
ARKTOS: A Tool For Data Cleaning and Transformation in Data
Warehouse Environments

Panos Vassiliadis Zografoula Vagena Spiros Skiadopoulos Nikos Karayannidis
Timos Sellis

Knowledge and Database Systems Laboratory
Dept. of Electrical and Computer Engineering

National Technical University of Athens
fpvassil, zvagena, spiros, nikos, timosg@dbnet.ece.ntua.gr

Abstract

Extraction-Transformation-Loading (ETL) and Data Cleaning tools are pieces of software responsible
for the extraction of data from several sources, their cleaning, customization and insertion into a data
warehouse. To deal with the complexity and efficiency of the transformation and cleaning tasks we have
developed a tool, namely ARKTOS, capable of modeling and executing practical scenarios, by providing
explicit primitives for the capturing of common tasks. ARKTOS provides three ways to describe such
a scenario, including a graphical point-and-click front end and two declarative languages: XADL (an
XML variant), which is more verbose and easy to read and SADL (an SQL-like language) which has a
quite compact syntax and is, thus, easier for authoring.

1 Introduction
A data warehouse is a heterogeneous environment where data must be integrated both at the schema and at
the instance level [CGL+98]. Practice has shown that neither the accumulation nor the storage process of the
information seem to be completely credible. Errors in databases have been reported to be up to 10% range and
even higher in a variety of applications [WRK95]. [WSF95] report that more than $2 billion of U.S. federal
loan money had been lost because of poor data quality at a single agency; manufacturing companies spent over
25% of their sales on wasteful practices. The number came up to 40% for service companies. Clearly, as a
decision support information system, a data warehouse must provide high level quality of data and service. In
various vertical markets (e.g., the public sector) data quality is not an option but a strict requirement for the
proper operation of the data warehouse. Thus, data quality problems seem to introduce even more complexity
and computational burden to the loading of the data warehouse.

To deal with the complexity of the data warehouse loading process, specialized tools are already available
in the market, under the general title Extraction-Transformation-Loading (ETL) tools [Evo00, Ard00, Dat00].
ETL as well as Data Cleaning tools are pieces of software responsible for the extraction of data from several
sources, their cleaning, customization and insertion into a data warehouse.

A study for Merrill Lynch [ST98] reports some very interesting facts about the situation in the area of ETL
and Data Cleaning tools, by the end of 1998. These tools cover a labor-intensive and complex part of the data
warehouse processes, which is estimated to cost at least one third of effort and expenses in the budget of the data
warehouse. [Dem97] mentions that this number can rise up to 80% of the development time in a data warehouse

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

project. Still, due to the complexity and the long learning curve of these tools [ST98], many organizations prefer
to turn to in-house development to perform ETL and data cleaning tasks. The major problems with data cleaning
tools are complexity and price. Moreover, due to the nature of the IT departments, which are constrained in time
and budget, tools for off-line tasks like data cleaning are pushed aside from the list of products to purchase.

Several commercial tools exist in the market [Evo00, Ard00, Dat00]; a detailed list can be found in [LGI00].
Research efforts include the AJAX prototype developed at INRIA [GFSS00, GFSS99]. A discussion of the
research literature on data quality is found in [WSF95]. Finally, a description of our personal engagement in
practical aspects of ETL and cleaning in data warehouses can be found in [Vas00]. In the sequel, we will not
discriminate between the tasks of ETL and Data Cleaning and adopt the name ETL for both kinds of activities.

In order to pursue research in the field of data transformation and cleaning, we have developed a tool, namely
ARKTOS, to achieve the following goals:

� graphical and declarative facilities for the definition of data warehouse transformation and cleaning tasks;
� measurement of the quality of data through specific quality factors;
� optimized execution of complex sequences of transformation and cleaning tasks.
In the rest of this paper we will present the basic ideas behind the implementation and functionality of

ARKTOS as well as the declarative languages for the specification of transformation and cleaning scenarios.

2 Model and Functionality of ARKTOS

ARKTOS is based on a simple metamodel to achieve the desired functionality. The main process type of the
model is the entity Activity. An activity is an atomic unit of work and a discrete step in the chain of data
processing. Since activities in a data warehouse context are supposed to process data in a data flow, each activity
is linked to Input and Output tables of one or more databases. An SQL statement gives the logical, declarative
description of the work performed by each activity (without obligatorily being identical to the actual, physical
code that performs the execution of the activity). A Scenario is a set of processes to be executed all together.
A scenario can be considered as the outcome of a design process, where the designer tailors the set of activities
that will populate the data warehouse. Each activity is accompanied by an Error Type and a Policy. Since
data are expected to encounter quality problems, we assume that several activities should be dedicated to the
elimination of these problems (e.g., the violation of the primary or the foreign key constraint). The error type of
an activity identifies the problem the process is concerned with. The policy, on the other hand, signifies the way
the offending data should be treated. Around each activity, several Quality Factors can be defined. The quality
factors are measurements performed to characterize the quality of the underlying information. For the moment,
quality factors in ARKTOS are implemented through the use of SQL queries. ARKTOS is also enriched with a
set of “template” generic entities that correspond to the most popular data cleaning tasks (like primary or foreign
key violations) and policies (like deleting offending rows, reporting offending rows to a file or table).

Connectivity. ARKTOS uses JDBC to perform its connections to the underlying data stores.
Transformation and cleaning primitives. ARKTOS offers a rich variety of primitive operations to support

the ETL process. More specifically, the cleaning primitives include: (a) Primary key violation, (b) Reference
violation, (c) NULL value existence, (d) Uniqueness violation and (e) Domain mismatch. Moreover, the tool
offers Propagation and Transformation primitive operations. The propagation primitive simply pushes data to
the next layer of storage. The transformation primitive transforms the data to the desired format, according to
some pattern (which can be either built-in or user-defined). For example, a transformation primitive can be used
to transform a date field from dd/mm/yy to dd/mm/yyyy format. These primitives are customized by the user
(graphically or declaratively). The customization includes the specification of input and output (if necessary)
data stores, contingency policy and quality factors. For example, in the current version of ARKTOS, the format
transformation functions are performed programmatically using a freely available Java Package [ORO00] that
simulates the functionality of Perl regular expressions.

Contingency policy. Once a primitive filter is defined in the context of a scenario, it is possible that some
rows fulfill its criteria at runtime. For example, a particular row might violate the foreign key constraint for one
of its attributes. For each such filter, the user is able to specify a policy for the treatment of the violating rows.
For the moment, the policies supported by ARKTOS are: (a) Ignore (i.e., do not react to the error and let the row
pass), (b) Delete (from the source data store), (c) Report to a contingency file and (d) Report to a contingency

2

table. It is possible that the user is requested to supply some additional parameters (for example, the name of
the file where the rows should be reported, or the format to which the values should be changed).

Trace Management. The physical properties of the execution of the ARKTOS scenarios are captured by
detailed log information kept for this reason. The status, initialization, commit or abort information for each
execution of an activity is traced.

Scheduling. ARKTOS uses a freely available Java package [Bra99] to schedule the execution of scenarios
that have already been created and saved by the user. To perform this task, the user has to specify, in the correct
order, the name(s) of the files where the appropriate scenarios reside. Each of the scenarios participating in a
schedule can be executed either once, at a specific time point, or on the basis of a specified repetition frequency
(e.g., every Monday, or every 23rd day of each month, at 11:30 am).

3 Declarative Languages for ETL Processes
As we have already pointed out, that the major obstacles the ETL tools have to overcome are the issues of
user-friendliness and complexity. To this end, ARKTOS offers two possible ways for the definition of activities:
graphically and declaratively. The graphical definition is supported from a palette with all the possible activities
currently provided by ARKTOS. The user composes the scenario from these primitives, links them in a serial list
and resolves any pending issues of their definition. In the rest of this section we will focus on the declarative
definition of data warehouse processes in the ARKTOS environment.

There is a classical problem with declarative languages and formal specifications: the languages which are
easy to read are hard to write and vice-versa. To overcome the problem we resort to two declarative definition
languages:

� XADL (XML-based Activity Definition Language), an XML language for data warehouse processes, on
the basis of a well-defined DTD;

� SADL (Simple Activity Definition Language), a declarative definition language motivated from the SQL
paradigm.

The former language is rather verbose and complex to write; yet it is more comprehensible. The latter is
more compact and resembles SQL; thus it is suitable mostly for the trained designer. We next give an informal
presentation of the two languages, by using a motivating example (Figure 1) based on the former TPC-D standard
(now TPC-H and TPC-R) [Tra00].

1. Push data from table LINEITEM of source database S to table LINEITEM of the DW database.
2. Perform a referential integrity violation checking for the foreign key of table LINEITEM in database DW,

which is referencing table ORDER. Delete violating rows.
3. Perform a primary key violation check to the table LINEITEM. Report violating rows to a file.

Figure 1: Description of the scenario of the motivating example

3.1 XADL (XML-based Activity Definition Language)
In Figure 2 we illustrate a subset of the XADL definition for the scenario of the motivating example. Lines 67-
102 describe a simple activity. First, in Lines 68-85 the structure of the input table is given. Lines 86-92 describe
the error type (i.e., the functionality) of the activity which involves foreign key constraint violations. The target
column and table are specifically described. Lines 93-95 deal with the policy followed for the identified records
and declare that in this case, we simply delete them. The quality factors of the activity are described in Lines
96-101. Each quality factor is characterized by the SQL query that computes its value and the report file where
this value will be stored. The only quality factor in Figure 2 is the absolute number of violating rows and
is characterized by the SQL query of Line 97. For any valid scenario that we load in ARKTOS, its XADL
description can be automatically generated by the tool.

3.2 SADL (Simple Activity Definition Language)
The SADL language is composed of four definition statements: the CREATE SCENARIO, CREATE CON-
NECTION, CREATE ACTIVITY and CREATE QUALITY FACTOR statements. A CREATE CONNECTION
statement specifies the details of each database connection. A CREATE ACTIVITY statement specifies an

3

1. <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
...
67. <transformtype>
68. <input_table table_name="lineitem" database_url="jdbc:informix-sqli:

//kythira.dbnet.ece.ntua.gr:1500/dbs3:informixserver=ol_milos_tcp">
69. <column> l_orderkey </column>
70. <column> l_partkey </column>
...
85. </input_table>
86. <errortype>
87. <reference_violation>
88. <target_column_name> l_orderkey </target_column_name>
89. <referenced_table_name> Informix.tpcd.tpcd.tpcd.order </referenced_table_name>
90. <referenced_column_name> o_orderkey </referenced_column_name>
91. </reference_violation>
92. </errortype>
93. <policy> <delete/> </policy>
94. <quality_factor qf_name=No_of_reference_violations qf_report_file="H:\path\scenario3.txt">
95. <sql_query> select l_orderkey from lineitem t1 where not exists

(select o_orderkey from order t2 where t1.l_orderkey = t2.o_orderkey)
</sql_query>

96. </quality_factor>
97. </transformtype>
...
140. </scenario>

Figure 2: XADL definition of the scenario of the motivating example, as exported by ARKTOS

activity and a CREATE QUALITY FACTOR statement specifies a quality factor for a particular activity. The
CREATE SCENARIO statement ties all the elements of a scenario together. In Figure 3 we depict the syntax of
these four statements.

CREATE SCENARIO <scenario_name> CREATE QUALITY FACTOR <qf_name> WITH ACTIVITY <activity_name>
WITH CONNECTIONS <con_1,...,con_m> REPORT TO <file_name>
ACTIVITIES <act_1,...,act_n> SEMANTICS <SQL query>

CREATE CONNECTION <connection_name> CREATE ACTIVITY <activity_name> WITH TYPE <error_type>
WITH DATABASE <url> ALIAS <db_alias> POLICY <policy_type>
[USER <user_name> PASSWORD <password>] [OUTPUT <output_name>(<attr_1,...,attr_m>)]
DRIVER <class_name> SEMANTICS <SQL query>

Figure 3: The syntax of SADL for the CREATE SCENARIO,CONNECTION,ACTIVITY,QUALITY FACTOR
statements

Connections and activities are the first-class citizens within the context of a scenario. Thus, to declare a
CREATE SCENARIO statement one has simply to provide the names of the respective connections and the
activities of the scenario. The definition of a connection, through the CREATE CONNECTION statement is
equally simple: the database URL and the class name of the respective driver are required. Since the database
URL is quite big in size for the user to write down, an ALIAS clause is introduced. All table names are required
to be in the form <table name>@<database alias> to distinguish between synonym tables in different
databases. The username and password are optional (in order to avoid storing them in the file). CREATE
QUALITY FACTOR is also a simple statement: one has to specify the activity in the context of which a quality
factor is defined, the report to which the value of the quality factor will be saved and the semantics of the quality
factor, expressed by an SQL statement (in practice any SQL statement that the database driver and JDBC can
support).

The CREATE ACTIVITY statement is somewhat more complex. One has to specify first the functional-
ity of the activity in the TYPE clause. The <error type> placeholder can take values from the set fPUSH,
UNIQUESS VIOLATION,NULL EXISTENCE,DOMAIN MISMATCH,PRIMARY KEY VIOLATION,REF-
ERENCE VIOLATION, FORMAT MISMATCHg. The POLICY clause determines the treatment of the rows
affected by the activity. The <policy type> belongs to the set fIGNORE, DELETE, REPORT TO FILE,
REPORT TO TABLEg. The OUTPUT clause specifies the target table or file (if there exists one). If a table is
to be populated, all the relevant attributes are specified too. The order of the attributes is important (it must be
in one-to-one correspondence with the attributes of the input tables as specified in the SQL query, which will be
described later). The SEMANTICS clause is filled with an arbitrary SQL query. Several issues should be noted
for this clause:

� the order of the attributes in the OUTPUT clause should be in accordance with the order of the attributes
in the SELECT clause of the SQL query;

4

� the input tables are described in the FROM clause of the SQL statement;
� the order of the activities in the CREATE SCENARIO statement is important, because it denotes the flow

of the activities.

Primitive Operation SQL statement SEMANTICS clause shortcuts
UNIQUENESS SELECT * FROM <table> <table>.<attribute>
VIOLATION GROUP BY <attribute>

HAVING COUNT(*) > 1
NULL EXISTENCE SELECT * FROM <table> <table>.<attribute>

WHERE <attribute> IS NULL
DOMAIN MISMATCH� SELECT * FROM <table> <table>.<attribute>

WHERE <attribute> NOT IN <domain specification> NOT IN <domain specification>
PRIMARY KEY SELECT * FROM <table> <table>.(<attribute 1,
VIOLATION GROUP BY (<attribute 1,...,attribute n>) ..., attribute n>)

HAVING COUNT(*) > 1
REFERENCE SELECT * FROM <table> <table>.<attribute>
VIOLATION WHERE <attribute> NOT IN NOT IN

(SELECT <target attribute) FROM <target table>) <target table>.<target attribute>
FORMAT MISMATCH�� SELECT APPLY(<reg exp>,<attribute>) TARGET APPLY(<reg exp>,<attribute>)

FROM <table> SOURCE APPLY(<reg exp>,<attribute>)
WHERE APPLY(<reg exp>,<attribute>)

PUSH Arbitrary SQL query Arbitrary SQL query
� works for intervals of numbers and strings

�� where <reg exp> is PERL regular expression acting as a formatting function

Figure 4: The SADL specification for the basic primitives offered by ARKTOS.

There are standard CREATE ACTIVITY statements for all the primitives (i.e., the specialized activities)
offered by ARKTOS. In Figure 4 we list them along with syntactic sugar shortcuts which make the life of the
designer much easier (remember that the type of the operation is given in the TYPE clause of the CREATE
ACTIVITY statement). Note again that in XADL and SADL we refer only to the logical semantics of the
activities and not to the way they are actually executed within the DBMS, which is hard-coded in the subclasses
of the ARKTOS architecture.

1. CREATE SCENARIO Scenario3 WITH
2. CONNECTIONS S3,DW
3. ACTIVITIES Push_lnitem, Fk_lnitem, Pk_lnitem
4. ...
5. CREATE CONNECTION DW WITH
6. DATABASE "jdbc:informix-sqli://kythira.dbnet.ece.ntua.gr:1500/

dbdw:informixserver=ol_milos_tcp" ALIAS DBDW
7. DRIVER "com.informix.jdbc.IfxDriver"
8. ...
9. CREATE ACTIVITY Fk_lnitem WITH
10. TYPE REFERENCE VIOLATION
11. POLICY DELETE
12. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

(select o_orderkey from order@DBDW t2 where t1.l_orderkey=t2.o_orderkey)"
13. ...
14. CREATE QUALITY FACTOR "# of reference violations" WITH
15. ACTIVITY fk_lnitem
16. REPORT TO "H:\path\scenario3.txt"
17. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

(select o_orderkey from order@DBDW t2 where t1.l_orderkey = t2.o_orderkey)"

Figure 5: Part of scenario 3 expressed in SADL

Figure 5 expresses our motivating example in SADL. In Lines 1-4 we define our scenario, which consists
of three activities. The order of the activities appearing in the figure is in descending execution priority. The
connection characteristics for connecting to the data warehouse are declared in Lines 6-9. An example of the
SADL description of an activity can be seen in Lines 11-16 for the reference violation checking activity. Finally,
in Lines 18-22 we give the declaration of a quality factor, which reports to a file the number of foreign key
violating rows.

4 Conclusions and Future Work
In this paper, we have presented ARKTOS, a tool we have developed for modeling and executing practical data
management scenarios by providing explicit primitives for the capturing of common tasks (like data cleaning,
scheduling and data transformations). Within ARKTOS, we provide three ways to describe such a scenario: a

5

graphical point-and-click front end and two declarative languages. The first one, XADL (an XML variant) is
oriented towards an easily understood description of a scenario. The second one, SADL is tailored to support
the declarative definition of the ETL scenario in an SQL-like style.

In the future we plan to add more functionality to ARKTOS, in order to provide the users with richer trans-
formation primitives. Several research issues remain open, such as (a) the development of an impact analyzer,
based on the results of [VQVJ00], showing how changes in the definition of a table or an activity affect other
tables or activities in the data warehouse; (b) the linkage to a metadata repository, and specifically ConceptBase
[JGJ+95], in order to exploit its enhanced query facilities, and (c) the construction of an optimizer to attain
improved efficiency during the execution of composite scenarios.

References
[Ard00] Ardent Software. DataStage Suite, 2000. See also www.ardentsoftware.com.
[Bra99] Branch Cut Software. JTask: Java Task Scheduler, 1999. Available at www.branchcut.com/jTask.
[CGL+98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information integration: Conceptual

modeling and reasoning support. In Proceedings of CoopIS’98, pages 280–291, 1998.
[Dat00] DataMirror Corporation. Transformation Server, 2000. See also www.datamirror.com.
[Dem97] M. Demarest. The politics of data warehousing, 1997. Available at

www.hevanet.com/demarest/marc/dwpol.html.
[Evo00] Evolutionary Technologies International. ETI*EXTRACT, 2000. See also www.eti.com.
[GFSS99] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An extensible framework for data cleaning. Technical

Report RR-3742, INRIA, 1999.
[GFSS00] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: An Extensible Data Cleaning Tool. In Proceedings

of ACM SIGMOD-2000, June 2000.
[JGJ+95] M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt, and S. Eherer. ConceptBase - a deductive objectbase for

meta data management. Intelligent Information Systems, 4(2), 1995.
[LGI00] LGI Systems Inc. The Data Warehousing Information Center, 2000. See also www.dwinfocenter.org.
[ORO00] ORO Inc. PerlTools 1.2, 2000. Available at www.savarese.org/oro.
[ST98] C. Shilakes and J. Tylman. Enterprise Information Portals. Enterprise Software Team, November 1998. Available

at www.sagemaker.com/company/downloads/eip/indepth.pdf.
[Tra00] Transaction Processing Performance Council. TPC-H and TPC-R, 2000. Available at www.tpc.org.
[Vas00] P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences and observations of a researcher.

In Proceedings of DMDW’2000, June 2000.
[VQVJ00] P. Vassiliadis, C. Quix, Y. Vassiliou, and M. Jarke. A Model for Data Warehouse Operational Processes. In

Proceedings of CAiSE’00, June 2000.
[WRK95] R.Y. Wang, M.P. Reddy, and H.B. Kon. Towards Quality Data: An attribute-based Approach. Decision Support

Systems, 13, 1995.
[WSF95] R.Y. Wang, V.C. Storey, and C.P. Firth. A Framework for Analysis of Data Quality Research. IEEE Transactions

on Knowledge and Data Engineering, 7(4), 1995.

6

