially recently, schema matching techniques have madegreat progress in automatically detecting corre-
spondences among elements of different schemata. (iii) Duplicate detection is successful in certain domains, in
particular in customer relationship management where duplicate customers and their contact information must
be detected, and several research projects have presented well-suited domain-independent algorithms. Other
research directions have developed domain-independent approaches. All are usually performed as an individual
task, such as a separate cleansing step in an ETL procedure. Here we bed duplicate detection into a domain-
independent ad-hoc querying environment. (iv) Data fusion, i.e., the step of actually merging multiple, duplicate
tuples into a single representation of a real world object, has only marginally been dealt with in research and
hardly at all in commercial products. The particular problem lies in resolving value-level contradictions among
the different representations of a single real-world object.

We have combined all these techniques under the umbrella of the Humboldt Merger (HumMer) – a one-
stop solution for fusing data from heterogeneous sources [3]. A unique feature of HumMer is that all steps are
performed in an ad-hoc fashion at run-time, initiated by a user query to the sources; in a sense, we performad
hoc, automatic, and virtual ETL. Apart from the known advantages of virtual data integration (up-to-dateness,
low storage requirement), this on-demand approach allows for maximum flexibility: New sources can be queried
immediately, albeit at the price of not generating as perfect query results as if the integration process were defined
by hand. To compensate, HumMer optionally visualizes each intermediate step of data fusion and allows users
to interfere: The result of schema matching can be adjusted,tuples discovered as being border-line duplicates
can be separated and vice versa, and finally, resolved data conflicts can be undone and resolved manually.

Ad-hoc and automatic data fusion is useful in many scenarios: Catalog integration is a typical one-time
problem for companies that have merged, but it is also of interest for shopping agents collecting data about
identical products offered at different sites. A customer shopping for CDs might want to supply only the different
sites to search on. The entire integration process, from finding corresponding metadata, to detecting entries
for identical CDs, and finally to fuse all conflicting data, possibly favoring the data of the cheapest store, is
performed under the covers. In such a scenario, a schema matching component is of special importance, as
many web sites use different labels for data fields or even no labels at all.

Another application made possible only by automatic data fusion systems like HumMer is the provision of
online data cleansing services. Users of such a service simply submit sets of heterogeneous and dirty data and
receive a consistent and clean data set in response. Such a service is useful for individuals trying to compare
different data sets, but also for organizations not wantingto employ complex ETL procedures for all data sets.

Finally, an important application is disaster data management. In an area affected by a disaster, data about

2

damages, missing persons, hospital treatments etc. is often collected multiple times (causing duplicates) at dif-
ferent levels of detail (causing schematic heterogeneity)and with different levels of accuracy (causing data
conflicts). Fusing such data with the help of a graphical userinterface can help speed up the recovery process
and for instance expedite insurance pay-outs or detect insurance fraud.

2 Components for Data Fusion

HumMer combines several larger research projects under oneumbrella. In the following sections we describe
each project in some detail. Related work is references intermittently, but we point out that this article can be no
means be a complete survey for each of the vast fields of schemamatching, duplicate detection, and data fusion.

2.1 Schema Matching and Data Transformation

When integrating autonomous data sources, we must assume that they do not conform to the same schema.
Thus, the first phase in the integration process is the resolution of schematic heterogeneity. This phase proceeds
in two sub-steps: schema matching, i.e., the identificationof semantically equivalent schema elements, and data
transformation, i.e., the bringing the data under a single common schema.

Schema matchingis the (semi-automatic) process of detecting attribute correspondences between two het-
erogeneous schemata. Various approaches that exploit different kinds of information [19], i.e., schema informa-
tion [15], instances [17], or additional metadata [2], havebeen proposed. As we assume the databases to contain
duplicates according to our scenarios, we apply the DUMAS schema matching algorithm [4]: First, the DUMAS
efficiently detects a few duplicates in two (or more) unaligned databases and then derives a schema matching
based on similar attribute values of duplicates. This key idea is shown in Figure 2 where two detected duplicate
tuples from different sources are used to find a schema matching.

(358) 243 63 21r3

s3

GE’FB’

EDCBA

 ?
 ?

358−2436321 UNIXsuzyKlein

Suzy Klein f (358) 243 63 21

Figure 2: Schema matching using duplicates

Duplicate detection in unaligned databases is more difficult than in the usual setting, because attribute corre-
spondences are missing, i.e., it is not known which attribute values to compare. However, the goal of this phase
is not to detect all duplicates, but only as many as required for schema matching. Detectingall duplicates is
left to the next HumMer component. DUMAS considers a tuple asa single string and applies a string similarity
measure to extract the most similar tuple pairs. From the information retrieval field we adopt the well-known
TFIDF similarity for comparing records. Experimental evaluation shows thatthe most similar tuples are in fact
true duplicates.

These duplicates can be used for schema matching. If two duplicate tuples have the same or a sufficiently
similar attribute value, we assume that these attributes correspond. Because two non-corresponding attributes
might have a similar value by chance, we use several duplicates instead of only one. Two duplicates are com-
pared field-wise using theSoftTFIDF similarity measure[7], resulting in a matrix containing similarity scores
for each attribute combination. The matrices of each duplicate are averaged, and the maximum weight match-
ing is computed, resulting in a set of 1:1 correspondences. Correspondences with a similarity score below a

3

given threshold are pruned. HumMer allows users to manuallyadd missing or delete false correspondences
simultaneously across multiple data sources.

Like most related approaches, the matcher currently incorporated into HumMer is restricted to 1:1 correspon-
dences. However, we have also developed a matcher that is able to detect complex 1:n or m:n correspondences
based on the detected duplicates. The underlying idea is to combine source or target attributes and merge their
respective matrix rows or columns in the matching step. The algorithm searches through the space of similarity
matrices using greedy pruning, i.e., if a merge does not improve the overall matching, that branch of the search
tree is not further considered.

In addition to complex matchings, we have also devised a duplicate-based matcher for schemata consisting
of multiple tables. The algorithm starts with a few correspondences and crawls though the schemata by joining
neighboring tables. In each step, additional correspondences are detected using the DUMAS matcher, which are
used in the following steps to add more tables.

Thus with the schema matching step, schematic inconsistencies are detected and “marked” with appropriate
correspondences. In the next sub-step the inconsistenciesare overcome by transforming the data so that it
appears under a single common schema.

The following transformationphase is straightforward because we assume only union-typeintegration:
Without loss of generality, we assume that one schema is the preferred schema, which determines the names
of attributes that semantically appear in multiple sources. The attributes in the non-preferred schema that partic-
ipate in a correspondence are renamed accordingly. All tables receive an additionalsourceIDattribute, which is
required in later stages. Finally, the full outer union of all tables is computed.

If correspondences cross multiple relations of source or target schema joins are necessary and a Clio-style
data transformation becomes necessary. In this paper we assume that integration is to be performed over relations
talking about same types of objects. Only then does duplicate detection and conflict resolution as described in
the next sections make sense. Any more complex transformations should be performed in beforehand.

2.2 Duplicate Detection

Duplicate detection is a research area with a long tradition. Beginning with early work on record linkage [11],
among many others a prominent technique for domain-dependent duplicate detection is the sorted neighborhood
method [14]. More recently, several approached have emerged that regard not only data in a single table, but
also data in related tables (or XML elements) to improve accuracy [1, 10, 21].

In [24] we introduce an algorithm that detects duplicates inXML documents. More precisely, duplicate
XML elements are detected by considering not only their textnodes, but also those of selected children, i.e.,
elements involved in a 1:N relationship with the currently considered element. We map this method to the rela-
tional world (similar to [1]) to detect duplicates in a tableusing not only its attribute values, but also “interesting”
attributes calleddescriptions, from relations that have some relationship to the current table. In this section, we
first describe how descriptions are selected. Then, we introduce the duplicate detection procedure that compares
tuples based on their descriptions.

2.2.1 Description Selection

Generally, we consider attributes interesting for duplicate detection being attributes that are (i) related to the
currently considered object, (ii) useable by our similarity measure, and (iii) likely to distinguish duplicates from
non-duplicates. We developed several heuristics to selectsuch attributes in [25], based on descendant depth,
data type, content model, optionality of elements, etc. In the relational data integration scenario descriptions are
determined as follows: The attributes related to the currently considered object are attributes of the integrated
table and attributes of “children tables”. We consider as children all tables that contain foreign keys referencing

4

the tables matched in the previous step. For efficiency, we limit the children tables to direct children only, i.e.,
no descendants reached by following more than one referenceare considered.

The default description selection proposed by HumMer is theset of corresponding attributes between the
two schemas, i.e., those that include values for tuples fromboth sources, opposed to values of non-matching
attributes, which are padded with NULL values. Indeed, NULLvalues do not distinguish duplicates from non
duplicates and thus such attributes should not be included in the description.

The heuristic of selecting only matched attributes as descriptions applies both to the already matched tables
and attributes from their children tables. Therefore, the children tables need to be matched and integrated as
well. Currently, children tables are matched pairwisely and the transitive closure over these pairwise matches is
the final result. More specifically, let tablesT1 andT2 be the two matched tables, and let{T1,1, . . . , T1,k} and
{T2,1, . . . , T2,m} be their respective children tables. Then, every pair of tables(T1,i, T2,j), 1 ≤ i ≤ k, i ≤ j ≤ m

is matched. A given threshold determines if a pair of children tables correspond at all as shown in Figure 3. If
they do, their data in the matched attributes can be used for duplicate detection as well.

DURATION

YEAR

TITLE

MOVIE

RATING

DATE

NAME

FILM

MOVIE

NAME

ACTOR

MOVIE

NAME

ACTRESS

FILM

NAME

ACTORS

FILM

NAME

PROD-COM

Children Tables

Figure 3: Matching children tables to improve duplicate detection

Once the descriptions is determined automatically, HumMerprovides a comfortable means to modify the
selection of interesting attributes proposed by our heuristics.

2.2.2 Duplicate Detection

After finalizing the selection of descriptions of an object,tuples are compared pairwisely using a thresholded
similarity approach. More specifically, using a similaritymeasuresim(t1, t2) that computes the similarity be-
tween two tuplest1 andt2, we classify a tuple pair as sure duplicate, possible duplicate, or non-duplicate, using
two thresholdsθsure andθposs in the following duplicate classifier.

Γ(t1, t2) =











t1 andt2 sure duplicates ifsim(t1, t2) > θsure

t1 andt2 possible duplicates ifθposs ≤ sim(t1, t2) ≤ θsure

t1 andt2 non-duplicates otherwise

The currently used similarity measuresim() is proposed in [25] and takes into account (i) matched vs.
unmatched attributes, (ii) data similarity between matched attributes using edit distance and numerical distance
functions, (iii) the identifying power of a data item, measured by a soft version of IDF, and (iv) matched but
contradictory vs. non-specified (missing) data; contradictory data reduces similarity whereas missing data has
no influence on similarity. The number of pairwise comparisons are reduced by applying a filter and comparing
only the remaining pairs. The filter used in combination withour similarity measure is the filter proposed in [25]
that is defined as an upper bound to the similarity measure. Hence, ifsim(t1, t2) ≤ filter(t1, t2) ≤ θposs, then
we can classify pair(t1, t2) as non-duplicate without computing the actual similarity measure, which is more
complex to compute than the filter.

Pairs classified as possible duplicates are presented to theuser in descending order of similarity. The user
can then manually classify the pair as sure duplicate or non-duplicate. Using the descending order of similarity,

5

users can often conclude that after classifying several pairs as non-duplicates, the remaining pairs, which are
less similar, are also non duplicates.

When all pairs of sure duplicates are finally available, the transitive closure over duplicate pairs is formed
to obtain clusters of objects that all represent a single real-world entity. The output of duplicate detection is
the same as the input relation, but enriched by anobjectID column for identification. Thus, inconsistencies at
tuple-level are resolved: The identity of each object and its multiple representations is know. Conflicts among
duplicates are resolved during conflict resolution.

2.3 Conflict Resolution

The last step in a data integration process, afterschema matchingandduplicate detectionhas been done, is to
combine the different representations of a single real world object into one single representation. This step is
referred to asdata fusionand aims at resolving the still existing conflicts (uncertainties and contradictions) in
the attribute values. First we show a query language to specify for each attribute a functions to resolve conflicts.
Thereafter we present initial ideas to optimize queries involving data fusion.

2.3.1 Specifying data fusion

We considerdata fusionas a step in the integration process that is guided by an (expert) user. The user specifies
how the different representations and their values are usedin determining the final representation, whereas a
specific information system, like our HumMer system, carries out the fusion itself. In fusing data from different
sources, a user can follow one of several different strategies that are repeatedly mentioned in literature [12, 16,
18, 20, 22] and categorized in [6]. Example strategies are:

• CONSIDER ALL POSSIBILITIES: Conflicts areignoredand all possible combinations of values (occasion-
ally creating ones that have not been present in the sources before) are passed on to the user, who finally
decides about which “possible world” to choose.

• TRUST YOUR FRIENDS: Specific conflicts areavoidedby taking a preference decision beforehand and
using only values from a specific source, leaving aside the (possibly conflicting) values from other sources.

• CRY WITH THE WOLVES: Choosing the value that is most often used, results inresolvinga conflict by
taking one of the existing values and following the idea thatcorrect values prevail over incorrect ones.

• MEET IN THE MIDDLE: Another possible way ofresolvingthe conflict is in creating a new value that is a
compromise of all the conflicting values, e.g., an average over several numeric values.

Data fusion in the HumMer system is implemented as a relational operator. It takes as input a number of
tables containing multiple representations of a real worldobject and gives as output one table with exactly one
representation for each real world object. This is done by grouping and aggregation, hereby using a global key to
group the representations. The key needs to be provided by duplicate detection techniques applied before on the
data. In each group conflicts may arise in each column that is not used for grouping. These conflicts are resolved
per column by applying a conflict resolution function to the data. Functions that can be used do not only include
the standard SQL aggregation functions (min, max, sum, . . .)but other more elaborate functions as well, for
instance functions that not only use the conflicting values in determining a final value, but also other data from
the same attribute, data from other attributes or metadata as given by the query context (e.g., statistics, meta data
of sources, etc.). The HumMer system is extensible allowinguser defined conflict resolution functions. In the
following a brief list of some functions that could be used:

• MAX / M IN: Returns the maximum/minimum value of the conflicting data values.

6

• GROUP: Returns a set of all conflicting values and leaves resolution to the user.

• SHORTEST/ LONGEST: Chooses the value of minimum/maximum length.

• VOTE: Returns the value that appears most often among the presentvalues. Ties could be broken by a
variety of strategies, e.g., choosing randomly.

• FIRST / LAST: Takes the first/last value of all values, even if it is aNULL value.

• COALESCE: Takes the firstNON-NULL value appearing.

• CHOOSE(SOURCE): Returns the value supplied by the specific source.

• MOST RECENT: Recency is evaluated with the help of another attribute or other metadata.

The fusion operation is expressed with the help of the FUSE BY statement as described in [5]. Defaults, such
as using COALESCEas the default conflict resolution function or using the order of the tables given as preference
judgement, as well as implicitly removing subsumed tuples,make it easy to specify conflict resolution in an
SQL-like syntax. By issuing such a FUSE BY statement the user is able to accomplish many of the different
possible fusion strategies. An example for a FUSE BY statement is:

SELECT Name, RESOLVE(Age, max), RESOLVE(Address, choose(EE_Students))
FUSE FROM EE_Students, CS_Students
FUSE BY (Name)

This statement fuses data two student tables, leaving just one tuple per student. Students are identified by their
name, conflicts in the age of the students are resolved by taking the max (assuming that people only get older),
and conflicts in the address are avoided by choosing the address from source EEStudents (implementing a
TRUST YOUR FRIENDSstrategy).

2.3.2 Optimizing data fusion

In an information integration scenario a FUSE BY statement could be seen as a mediator, composing different
sources and shaping a consistent view on these sources. Querying such a view results in a query tree combining
other relational operators and the fusion operator (e.g., Figure 4). The sources used in the view may themselves
be complex queries involving other relational operators aswell.

σAge=20

φName,max(Age),choose(Address,EE)

CSEE=./Name

ADDRESSSTUDENT

Figure 4: Query on two tables EE and CS involving Fusion and selection, assuming dirty tables CS and Student,
and clean table Address (one address per name). Theφ operator denotes fusion

For ad-hoc queries efficiency is important. To support algebraic query optimization we analyze different
properties of the conflict resolution functions, e.g., commutativity, order dependance, decomposability, etc.
These play an important role when deciding whether a fusion operator can be pushed down below a join, or

7

a selection can be pushed down below a fusion, etc. Rules for decomposable, order- and duplicate insensitive
functions, such as max and min, can be taken from the literature on optimization of grouping and aggregation
([13, 23]) and used in pushing down fusion beyond joins. Likewise, rules for selection pushdown below Group
By for these kinds of functions also apply to fusion [8].

An example for such a transformation is in Figure 5, where early selection and fusion decreases the car-
dinality of intermediate results. We are currently investigating rules for the more complex functions (VOTE,
CHOOSE, etc.), eventually making it necessary to use an extended relational algebra that is order-aware. The
rules will be included into the query optimizer of the HumMersystem. Choosing among different equivalent
plans in a cost based fashion (physical query optimization)is currently only supported in the HumMer system
by using a tuple-based cost model.

σAge=20

φName,max(Age),choose(Address,EE)

φName,max(Age)

σAge≥20

πName,Age

CS

./Name

ADDRESSφName,max(Age)

σAge≥20

STUDENT

Figure 5: Query from Figure 4, optimized, decreasing the size of intermediate results by pushing selection and
fusion down the tree. Theφ operator denotes fusion

3 Composing the Individual Steps

The Humboldt Merger is implemented as a stand-alone Java application. The underlying engine of the entire
process is the XXL framework, an extensible library for building database management systems [9]. This
engine together with some specialized extensions handles tables and performs the necessary table fetches, joins,
unions, and groupings. On top of the process lies a graphicaluser interface that drives the user experience.
HumMer combines the techniques described in the previous section to achieve all phases of data fusion in a
single system. A metadata repository stores all registeredsources of data under an alias. Sources can include
tables in a database, flat files, XML files, web services, etc. Since we assume relational data within the system,
the metadata repository additionally stores instructionsto transform data into its relational form. This section
briefly describes the architecture and dataflow within the system, as shown in Fig. 6.

HumMer works in two modes: First, querying via a basic SQL interface, which parses FUSE BY queries
and returns the result. Second, querying via a wizard guiding users in a step by step fashion: Given a set of
aliases as chosen by the user in a query, HumMer first generates the relational form of each and passes them to
the schema matching component. There, columns with same semantics are identified and renamed accordingly,
favoring the first source mentioned in the query. The result is visualized by aligning corresponding attributes on
the screen. Users can correct or adjust the matching result.Data transformation adds an extra sourceID column
to each table to store the alias of the data source and performs a full outer union on the set of tables.

The resulting table is input to duplicate detection. If source tables are part of a larger schema, this component
consults the metadata repository to fetch additional tables and generate child data to support duplicate detection.
First, the schema of the merged table, along with other tables that still might reside in the databases is visualized

8

GUI
1. Choose

sources

2. Adjust

matching

3. Adjust

duplicate

definition

4. Confirm

duplicates

5. Specify

resolution

functions

6. Browse

result

set

XXL DBMS

Rela-

tion

Rela-

tion

SchemaSchema

MatchingMatching

...

Schema

correspon-

dences

Source

list

Duplicate DetectionDuplicate Detection

Duplicate

definition

Probable

duplicates

Sample

conflicts

Clean &

consistent

result set

Conflict resolutionConflict resolution

Data sourceData sourceData sourceData sourceMetadata Repository

Figure 6: The HumMer framework fusing heterogeneous data ina single process

as a tree. Heuristics determine which attributes should be used for duplicate detection. Users can optionally
adjust the results of the heuristics by hand within the schema. The duplicate detection component adds yet
another column to the input table – an objectID column designating tuples that represent the same real-world
object. The results of duplicate detection are visualized in three segments: Sure duplicates, sure non-duplicates,
and unsure cases, all of which users can decide upon individually or in summary.

The final table is then input to the conflict resolution phase,where tuples with same objectID are fused into
a single tuple and conflicts among them are resolved according to the query specification. At this point, the
relational engine also applies other query predicates. Thefinal result is passed to the user to browse or use
for further processing. As an added feature, data values canbe color-coded to highlight uncertainties and data
conflicts. Also HumMer collects lineage information for each value, so that users can see the original conflicting
values and their data source. Figure 7 shows a screen shot of this final view.

4 Outlook

We conclude by reiterating the observation that surprisinglittle work has been done in the field of data fusion to
improve the quality of data. A survey of the field of duplicatedetection, which would be an obvious place for
authors to at least indicate what is to be done once duplicates are detected, yielded no satisfactory approaches. In
fact, a common synonymous term for duplicate detection is “duplicate elimination”, which precisely describes
what many authors propose: Simply remove all but one representative of a duplicate group.

In the field of data integration there are indeed a few concrete approaches to data fusion as cited exemplarily
in Section 2.3. Those results have not yet moved to commercial databases and applications yet, despite great
efforts of vendors to extend databases to wrap heterogeneous data sources. Data fusion in real-world applications
is mostly performed manually or is hard-coded into proprietary applications or ETL scripts. We believe that
inclusion of data fusion capabilities into the DBMS kernel is promising.
Acknowledgments. Christoph Böhm and Karsten Draba were very helpful in implementing HumMer. This
research was supported by the German Research Society (DFG grants no. NA 432 and GRK 316).

9

Figure 7: Screenshot of HumMer

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. InProceedings of
the International Conference on Very Large Databases (VLDB), Hong Kong, China, 2002.

[2] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured and structured data sources.
28(1):54–59, 1999.

[3] A. Bilke, J. Bleiholder, C. Bhm, K. Draba, F. Naumann, andM. Weis. Automatic data fusion with HumMer. In
Proceedings of the International Conference on Very Large Databases (VLDB), 2005. Demonstration.

[4] A. Bilke and F. Naumann. Schema matching using duplicates. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 69–80, Tokyo, Japan, 2005.

[5] J. Bleiholder and F. Naumann. Declarative data fusion - syntax, semantics, and implementation. InAdvances in
Databases and Information Systems (ADBIS), Tallin, Estonia, 2005.

[6] J. Bleiholder and F. Naumann. Conflict handling strategies in an integrated information system. InProceedings of
the International Workshop on Information Integration on the Web (IIWeb), Edinburgh, UK, 2006.

[7] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for name-matching tasks.
In Proceedings of IJCAI-03 Workshop on Information Integration on the Web (IIWeb), pages 73–78, 2003.

[8] U. Dayal. Processing queries over generalization hierarchies in a multidatabase system. InProceedings of the Inter-
national Conference on Very Large Databases (VLDB), pages 342–353, Florence, Italy, 1983. Morgan Kaufmann.

[9] J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schneider, and B. Seeger. XXL - a library
approach to supporting efficient implementations of advanced database queries. InProceedings of the International
Conference on Very Large Databases (VLDB), pages 39–48, 2001.

10

[10] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information spaces. InProceedings of
the ACM International Conference on Management of Data (SIGMOD), pages 85–96, 2005.

[11] I. Fellegi and A. Sunter. A theory of record linkage.Journal of the American Statistical Association, 64(328), 1969.

[12] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: efficientmanagement of inconsistent databases. InSIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 155–166, New
York, NY, USA, 2005. ACM Press.

[13] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments. InVLDB,
pages 358–369, 1995.

[14] M. A. Hernández and S. J. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge problem.Data
Mining and Knowledge Discovery, 2(1):9–37, 1998.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid. InProceedings of the International
Conference on Very Large Databases (VLDB), Rome, Italy, 2001.

[16] A. Motro, P. Anokhin, and A. C. Acar. Utility-based resolution of data inconsistencies. InProceedings of the 2004
international workshop on Information quality in informational systems, pages 35–43. ACM Press, 2004.

[17] F. Naumann, C.-T. Ho, X. Tian, L. Haas, and N. Megiddo. Attribute classification using feature analysis. InProceed-
ings of the International Conference on Data Engineering (ICDE), San Jose, CA, 2002. Poster.

[18] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator systems. InProceedings of the
International Conference on Very Large Databases (VLDB), pages 413–424, Bombay, India, 1996.

[19] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.VLDB Journal, 10(4):334–350,
2001.

[20] E. Schallehn, K.-U. Sattler, and G. Saake. Efficient similarity-based operations for data integration.Data Knowl.
Eng., 48(3):361–387, 2004.

[21] P. Singla and P. Domingos. Object identification with attribute-mediated dependences. InEuropean Conference on
Principles of Data Mining and Knowledge Discovery (PKDD), pages 297–308, 2005.

[22] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu, A. Rajput, T. Rogers, R. Ross, and C. Ward. Hermes: A
heterogeneous reasoning and mediator system. Technical report, University of Maryland, 1995.

[23] A. Tsois and T. K. Sellis. The generalized pre-groupingtransformation: Aggregate-queryoptimization in the presence
of dependencies. InVLDB, pages 644–655, 2003.

[24] M. Weis and F. Naumann. Detecting duplicate objects in XML documents. InProceedings of the SIGMOD Interna-
tional Workshop on Information Quality for Information Systems (IQIS), Paris, France, 2004.

[25] M. Weis and F. Naumann. DogmatiX tracks down duplicatesin XML. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 431–442, Baltimore, MD, 2005.

11

