QUEST: (QUery-driven Exploration of Semistructured
Data with Conflic/'s and Partial Knowledge*

Yan Qi
Comp. Sci. and Eng.
Arizona State Univ.

Comp. Sci. and Eng.
Arizona State Univ.

yan.qi@asu.edu candan@asu.edu

Abstract

An important reality when integrating sci-
entific data is the fact that data may often
be “missing”, partially specified, or conflict-
ing. Therefore, in this paper, we present
an assertion-based data model that captures
both wvalue-based and structure-based “nulls”
in data. We also introduce the QUEST sys-
tem, which leverages the proposed model for
Query-driven Exploration of Semistructured
data with conflicT's and partial knowledge.
Our approach to integration lies in enabling
researchers to observe and resolve conflicts in
the data by considering the context provided
by the data requirements of a given research
question. In particular, we discuss how path-
compatibility can be leveraged, within the con-
text of a query, to develop a high-level under-
standing of conflicts and nulls in data.

1 DMotivation and Related Work

Through a joint effort of archaeologists and computer
scientists, we are developing an integrated frame-
work of knowledge-based collaborative tools that will
provide the foundation for a shared information in-
frastructure for archaeology and contribute substan-
tially to a shared knowledge infrastructure of sci-
ence [21]. Today, the incapacity to integrate data
across projects cripples archaeologists’ and other sci-
entists’ efforts to recognize phenomena operating on
large spatio-temporal scales and to conduct crucial
comparative studies [20, 21]. A major challenge with
integration of data is that the meaning of an archaeo-
logical observation is rarely self-evident.

Supported by NSF Grant “Enabling the Study of Long-
Term Human and Social Dynamics: A Cyberinfrastructure for
Archaeology”

K. Selguk Candan Maria Luisa Sapino
Dip. di Informatica
Univ. of Torino
mlsapino@di.unito.it

Keith W. Kintigh
Sch.of Human Evol.&Social Change
Arizona State Univ.
kintigh@asu.edu

1.1 Incompleteness and Inconsistencies

An important reality when integrating archaeological
data is that entries (archaeological observations and
interpretations) may often be “missing” or only par-
tially specified. For example, one may not be able to
associate a bone collected at a given site to the species
and may use vague terms or references to a hierarchi-
cally higher concept in the biological taxonomy. Thus,
researchers reach conflicting conclusions, not just be-
cause their primary data differ, but because they op-
erationalize interpretive concepts differently [20].
Within the context of our efforts to determine the
needs and challenges associated with archaeological
information integration, a working group of domain
experts selected datasets representing archaeological
fauna recovered from two excavations in the western
US [28]. The goal of the effort was to integrate these
two datasets into one by using ontologies to map data
codes to concepts shared by the datasets and to resolve
the ambiguities (as much as possible) using ontologies.
One outcome of this effort was the understanding that,
even after a careful study of the data sets by the do-
main experts, there were parts of the data that could
not be successfully mapped (e.g., while use of the ac-
tual taxonomic categories was consistent, investigators
differed in how they dealt with bones that could not be
fully identified). Nevertheless, in the context of a par-
ticular research question, archaeologists could identify
reasonable means of addressing these inconsistencies.
Thus, reconciling data and classification schemes
entails developing novel data integration techniques to
allow query dependent integration, despite inherent in-
consistencies. Our goal is to develop a tool to allow a
researcher to extract sensibly integrated observations
and consistent variables from potentially incomplete
and inconsistent data archive. During query process-
ing, the repository needs to integrate data from mul-
tiple sources, note and resolve conflicting and missing
data. Where there are discrepancies or missing data,
the system needs to allow the researcher to interpret
results and resolve conflicts as she sees appropriate.

1.2 Related Work

In general, there are many different types of null val-
ues (e.g., existential, maybe, place holder, and par-
tial), each of which reflects different knowledge or
intuitions about why a particular piece of informa-
tion is missing [8]. An early attempt at modeling
semistructured data with missing and partial data
is presented in [23]; authors used an object-based
model, where null, or-valued, and partial set objects
are used to handle partial and missing knowledge in
semi-structured data. Although it is richer than stan-
dard semistructured data models, such as Object Ex-
change Model (OEM) [24, 7], and Document Object
Model (DOM) [1], this model is more focused on value
nulls and does not capture inconsistencies and missing
knowledge in the structure of the data. In contrast,
we propose a new model for semi-structured databases
where different types of null values are represented uni-
formly. Each entry has an associated assertion; intu-
itively, an entry may be thought of as being in the
database iff the corresponding assertion is true. Al-
though the idea of using assertions (constraints) to
handle null values in relational databases is not new
(Imielinski-Lipski [15, 16], Liu [22], Candan [8]), the
use of constraints for a unified way of handling dif-
ferent types of nulls within the context of hierarchical
data and metadata is an open problem.

Knowledge integration from diverse sources involves
matching and integration. There is extensive work in
the area of matching schemas and data when integrat-
ing independent sources. Our focus, in this paper,
however is not on the matching, but on dealing with
conflicts that arise during integration. Conflict reso-
lution has also been studied in the context of active
databases and production rule systems [3, 17]. Most
of these study what to do when multiple active pro-
duction rules with conflicting heads request that an
atom be both added and deleted simultaneously. In
contrast, we attempt to evaluate queries and resolve
conflicts in answers to queries spanning multiple data
sources. Furthermore, unlike the related work in this
area, we will explore the application of these within
semi-structured data and metadata.

In their work on nondeterministic choices in logic
programming languages, Zaniolo [31, 32] and his col-
leagues suggest that in logic database languages, one
may wish to express the fact that only one of sev-
eral possible ways of satisfying an atom is nonde-
terministically selected. They then use this to de-
fine a choice semantics for logic programs with nega-
tion. Multiple model semantics, like the 2-valued, sta-
ble model semantics,[12], or the 3-valued finite failure
stable model semantics [13] associate multiple, equally
likely, models to the given knowledge base, each one
corresponding to a possible context, or a possible
consistent scenario described by the knowledge base.
Problem solvers interact with truth maintenance sys-

tems (TMSs) [9], that record and maintain the reasons
for the possible context (belief sets) under considera-
tion. Sentences are associated with their justifications,
which indicate what assumptions need to be changed
if they need to be invalidated. In this paper, we show
that we can leverage the special hierarchical structure
of the data and knowledge taxonomies to develop ef-
ficient and specialized algorithms, rather than having
to use general purpose truth maintenance solutions.
We use path query instances to provide contexts in
which conflicts can be resolved. Like us, Piazza [14]
and HepToX [5] also recognize that it is unrealistic to
expect an independent data source entering informa-
tion exchange to agree to a global mediated schema or
to perform heavyweight operations to map its schema
to every other schema in the group. Unlike these,
however, we recognize that while collating information
from multiple sources, the knowledge that is acquired
may be incomplete or inconsistent either in data val-
ues, structural relationships between data elements, or
both. Yet, since the base data reflect what is currently
known, data and interpretations from different sources
may be important to keep as is, even when they may
be conflicting with each other. We argue that an ulti-
mate integrated view of multiple data sets is often not
possible, and in fact is often not needed. Therefore,
unlike related work [27, 10] in repairing inconsistencies
in XML data using available external domain knowl-
edge, such as functional dependencies or DTDs, our
aim is to maintain the inconsistencies in the data and
allow the researcher to resolve conflicts within the con-
text of a given query.

1.3 Contributions of this Paper

Effective use of archaeological data requires on-the-fly
data integration, where discrepancies or incomplete in-
formation is properly dealt with within the context of
the given query. In this paper, we first present a data
model which captures not only wvalue-based, but also
structure-based nulls in semistructured data and meta-
data. In particular, we suggest that it is most effec-
tive to reconcile data source observations with data
requirements of a query rather than attempting global
reconciliation of data sources. We refer to this as query
driven ad hoc data integration and exploration [19].
This enables us to constrain the incompatibilities of
the data within the context of the question itself to
reduce the complexity of the problem. In this pa-
per, we also present an overview of a system, called
QUEST, which we are developing to leverage the pro-
posed model for exploratory research on the incom-
plete and conflicting data, based on the query driven
ad hoc data integration and exploration paradigm. We
are currently developing efficient algorithms to process
queries on (null-valued) semi-structured data in the
presence of a multitude of such alternatives, without
having to materialize all alternatives.

2 Assertion-based Data Representa-
tion and Basic Null Assertions

To provide a uniform treatment to value and structure-
nulls, we shred the semistructured data into its object
nodes. Shredding is used in relational storage of XML
data, where each node is represented as a tuple of the
form (node_id,label, type, value, parentid) [11, 29].
The model we describe below is reminiscent of well ac-
cepted node-labeled semi-structured data models, such
as DOM [1] and their shredding into tuples [11, 29].

2.1 Constraint-based Data Representation

Let I denote the set of object node identifiers and let D
be the domain of node tags'. We represent hierarchical
data as a set, IV, of object nodes, where each object
node n € N is represented as a 3-tuple (id, tag, pid):

e n.id € I is the unique id of the object node,
e n.tag € DUI is its tag, and
e n.pid € TU{T} is its parent’s identifier.

If n.pid = T, then n is referred to as the root of the
data. If n.tag € I, then its value is an object reference.
The object nodes in IV are constrained such that they
collectively form a tree structure:

C1. No node can be its own parent: Yn; € N,n;.id #
n;.pid.

C2. No two distinct nodes can have the same ID:
Vn; 75 n; € N, n;.id 75 TLJZd

C3. All non-root nodes have a parent in the document:
VYn; € N, (n;.pid = T) V (n;.pid € I).

C4. There is only one root: ¥n; € N, (n;.pid =T) —
(An; #n; njpid=T)

Cb. Parent relationship between two nodes is captured
by attribute “pid”: ¥n;,n; € N,parent(n;,n;) <
(n;.id = nj.pid).

C6. Ancestor relationship between two nodes is defined
using the parent relationship:
Vn;,n; € N,ancestor(n;,n;) <
dmi,me,....,mg € N K >0, s.t
parent(n;, m1) A parent(my, ma) A
... A parent(mg,n;).

C7. There are no cycles in the data: Vn;,nj € N,
ancestor(n;, n;) — —ancestor(n;, n;).

These constraints describe hierarchically structured
data without nulls. Next, we discuss how to extend
this constraint model with value- and structure-nulls
in a uniform manner.

1For simplicity of the presentation, we combine label, type,
and value into a single tag.

2.2 Value- and Structure-Nulls

A value-null commonly occurs when the value of a
node can not be determined for certain. E.g.,

e “Node &5’s tag can be 4, 6, or 9.”

is a value null. Structure-nulls, on the other hand, oc-
cur when the structural relationship between the data
nodes can not be determined in certain. For example,

e “Node &5 is a child of node &3 or &4”.
o “Either node &5 or &6 is a child of node &3”.

are structure nulls. When nodes suffer from both
value- and structural uncertainties or inconsistencies,
we refer to these as hybrid-nulls. Naturally, the ob-
ject node based representation in Subsection 2.1 is
not suitable to describe disjunctions or non-existence
requirements that form the basis of various types of
nulls [8]. Therefore, we present a basic choice asser-
tion construct, which forms the basis of nulls.

2.3 Basic Choice Assertions

We refer to a triple, @ = (id,fag, pid), where id C
I, tag C (D UI), and pid C (I U{T}), as a basic
choice assertion (or assertion in short). The set of all
assertions corresponding to a given data is denoted as
A. For example, ({&2, &3}, {Cow, Bison}, {&7,&8})
is a basic choice assertion. Intuitively, each assertion
in A declares constraints on id, tag, and pid related to
a single object node in N.

Informally, a choice assertion states that “one of all
possible alternatives described by the id, fag, and pid
sets is true”. If all the sets in an assertion are singu-
lar valued (e.g. of the form ({&2},{Bison},{&7})),
then the assertion corresponds to a single object node,
and vice versa: e.g., the object node (&2, Bison, &7)
could be asserted as ({&2},{Bison},{&7}). These
types of assertions are referred to as singular choice
assertions®. We classify the choice assertions into two
categories: positive and negative choice assertions.

2.3.1 Positive Choice Assertions

Positive choice assertions do not contain any empty
sets, but contain at least one non-singular set. For
example, ({&1,&2},{Bison,Cow},{&3}) is a posi-
tive choice assertion. We define the semantics of the
positive assertion, a; = (id;, tag,, pid;), in terms of a
many-to-1 mapping, p: A — N U{L}, from the set,
A, of assertions to nodes in N, such that
w(@;)) =n €N — (n.id € id;) A
(n.tag € tag;) A
(n.pid € pid,).

The fact that the mapping, g, is many-to-1 im-
plies that

2Any data without null-values can be represented as a set of
singular assertions.

e cach positive assertion describes properties of a
single object node, while

e properties of a single object node may be de-
scribed by multiple assertions.

If pu(a;) =

Example 2.1 Let ({&1},{Pelvis}, {&2,&3}) be a
choice assertion. Informally, this assertion means that
the value of the object node with id &1 is “Pelvis” and
its parent is either &2 or &3. However, the asser-
tion does not mean that &1 has two parents. In other
words, this assertion is about a single node, whose par-
ent we cannot ascertain without other assertions.

1, then the assertion a; is ignored.

2.3.2 Negative Choice Assertions

Negative choice assertions, on the other hand,
contain at least one empty set. For example,
({&1, &2}, { Pelvis}, () is a negative assertion. We de-
fine the semantics of a negative assertion in terms of
the following non-existence constraints, corresponding
to various empty set scenarios:
e Scenario: [id; = 0, tag; # 0, pid; # 0]
Const.: An € N s.t. (n.tag € Tag,) A (n.pid € pid,).
e Scenario: [id; = (), tag; = 0, pid; # 0]
Const.: An € N s.t. (n.pid € pid,).
e Scenario: [id; = 0, tag; # 0, pid; = 0]
Const.: An € N s.t. (n.tag € tag;).
e Scenario: [id; = 0, tag; = 0, pid; = (]
Const.: An € N.
e Scenario: [id; # 0, tag; = 0, pid; = 0]
Const.: An € N s.t. (n.id € id;).
e Scenario: [id; # 0, tag, # 0, pid, =
Const.: An € N s.t. (n.tag € tagl)
e Scenario: [id; # 0, tag;, = 0, pid, #
Const.: An € N s.t. (n.id € id;) A

v
-

0

A (n.id € id;).
0
(n.pid € pid,).

2.4 Interpretation of a Set of Assertions

A set, A, of basic choice assertions can be thought of
being composed of a positive assertion set, AT, and
a negative assertion set, A~. An interpretation of A
is a data instance, which (a) satisfies the structural
constraints, describing the hierarchy, in Section 2.1,
(b) conforms to a mapping p, which satisfies the con-
straints imposed by the positive assertion set, AT, and
(c) satisfies all the non-existence constraints imposed
by the negative assertion set, A~. Given an assertion
set, there may be zero, one, or more interpretations. In
a sense, the positive assertions produce candidate in-
terpretations, while the negative assertions, A~ , prune
the space of alternative conforming data instances.

2.5 Compatible Assertions

Assertions that conflict, for example
({&1}, {Bison},{&2}) and ({&1}, {Cow}, {&3}),
may coexist in the data. Thus, we introduce the
concept of compatibility among assertions.

i
g B e © -
m
&

s,
”
©
)

o-®

N

2ON

g
@
&

/ga

s

)

be HeOd
b

—.- /
fpmv

i ;7""'\1

]
V
5

Figure 1: G for a set of positive choice assertions

ol
OO

e A pair of positive assertions are compatible if they
do neither lead to the indeterminate tags, nor im-
ply a node with multiple parents or a cycle.

e A positive choice assertion and a negative choice
assertion are compatible, if at least one choice in
the positive assertion can be accepted without vi-
olating the negative constraints.

Note that although it is possible to identify consis-
tent models (i.e., sets which consist of compatible as-
sertions) of a given set of choice assertions, and clean
the data (for instance, by choosing a mazimal model
among the alternatives), we argue that (especially in
scientific data integration domain, where consistency
can not be expected during research, until ultimately
one model is shown to be correct) it is more meaning-
ful to refrain from early data cleaning and resolve the
conflicts within the context of the user’s queries.

3 Integrated Representation of a Set of
Positive Assertions

Given a set of assertions, QUEST integrates available
positive assertions in a graph-based representation,
G™, which captures the intended structural relation-
ships between object nodes as well as the choice seman-
tics underlying the nulls. In this section, we provide an
example of this graphical representation. The details
of the model are beyond the scope of this paper.

Example 3.1 Let us consider the assertions,

bar = ({&1, &2}, {Skull}, {&5, &6})
bas = ({&3}, {Pelvis}, {&T})

(
bas = (B, {Deer}, 0)
bas = ({&2}, {Skull}, {&5})
bas = ({&5}, {Sheep}, {&8})
bas = é{&G}, {Goat},{&8})

bar = ({&7},{Cow, Bison}, {&9})
bas = ({&8}, {Mammalia}, {T})

which outline hierarchical relationships among bones
and taxa. For example, “Skull” belongs to the taxon
“Goat”, which is a branch of “Mammalia”. In detail,
bay is a basic choice assertion, informing that there
is an object node, whose tag is “Skull”, but neither
its identifier nor its parent can be exactly determined
(i.e., the position of the skull in the hierarchy is not
exactly identified). Another poorly identified data in-
volves basic choice assertion, bar, where the tag of the
object node can have just one of the two alternative
values. The negative assertion, bas, states that there
is no object node in the data with “Deer” as its tag.
The directed graph GT based on this set of positive
assertions is shown in Figure 1. We use solid-lined
circles to denote the graph vertices corresponding to
known object ids; for each object node there are two
solid wvertices (start, S, and end, E). Since each as-
sertion needs to be mapped to a single object node,
dashed wvertices in the graph act as mutual exclusion
constraints. The possible values for the object node
tags are shown in rectangular vertices. Below, we de-
scribe the salient points of the GT using this example.
e First, note that, bas can not be represented in G*
as it s not a positive assertion.

e Since bay has a non-singleton id, the mutual ex-
clusion nodes (fpya,,vE) and (ftpa,,vE) (for par-
ent and tag respectively) are introduced. Fach mu-
tual exclusion node ensures that only one of the
incoming edges supported by a given basic asser-
tion is allowed in a given interpretation of data.

e Some nodes, such as &9, do not have any associ-
ated assertions; thus only the corresponding start
vertices, such as (&9, S), are included; i.e., it is
impossible to determine their tags or parent with
the available information. In fact, GT may be
composed of several unconnected sub-graphs.

o There are two different assertions, bay and bay,
describing the parent/child relationship between
nodes labeled &2 and &5.

These two assertions have to be seen as two
non-coordinated statements. Therefore, they nei-
ther support each other nor weaken the respective
claims. More specifically, the non-choice asser-
tion bay = ({&2}, {Skull},{&5}) does not make
any of the two alternative choices in the assertion
ba; = {({&1, &2}, {Skull}, {&5,&6}) any more
likely, until interpreted by a researcher within the
appropriate context.

4 Beyond Basic Assertions

Each positive basic choice assertion describes a con-
straint on the relationship between a node, its tag, and
its parent. Since by definition of the mapping, 1, each
assertion a; is interpreted independently from the oth-
ers, there is no way to correlate the choice statements
that have to hold for more than one node. Thus, any
null which requires a constraint on two or more (non
parent-child) nodes cannot be described using a single
basic choice assertion:

o Nodes &5 and &6 have either &8 or &9 as their
common parent.

This statement requires a mapping, p, where

(n(@:) € N — (u(@:).id € {&5}) A (1(@:).pid € {&8,&9})) A
(n(@;) € N — (u(a;).id € {&6}) A (u(a;).pid € {&8,&9})) A
(u(@i).pid = p(a;).pid) .
The last conjunct (p(a;).pid = p(a;).pid) is a co-
ordination requirement that can not be captured

using basic choice assertions?.

e Node &2 has either &5 or &6 as its child; if the
child is &5 the tag of the child is “Antelope” and
if it is &6, the tag of the child is “Deer”.

This statement requires a mapping u, where

(n(ai) € N — (u(ai).id € {&5})A
(1(@;).tag € {“Antelope’’ }) A
(n(aq).pid € {&2}))A
(u(@;) € N — (p(a;).id € {&6})A
(n(@j).tag € {“Deer’’}) A
(u(ay).pid € {&2}))A
(n(@;).pid # p(a;).pid).
Once again, last conjunct (u(a;).pid # p(a;).pid)
is a coordination requirement?.

e Node &2 has either the set of nodes {&5,&6} as
its children or the set {&7,&8}.

This statement® requires a mapping, u, where

(n(@i) € N — (u(@s).id € {&5}) A (u(a@i).pid € {2}))A
(m(a;) € N — (u(@;).id € {6}) A (u(@;).pid € {&2}))A
(n(ar) € N — (u(ak)-id € {&7}) A (u(@r)-pid € {&2}))A
(w(ar) € N — (u(ar).id € {8}) A (u(ar).pid € {&2}))A
(u(@i).pid # p(ax).pid) A

(u(@i).pid # p(ar).pid)A

(u(ay).pid # p(ax).pid) A

(w(ay).pid # p(ay).pid).

The last four conjuncts require coordination.

3Note that a simpler statement “Node &5 has either &8 or
&9 as its parent” can be captured by a basic assertion of the
form ({&5}, D, {&8, &9}), plus the structural axiom which en-
forces a single parent to each node.

4Note that the simpler statement “Node &2 has either &5
or &6 as its child’ can be captured by a basic assertion of the
form ({&5, &6}, D, {&2}).

5Note again that a statement “Node &2 has either &5 or &7
as its child’ can be captured by a basic assertion of the form

({&5, &7}, D, {&2}).

Assertion Graph

%/’&\‘\/Q
1. Positive

Assertons }ix}i{xﬁﬁ

User's Request .
(path queries) 4— Query Processing
Compatibility Graph
6. Incremental
Compatibility —>
Checking
\ f Result and

Assertion
User-feedback
; Model [
and exploration 99> Analysis 10

Ranking
Figure 2: Overview of the query evaluation and explo-
ration processes

Assertions for
Null-valued
data

Path
Instances

e Node &5’s tag is either “Antelope” or “Deer”.
Node &6’s tag is either “Antelope” or “Deer”.
Furthermore, &5 and &6 have the same tag.

This statement requires a mapping, pu, where

(1(a:) € N — (u(@s).id € {&5})A
(1(@s).tag € {“Antelope’’, “Deer’' })A
(1(35) € N — (u(ag)-id € {L6})A
(p(aj).tag € {“Antelope’’, “Deer” })A
(u(@i).tag = p(a;)-tag).

The last conjunct requires coordination.

Comparing the complex statement examples above
with their simpler counterparts, which can be captured
using basic choice assertions, illustrates that the prob-
lem arises from the need to enforce coordinated selec-
tions (among possible alternatives) for multiple nodes.
The implementation of coordinated choice assertions
is beyond the scope of this paper.

5 Query- and Feedback-Driven Explo-
ration Process

Figure 2 shows the outline of the query-driven explo-
ration process underlying the QUEST: first, based on
the available positive assertions, QUEST creates an as-
sertion graph (representing the null-valued document;
see Figure 1). When the user provides a path query,
matching path instances corresponding to the query
and satisfying the pruning constraints imposed by neg-
ative assertions are identified. In a sense

e positive assertions produce path instances. In case
there are conflicts among the given positive as-

sertions, this results in alternative solution mod-
els, consisting of intra-compatible, but pairwise-
incompatible sets of paths.

e negative assertions delete path instances from the
result. Thus, negative assertions can reduce the
size or collapse solution models.

Naturally, the number of these solution models can
be large. Therefore, a particular challenge is to post-
pone the computation and visualization of these al-
ternative solution models until absolutely necessary.
Thus, QUEST helps the user explore the alternative so-
lution spaces in an informed manner without having
access to explicit materializations of the solution mod-
els: QUEST first identifies an initial subset of matches
to the query and constructs (in an incremental way) an
intermediary path compatibility graph during query
evaluation. Once the query is evaluated and the path
compatibility graph is constructed, the user can inter-
act with QUEST to turn on and off various assertions
and observe how the solution set (and the solution
models) are affected. Pairwise compatibility graphs
of logic rules are also used in non-monotonic reason-
ing systems [25]. Unlike these, however, in QUEST, the
compatibility graphs are not only for the base rules (or
assertions), but for the result paths obtained within
the context of a query. This enables the user to explore
the available data within the context of a query and
drill-down to assertions or zoom-out to solution mod-
els. Once the user feedback is reflected on the asser-
tions, the user is provided with a new subset of ranked
results and the feedback-based exploration process is
repeated. Below, we provide sketches of these steps.

5.1 Path Query and Results

Let us focus on path queries of type P///*} [2]. In
QUEST, a path query is represented as

0; €{/,//}, ti€ DU{x},

where ¢; are query tags (including “*” wild-
cards) and 6; are parent/child or ances-
tor/descendant axes. An example of such a query
is '/Mammalia/Sheep/Skull’. Results for a given
path query are included in a set R = {r1,r2,...,7m},
where for each r; € R, we have

q = 01t192t2 e thq,

i = vialei]vizleia] .. [eig-1]vig-

Here, v; ; is a label for one vertex in the assertion graph
and e; ; is a set of labels for the assertions supporting
the edge connecting the node v; ;1 and v; ;. For ex-
ample, the following is a result for the above query:
—)}1(&8, S)[{(bas, —) }]
&5, S)[{(bar, =)}

a1, Skull)[{(ba1, —)}]

(&8, E)[{(bas, —) }{bas, Mammalia)[{{bas,
(&5, E)[{(bas, —)}](bas, Sheep) [{ (bas, —) }
(fpvar, ve)[{(ba1, =) }](&1, E)[{(ba1, —)}]
(ftvay, vE)[{(bar, =) }(&1, S).
Note that a valid path cannot contain any loops
and for each data node on the path S and E vertices

as well as the assertion labels need to match.

It
{b

5.2 Path Compatibility Graph

Because of conflicting assertions, all results satisfying
a path query might not be compatible. For exam-
ple, two paths can assume that a given object node
has different parents or two paths considered together
may imply a loop. Furthermore, the mutual exclu-
sion nodes introduced in Section 3 can render paths
that share a given mutual exclusion node in different
ways incompatible with each other. QUEST captures
the compatibility between paths and sets of paths us-
ing a reflexive and symmetric “~” relation:

e Given two path instances p; and p;, p; ~ p; iff the
path instances together do not violate any struc-
tural constraints introduced in Section 2.

e Given a path instance p’ and a set of path in-
stances P = {p1,p2,...,on }, p' ~ P, if and only if
Vpi € P, p' ~ p.

e Given two sets of path instances P =

{p17p27"'7p]\7} and Q = {(]17Q2a-~7(IM}a P~ Q
if and only if Vp; € P,p; ~ Q.

Given a set of paths, P, a compatibility graph, C,
captures all pairwise compatibility relationships.

5.3 Result Exploration

Let us assume that a path query ¢ results in a set R =
{p1,p2,...,pn} of paths. As stated above, not all of
these paths are compatible with each other. Therefore,
QUEST provides various result exploration options to
the user to enable her to get a high level understanding
of the available data relative to her query:

e Checking whether a given set, P, of paths is a
model; i.e., checking whether the given set of paths
are compatible with each other. The result set, R,
being a model would imply that the data does not
contain any conflict relative to this query.

e Given a path p and a set of paths P, checking
whether p ~ P or p o P.

e Given a path instance p and a set P, computing
the number of path instances in P that are com-
patible with p. This number informs the user re-
garding the degree of compatibility of the path p
with others in P.

e Given a path instance p € P, computing the num-
ber of different models in which p occurs. This
informs the user regarding how supported each
path is with the available knowledge.

e Given a path instance p € P, computing the num-
ber of models that would collapse when p is re-
moved. This informs the user regarding the en-
tropy introduced by p in the integrated system.

Note that, additionally, the models themselves can be
weighed based on their sizes or their compatibilities
with other models. This information, then can be

propagated to the weights of the paths included in
these models. With these, it is possible to rank result
paths and provide users with alternative exploration
opportunities to observe the results, based on differ-
ent definitions of likelihood (Figure 3(a)). The user
can pick and choose between available result paths in
an informed manner and observe the impact to the as-
sertion and path compatibility graphs immediately. In
particular, when a path is marked invalid by the user,
e if the path can be eliminated without affecting
any other paths (by eliminating some choice in an
assertion or by removing an assertion altogether),
then this alternative is executed (Figure 3(b));

e if there is no way to remove it without affecting
the assertions that support other paths, then the
paths that might be impacted and the correspond-
ing assertions are highlighted (Figure 3(c)).

Note that users are not always interested in ranking
the result paths, but in ranking those assertions that
generate and constrain the various solutions and so-
lution models. Therefore, to support ranking of the
assertions, we further propagate the various scores to
the assertions on the paths. This enables the user to
pick and choose between available assertions in an in-
formed manner and observe the impacts of her actions
on the solution immediately.

5.4 Computation

A model, composed of compatible result paths, corre-
sponds to a maximal clique in the compatibility graph.
Maximal cliques in a graph can be exponential in the
number of vertices [26]. There are polynomial time
delay algorithms for enumeration of cliques (i.e., if the
graph of size n contains C' cliques, the time to out-
put all cliques is bounded by O(nFC) for some con-
stant k) [18], but in general graphs, C' can be expo-
nential in n; for example as many as 3"/% in Moon-
Moser’s graphs [26]. We, on the other hand, see that
it is possible to avoid enumeration of cliques or find-
ing of the maximal cliques in the entire compatibility
graph, when supporting many of the relevant explo-
ration tasks. For instance, the task of counting the
number of maximal cliques a path occurs in can be per-
formed by counting those maximal cliques containing
only its neighbors. For sparse compatibility graphs,
this can lead to significant gains in computation time.
When the compatibility graph is dense, on the other
hand, the number and sizes of cliques need to be esti-
mated using alternative analysis techniques.

Thus, we are currently developing efficient al-
gorithms to process queries on (null-valued) semi-
structured data in the presence of a multitude of al-
ternative models, without having to materialize all al-
ternatives. In particular, we are exploring polynomial-
time path and assertion ranking techniques based on
structural analysis of the path and assertion compati-
bility graphs.

Query Processing

B Query Processing

Path Compatibilty Graph:

Path Compatibilty Graph:

B Query Processing

Path Compatibity Graph: & add| X Remove |

Q O

0 7 3
1,58l 5.8 n'e8l

e O

158]

Q

z
1, '8

Q O

7
Ry 175,61

| [
T
®
T 7 Paths affected by removing the path: 3
) 1.5\ HsH 7 #ssertions relevant- 1,6, 8
¢ [Affected by assertion 1
| BN [patn- 1
o Dpatn- 2
D patn- ¢
s b ¢ [Affected by assertion 6
[1,6,8 5,8 [path- 0
o D patn- 4
¢ [Affected by assertion 8

[path- 0

T [path-
[path-
¢ [path-

Path Instances fo the querys Mammalia/Skull [~] sorteaby]compative paths |~ |

] - | path ostancestor e e

 compati pans [=

e [Compatible paths Pat

[Comp. [uni

[5_S][2_E](b4, Skulll2_S] [Models involved 0
ll_bTI[1_S]_Model collapsing 0
kuH]lﬂ hﬂ[Z Arﬂ LI 11 =| i

L 50 o L 2

1 b2 [0 [0 [0 |- 3

IEEEDE

][t

ISt 2_El, Sz S
eepl5_S](fp_b1]i1_E]l
o1

Efot, Skulll_
2_Ellb1, SkuH]lﬂ m!lz S] 5 =

omp..[Uni Crit

Ellbs, Mammaua][e 5[5_Elo5, Sheepl5_S|[2_El[bé, Skulll2_S]
1]

IEEES
‘)
‘=
i

X 1 _Elio1, Skullit_1111_5)
Ello8, Marmmalial[s_t sne 1166, Goall_Sii_b11[2_ElloT, Skl bTiz_S1 =

(c)

Figure 3: (a) Result visualization and exploration screen; (b) elimination of the path #0 changes the assertion
graph accordingly; (c) elimination of path #3, on the other hand, would affect other paths in the result

5.5 Tree Queries

A tree query can be processed navigationally or split
into multiple path queries and their structural joins [4,
30]. In QUEST, tree queries are handled as an extension
of path query processing. After paths that satisfy the
path sub-queries are identified, they need to be put
together to form answers to the tree query. When
paths might be incompatible, each set of paths that is
put together to form an answer must be constrained
to be self compatible. Therefore tree query processing
involves merging of the ranked paths from multiple
subqueries subject to compatibility constraints.

6 Conclusion

In this paper, we presented an assertion-based data
model to describe hierarchical data and meta-data.
We then extended this model with basic choice as-
sertions which enables us to describe various types
of value- and structure-based nulls in a uniform man-
ner. We also highlighted the need for coordinated as-
sertions to describe certain types of nulls. We intro-
duced a graphical representation for hierarchical data
with nulls and discussed how to enable query execution
and query-driven data exploration processes using this
graphical representation. We introduced the concept
of path-compatibility and we highlighted how results
of a query can be leveraged to have develop a high-level
understanding of conflicts in the data. We also pro-
vided an overview of the QUEST system which leverages
the concepts introduced in this paper to support ex-
ploratory research on incomplete and conflicting data.

References

[1] Document object model (dom) level 1
http://www.w3.org/TR/REC-DOM-Level-1/.

[2] Xquery. http://www.w3.org/TR/xquery/.

[3] R. Agrawal, R. J. Cochrane, and B. G. Lindsay. On maintaining
priorities in a production rule system. VLDB 1991.

[4] S. Al-Khalifa, et al. Structural joins: A primitive for efficient
xml query pattern matching. ICDE, 2002.

[5] A. Bonifati, E.Q. Chang, and L.V. Lakshmanan. Heptox: Mar-
rying xml and heterogeneity in your p2p databases. In VLDB,
2005. Demo.

specification.

6]
(7]

8]

19l
(10]
(11]

(12]

(13]

(14]
(15]
(16]
(17]
(18]

(19]

(20]
[21]
(22]
(23]
[24]

(25]

[26]
(27]
(28]
(29]
(30]
(31]

(32]

R. Boppana and M. M. Halldérsson. Approximating maximum
independent sets by excluding subgraphs. SWAT, 1990

P. Buneman, W. Fan, and S. Weinstein. Query optimization for
semistructured data using path constraints in a deterministic
data model. DBPL, pages 208-223, 1999.

K. Candan, J. Grant, and V. Subrahmanian. A unified treat-
ment of null values using constraints. Information Systems
Journal, 98(1-4):99-156, May 1997.

J. Doyle. A truth maintenance system. J.of Artificial Intel.,
12: 231272, 1979.

S. Flesca, et al. Repairs and consistent answers for xml data
with functional dependencies. Xsym pages 238-253, 2003.

D. Florescu and D. Kossman. Storing and Querying XML Data
using an RDBMS. IEEE Data Eng. Bulletin,22(3):27-34, 1999.
M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. International Conference and Symposium
on Logic Programming. 1988.

L. Giordano, A. Martelli and M.L. Sapino”. Extending nega-
tion as failure by abduction: a 3-valued stable model semantics.
J. of Logic Programming, 1996.

A. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
mediation in peer data management. In ICDE, 2003.
T. Imielinski and W. Lipski. On representing incomplete infor-
mation in a relational data base. VLDB, 1981.

T. Imielinski and W. Lipski. Incomplete information in rela-
tional databases. JACM, 31(4):761-791, 1984.

Y. E. Ioannidis and T. K. Sellis. Conflict resolution of rules
assigning values to virtual attributes. SIGMOD, 1989.

D. S. Johnson and C. H. Papadimitriou. On generating all
maximal independent sets. Info. Proc. Letters, 27, 1988.

K. W. Kintigh. et al. Enabling the study of long-term human
and social dynamics: A cyberinfrastructure for archaeology.
http://cadi.asu.edu/HSDPosterSlidesLR.ppt.

K. W. Kintigh et al. Workshop on cybertools for archaeological
data integration. http://cadi.asu.edu/, December 2004.

K. W. Kintigh. The promise and challenge of archaeological
data integration. American Antiquity, 2006. in press.

K.-C. Liu and R. Sunderraman. A generalized relational model
for indefinite and maybe information. TKDE, 3(1), 1991.

M. Liu and T. W. Ling. A data model for semistructured data
with partial and inconsistent information. LNCS, 1777, 2000.
J. McHugh, et al. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3):54-66, 1997.

R. E. Mercer and V. Risch. Properties of maximal cliques of a
pair-wise compatibility graph for three nonmonotonic reason-
ing system. In Answer Set Programming, 2003.

J.W. Moon and L. Moser On cliques in graphs. Israel Journal
of Mathematics, 3, 23-28, 1965.

W. Ng. Repairing inconsistent merged xml data.
pages 244-255, 2003.

K. Spielmann, J. Driver, D. Grayson, E. Reitz, S. Kanza, and
C. Szuter. Faunal working group. http://cadi.asu.edu.

I. Tatarinov, et al. Storing and querying ordered XML using a
relational database system. SIGMOD, pages 204-215, 2002.
Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order
selection for xml query optimization. In ICDE, 2003.

C. Zaniolo. Design and implementation of a logic-based lan-
guage for data-intensive applications. ICLP 1988.

C. Zaniolo. A United Semantics for Active and Deductive
Databases, chapter Rules in Database Systems. 1994.

Schema

In DEXA,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

