
Adaptive Sorted Neighborhood Methods for Efficient
Record Linkage

Su Yan*, Dongwon Lee*, Min-Yen Kan†, C. Lee Giles*
* College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802

†School of Computing
National University of Singapore

Singapore

{syan, giles}@ist.psu.edu, dongwon@psu.edu, kanmy@comp.nus.edu.sg

ABSTRACT

Traditionally, record linkage algorithms have played an im-
portant role in maintaining digital libraries – i.e., identifying
matching citations or authors for consolidation in updating
or integrating digital libraries. As such, a variety of record
linkage algorithms have been developed and deployed suc-
cessfully. Often, however, existing solutions have a set of
parameters whose values are set by human experts off-line
and are fixed during the execution. Since finding the ideal
values of such parameters is not straightforward, or no such
single ideal value even exists, the applicability of existing so-
lutions to new scenarios or domains is greatly hampered. To
remedy this problem, we argue that one can achieve signifi-
cant improvement by adaptively and dynamically changing
such parameters of record linkage algorithms. To validate
our hypothesis, we take a classical record linkage algorithm,
the sorted neighborhood method (SNM), and demonstrate
how we can achieve improved accuracy and performance by
adaptively changing its fixed sliding window size. Our claim
is analytically and empirically validated using both real and
synthetic data sets of digital libraries and other domains.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms

Algorithms, Design, Performance, Experimentation

Keywords

Record Linkage, Citation Matching, Entity Resolution, Sorted
Neighborhood

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’07, June 18–23, 2007, Vancouver, British Columbia, Canada.
Copyright 2007 ACM 978-1-59593-644-8/07/0006 ...$5.00.

1. INTRODUCTION
A critical task in Digital Libraries (DL) is to identify sim-

ilar or matching digital library entities such as citations or
authors, and consolidate them into a single canonical entity.
For instance, CiteSeer [16] routinely integrates daily-crawled
citations into its existing citation index. If the same citation
already exists in the database, then newly-crawled citations
should not be treated separately. However, due to diverse
formats of citations found on web pages, this task is not
always straightforward. Similarly, it is common to find the
occurrence of an author in different spellings – i.e., “Jeffrey
D. Ullman” vs. “Ullman, J.”. This problem, known as the
name authority control, has been traditionally handled by
librarians such that a list of canonical and variant entities
are manually recorded in a catalog for resolution. However,
as the size of document entities in modern DLs increases
dramatically and their update becomes frequent, name au-
thority control needs to be automated. A core technique to
automate this task is the record linkage [21] or entity resolu-
tion [24] algorithm – i.e., identifying matching records or en-
tities in a large collection fast and accurately, and the tech-
nique has been extensively studied in the context of DL [22]
as well as other areas [2, 12, 24].

Although it works well in many specific scenarios, exist-
ing record linkage solutions developed for DLs are not very
flexible. They employ many parameters (e.g., attributes to
use for blocking, choice of blocking algorithms, window size,
choice of similarity functions), the values of which are of-
ten set by human experts. Finding the ideal values of such
parameters is not straightforward. It may also be the case
that no single optimal value of a parameter exists for a given
problem. Rather, it is more plausible to believe that val-
ues for such parameters must be dynamically adjusted to
achieve the best performance. An example of such a prob-
lem is blocking [14], a popular filtering technique in record
linkage that groups input entities into a set of clusters such
that similar entities are put into the same cluster. More ex-
pensive record linkage solutions are applied to entities only
within the same cluster. Thus, blocking saves computational
cost significantly.

As reported in [22], a variety of blocking methods ex-
ist with different pros and cons. Since the same blocking
method can yield bipolar results against different datasets,
selecting a suitable blocking method for the given record
linkage algorithm and dataset requires significant domain
knowledge. A natural question to ask is, then, whether an
algorithm can dynamically choose different blocking meth-

185

Figure 1: The illustration of the SNM method.

ods and parameters for different data sets and configura-
tions with little human intervention. Recent work such as
[4, 19], for instance, study how to dynamically select and
combine a set of attributes for the blocking key and report
good results. As digital library entities that the record link-
age problem must deal with become more heterogeneous and
large-scaled, we argue that statically-set and never-changing
parameters of record linkage solutions do not handle diverse
scenarios. In order to make existing solutions more flexi-
ble and applicable, we envision that “adaptivity” will play a
critical role. Therefore, in this paper, we argue that one can
achieve significant improvement in record linkage by adap-
tively and dynamically changing such parameters of record
linkage algorithms during the execution time.

1.1 Motivation
To demonstrate our key ideas, let us use the well-known

record linkage algorithm, the sorted neighborhood method
(SNM) [12]. The SNM scheme first sorts all the entities us-
ing the pre-selected key attributes and heuristics. Then, it
slides a fix-sized window from the beginning to the end of
the list. In each sliding window, the first entity is compared
to the rest of the entities within the same window to identify
pairs with small distances. Then the window slides down by
one entity and the process repeats until it reaches the end
of the list. Thus, the sliding window works as a blocking
scheme with the premise that matching entities are lexico-
graphically similar so that they tend to be located within
the same window. Figure 1 illustrates SNM. Single pass
of SNM over n records with w records per window yields
n− w + 1 blocks. Since each block incurs w − 1 number of
record comparisons, overall, the running time of SNM be-
comes O(nw). The baseline approach without any blocking
requires all pair-wise comparisons among records, yielding
O(n2). Due to the relatively faster running time compared
to the baseline approach and the simple implementation, the
SNM approach has been a popular choice of record linkage
algorithm in many data applications.

Note that this simple algorithm uses several user-determined
parameters:

• Choice of attributes for a key

• Size of the sliding window

• Distance threshold

In the original work of SNM [12] and all its variations,
these parameters are pre-set once and never change during

0

10

20

30

40

50

60

0 20 40 60 80 100 120
blocks

re

co
rd

s

Figure 2: Ideal block sizes in the Cora dataset (116
blocks, alphabetically ordered).

the execution of the algorithm (e.g., use the first 4 charac-
ters of the attribute “lastname” as a key and set the default
window size as 3). However, such fixed parameters cannot
cope with the fluctuating data characteristics. For instance,
Figure 2 shows the varying sizes of the ideal blocks in the
Cora data set, where 1,295 citations of 116 Computer Sci-
ence articles are mixed 1. If the ideal blocking is applied,
then one will have 116 blocks. However, each block has dif-
ferent number of records as shown in Figure 2, from as few
as one to as many as 55 records. Therefore, choosing the
right window size (, which is also the block size in SNM)
for this data set to ensure high precision and recall requires
dynamic solution.

1.2 Sketch of Our Solution
Now, let us see how we can adaptively change the win-

dow size. Intuitively, the idea is similar to how people
watch videos – i.e., if two subsequent scenes are similar,
people often press fast-forward to skip frames to arrive at
new scenes quickly, and press fast-backward to go back if
too many frames are skipped. Similarly, by monitoring how
close or far two neighboring entities are, one can extend or
shrink (i.e., fast-forward and fast-backward) the sliding win-
dow adaptively. To exactly increase or decrease the window
size, one can use various heuristics (e.g., following linear,
exponential, or prime number). In addition, more complex
schemes, which are similar to cardinality estimation tech-
niques in databases, can be used to estimate the density of
duplicates.

Overall, we study this adaptivity issue of record linkage
algorithms in depth. Among many parameters of record
linkage algorithms, in this paper, we focus on the size of the
sliding window in SNM and propose the adaptive version
of SNM, named as the adaptive sorted neighborhood method
(A-SNM). Note that the size of the window in SNM amounts
to the size of the block, which in turn is related to the aggres-
siveness of a blocking method. That is, by exploiting the
characteristics of datasets, we propose to adaptively control
the aggressiveness of a blocking method. Our contributions
are:

• We advocate the importance of adaptivity in record

1We will introduce this dataset in detail in section 4.

186

linkage problems, and study the problem in detail us-
ing the classical SNM record linkage algorithm.

• We present two adaptive versions of the SNM algo-
rithm, named as the incrementally-adaptive SNM (IA-
SNM) and
the accumulatively-adaptive SNM (AA-SNM). Although
quite simple, these adaptive versions show significant
improvements over the original SNM in our experimen-
tal study.

• We study various effects of adaptivity in A-SNM in
several dimensions: (1) distributions – Uniform vs.
Poisson vs. Zipf, (2) data sets – real bibliographic
citations vs. real restaurant addresses vs. synthetic
mailing list, (3) adaptiveness – linear vs. geometric
vs. full.

• Since what we advocate in this paper is the adaptive
framework, the same idea can be applied to other well-
known record linkage algorithms. We leave this appli-
cation as a future work.

2. RELATED WORK
The general record linkage problem has been known as

various names in different disciplines – record linkage (e.g., [9,
5]), citation matching (e.g., [17]), identity uncertainty (e.g., [23]),
merge-purge (e.g., [12]), object matching (e.g., [6]), entity
resolution (e.g., [2, 24]), authority control (e.g., [13, 25]),
and approximate string join (e.g., [10]) etc. In this paper,
we focus on the record linkage techniques in the context of
digital libraries (DLs).

Bilenko et al. [5] have studied name matching for informa-
tion integration using string-based and token-based meth-
ods. Cohen et al. [7] have also compared the efficacy of
string-distance metrics, like JaroWinkler, for the name match-
ing task. [15] experimented with various distance-based al-
gorithms for citation matching, concluding that word based
matching performs well. [22] conducted an in-depth study
on the split entities case from the blocking point of view.
The ALIAS system in [24] proposes a framework to detect
duplicate entities such as citations or addresses, but its focus
is on the learning aspect.

[4] treats the adaptive record linkage problem from the
aspect of learning an optimal blocking strategy using train-
ing data. A blocking strategy states the attributes to be
used for blocking, as well as the method that combines the
attributes (e.g. conjunction, disjunction). The work reports
that the adaptive framework for training blocking strategies
is efficient and accurate for a given domain. [19] solves the
same problem with a different machine learning method, and
also reports good results. Our work in this paper is greatly
inspired by these two works.

3. ADAPTIVE SORTED NEIGHBORHOOD
When applied to n records, the original SNM approach

slides a fix-sized window n − w + 1 times, and generates
n−w+1 number of blocks. Note that these generated blocks
are overlapping each other, and fix-sized. However, in the
adaptive SNM, the “window” becomes only an interim tool
to generate final blocks, and all generated blocks will have
different (thus adaptive) sizes.

1mr mpr mPr 1nr nqr nQr

block m block n

Figure 3: An example of boundary pairs.

Definition 1 (Block) A block is a collection of records

that are potentially duplicates each other. 2

The basic premise of the SNM approach is sorting – i.e.,
when records are lexicographically sorted using some at-
tributes, duplicate records tend to locate in the neighbor-
hood. The underlying hypothesis is the following:

Hypothesis 1 The n sorted records, ri ≤ · · · ≤ ri+n, may

satisfy:

dist(ri, ri+1) ≤ dist(ri, ri+2) ≤ · · · ≤ dist(ri, ri+n)

where dist(ri, rj) is the distance between records ri and rj .2

Needless to say, Hypothesis 1 does not always hold be-
cause sorting is done lexicographically, but not by distance.
The rate that Hypothesis 1 does not hold depends on the er-
ror rate of the blocking field and varies for different datasets.
To overcome this limitation, one can run SNM multiple
times using different attributes to sort each time, or ap-
ply transitive closure rules (i.e., if ri ≈ rj and rj ≈ rk, then
ri ≈ rk) to both single pass and multiple pass results.

The reason that SNM uses blocks on top of sorting is
based on the following Hypothesis:

Hypothesis 2 Suppose two records, ri and rj , are the first

and last records within the same block while the third record

rk is outside the block. Then, the following may hold:

dist(ri, rj) ≤ φ < dist(ri, rk)

where φ is the minimum distance threshold. 2

That is, if blocking is done ideally, then the records out-
side a block must be significantly different from the records
within the block. To find blocks, one only needs to find the
boundary records between adjacent blocks. For example, in
Figure 3, record rmP is the last record of block m, and record
rn1 is the first record of block n. According to Hypothesis 2,
dist(rmP , rn1) > φ. This suggests that we only need to find
those records whose distance to its next adjacent record is
larger than a threshold φ. Such a record and its next adja-
cent record (e.g. {rmP , rn1}) define the boundary between
two adjacent blocks, and thus the pair of records is called a
boundary pair.

To find boundary pairs, a naive way is to compare every
adjacent record pairs. In the blocking phase, we need not
to compare records in detail by incorporating all attributes
of the records, but only approximately compare them on
blocking fields. If the distance between any two adjacent
records is larger than the threshold, we find a boundary
pair. After all boundary pairs found, the whole sorted list
can be divided into non-overlapping blocks of various sizes.
Note that, such division is adaptive to the duplicate distri-
bution of the specific database. If the size of a database
is n, then there are n − 1 approximate comparisons during

187

the blocking phase. Therefore, this method is inefficient for
large databases.

To reduce the number of comparisons in the blocking
phase, We propose a set of adaptive window setting schemes
to find the boundary pairs with much less approximate com-
parisons. Every scheme uses a sequence of windows to ag-
gressively approach the position of boundary pairs, but each
with different window setting methods in two phases: (1)
“enlargement” phase to gather as many potential duplicates
together with as few cheap distance calculations as possi-
ble, and (2) a “retrenchment” phase to find boundary pairs
within the final window from the first phase.

Algorithm 1 block = IA-SNM(records, key, φ)

1: sort records on key

2: /* Initialization */
3: n← number of records
4: w ← 2
5: block ← []
6: posit window to the initial position w.first← record(1)
7: /* Searching for blocks */
8: while index(w.last) < n do
9: block ← [index(w.first)] /* save the starting index of

the current block */
10: /* enlargement */
11: while dist(w.first, w.last) < φ do
12: w = φ·w

dist(w.first,w.last)

13: end while
14: /* retrenchment */
15: if dist(w.first, w.last) > φ then
16: w = φ·w

dist(w.first,w.last)

17: while w > 2 do
18: binary comparison
19: end while
20: end if
21: block ← [index(w.last)]/* save the ending index of

the current block */
22: w ← 2 /* reset window to minimum size */
23: reposition the window, s.t. index(w.first) =

index(w.last) + 1
24: end while
25: block ← [n]
26: return block

3.1 Incrementally-Adaptive SNM (IA-SNM)
The basic idea is to measure if records within a small

neighborhood are close/sparse and if there are rooms to
grow/shrink in the window, then the window size is in-
creased/decreased dynamically. In order to measure the
record distribution within a window, it seems that we need
to measure the distances between all the records in the win-
dow. However, If we consider a small neighborhood defined
by a window in the sorted list, then we can assume that Hy-
pothesis 1 holds in the window. Therefore, we only need to
measure the distance between the first and last record in the
window, and this distance can represent the overall record
distribution within the window.

In the ideal case, the distance between the first and last
record in a block equals to the distance threshold φ, that is,
there is no room to enlarge the block to incorporate more
potential duplicate records or to retrench the block to re-
move incorrectly identified potential duplicate records.

Wm1

Wm2

Wmk

Wmk+1

Wmk+2

block m

Wn1

rmP rn1

block n

Wn2

Figure 4: A running example of AA-SNM.

Suppose W1 is the current window under consideration.
The distance between the first and last records satisfies that,
dist(r1, rW1

) < φ, where φ is the distance threshold. This
distance indicates that records within the current window
are close to each other, so there is still room to enlarge the
window size to find more potential duplicate records. Oth-
erwise, the window should be retrenched. Now we need to

measure the extent of the window adjustment.
dist(r1,rW1

)

W1

can be understood as the “average distance” between records
within window W1. We choose the next step window size

by
dist(r1,rW1

)

W1

W2 = φ. In this way, the window size of the
next step is set to be the ideal window size estimated from
the current window. By using the above formula as an in-
variant, one can adaptively change the window size W to
maximize recall (at the risk of increased running time). The
window size adjustment ends when dist(r1, rW) ≈ φ. Note
that in each step, we only adjust the window size, and the
starting point of a window is not changed. For example, the
first record of W2 is the same as that of W1. Therefore, we
use incrementally adjusted windows to approach the optimal
block sizes, and we call this method incrementally adaptive.

When applying the above adaptive window setting idea to
a real blocking problem, we start from the minimum window
size of 2 and continue the window size adjustment process
(enlargement and retrenchment). Depending on the key se-
lection and the distance measure used, a vibration in the
window size adjustment may happen after the first retrench-
ment. To prevent the potential vibration in the window size
adjustment that may happen in this method, after the first
retrenchment, we do the binary comparison within the final
window from the enlargement phase to find the boundary
pair. In other words, in the binary comparison stage, we
reduce the window size by half each time when adjusting
window sizes and restrict the search scope to the last win-
dow from the enlargement phase. We found a boundary
pair when we reached a window of size 2 and the distance
between the two records is larger than the threshold φ.

The pseudo code of the IA-SNM method is shown in Al-
gorithm 1.

3.2 Accumulatively-Adaptive SNM (AA-SNM)
In this section, we show another scheme that can adap-

tively find various sized blocks. Unlike IA-SNM, which does
not explicitly search for boundary pairs to find blocks, the
goal of this method is to quickly and accurately find all

188

boundary pairs. We introduce this method with a running
example as shown in Figure 4. In this example, we scan
the sorted list of records to search for the boundary pair
between block m and block n, {rmP , rn1}.

• Window Enlargement: Suppose we start from a
small window Wm1 = 2 that locates at the beginning of
block m (this position is known because we should have
found the boundary position between block m and its
preceding block in this stage). As in IA-SNM, we mea-
sure the distance between the first and the last record
in the current window W1. If the distance is less than
or equal to a threshold, dist(r1, rWm1

) < φ, according
to Hypothesis 1, all the records in window Wm1 can be
determined as potential duplicates to each other and
should be grouped into the same block. It also suggests
that the boundary pair is not in the current window
and there are more potential duplicates outside win-
dow Wm1. Therefore, We need to enlarge the neighbor-
hood of comparison to include more potential dupli-
cates and to search for the boundary pair. This can be
achieved by either enlarging the window size, as done
in IA-SNM, or by moving the window forward and con-
necting the results of consecutive windows later. We
choose the second option for this algorithm (to be ex-
plained later). Thus, we slide the window forward and
get a new window Wm2. If all the records in Wm2

are also potential duplicates, we continue to slide the
window forward to get window Wm3 and so on, until
we reach the window Wmk that contains the boundary
pair. In order to approach the boundary pair aggres-
sively, we enlarge window sizes as we move the window
forward, i.e. |Wm1| < |Wm2| < · · · < |Wmk|.

We slide a window forward such that the first record
of the new window is the last record of the preceding
window. Thus, the two consecutive windows share one
overlapping record. See Figure 5 as an example. Fur-
thermore, since we have found that rm1 and rmi are
potential duplicates, and rmi and rmk are potential
duplicates, by transitivity, we assume that rm1 and
rmk are also potential duplicates. Therefore, all the
records within Wm1 and Wm2 are potential duplicates
to each other and should be grouped into one block.
Notice that window Wx is the combination of Wm1

and Wm2. The reason that we do not use the larger
window Wx but compare rm1 and rmk directly is that,
the distance order as stated in Hypothesis 1 may only
holds in a small neighborhood. In the larger neighbor-
hood Wx, it may happen that rm1 and rmk are in fact
potential duplicates, but dist(rm1, rmk) > φ, due to
the errors in the blocking fields. By using a sequence
of overlapping small windows instead of one growing
large window, we expect to diminish the influence of
small blocking-field-errors to the blocking result. This
is why we call this method accumulatively adaptive.

• Window retrenchment: When reaching window Wmk,
we first measure the distance between the first and last
record of Wmk and suppose we find that the distance is
greater than the threshold φ. This implies that at least
one boundary pair is in Wmk. We begin to decrease
window size at each step to search Wmk in detail and to
find the position of the boundary pair {rmP , rn1}. We
start the detailed search from the former part of Wmk

1mr mir mjr mkr

 Wm1

Wm2

Wx

mlr

Wm3

Figure 5: An example of setting window positions
in AA-SNM.

(to find the first boundary pair) by retrenching Wmk

to Wmk+1 and let both have the same starting record.
Suppose we find that all records in Wmk+1 are poten-
tial duplicates. Then, we move the window forward by
the same scheme used in the enlargement phase, with
smaller window size (|Wmk+2| < |Wmk+1|). This is
because we want to search in more detail. The process
of detailed search continues until we reach the win-
dow that contains only two records and the distance
between the two records is larger than the threshold
φ. In our example, this window contains {rmP , rn1}.
Then the record index mP indicates the ending posi-
tion of Block m and the record index n1 indicates the
starting position of Block n.

To search the boundary pair between Block n and its
next adjacent block, we start from a small window
Wn1 of size 2 positioned at the beginning of Block n

(rn1), and the above process of window enlargement
and retrenchment is repeated.

Varying Window Sizes: In both enlargement and
retrenchment phases, window sizes are increased or de-
creased. For this purpose, various policies can be used
as follows.

1. Linear Adjustment: The size of a new window
is adjusted linearly by adding or subtracting a
constant value α to or from the preceding window
size.

2. Geometric Adjustment: The size of a new
window is adjusted geometrically by multiplying
or dividing a constant value α to or from the pre-
ceding window size.

3. Full Adjustment: The extent of the window
adjustment is not fixed. Rather, the extent of the
adjustment for the current step is decided using
several former windows.

Since linear and geometric adjustment policies are
straightforward, let us elaborate on full adjustment
policy here. The idea behind the adjustment policy
is that, in the window enlargement phase, we use the
number of records already found for the current block
to estimate the number of records to be found in the
next step. For example in Figure 4, we estimate the
size of window Wm2 by |Wm2| = |Wm1|, and estimate
the size of Wm3 by |Wm3| = |Wm1|+|Wm2| (if omit the
one overlapping record). Therefore, the size of the last
window in the enlargement phase, Wmk is estimated
as |Wmk| =

∑k−1
i=1 |Wmi|. In the window retrench-

ment phase, we do binary comparison. Each time we
decide to retrench a window, we decrease its size by

189

half. In terms of our running example in Figure 4,
|Wmk| = 2|Wmk+1| = 4|Wmk+2| = · · · .

The pseudo code of AA-SNM using the full adjustment
policy is shown in Algorithm 2.

Algorithm 2 block = Full AA-SNM(records, key, φ)

1: sort records on key

2: /* Initialization */
3: n← number of records
4: w ← 2
5: block ← []
6: posit window to the initial position w.first← record(1)
7: /* Searching for blocks */
8: while index(w.last) < n do
9: block ← [index(w.first)] /* save the starting index of

the current block */
10: /* enlargement */
11: while dist(w.first, w.last) ≤ φ do
12: move window forward s.t. w.first = w.last

13: end while
14: /* retrenchment */
15: while w > 2 do
16: binary comparison
17: end while
18: block ← [index(w.last)] /* save the ending index of

the current block */
19: w ← 2
20: reposition the window, s.t. index(w.first) =

index(w.last) + 1
21: end while
22: block ← [n]
23: return block

4. EXPERIMENTAL EVALUATION
We use two real data sets and several synthetic data sets,

all of which have been used in the existing work on block-
ing, to test the performance of adaptive sorted neighborhood
methods. We also do controlled experiments to evaluate the
adaptive methods from different aspects.

4.1 Evaluation Metrics
We use pairs completeness (PC), reduction ratio (RR),

and F-score as defined blew to evaluate the performance
of blocking schemes. These three metrics have been widely
used in the existing blocking related work.

PC =
#Correctly Indentified Duplicate Pairs

#True Duplicate Pairs
(1)

RR = 1−
#Identified Potential Duplicate Pairs

#All Pairs
(2)

F -score =
2 ∗RR ∗ PC

RR + PC
(3)

PC evaluates a blocking scheme based on the number of
true duplicate pairs in the candidate set versus those in the
entire set. Thus it measures the coverage of true positives.
RR measures how well the blocking scheme reduces the num-
ber of record pairs to be compared in detail in the candidate
set. Both PC and RR should be maximized, but there is a
tradeoff between them. F-score captures this tradeoff by
combining PC and RR via a harmonic mean.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RR PC F-score

Exact Blocking
SNM
IA-SNM
AA-SNM

Figure 6: Blocking schemes comparison with the
Cora dataset (data set: citation, size: 1,295).

4.2 Data sets
We use both real and synthetic datasets to test our adap-

tive blocking schemes. The first real data set we use is the
hand-labeled Cora dataset, which contains 1295 12-field ci-
tations of 116 computer science papers (we relabeled the
original dataset to correct some labeling error and results in
116 papers). The author fields are standardized by automat-
ically abbreviating each name into the first initial concate-
nated with the last name, and the blocking key is chosen as
the concatenation of all the standardized author names of a
citation. Note that, the blocking performance is influenced
by the choice of the blocking key. Usually the blocking key is
chosen by domain experts and requires domain knowledge.
However, it does not matter how we choose the blocking
key for the purpose of our study, as long as all the blocking
schemes are tested and compared by using the same block-
ing key. The blocking fields of the Cora dataset are not
error-free due to citation segmentation errors and spelling
mistakes.

The second real datbase we use is the 4-field Restaurant
data set. It contains 864 restaurant names and addresses
with 112 duplicates, composed of 533 and 331 restaurants
assembled from Fodor’s and Zagat’s restaurant guides. The
individual databases are duplicate free. The blocking key
we use is the first 4 characters of the restaurant name con-
catenated with the first 4 characters of the city name.

The synthetic databases for our experiments are generated
by DBGen [12]. DBGen is a database generator that artifi-
cially generates 9-field mailing list data. A large number of
parameters of the generated database can be adjusted, in-
cluding the size of the database, the percentage of duplicate
records in the database, and the amount of error introduced
in the duplicated records in each attribute field. For the
databases generated by DBGen, the blocking key was spec-
ified to be the last name attribute truncated to 4 characters
concatenated with the first name attribute truncated to 4
characters.

A summarization of the databases used in our experiments
are outlined in Table 1.

4.3 Experiments with real data
We first test blocking schemes with Cora, the real citation

database. For the SNM blocking, we set the window size to

190

Table 1: Summary of databases for experiments
Database name size property #field content #blocks maximum #records per block

Cora 1295 real 12 citation 116 55
Restaurant 864 real 4 restaurant addresses 112 2

DBGen varies synthetic 9 mailing list varies varies

20 40 60 80 100 120
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNM Window size

PC
 &

 F
-s

co
re

SNM PC
SNM F-score
AA-SNM PC
AA-SNM F-score

Figure 7: Detailed comparison between AA-SNM
and SNM with Cora dataset (data set: citation, size:
1,295).

10, the value chosen in most experiments performed by the
original work of SNM [12]. For adaptive sorted neighbor-
hood schemes, any choice of the distance metric for the ap-
proximate record distance comparison is fine, and we choose
to use edit distance. We follow the work in [18] and use
one fourth of the original dataset to compose a validation
set and tune the parameter with it. We also implemented
the Exact Blocking method as a baseline. For this method,
records with exactly the same key value are assigned to the
same block. It is also known as “blocking”[8], and “standard
blocking”[1, 3].

Experiment results with the Cora dataset are shown in
Figure 6. Adaptive sorted neighborhood methods signifi-
cantly outperform the original SNM method. AA-SNM has
better performance than IA-SNM. The F-score of AA-SNM
is 49% larger than that of SNM. Note that, the F-score dif-
ference between IA-SNM and AA-SNM is about 4%, but the
PC difference is around 13%. This shows that AA-SNM is
a better blocking method than IA-SNM since it finds more
potential duplicate pairs with similar F-score.

The poor performance of SNM in the experiment is be-
cause the number of records that can be determined as po-
tential duplicates of each other is larger than the window
size. Figure 2 shows that many records have more than
10 duplicates. This is the key problem of SNM that has
been reported by many other work [3, 11, 20]. We run SNM
over the Cora dadaset with increasing window sizes until the
highest F-score is achieved, and we compare the results with
AA-SNM, as shown in Figure 7. The window sizes for SNM
range from 10 to 120, with the best F-score achieved when
the window size is 90. After this point, the PC value keeps

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

RR PC F-score

Exact Blocking
SNM
IA-SNM
AA-SNM

Figure 8: Blocking schemes comparison with the
Restaurant dataset (data set: restaurant addresses,
size: 864).

increasing, but the F-score begins to decrease. From the
figure, AA-SNM produces the highest F-score that can be
achieved by SNM. However, even the window size of SNM
can be accurately set as 90, the PC value of AA-SNM is still
8% larger than that of SNM, which shows the advantage of
AA-SNM.

We then use another quite different real dataset to test
our adaptive blocking schemes. In the Restaurant dataset,
a record has at most 1 duplicate. In other words, the max-
imum block size in the optimal case should be 2. We again
set the window size of SNM to 10. Figure 8 shows the exper-
imental results. All the methods make better performance
with the Restaurant dataset than with the Cora dataset.
This time, SNM makes very good performance, better than
IA-SNM, but still worse than AA-SNM. The reason for the
better performance of SNM is that, 10 is a large enough
window size to incorporate almost all potential duplicates
of a record. Experimental results with the two real datasets
show that the choice of the window size for SNM depends
on the specific duplicate distribution of a dataset. Adaptive
methods make better blocking performance because of the
adaptivity to the dataset.

4.4 Varying the error rate of duplicates
A record and its duplicates refer to the same real entity

but are textually different. The extend of the difference be-
tween a record and a duplicate is called the error rate of
duplicates in our study. A good blocking scheme should not
be greatly influenced by changing the error rate of dupli-
cates. In this section, we do controlled experiments to test
how different blocking schemes behave with the varying er-
ror rate of duplicates.

The errors introduced in the duplicates by DBGen range

191

5 10 15 20 25 30 35 40
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Error rate (%)

F-
sc

or
e

Exact Blocking
SNM
IA-SNM
AA-SNM

Figure 9: Influence of error rate to blocking schemes
(data set: mailing list, size: 10,000).

from small typographical mistakes, to complete change of
last names and addresses. The generator introduces typo-
graphical errors according to frequencies known from pre-
cious research on spelling correction algorithms. Since our
blocking key contains only the last name and the first name
attributes, we only consider the parameters of these two
attributes and use DBGen default parameters for all the
other attributes. 8 databases each of size around 10,000,
and each containing uniformly sized blocks are generated,
with the error rates of the “person names” field ranging
from 5% ∼ 40%. We fixed the proportion of each individual
error (insertions, deletions, replacements, and swappings) to
the total error by using the default parameters of DBGen,
but only change the total error rate of “person names”. We
set the average number of duplicates per record as 10, and
the window size for SNM as 10.

Experimental results are shown in Figure 9. The perfor-
mance of all the blocking schemes decrease as the error rate
in the blocking field increases, with the performance degen-
eration of Exact Blocking the largest. AA-SNM again makes
the best performance. The performance difference between
IA-SNM and AA-SNM is small but gets larger as the error
rate increases. It shows that AA-SNM has better resistance
to the error in the blocking field than IA-SNM. The reason
for the poor performance of Exact Blocking is that, Exact
Blocking requires all the records within the same block to
share exactly the same blocking key. However, when the
error rate increases, the disambiguation power of a blocking
key decreases. As a result, schemes based on exact match
of blocking keys will produce poor performance.

4.5 Varying the size of blocks
A good adaptive blocking method should perform consis-

tently when the number of duplicates per record varies. In
this section, we do controlled experiments to test the con-
sistency of adaptive blocking methods to the varying block
sizes.

We vary the sizes of blocks of a dataset according to three
distributions, which are the Uniform distribution, the Pois-
son distribution, and the Zipf distribution. With these three

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Normal Poisson Zipf

F-
sc

or
e

Exact Blocking
SNM-10
Optimal SNM
IA-SNM
AA-SNM

Figure 10: Influence of the variance in block sizes to
blocking schemes(data set: mailing list, size: 1,000).

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

(a) uniform
0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

(b) poisson
0 10 20 30 40 50 60
0

50

100

150

200

250

(c) zipf

Figure 11: Variance in block sizes (data set: mailing
list, size: 1,000).

distributions, the variance of block sizes range from moder-
ate to sever. In generating databases, we set the mean of the
Uniform distribution and the Poisson distribution as 20, and
the Zipf parameter θ (0 ≤ θ ≤ 1) is set to 0.25. Error rate in
the blocking field is fixed to 20%. 3 databases, one for each
distribution are generated, each of size around 1,000. The
variance of the block sizes of the generated databases are
shown in Figure 11. For SNM blocking, we test two cases.
We first set the window size to the conventional value 10
and refer to it as SNM-10. We also run SNM over the three
datasets with increasing window sizes and pick the values
that let SNM achieve the highest F-scores, and refer to this
method Optimal SNM. According to experimental results,
35, 70, and 130 are the optimal window sizes for SNM when
the duplicates of the databases follow the Uniform, Poisson,
and Zipf distribution respectively.

Experiment results are shown in Figure 10. IA-SNM, AA-
SNM, and Exact Blocking are robust to the variation in the
distribution of duplicates. For all the three distributions,
AA-SNM achieves the best performance. Although Optimal
SNM has better performance than SNM, and achieves the
best performance in the Uniform case, it is not adaptive
to the variance of block sizes, and degenerates fast as the
variation in blocks sizes becomes more sever.

4.6 Complexity of varying window sizes
In this section, we try to find out which method of vary-

ing window sizes is more efficient for the AA-SNM block-
ing scheme. We implement 7 methods to adaptively ad-
just window sizes for AA-SNM and compare the number of

192

Table 2: Complexity comparison of policies that set window sizes in AA-SNM
size Linear-1 Linear-3 Linear-5 Linear-10 Linear-20 Geometric-2 Full

1k 537 422 396 421 540 550 432
2k 955 762 737 820 967 940 765
5k 2456 1939 2153 2162 2444 2394 2012
10k 5242 3867 4267 3073 4364 3852 3228

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

co

m
pa

ris
on

s

records

Linear-1
Linear-3
Linear-5
Linear-10
Linear-20
Geometric-2
Full

Figure 12: Complexity comparison of policies that
set window sizes in AA-SNM (data set: mailing list).

times of approximate distance comparison required in the
blocking phase. 5 schemes follow the linear adjustment pol-
icy, denoted as “Linear-α”. We vary the aggressiveness of
linear adjustment method by varying the constant value.
We implement 1 geometric adjustment method, denoted as
“Geometric-2”, which means the window size is adjusted ge-
ometrically by multiplying or dividing by 2 to or from the
preceding window. The last scheme is full adjustment, de-
noted as “full”. 4 databases with sizes ranging from 1K
to 10K are generated. Duplicates follow the Zipf distribu-
tion, and the error rate of the blocking field is fixed to 20%.
Comparison results are shown in table 2. The boldface num-
bers in the table indicate the minimum times of comparison
(best result) achieved for a given database. Figure 12 is
drawn based on the table.

The experimental results confirm our consideration about
the extent of adjusting the window size. When the extent is
too small, e.g. 1 record each time (linear-1), the number of
computations is high. On the contrary, when the extent is
too large, e.g. 20 records each time (linear-20), the number
of computations is still high. Besides, the optimal extent of
window adjustment, which achieves the minimum number
of comparisons, changes when the data size changes. An
extent that achieves the minimum for one data size may
produce very large number of computations for other data
sizes (e.g., linear-3,linear-5, linear-10). Therefore, it is not
clear how to choose the optimal extent such that it produces
the minimum number of comparisons regardless of the data
size. As shown in Figure 12, although full adjustment does
not achieve the minimum for all the 5 data sizes, it produces
the near optimal performance in all the cases.

5. CONCLUSION
In this paper, we advocate an adaptive framework to adap-

tively and dynamically adjust parameters of record linkage
algorithms during the execution time. To demonstrate key
ideas, we use a well-known record linkage algorithm, sorted
neighborhood method (SNM), as a working example. We
propose two adaptive versions of SNM, both of which dy-
namically adjust the sliding window size, a key parameter
used in SNM, during the blocking phase to adaptively fit
the duplicate distribution. Comprehensive experiments with
both real and synthetic data sets of three domains validate
the effectiveness and the efficiency of the proposed adaptive
schemes. The adaptive schemes are robust to the variance in
the size of each individual block, which can range from mod-
erate to sever. Besides, the adaptive schemes show better
resistance to the errors in the blocking fields. Several meth-
ods for adjusting window sizes, which are used in the adap-
tive methods, are proposed and compared. Among them,
the full adjustment method is shown to be near optimal.

However, this paper is only the first step toward the fully
adaptive framework where any parameter of record linkage
algorithms can be dynamically adjusted to maximize some
objective functions. Some key problems still need to be
solved to achieve “full” adaptivity. Besides, many blocking
methods other than SNM have been proposed, such as the
bigram indexing, the canopy clustering, etc. To test how the
adaptive idea can improve such methods is also interesting.
As we stated before, many researchers work toward the same
goal of adaptive record linkage, however, each on a specific
aspect. To build a comprehensive framework that incorpo-
rate all the aspects is necessary. Finally, at this point, it
is not entirely clear whether it is always good to have some
“knobs” to tune parameters or everything is set dynamically.
We argue that, when expert knowledge is available, tuning
“knobs” may yield better performance. However, in most
real world problems where expert knowledge are hard to ob-
tain, it is helpful to have methods that can automatically
choose reasonable parameters for us.

6. ACKNOWLEDGEMENT
The research of Dongwon Lee was partially supported by

Microsoft SciData Award (2005) and IBM Eclipse Innova-
tion Award (2006). Authors sincerely thank anonymous re-
viewers for their helpful comments.

7. REFERENCES

[1] A. Aizawa and K. Oyama. A fast linkage detection
scheme for multi-source information integration. In
WIRI ’05: Proceedings of the International Workshop
on Challenges in Web Information Retrieval and
Integration, pages 30–39, Washington, DC, USA,
2005. IEEE Computer Society.

193

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
“Eliminating Fuzzy Duplicates in Data Warehouses”.
In VLDB, 2002.

[3] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage. In Proceedings of the KDD-2003 Workshop on
Data Cleaning, Record Linkage, and Object
Consolidation, pages 25–27, Washington, DC, 2003.

[4] M. Bilenko, B. Kamath, and R. J. Mooney. “Adaptive
Blocking: Learning to Scale Up Record Linkage”. In
Workshop on Information Integration on the Web,
2006.

[5] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. “Adaptive Name-Matching in
Information Integration”. IEEE Intelligent System,
18(5):16–23, 2003.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
“Robust and Efficient Fuzzy Match for Online Data
Cleaning”. In ACM SIGMOD, 2003.

[7] W. Cohen, P. Ravikumar, and S. Fienberg. “A
Comparison of String Distance Metrics for
Name-matching tasks”. In IIWeb Workshop held in
conjunction with IJCAI, 2003.

[8] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios.
Tailor: A record linkage tool box. icde, 00:0017, 2002.

[9] I. P. Fellegi and A. B. Sunter. “A Theory for Record
Linkage”. J. of the American Statistical Society,
64:1183–1210, 1969.

[10] L. Gravano, P. G. Ipeirotis, N. Koudas, and
D. Srivastava. “Text Joins in an RDBMS for Web
Data Integration”. In Int’l World Wide Web Conf.
(WWW), 2003.

[11] L. Gu and R. A. Baxter. Adaptive filtering for efficient
record linkage. In SDM, 2004.

[12] M. A. Hernandez and S. J. Stolfo. “The Merge/Purge
Problem for Large Databases”. In ACM SIGMOD,
1995.

[13] Y. Hong, B.-W. On, and D. Lee. “System Support for
Name Authority Control Problem in Digital Libraries:
OpenDBLP Approach”. In European Conf. on Digital
Libraries (ECDL), Bath, UK, Sep. 2004.

[14] R. P. Kelley. “Blocking Considerations for Record
Linkage Under Conditions of Uncertainty”. In Proc. of
Social Statistics Section, pages 602–605, 1984.

[15] S. Lawrence, C. L. Giles, and K. Bollacker. “Digital
Libraries and Autonomous Citation Indexing”. IEEE
Computer, 32(6):67–71, 1999.

[16] C. S. L. D. Library. http://citeseer.ist.psu.edu/.

[17] A. McCallum, K. Nigam, and L. H. Ungar. “Efficient
Clustering of High-Dimensional Data Sets with
Application to Reference Matching”. In ACM KDD,
Boston, MA, Aug. 2000.

[18] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD ’00:
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 169–178, New York, NY, USA, 2000. ACM
Press.

[19] M. Michelson and C. A. Knoblock. “Learning Blocking
Schemes for Record Linkage”. In AAAI, 2006.

[20] A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In
Proceedings of the SIGMOD 1997 Workshop on
Research Issues on Data Mining and Knowledge
Discovery, pages 23–29, Tuscon, AZ, May 1997.

[21] H. B. Newcombe and J. M. Kennedy. “Record
Linkage”. ACM Comm. ACM, 5:563–566, 1962.

[22] B.-W. On, D. Lee, J. Kang, and P. Mitra.
“Comparative Study of Name Disambiguation
Problem using a Scalable Blocking-based Framework”.
In ACM/IEEE Joint Conf. on Digital Libraries
(JCDL), Jun. 2005.

[23] H. Pasula, B. Marthi, B. Milch, S. Russell, and
I. Shpitser. “Identity Uncertainty and Citation
Matching”. In Advances in Neural Information
Processing Systems. MIT Press, 2003.

[24] S. Sarawagi and A. Bhamidipaty. “Interactive
Deduplication using Active Learning”. In ACM KDD,
2002.

[25] J. W. Warnner and E. W. Brown. “Automated Name
Authority Control”. In ACM/IEEE Joint Conf. on
Digital Libraries (JCDL), 2001.

194

