
Comparative evaluation of entity resolution approaches with
FEVER

Hanna Köpcke, Andreas Thor, Erhard Rahm
Department of Computer Science, University of Leipzig

04009 Leipzig, Germany

{koepcke, thor, rahm}@informatik.uni-leipzig.de

ABSTRACT
We present FEVER, a new evaluation platform for entity resolu-
tion approaches. The modular structure of the FEVER framework
supports the incorporation or reconstruction of many previously
proposed approaches for entity resolution. A distinctive feature of
FEVER is that it not only evaluates traditional measures such as
precision and recall but also the effort for configuring (e.g., pa-
rameter tuning, training) a good entity resolution approach. FE-
VER thus strives for a fair comparative evaluation of different
approaches by considering both the effectiveness and configura-
tion effort.

1. INTRODUCTION
Entity resolution (also referred to as object or entity matching,
duplicate identification, record linkage or reference reconcilia-
tion) is a fundamental problem for data integration and data clean-
ing [11]. It is the task of identifying entities referring to the same
real-world object. The high importance and difficulty of the entity
resolution problem has triggered a huge amount of research on
different variations of the problem and numerous approaches have
been proposed especially for structured data. For a recent over-
view survey and a tutorial see [5] and [8], respectively.

Due to the high number and diversity of different entity resolution
approaches we see a strong need for comparative evaluations of
different schemes. To date most entity resolution approaches have
been evaluated individually using diverse methodologies, con-
figurations, and test problems making it difficult to assess the
overall quality of each approach, let alone their comparative ef-
fectiveness and efficiency. Only few attempts for comparative
evaluations of some sub-approaches have been made, e.g., evalua-
tion of different string similarity metrics [4] and of blocking
approaches [1]. Some benchmark proposals for entity resolution
have been made [10], [13] but they have not yet been
implemented or applied.

In this demo paper we present FEVER – a framework for evaluat-
ing entity resolution. FEVER is not yet another entity resolution
approach but serves as a flexible evaluation platform for a large
spectrum of entity resolution algorithms and strategies building

upon and extending our previous prototypes MOMA [12] and
STEM [7]. FEVER offers the following key features:

- FEVER supports the flexible construction and comparative
evaluation of many different entity resolution workflows based
on so-called operator trees. Operator trees support the combined
application of different blocking and match algorithms in order
to achieve a high effectiveness (precision, recall). Individual
operator implementations can be based on virtually any previ-
ously proposed algorithm, e.g., for blocking or entity matching,
so that these can be evaluated with FEVER. Entity resolution
methods may be based on machine learning techniques utilizing
training data. Hence, FEVER can be used to compare non-
learner and learner-based approaches for entity resolution.

- FEVER allows each match approach to be automatically exe-
cuted and evaluated under different parameter configurations.
We first use this feature to determine the necessary effort for
training and parameter tuning (e.g., finding suitable similarity
thresholds) to obtain a reasonable match quality. This way we
can conduct a fair comparison of different entity resolution al-
gorithms under comparable tuning effort. Hence, an approach
A with better effectiveness than approach B is only superior if it
does not incur a substantially higher configuration effort.

- FEVER can also be used to fine-tune match approaches by let-
ting the system automatically evaluate a large number of pa-
rameter settings for test data. The best performing configuration
can then be used for subsequent match tasks on similar and lar-
ger input data.

In the following we give an overview of FEVER and present the
operator library. We then describe FEVER's effort-based configu-
ration strategies that facilitate a fair algorithm comparison. We
conclude with a description on what will be demonstrated.

2. OVERVIEW OF FEVER
Figure 1 illustrates the architecture of FEVER consisting of mod-
ules for the definition and execution of entity resolution ap-
proaches or so-called match workflows. A GUI-based workflow
editor allows to interactively specify match workflows utilizing
operator trees. The FEVER runtime executes a specified work-
flow and, thus, generates evaluation data.
A match workflow specification has three parts: input data defini-
tion, operator tree, and configuration specification. All parts can
be edited in the workflow editor. Figure 2 shows a screenshot of
the FEVER's main window with portions of the workflow editor
on the left side. The right side shows a sample evaluation result
for different match workflows.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

The input data includes the entities of one or two data sources to
be resolved, and the perfect match result for evaluating the effec-
tiveness of the entity matching workflow. For training-based
match approaches, the training data also needs to be provided.
The actual match workflow is declaratively described in terms of
an operator tree. The input data sources form the leaves of the
tree and non-leaf nodes are operators. The output of the root op-
erator is the final match result specifying the identified entity
correspondences within a so-called mapping (see next section).
FEVER provides an extensible operator library with a variety of
operators for training selection, blocking, matching, and mapping
combination. Operators define their expected input and delivered
output as well as their mandatory and optional parameters. The
shape of the operator tree determines the order in which operators
are applied. An operator tree is well formed if all operators are
nested correctly, provided with their necessary input and manda-
tory parameters are set.
The operator tree concept provides a high flexibility to specify a
tailored workflow for a given match task and supports its com-
parative evaluation with other approaches. In particular, it allows
the selection and combination of several match approaches. De-
veloped operator trees can be saved as building blocks and can
then be reused as a sub-tree in other workflow definitions. The
operator tree concept and the supported operators are described in
the following section.
The third match workflow component specifies the execution of
the operator tree according to a configuration strategy defining
the parameter settings of all operators of the tree. For evaluation
purposes the operator tree is usually executed multiple times with
different parameter settings. This way the effectiveness of the
match workflow for different settings can be evaluated and the
effort to find an effective configuration can be determined. We
present configuration strategies in more detail in Section 4.
Specified workflows are stored in a repository and can be exe-
cuted by the FEVER runtime (upper part of Figure 1). The run-
time supports an iterative execution model to execute an operator
tree several times for different parameter settings. The match
result of each operator tree execution is automatically evaluated
with the help of the given perfect result and, thus, evaluation
measures such as precision, recall, and F-measure can be deter-
mined. In addition, performance indicators are recorded, e.g.,
execution runtime and used main memory. The calculated quality
measures are stored and can be compared to the effort of config-

uring the parameter setting. Hence, FEVER not only allows an
evaluation of the match quality, but also facilitates an analysis of
the effort expended to reach the respective match quality. As a
consequence, FEVER supports a fair comparison of match algo-
rithms by comparing the match quality reached under the same
effort.
For smaller datasets the execution of a match workflow can be
started from the GUI and the results interactively inspected via
the build-in plotter. This feature will be used during the demon-
stration (see Section 5). For larger datasets the match workflow
can be modeled within the GUI and then executed in batch mode.
The FEVER implementation is written in Java and uses the Rapid
Miner [9] library of machine learners.

3. OPERATOR TREES
FEVER allows the definition of entity matching algorithms by
operator trees. Operator trees are a common modeling concept for
numerous database problems (e.g., query optimization) and have
previously also been used to model entity resolution approaches
[3]. We build on those previous approaches and extend the idea to
a flexible method for defining match workflows. The tree is exe-
cuted in a post-order traversal sequence and the results of the
child operators are input to the father operator.
FEVER's operator library offers a variety of operators. The main
operator types for blocking, matching and training selection gen-
erate mappings as operator output. A mapping m between two
sets of entities A ⊆ SA and B ⊆ SB from two sources SA and SB
consists of a set of match correspondences, i.e., m = {(a, b, s)|
a∈A, b∈B, s∈[0,1]}. The similarity value s indicates the strength
of the similarity between two entities a ∈ A and b ∈ B. The uni-
form mapping data structure is the foundation for the flexible
combination of operators within trees. Some previous match ap-
proaches represent their results as clusters of entities that are con-
sidered to be the same. FEVER can also support such methods by
interpreting clusters as a mapping containing pairwise correspon-
dences between all entities of the cluster.
Blocking operators expect as input one or two sets of entities and
return a mapping. Blocking is needed for large inputs to reduce
the search space for entity resolution from the Cartesian product

Parameter
Setting

Operator tree
Execution
• Logging
• Breakpoints

Mappings

• Generated M.
• Training M.
• Perfect M.

Entities

Data Specification Operator Tree Specification

Operator Library
• Blocking
• Matcher
• Combination
• ...

Configuration Specification

De
fin

itio
n P

ha
se

Ex
ec

uti
on

 P
ha

se

Workflow Editor

Analysis
• Quality vs.
Param. Costs

Evaluation
• Prec, Recall, ...
• Reduc. Ratio, ..
• Runtime, ...

Configuration
Strategies for
• Non-Learn. Matchers
• Learn.-based Matchers

Result Quality

• Source
• Target

FEVER Runtime Engine

Parameters

FEVER Core Components
Figure 1: Architecture of FEVER

Figure 2: GUI of FEVER

to a small subset of the most likely matching entity pairs. Besides
the CrossJoin (which retains all possible entity pairs of the Carte-
sian product) FEVER supports disjoint (e.g., (multi-pass) sorted
neighborhood) as well as overlapping blocking methods (e.g.,
bigram indexing, canopy clustering). Disjoint methods build mu-
tually exclusive blocks, whereas overlapping methods may result
in overlapping blocks of entities. All blocking operators have to
specify a blocking key. Additional parameters such as the window
size for the sorted neighborhood operator might be required.
The match operators form an integral part of the operator li-
brary. They require as input a mapping resulting either from the
previous application of a blocking operator or another match op-
erator. The input mapping specifies the pairs of entities that
should be compared by the match approach and, thus, limits the
match complexity. FEVER supports non-learning matchers as
well as learning-based matchers. For non-learning matchers
(NLM), our current implementation incorporates a variety of
previously proposed attribute matcher or similarity join algo-
rithms (e.g., EdJoin and PPJoinPlus [14], PartEnum [2]). The
similarity join operators match entities based on the similarity of a
single attribute pair. Further parameters include the (string) simi-
larity measure to be applied (e.g., edit distance, cosine, n-gram,
TF/IDF) and the threshold above which entities are considered to
match. A multi-attribute matcher is also supported which directly
evaluates and combines the similarity for multiple attribute pairs.
Learning-based matchers (LM) are complex match approaches
utilizing supervised learning algorithms such as SVM (support
vector machine), decision trees and logistic regression to auto-
matically find an effective combination of non-learning matchers
such as attribute matchers. In addition to an input mapping, LM
require a training mapping that contains manually labeled corre-
spondences representing examples for matching (similarity value
equals 1) and non-matching (0) entities. Furthermore, LM expect
as a parameter a list of attribute matcher specifications indicating
which similarity measure should be evaluated on which entity
attributes. The LM operator applies the specified similarity meas-
ures to the attribute pairs in the training mapping. The learner
uses the resulting similarity values to automatically determine a
combination of the specified similarity measures for a match deci-
sion. The learned combination is then applied during the LM exe-
cution to the input mapping to determine the match correspon-
dences.

Training mappings are provided by TrainSelect operators. They
select correspondences from an input mapping and prompt users
to label them interactively as match or non-match. By doing so
the correspondences are annotated with similarity 0 (non-match)
or 1 (match) and, thus, a training mapping is compiled. Labeled
correspondences are additionally stored in a repository to avoid
repeated labeling of the same correspondence. The input mapping
may be the result of a previous blocking operator execution, e.g.,
CrossJoin for smaller datasets. However, an approximate match
result may also be used as input to make sure that only "interest-
ing" correspondences are labeled, e.g., correspondences whose
entities fulfill a minimal similarity. The chosen TrainSelect opera-
tor determines the resulting training mapping of a specified size.
Currently, FEVER offers two operators for training selection:
Random and Ratio. Random randomly selects correspondences
from the input for labeling. Ratio reduces a randomly selected set
of correspondences so that a defined ratio between match and
non-match correspondences is guaranteed. This approach is help-

ful to avoid an over-fitting of the learning-based match approach.
The TrainSelect operators support a fair comparison of learning-
based matchers by ensuring that learners are provided with train-
ing data of the same size and quality.
Besides the operators for blocking, matching and training selec-
tion FEVER also offers auxiliary operators for combining and
filtering entities and mappings. Figure 3 shows a sample operator
tree merging the results of two independently executed match
approaches. The first approach applies a PPJoinPlus similarity
join [14] on the output of a Sorted Neighborhood blocking me-
thod. The second approach computes an EdJoin on the whole
Cartesian product (cross join) of entity pairs.

4. CONFIGURATION STRATEGIES
An operator tree typically comprises several operators each hav-
ing several parameters that need to be specified in order to apply
the operator tree to a match problem. Typical operator parameters
have been discussed above. Permissible parameter values can
mostly be defined by a set of possible values, or by a range of real
or integer numbers. For example, the similarity join operator
PPJoinPlus (see Figure 3) has a set parameter to specify the simi-
larity measure to be applied (Cosine or Jaccard in this case) and a
range parameter for the similarity threshold.
We further distinguish between bounded and free parameters. A
bounded parameter is already assigned a value through the user in
the operator tree definition. Parameters that are not bounded are
called free parameters. They are treated as parameters of the op-
erator tree and, thus, have to be assigned a value dynamically
according to a configuration strategy. For the example in Figure
3, the names of the attributes to be compared are bound parame-
ters (manually provided) while the similarity function and thresh-
old are free parameters.
An assignment of all free parameters of an operator tree with a
valid value is called a parameter setting. For operator trees with-
out learning-based match operators the parameter setting is suffi-
cient for the configuration. Training-based operator trees addi-
tionally require a training mapping for the configuration. To allow
for comparative evaluations, we take an effort-based approach.
We evaluate the quality of an operator tree against the effort spent
to determine the match configuration. We consider both, the
parameterization and the labeling effort. The parameterization
effort can be represented as the number of parameter settings that
have been evaluated to identify the best setting, i.e., the setting for
which the operator tree result has the best quality (e.g., F-
measure). For training-based workflows the labeling effort re-

Figure 3: Graphical representation of an operator tree (left)
incl. parameters for selected similarity join operator (right)

gards the number of correspondences that have to be labeled by
the user. We can thus ensure equal labeling effort for a compara-
tive comparison of different training-based approaches. Parame-
terization and labeling effort are considered independently and are
not set off into a single effort measure. This facilitates an analysis
of the reached match quality measured in terms of a quality meas-
ure (e.g. precision, recall, f-measure) against the effort spent for
parameterization as well as for labeling. In future work, we will
investigate how to automatically determine a good trade-off be-
tween the expended effort and the reached quality.

The evaluation of an operator tree is subject to a specified maxi-
mal labeling effort M and maximal parameterization effort N.
Hence, for training-based operator trees we restrict the user to
label M training pairs. Additionally, we generate N different pa-
rameter settings according to a specified configuration strategy
and determine from all obtained evaluation results the best ones.
A configuration strategy takes as input the free parameters of an
operator tree and the maximal parameterization effort N. To gen-
erate N different parameter settings FEVER currently supports the
following configuration strategies. In a user defined strategy the
parameter settings are completely specified by the user. This man-
ual strategy can be applied if a defined set of parameter values
should be evaluated, e.g., a threshold parameter value varies from
0 to 1 in 0.05 steps. The random strategy is a straightforward
way that assigns parameter values out of their possible values
randomly, i.e., N parameter settings are selected by random as-
signment of parameter values. The grid strategy realizes a simple
grid search, dividing the multidimensional parameter space into a
uniform grid. The coarseness of the grid is controlled by the num-
ber of parameter settings N and, thus determines the search effi-
ciency and the quality of the solution. The sophisticated gradient
descent strategy is more goal-oriented and iteratively refines a
parameter setting by considering the quality of previously gener-
ated settings. We have adapted the Hooke-Jeeves method [6] for
this strategy. Note that all (except user-defined) strategies are
independent from the match approach modeled by the operator
tree. Thus the configuration strategies can be applied to different
match workflows.

5. DEMONSTRATION DESCRIPTION
Our demonstration will illustrate how FEVER is used to model
and evaluate entity resolution approaches for different datasets.
First, we will show how to set up typical match workflows with
FEVER. For providing the necessary input sources of a match
task we will demonstrate the data import from file and from a
database. We then show how to interactively construct an entity
resolution approach by selecting and adding operators to the op-
erator tree. We will start with a very simple operator tree, e.g.,
consisting of just one blocking and one matching operator. The
tree can then be executed and the resulting mapping inspected. To
analyze the sensitivity of the operator tree towards the chosen
configuration we will provide the perfect mapping and apply the
user defined configuration strategy to test some manually selected
configurations. To showcase a fair comparison evaluation we will
define an alternative operator tree for the same input sources and
demonstrate the application of the random, grid or gradient de-
scent configuration strategy.
We will save both simple trees as building boxes and then set up a
third more complex tree reusing the simple trees as sub-trees of a
merge operator. This allows for a comprehensive analysis and a

study of whether the sub-tree combination may improve the over-
all result quality and - if yes - how the sub trees should be com-
bined. Another demonstration scenario focuses on the parameteri-
zation and effort-based comparison of learning-based operator
trees. In particular, we can demonstrate the influence of training
data by varying the size and selection method. Furthermore, we
can compare the effort and quality between learning-based and
non-learning-based entity resolution methods.
All evaluation results can be visually displayed by graphs such as
the one illustrated in Figure 2 indicating the F-measure results for
three operator trees under different configuration effort values. In
the shown example, a simple operator tree with few parameters
such as operator tree 1 needed a very small configuration effort to
reach a stable level. For low configuration efforts the medium-
sized and complex operator trees were inferior to this simple op-
erator tree, but with more configuration effort the medium tree
eventually outperformed the simple match workflow.
We finally demonstrate how FEVER can be used to fine-tune a
selected match workflow. We do this by setting a relatively high
parameterization effort and inspect the parameter settings for the
best-performing configurations. The found settings can then be
applied as a manually specified configuration for a larger or simi-
lar match task.

REFERENCES
[1] Baxter, R., Christen, P., Churches, T.: A comparison of fast

blocking methods for record linkage. Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, 2003.

[2] Arasu, A., Ganti, V., Kaushik, R.: Efficient Exact Set-
Similarity Joins. VLDB, 2006.

[3] Chaudhuri, S., Chen, B.-C., Ganti,V., Kaushik, R.: Example-
driven design of efficient record matching queries. VLDB,
2007.

[4] Cohen, W.W., Ravikumar, P., Fienberg, S. E.: A Comparison
of String Distance Metrics for Name-Matching Tasks. IIWeb,
2003.

[5] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate
Record Detection: A Survey. IEEE Transactions on Knowl-
edge and Data Engineering 19(1), 2007.

[6] Hooke, R., Jeeves, T.A.: Direct search solution of numerical
and statistical problems. Journal of ACM, Volume 8, 1961.

[7] Köpcke, H., Rahm, E.: Training Selection for Tuning Entity
Matching. QDB/MUD, 2008.

[8] Koudas, N., Sarawagi, S., Srivastava, D.: Record linkage:
Similarity measures and algorithms. SIGMOD, 2006.

[9] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler,
T.: Yale: Rapid Prototyping for Complex Data Mining
Tasks. SIGKDD, 2006.

[10] Neiling, M., Jurk, S., Lenz, H.-J., Naumann, F.: Object iden-
tification quality. DQCIS, 2003.

[11] Rahm, E., Do, H.-H.: Data Cleaning: Problems and Current
Approaches. IEEE Data Engineering Bulletin, 23(4), 2000.

[12] Thor, A., Rahm, E.: MOMA - A Mapping-based Object
Matching System. CIDR, 2007

[13] Weis, M., Naumann, F., Brosy, F.: A Duplicate Detection
Benchmark for XML (and Relational) Data. IQIS, 2006.

[14] Xiao, C., Wang, W., Lin, X.: Ed-Join: An Efficient Algo-
rithm for Similarity Join with Edit Distance Constraints.
VLDB, 2008.

