
AL$MONY: Exploring Semantically-Assisted Matching in
an XQuery-Based Data Mapping Tool

M. Carey1, S. Ghandeharizadeh2, K. Mehta1, P. Mork3, L. Seligman3, S. Thatte1

1BEA Systems
2315 North First Street

San Jose, California 95131
405-570-5363

{mcarey,kattul,sachin}@bea.com

2Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
213-740-4781

shahram@usc.edu

3The MITRE Corporation
7515 Colshire Drive
McLean, VA 22101

703-983-1465

{pmork,seligman}@mitre.org

ABSTRACT
In this paper, we describe an in-progress effort to augment the
data integration capabilities of a service-oriented data integration
product with the advanced matching capabilities of a knowledge-
based schema matching workbench, thereby providing a guided,
interactive, and “what”-oriented design environment for use by
data architects and integration engineers. The data integration
product is the BEA AquaLogic Data Services Platform, which
provides a declarative, XML-based foundation for integrating and
service-enabling heterogeneous enterprise data sources in order to
deliver data services for use by SOA applications. The schema
matching tool is the Harmony system from MITRE, a state-of-
the-art prototype system that maintains a growing knowledge base
of matching information and employs a composite matching
architecture beneath a rich UI to guide the ranking and decision-
making processes involved in schema matching. We motivate this
work, review the capabilities of each of the systems, and sketch
the architectural approach that we are taking to combining the two
systems into a synergistic whole.

1. INTRODUCTION
A growing challenge faced by many enterprises today is how to
access and analyze data residing in different sources such as
database management systems (DBMSs), legacy systems, Web
services, and XML files to name a few. This is due to three forms
of heterogeneity, see Figure 1. The first, commonly termed
physical heterogeneity, is due to the fact that different sources
have different APIs and data formats. For example, an RDBMS
source may provide a JDBC or ODBC interface, a file system a
bytestream API to access XML files in unparsed character form,

and a Web service source might be accessed using JAXRPC.
Once this form of heterogeneity is resolved, the formal
representation used by the alternative systems to describe their
data might be different, sometimes termed logical heterogeneity.
For example, one system may provide a relational representation
while another provides an XML one. Most often the participating
systems also exhibit differences in conceptual organization of
data even though they pertain to the same application. This is
commonly termed semantic heterogeneity and occurs when
independent designers model the requirements of the same
application. There are several reasons for having semantic as well
as conceptual heterogeneity, ranging from enterprises acquiring
one another to evolution of business units that merge after having
developed systems that address their individual data needs [6].

A data integration system should address all three forms of
heterogeneity of its target data sources. By doing so, it becomes a
middleware layer that understands the conceptual, logical and
physical organization of data in each participating data source. Its
output is an integrated view that then pertains to an abstraction
that truly serves the needs of the enterprise.

The framework that empowers an integration engineer to author
the desired abstraction layer is the focus of this paper. The ideal

Figure 1: Semantic, logical and physical heterogeneity.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
International Workshop on Semantic Data and Service Integration
(SDSI’07), September 23, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

framework would be “what”-oriented, requiring the engineer to
specify little more than the desired final abstraction and the
participating data sources. In response, the framework determines
the different forms of heterogeneity and how they are to be
resolved. This is as compared to a “how”-oriented framework that
requires the engineer to specify how the system should resolve
heterogeneity. For example, BEA’s ALDSP 2.5 [2, 3] system
provides a “what”-oriented interface to handling physical and
logical heterogeneity. Its approach to semantic heterogeneity is
“how”-oriented, however, because the engineer is required to
have a priori knowledge of all data sources and to author the
mapping expressions that instruct the system on how to integrate
the data sources to resolve semantic heterogeneity.

A “what”-oriented framework is desirable for two reasons. First,
it minimizes the amount of data source specific (e.g., relational
DBMS such as Oracle and IBM’s DB2, WSDL of W3C for Web
services) knowledge required from the engineer to integrate data,
enabling the engineer to focus on the final requirements of the
enterprise. Second, at times, the final applications dictating the
abstraction desired from a data integration effort are fluid and
their requirements change continuously. This is particularly true
during the early phases of an integration project life-cycle. A
“what”-oriented framework empowers the engineer to rapidly
change the integrated abstractions to focus on application
changes.

To realize a more “what”-oriented framework, we propose to
build on the strengths of two complementary systems: BEA’s
AquaLogic Data Services Platform (ALDSP) [2, 3] and MITRE’s
Harmony [9, 10]. ALDSP employs a declarative foundation (not
unlike [13]) to enable a user to design, develop, deploy, and
maintain a framework that understands both the logical and
semantic heterogeneity of data sources. Harmony automatically
suggests, at a high level, possible semantic correspondences
between (at least) two schemata and provides an intuitive GUI to
enable a user to refine those correspondences. The resulting
combined system is the AquaLogic

data services platform
integrated with harMONY, AL$MONY.

The AL$MONY design decisions described here are based on a
combination of our joint work, our experience with current BEA
customers who have been developing services using ALDSP, and
Harmony case studies [9]. In terms of joint work, we have
exchanged ideas and software and have begun the process of
defining and prototyping the relevant inter-system APIs. This
workshop paper therefore describes the design of AL$MONY
based on our progress thus far and our plans. The rest of the paper
is organized as follows. Sections 2 and 3 provide overviews of
ALDSP and Harmony, respectively. Section 4 describes the
AL$MONY vision and how it synergistically integrates the best
of ALDSP and Harmony. Section 5 concludes the paper.

2. AquaLogic Data Services Platform
The AquaLogic Data Services Platform (ALDSP) provides a
service-oriented integrated view of enterprise data sources. A
given view of enterprise data, termed a dataspace, consists of a set
of interrelated data services. A data service has a “shape”,
describing its information content. It may have a set of read
functions, which are service calls that provide various ways to
request access to one or more instances of the data service's
business objects. In addition, a data service may include

procedures that change its instances, i.e., insert, delete, and
update. Moreover, a data service may have navigation functions
to traverse relationships from one instance from one data service
(e.g., Customer) to one or more instances of another (e.g., Order).
ALDSP represents this shape information using XML Schema.
Functions and procedures are represented as XQuery functions
that can be invoked via Java calls, via Web services, in queries,
and/or used to create other user defined data services.

Figure 2 provides a high-level summary of the ALDSP approach
to data services. The bottom right consists of a physical collection
of data sources external to ALDSP. These might include a mix of
databases, Web services, packaged applications, legacy
mainframe data, and other data sources. When an integration
engineer points ALDSP to an enterprise data source, ALDSP
introspects the source’s metadata; it does so, for example, by
obtaining the SQL metadata for a relational data source or
processing the WSDL file for a Web service. This introspection
guides the automatic creation of one or more physical data
services that make the data source available for use in the XML
world of ALDSP. Applying this process to a relational data source
produces one data service per table or view. The return shape in
this case is the natural XML representation of the table or view
schema. In the presence of discoverable foreign key constraints,
ALDSP also produces navigation functions across different data
services. ALDSP introspects a Web service by processing its
WSDL to yield one data service per distinct Web service
operation return type. Multiple Web service operations might
have the same return type and are modeled as multiple functions
for the data service. The input signature of each function will be
dictated by the input of the operation as specified by the WSDL.
Other functional data sources are similarly modeled. The result,
referred to as the physical model in Figure 2, is a uniform,
“everything is a data service” view of the available data sources.

The center of Figure 2 shows the view of data seen by client
applications. Instead of interfacing with the underlying data
sources directly, or even with the more uniform physical model,
an ALDSP client application sees a meaningful set of interrelated
logical data services. Each such data service is an abstraction of'
some coarse-grained entity that was chosen to be meaningful to
the integration engineer and to serve as a reasonable unit of
interaction for client-server calls. Each logical data service is
internally composed from one or more data services of the
physical model (or logical data services belonging to lower
abstraction levels) using XQuery as the service composition
language. Data services belonging to lower abstraction levels
appear to the composer as functions that consume and produce
simple- and complex-typed XML data. XQuery is a declarative,

Figure 2: Overview of ALDSP

functional language well-suited to orchestrating such functions
and also to transforming XML data in order to produce the
desired business object shapes out of the information accessible
from the underlying services.

2.1 An Example of How to Build a Data
Service Using XQuery
To illustrate how one would use ALDSP to build a data service,
consider an integration engineer who wishes to build a logical
data service to retrieve customer profile information. Assume the
relevant information resides in several different physical data
sources. Suppose one relational DBMS, say Oracle, contains
CUSTOMER and ORDER tables, while another DBMS, perhaps
DB2, contains customer CREDIT_CARD information. These data
sources are kept separate for security and auditing purposes. In
addition to these relational data sources, assume a Web service
provides a credit rating operation named getRating. The input to
getRating is the customer’s name and social security number. Its
output is an integer value representing the credit rating for the

input customer. The engineer registers these with ALDSP by
simply pointing it to each physical data source.

Next, the engineer may author a function named getProfiles() to
retrieve all instance of the integrated view. Figure 3 shows a
screen-shot of the XQuery design view of ALDSP while
performing this task. Its right side shows the desired integrated
view. (Section 2.2 describes how the engineer may construct this
target view using either a top-down or a bottom-up approach.) An
instance of the target will consist of one customer, nested order
data, nested credit card data, and a credit rating for a given
customer. The engineer has already identified the relevant data
sources by dragging them onto the canvas, see Figure 3. In
addition, the engineer has employed this interface to map
elements of the physical data sources to those of the target
schema.

Further examination of Figure 3 reveals that the engineer has
correlated the different physical data sources with one another by
specifying join conditions between them. For example, the
engineer has specified joins between the CUSTOMER and
CREDIT_CARD data sources using their CID element.

Figure 3: XQuery design view.

Figure 4: PROFILE data service.

Figure 5: XQuery source view.

Figure 4 shows the different functions and procedures specified
by the engineer on the PROFILE data service, such as functions
getProfilesByName() to obtain the integrated profiles for all
customers with a specific name, getProfilesByID() to retrieve the
profile for a customer by customer id, and getProfilesByRating()
to get profiles for all customers with a specified credit rating.
Specification of these functions is trivial; they can be defined as
selections using getProfiles(), which has encapsulated all of the
integration and correlation details for the customer profile data
service as a “get all instances” function. This “integrate once and
reuse” design pattern for data services is extremely important as it
is the key to achieving data independence in ALDSP.

The lower left side of Figure 4 lists the navigation functions, i.e.,
getCOMPLAINTs() to retrieve instances from the COMPLAINT
data service and getPAYMENTs() to retrieve instances of
PAYMENTS data service pertaining to a given customer profile
instance. Also, note the presence in the figure of the procedures
createPROFILE, updatePROFILE, and deletePROFILE which
create, update, and delete instances of PROFILE. Finally, the
right side of Figure 4 shows the lower-level data services that
constitute the PROFILE data service.

Figure 5 shows the actual XQuery source that ALDSP generates
for one of the data service functions specified on the PROFILE
data service (namely the function from Figure 3). This method
getProfiles() takes no arguments and is responsible for computing
and returning the complete profiles for all customers that appear
in the CUSTOMER table of the first relational database. An
XQuery function provides access to the table contents in the body
of the query. For each customer returned by that function,
getProfiles() accesses the ORDER table to create the nested
<ORDERS> element. In this example, this access is via a
navigation function that ALDSP automatically created for this
purpose based on the foreign key constraint of the ORDERS table
on the CUSTOMER table. Also for each customer, the
CREDIT_CARD table in the second DBMS is accessed, and
finally the getRating operation of the credit rating Web service is
invoked. The result of getProfiles() is a series of <PROFILE>
elements, one per CUSTOMER, which integrates all of this
information from the different data sources. The specification
shown in Figure 5 is optimized by ALDSP prior to being executed
[2].

2.2 ALDSP Lifecycle
As should be evident from the example, ALDSP assumes the
engineer has knowledge of the desired target view and how the
physical data sources match and map both with the target schema
and with one another. This might have been specified by the
requirements of an application and its desired level of abstraction.

The engineer may populate the desired target schema by taking
either a top-down or bottom-up approach. With a top-down
approach, the engineer represents the target schema in XSD and
imports it into ALDSP’s data service view to construct the shape
of the target data service, see Figure 3. With a bottom-up
approach, the engineer again employs the XQuery design view,

but in this case specifying no initial shape for the target. This
results in an empty “return” schema. Next, the engineer registers
the various physical data sources and then incrementally
incorporates their schemas into the overall “return” schema for
the data service as a side effect of the editing operations involved
in building the first read function for the data service.

With both top-down and bottom-up approaches, ALDSP assumes
that the engineer has a priori knowledge of the relevant data
services, elements of source data services that are equivalent to a
desired target data element, and the transformations (if any are
needed) to map these elements. For large target schemas requiring
data from numerous data sources, the integration effort may
become difficult, motivating the need for a tool such as Harmony
to assist the engineer with the matching process. Such a tool is
especially useful when the engineer’s a priori knowledge of
physical and target data services is lacking.

3. Harmony
In the preceding section, we explained how the ALDSP IDE
provides a convenient GUI for incrementally collecting, from the
integration engineer, a set of known schema correspondences and
mapping them into an executable XQuery function. In this
section, we describe Harmony [9], a collection of tools that help a
user to quickly identify the relevant schema correspondences.
Armed with these correspondences, the integration engineer could
more efficiently use ALDSP to author an XQuery function.

We begin this section by describing the Harmony match engine
that generates, for each possible correspondence, a confidence
score that indicates the extent to which a pair of schema elements
appear to match. The match engine includes a suite of match
voters, each of which considers a particular body of evidence. A
vote merger then combines the information provided by the voters
to generate a single score. Unlike other schema matching tools,
the Harmony match engine considers both the quality of the
available evidence and the quantity of that evidence.

Next we cover the Harmony GUI, which provides an intuitive
interface for the integration engineer to indicate which of the
possible schema correspondences are correct, and which are not.
Possible correspondences indicated by the match engine are
color-coded based on the confidence score. The GUI also
provides a number of filters that allow the integration engineer to
focus his attention. For example, the integration engineer can
suppress all of the possible correspondences for which the
confidence score is beneath some threshold.

We then describe how an integration engineer would use
Harmony (in its current form) as part of an integration project.
Based on our experiences using Harmony, we realized it is not
trivial to couple Harmony with other schema integration tools.
This realization inspired the development of the Harmony
integration workbench originally described in [9]. Section 4
describes our current effort to use this workbench to implement
AL$MONY, the integration of ALDSP with Harmony.

3.1 Harmony Match Engine Overview
The architecture for Harmony is shown in Figure 6. As indicated,
it operates as follows. First, schemas are loaded and normalized
into a canonical graph-based representation, and then the names
and text definitions associated with schema elements undergo
linguistic preprocessing (including tokenization, stemming, and
stopword removal).The Harmony match engine is (in the parlance
of [11]) a composite matcher, in that several match voters are run
in parallel, and these results are combined by a vote merger. Each
match voter considers some source of evidence to generate a
match score for a particular (source element, target element) pair.
Current match voters include bag-of-words, in which each
element name and its definition is considered a “document” and
the distance between each source and target element is determined
using standard information retrieval techniques, bag-of-words
with thesaurus expansion, edit distance of element names, and an
acronym matcher. There is a built-in generic thesaurus (Roget);
however, domain-specific thesauri and acronym dictionaries can
also be used.

The standard approach for arriving at confidence scores is to
compute the ratio of positive evidence to total evidence. However,
this approach ignores the fact that, for a given evidence ratio,
more evidence is better than less evidence. Moreover, by
considering the amount of evidence observed by each match
voter, the vote merger can more flexibly combine match scores.

In the Harmony match engine, match scores range from –1 to +1;
intuitively, a match score of 0 indicates that, based on the
evidence, the likelihood of a match is impossible to determine. As
the ratio of positive evidence to total evidence increases, the
match score should increase. For a fixed ratio, as the total
evidence increases, the match score should also increase.

Based on this intuition, we can establish some theoretic bounds. If
there is an infinite amount of positive evidence, the match score
should equal +1. However, if there is no positive evidence, but an
infinite amount of negative evidence, the match score should
equal –1. Finally, if there no evidence (of either type), the match
score should be 0.

Using these bounds, in [10] we show how to compute such a
match score. For a given (source element, target element) pair, let
poe represent the amount of positive observed evidence, and toe
represent the total observed evidence. Given these values, the
match score (ms) is defined as follows.

)/(1

/1

)1(

11
1

ln
poekx

j

poekx

e
toek

poekx

ms

The numerator in this equation is based on the ratio of positive to
total observed evidence. The denominator in this equation is a
scaling factor based on the amount of positive observed evidence.
Each match voter measures the observed evidence differently;
in [10], we also describe a way to quantify evidence based on the
documentation used to describe schema elements.

The vote merger is responsible for combining multiple match
scores into a single confidence value. This combination is based
on multiple factors including the score (ms) generated by a given
match voter, the amount of evidence available to that match voter
(ef), and the weight assigned to that match voter. For each (source
element, target element) pair, the match voter generates a single
confidence value.

The basic vote merging algorithm is a weighted average of the
match scores generated by each match voter. If we assume that
each match voter v is weighted equally, then the final confidence
score (conf) is defined as follows, where V is the set of all match
voters.

Vv

Vv
v

ef

msef
conf

In general, ef needs to range from zero (indicating the absence of
evidence), to one (given infinite evidence). Thus, any function
that maps toe to the interval [0, 1] fulfills this condition. Note,
though, that the match score is close to zero when there is little
total evidence, and approaches ±1 as the total observed evidence
approaches infinity. Based on this observation, Harmony uses the
absolute value of the match score as ef.

Vv
v

Vv
vv

ms

msms
conf

||

||

Intuitively, this equation weights the match score generated by
each match voter based on the magnitude of that score. This
simplification works because a match score of zero indicates
insufficient evidence to determine if the source element and target
element match. A score close to ±1 indicates strong evidence
either in support of a match, or against a match.

The Harmony match engine iterates over every possible (source
element, target element) pair and generates a confidence score.
The integration engineer can visualize these values using the
Harmony GUI.

Linguistic
Preprocessing

Loader /
Normalizer

Vote
Merger

Structural
Matcher

Bag of Words:
Names and Definitions

Bag of Words with
Thesaurus Expansion

Edit Distance (Names)

Acronym Matcher

Input
Schemas

Generic
Thesaurus

Domain
Thesauri

Acronyms/
Abbreviations

Match VotersMatch Engine

Mapping
Matrix

Normalized
Schemas

Learning

GUI

Figure 6: Architectural overview of Harmony.

3.2 Harmony GUI Overview
Like many similar products, the Harmony GUI displays the
source schema on the left side of the screen, and the target schema
on the right side of the screen (see Figure 7). Potential
correspondences are shown as lines (links) connecting a source
element to a target element. Harmony color-codes these links
based on the confidence score associated with that link. Green
links indicate large positive confidence scores, yellow links
indicate mediocre positive confidence scores, and red links
indicate negative confidence scores.

Using the GUI, the integration engineer can accept and reject
potential links. He can also manually draw lines between a source
and target element to indicate a true correspondence.

The Harmony GUI supports a variety of filters that help the
integration engineer focus his attention. These filters are loosely
categorized as link filters and node filters. A link filter is a
predicate that is evaluated against each candidate correspondence
to determine if it should be displayed. A node filter determines if
a given schema element should be enabled. An enabled element is
displayed along with its links; a disabled element is grayed out
and its links are not displayed.

Harmony currently supports three different link filters, all of
which show up as options on the right side of Figure 7. First, a
confidence slider filters links based on the confidence assigned to
a link by the Harmony match engine. Only links that exceed the
specified threshold are displayed. Links that were drawn by the
integration engineer, or were explicitly marked as correct, have a
confidence score of +1. Similarly, links that have been explicitly
rejected are given a score of –1.

The second link filter determines if a link should be displayed
based on whether it is human-generated or machine-suggested.
The final link filter displays, for each source and/or target schema
element, only those links whose confidence score is greater than
all other links for either the source schema element or the target.

For node filters, Harmony includes a depth filter and a sub-tree
filter. The former enables only those schema elements that appear
at a given depth or above. For example, in an ER model, entities
appear at level 1, while attributes are at level 2. Thus, using this
filter, the engineer can focus exclusively on matching entities.
The sub-tree filter enables only those elements that appear in the
indicated sub-schema. In Figure 7, a sub-tree filter has been
applied to the source schema on the left. By combining this filter
with the previous, the engineer can restrict his attention to the
entities in a given sub-schema.

Figure 7: Harmony provides several mechanisms for focusing the integration engineer’s attention.

The Harmony GUI also supports iterative refinement through two
mechanisms: When the match engine is invoked after some
correspondences have been explicitly accepted or rejected (i.e.,
set to +1 or –1), this information is passed to the match engine
and used in two ways. First, each match voter can learn from the
user’s choices and refine any internal parameters [10]. Second,
the Harmony vote merger weights the match voters based on their
performance so far.

In addition to accepting and rejecting specific links, the engineer
can mark a sub-tree as complete. This action has two effects.
First, it accepts every link pertaining to that sub-tree as accepted
(if currently visible), or rejected (otherwise). Once a link has been
accepted or rejected, the match engine will not modify that link.
This ensures that links do not mysteriously disappear or appear
should the user subsequently invoke the Harmony engine.
Second, the action updates a progress bar that tracks how close
the engineer is to having a complete set of correspondences. This
feature was introduced at the request of integration engineers
working on large schema integration problems that involve
several dozen iterations. In the next section, we describe how an
integration engineer uses the match engine and GUI to solve data
integration problems.

3.3 Harmony Lifecycle
In [9], we introduced a task model for data integration. At a high
level, we consider 17 integration tasks, grouped into five phases:
schema preparation, schema matching, schema mapping, instance
integration and finally system implementation. During the schema
preparation phase, the source and target schemata are identified
and transformed to a canonical model so that correspondences can
be identified during the matching phase. These semantic
correspondences are formalized in the third phase as explicit
logical mappings. Once schema integration is complete, instance
integration reconciles any remaining discrepancies. In the final
phase the integration solution is deployed.

The Harmony system targets the first two phases: schema
preparation and schema matching. (ALDSP supports end-to-end
integration by providing tools for schema preparation, schema
mapping and system implementation.) Harmony supports schema
preparation by providing schema importers for common formats
such as XML Schema, RDF and OWL. In addition, the schemata
can be augmented by introducing project-specific thesauri and
acronym dictionaries.

Once the integration engineer imports the source and target
schemata, the GUI displays these on the left and right sides of the
screen. The engineer can then manually identify semantic
correspondences or run the Harmony match engine. Most of the
engineer’s time is spent deleting spurious matches and manually
drawing links between elements missed by the match engine.

Eventually, the integration engineer reaches a point wherein all of
the source and target schema elements have been matched (or
marked as complete sans match). At this point, the engineer can
export the project in several formats such as an Excel spreadsheet.
The default format is to save the project as an RDF file in which
each resource is a link between a source schema element and a
target schema element. Because this file is plain RDF, it can be
manipulated programmatically using an RDF query language.

Unfortunately, it is still difficult to import this format into another
integration tool (such as ALDSP). More generally, we have yet to

observe a pair of integration tools from different vendors that can
seamlessly interoperate. For a simple integration task involving
only a dozen schema elements, we found that we needed to use
five separate tools, with custom glue between each pair (!).

This experience led us to consider creating a generic integration
workbench that would allow heterogeneous data integration tools
to communicate with one another via a shared blackboard and
messaging framework. As a result, we introduced just such an
integration framework in [9], which we summarize in the next
section.

3.4 Integration Workbench
Our initial attempts to integrate Harmony with other schema
integration tools revealed a key barrier to tool interoperability.
While we as schema integration experts trumpet the advantages of
a modular, federated architecture that presents a unified view of
multiple data sources, we have not applied that same insight when
developing our own systems. While some vendors may be moving
in this direction internally, to support interoperability of their own
tools, they have not published their approaches or interfaces.
There would be obvious benefits to user organizations and small
software companies to the development of a standard framework
for combining schema integration tools.

At the core of the Harmony workbench design is an integration
blackboard, which is a shared knowledge repository. Mediating
between the blackboard and the various schema integration tools
is a workbench manager. The workbench manager provides
several shared services, including transaction management, event
services, and query evaluation. The following sections describe
the integration blackboard and the workbench manager.

The integration blackboard (IB) is a shared repository for
information relevant to schema integration that is intended to be
accessed by multiple tools, including schemata, mappings, and
their component elements. We propose using RDF [3] for the IB,
because: 1) it is natural for representing labeled graphs, 2) one
can use RDF Schema to define useful built-in link types while
still offering easy extensibility, 3) it is vendor-independent, and
4) it has significant (and growing) development support.

The basic contents of the IB are schema graphs and mapping
matrices. However, in RDF, any element can be annotated; we
use this feature to enrich the graphs and matrices with additional
information. We predefine certain annotations using a controlled
vocabulary; new integration tools can add others as required.

The IB represents a schema as a directed, labeled graph. The
nodes of this graph correspond to schema elements. In the
relational model, these elements include relations, attributes and
keys. In XML, they include elements and attributes. The edges of
a schema graph correspond to structural relationships among the
schema elements. These edges are object properties whose subject
and object are both schema elements. For example, in the
relational model, contains-table edges are used to link a database
to the tables it contains. Tables are linked to attributes via
contains-attribute edges. In XML, elements are linked to sub-
elements via contains-element edges, and to attributes via
contains-attribute edges. For many schema languages, the edge-
types are specified by the modeling language, but with ontologies
they are extensible.

Inter-schema relationships can be represented conceptually as a
mapping matrix. This matrix consists of headers (describing

source and target elements) plus content: a row for each source
element and a column for each target element. Mapping elements
are also annotated: First, each cell is annotated with
confidence-score, which ranges from –1 (definitely not a match)
to +1 (definitely a match). Each row of the matrix is further
annotated with a variable-name, and each column with code
snippets that reference these variables. Finally, the matrix as a
whole has a code annotation, which assembles the code snippets
from the individual cells into an executable whole. The ability to
attach code and other annotations makes mapping matrices a
generalization of similarity matrices [1, 5]. While similarity
matrices share knowledge only among multiple matchers,
mapping matrices can be used by matchers, mappers, and code
generators.

All interaction with the IB occurs via the workbench manager,
which coordinates matchers, mappers, importers, and other tools.
The manager provides several services: First, it provides
transactional updates to the IB. Second, following each update, it
notifies the other tools using an event. Third, the manager
processes ad hoc queries posed to the IB. The architecture for the
integration workbench appears in Figure 8.

Loaders are used during schema preparation to parse a schema
from a file, database or metadata repository (including ancillary
information such as definitions from a data dictionary) into the
internal representation used by the IB. When the user invokes a
loader, that tool places the new objects in the IB, which extends
the mapping matrix accordingly and advises the other tools.

Schema matching can be performed manually, as is the case for
most commercial tools, or semi-automatically. Harmony supports
both approaches. A match tool updates the cells of the mapping
matrix. When correspondences are generated automatically, all of
the interactions with the IB are wrapped in a transaction; no
events are generated until the mapping matrix has been updated.

Schema mapping can be performed manually or automatically as
well [7], at least in principle, although we are unaware of any
commercial automatic schema mapping tools. A mapping tool
updates the code associated with each column. Both matchers and
code generators may need to listen for these events to update their
internal state.

Finally, a code-generator assembles the code associated with each
column into a coherent whole. Thus, the code-generator must
understand how to assemble code snippets based on the structure
of the target schema graph.

Tools generate events whenever they make any change to the
contents of the IB. The workbench manager propagates these
events to allow any tool to respond to the update. A different type
of event is generated for each major component of the IB so that a
tool can register for only those events relevant to that tool.

A schema loader generates a schema-graph event when it imports
a schema into the workbench. Any tool with a GUI listens for
these events and refreshes the display. A mapping-cell event is
generated when a user manually establishes a correspondence.
Multiple such events are triggered by an automatic matching tool.
A mapping tool can listen for these events to propose a candidate
transformation, such as a type conversion. Conversely, when a
mapping tool establishes a transformation, it generates a mapping-
vector event. Match tools listen for these events to synchronize
the mapping cells with the updated row or column. A code

generation tool similarly listens for these events to synchronize
the assembled mapping. The code generation tool, in turn,
generates a mapping-matrix event when the user manually
modifies the final mapping.

The RDF blackboard and event model allow multiple integration
tools to interoperate. In the next section, we describe our initial
efforts to demonstrate this assertion by integrating Harmony and
ALDSP.

4. AL$MONY
The goal of the AL$MONY (pronounced “all money”) project,
short for AquaLogic

data services platform integrated with
harMONY, is to combine the strengths of ALDSP and Harmony
to provide an interactive user experience that facilitates the “easy”
creation of new data services from a large and possibly choppy
sea of enterprise data sources together with other, existing data
services that may already have been created. As such,
AL$MONY aims to simplify the matching and mapping of:

1) Source data services to a target schema. E.g., map the CID
element from the CUSTOMER source to the CID element of
the data service target schema in Figure 3.

2) Function outputs from available source data services to
function inputs (and/or to a target schema). E.g., map the
LAST_NAME and SSN elements from the CUSTOMER
source to the lName and ssn input document schema of the
getRating() Web service source call in Figure 3, and map
the result of the Web service call into the target schema of
the data service being defined.

3) Available data services together, to combine them via joins
or unions. E.g., create a join predicate between CID from
CUSTOMER and CID from CREDIT_CARD in Figure 3.

AL$MONY is designed to empower users to match and map data
rapidly and interactively starting with much less knowledge than
ALDSP requires today. Today, to build an integrated data
service, an ALDSP integration engineer must come armed with
knowledge of what/where the relevant data sources are and a

Integration Workbench

Workbench Manager

Schema
Loader

Schema
Matcher

Schema
Mapper

Code
Generator

Integration Blackboard
(stored in RDF)

Tool In terface

T
ransactions

Q
ueries

U
pdates

E
vents

Figure 8: Integration workbench architecture.

clear understanding of exactly how their schemas and their
instances need to be matched and mapped. If the integration
engineer lacks such in-depth, a priori knowledge of the data
sources or how they should be integrated, AL$MONY should
empower them to query and browse the metadata of the target
schema and the available data services to obtain the knowledge
needed to integrate them successfully. The kinds of questions
posed by the user for a matching and mapping task may include:

For a new (or ongoing) data service integration project, what
data services appear likely to be of interest?

For a given data service that has been determined to be of
interest, what other data services appear likely to be of
interest as well?

For a given element or attribute within an identified set of
interesting data services, what matches it within that set and
should therefore be considered for mapping?

These general questions cover a variety of more detailed, context-
specific questions that arise during the data service authoring
process. For example, when matching and mapping multiple data
services to the target schema of a new data service under
construction, the developer may wish to inquire: “I have as my
design goal the creation of a data service with target schema T –
so what existing data services have relevant matching attributes?”
Parts of this question are covered by the first two questions above.
Effective user interfaces will clearly be a key component for
enabling such context-specific questions to be asked in a useable,
transparent way. These may include wizards that guide the
developer through a set of question/answer screens specific to a
context (in this case source selection)

4.1 AL$MONY Lifecycle
A key challenge, both from usability and architectural angles, is
that AL$MONY must integrate the current Harmony and ALDSP
lifecycles into a single, more unified user experience. We plan to
realize this in two ways. Today, the Harmony model has a rather
“waterfall”-like nature (e.g., matching precedes mapping), while
the ALDSP data service editing UI is more interactive and
incremental but presumes perfect a priori knowledge. To couple
the two effectively, we will utilize the event model of the
Harmony workbench to populate its blackboard from an ALDSP
project. We will also integrate key features and ideas from the
Harmony user interface with those of the ALDSP XQuery editor.
Scale is another challenge, both in the number and sizes of data
source schemas. ALDSP and Harmony have both focused to date
more on “in the small” rather than “in the large” versions of the
bulleted questions above, but we would like AL$MONY to
eventually be capable of scaling up to the whole-enterprise level
(and beyond). On the user interface side, techniques such as those
presented in [12] offer a good start. We intend to build upon those
ideas and explore others as well.

As an example of lifecycle integration, when an integration
engineer asks AL$MONY to enable access to a new data source
such as a relational database management system, AL$MONY
will employ ALDSP’s metadata import facilities to also populate
the integration blackboard (IB) of Harmony. This should be
relatively simple because ALDSP represents its data sources in
XML Schema form, and transformation of XML Schema into
Harmony’s directed, labeled graph model already exists; see the

loader discussion of Section 3.4. Similarly, when the engineer
drags such a source onto the query canvas, a Harmony event will
be generated to add the source’s metadata to the current working
set of schemas for its matching algorithms to operate on.

4.2 AL$MONY User Experience
Extending the graphical XQuery editor of ALDSP with the
display-tailoring capabilities of Harmony’s user interface will
yield a much more effective user experience for the integration
engineer whose a priori knowledge is imperfect. When the
engineer constructs an integrated target view in a top-down
manner (see Section 2.2), after registering the shape of the target
data service, the engineer should then be able to inquire about
other data services that potentially relate to the elements of the
target schema. In response, AL$MONY can invoke Harmony to
obtain match suggestions with confidence scores and process
them to determine the data services most likely to be relevant to
the target data service. The color codes of Harmony can be used
to highlight the different sources in the XQuery graphical view:
green for positive, yellow for mediocre positive, and red for
negative confidence scores.

Once the set of suggested data sources has been provided, the
engineer can employ AL$MONY’s graphical cues to choose the
relevant data sources and drag-and-drop them onto the canvas of
XQuery’s graphical view. Graphical selection of an attribute of a
data service (either source or target) should then also trigger
AL$MONY to identify the potential matching elements of the
displayed data services. Once again, Harmony’s color coding can
be used to highlight these elements based on the computed
confidence scores. The engineer can then use Harmony-style link
and node filters to reduce screen clutter and explore the most
relevant matches, per the discussion of Section 3.2, within the
XQuery graphical mapping interface.

It is important to remember that the integration engineer is the
sole authority whose specified matches are final. In particular,
matches will be finalized implicitly in AL$MONY through the
creation of the concrete XQuery mapping expressions that the
engineer specifies via their graphical editing work. AL$MONY
must then support behavior similar to Harmony’s GUI when the
engineer accepts or rejects specific link matches. For this reason,
the engineer’s accept and reject decisions, inferred from their
XQuery editing actions, will lead AL$MONY to generate events
for the workbench manager of Harmony. Since XQuery editing is
an interactive and incremental process, and since data services
can also evolve further over time as things in the enterprise
change and require them to be changed as well, AL$MONY must
support an incrementally changing knowledge base of matching
information.

An interesting issue in the combined interface, which targets the
interactive production of mappings as opposed to “just” matches,
has to do with the role and the impact of type information. The
ALDSP XQuery editor attempts to keep the engineer on a path
where there is always a syntactically complete and fully type-
correct XQuery underlying the screen state. Matches that involve
differently typed source and target elements or attributes could be
used in AL$MONY to auto-suggest required type-conversions
and related computations. The acceptance of such matches and
mappings by the engineer can be remembered as a future hint
that, at least in the context of the schemas currently involved, this

particular type mismatch should not be interpreted by Harmony’s
type-based matching module as a negative contribution to the
likelihood of the validity of an overall match. More broadly, the
question arises of how the availability of the detailed mapping
expressions might be most effectively exploited to glean and
retain knowledge for use in future matching runs.

4.3 AL$MONY Architecture
The Harmony integration workbench includes a rich API for
interrogating the blackboard and for interacting with other
pluggable integration tools. To handle the ALDSP/Harmony
system interactions needed for the scenario above, we have
created a simplified “matcher SPI” (service provider interface)
for the ALDSP IDE to use to invoke the features of Harmony or
possibly other matching service engines. Thus far this API
enables ALDSP to ask Harmony to a) introduce manually
identified matches into its IB and b) access the matching
knowledge base and identify potential new semantic
correspondences among the current set of schemas. Using the
existing Harmony workbench API, we were able to implement
these two SPI methods with minimal code. The first method
essentially required three lines: 1) iterate over the set of manually
identified matches, 2) lookup the corresponding cell of the
mapping matrix, and 3) update the confidence score for that cell.
The second required four lines: 1) invoke the Harmony match
engine, 2) identify the modified cells, 3) iterate over these cells
and 4) add the potential match to the result. While these
interactions between Harmony and ALDSP are limited, the
evidence so far suggests that the two integration tools can be very
effectively integrated, with minimal effort, via the integration
workbench.

Ideally, AL$MONY should provide a plug-n-play framework so
that it can be customized with knowledge libraries useful for
different application domains. Harmony already supports the
import of domain-specific thesauri to be used to detect additional
candidate matches (e.g., that in the human resources domain,
“employee” might correspond to “worker”). Beyond simple
thesaurus-based term expansion, we would also like to support
more full-featured ontologies such as UMLS, a widely used
ontology of biomedical and health-related terms and their inter-
relationships. Harmony’s match algorithms could be extended to
use “semantic distance” between terms as evidence in assigning
scores for candidate matches. AL$MONY’s GUI must support
ontology export as well as import. Export is useful when the
user’s interaction with AL$MONY results in changes to a well-
established ontology such as UMLS. The user may then share
their exported ontology with other colleagues who are utilizing
AL$MONY for data integration activities in the same general
domain.

4.4 Moving Beyond Mapping
Last but not least, our long-term vision for the AL$MONY effort
extends beyond ALDSP/Harmony integration. A subsequent stop
on the road from “in the small” to “in the large” exploitation of
schema matching and semantic user assistance could involve the
injection of Harmony-style matching capabilities into enterprise
repository products such as the ALDSP Enterprise Repository,
ALER [14]. ALER today is capable of providing metadata
management functions for a variety of software assets, ranging
from business processes and Web services to other common

components and shared services (even whole applications).
ALER records and maps the relationships and interdependencies
that connect software assets in order to promote reuse, improve
impact analysis, and so on. A key aspect of reuse is discovery,
and in the world of SOA, many of the same source identification
issues that we described for ALDSP appear, but on a larger scale,
in the context of service and component discovery in an
enterprise repository.

A move toward integration in the large presents both challenges
and opportunities. Current match algorithms do not scale to
support discovery in large enterprise repositories such as the U.S.
Department of Defense Metadata Registry, with its over 200
conceptual models and over 150,000 attributes. In addition, it is
an open research question how to best leverage detailed
information on candidate matches to support discovery at the
enterprise scale. Finally, integration in the large presents the
following opportunity: Given an enterprise repository containing
thousands of services, a large number of mappings among them,
and many thesauri and ontologies, how can we use this growing
knowledge base to make continual improvements in our ability to
match and map? Recent work like [8] offers promising first steps
toward such a vision.

5. Conclusions and Future Research
In this paper, we have presented a snapshot of an in-progress
experimental effort between BEA Systems and MITRE to
enhance the capabilities of a service-oriented data integration
product (the BEA AquaLogic Data Services Platform) by guiding
its interactive, XQuery-based data mapping capabilities using the
composite matching recommendation and visualization features
provided by a state-of-the-art, knowledge-based schema matching
framework (Harmony). After examining some of the key
challenges facing today’s data architects and data integration
engineers, we reviewed the capabilities and strengths of the two
systems and identified the potential synergistic effects that we
believe the combination of the systems – dubbed the AL$MONY
system – can offer to users. We described the approach we are
taking to combining these two systems and discussed some of the
challenges that we face in doing so. We hope to complete this
integration effort during the remainder of calendar year 2007 and
to then evaluate its success by offering users of the current
systems an opportunity to take AL$MONY for a “test drive” on
some of their larger matching and mapping problems.

6. REFERENCES
[1] Bernstein, P. A., Melnik, S., Petropoulos, M., and Quix, C.

Industrial-Strength Schema Matching, SIGMOD Record, vol.
33, pp. 38–43, 2004.

[2] Borkar, V., Carey, M., Lychagin, D., Westman, T.,
Engovatov, D., and Onose, N. Query Processing in the
AquaLogic Data Services Platform. Proceedings of the
VLDB Conference, 2006.

[3] Brickley, D. and Guha, R. RDF Vocabulary Description
Language 1.0: RDF Schema. World Wide Web Consortium
(W3C®), 2003. http://www.w3.org/TR/rdf-schema/

[4] Carey, M. Data Delivery in a Service-Oriented World: The
BEA AquaLogic Data Services Platform. Proceedings of the
ACM SIGMOD Conference, 2006.

http://www.w3.org/TR/rdf-schema/

[5] Do, H. H. and Rahm, E. COMA - A System for Flexible
Combination of Schema Matching Approaches. Proceedings
of the VLDB Conference, 2002.

[6] Halevy, A. Why Your Data Won’t Mix. ACM Queue, 3, 8,
(October 2005), 50-58.

[7] Ilyas, I. F., Markl, V., Haas, P. J., Brown, P., and Aboulnaga,
A. CORDS: Automatic Discovery of Correlations and Soft
Functional Dependencies. Proceedings of the ACM SIGMOD
Conference, 2004.

[8] Madhavan, J., Bernstein, P., Doan, A., Halevy, A. Corpus-
Based Schema Matching. Proceedings of the IEEE
International Conference on Data Engineering, 2005.

[9] Mork, P., Rosenthal, A., Seligman, L. J., Korb, J., and
Samuel, K. Integration Workbench: Integrating Schema
Integration Tools. Proceedings of the Second International
Workshop on Database Interoperability (InterDB’06). April
2006, Atlanta, GA.

[10] Mork, P., Seligman, L. J., Korb, J., Samuel, K., and Wolf, C.
Harmony Integration Workbench. Submitted to US Patent
Office, Ed., 2006.

[11] Rahm, E., and Bernstein, P. A Survey of Approaches to
Automatic Schema Matching. The VLDB Journal, 10, 4,
(December 2001), 334-350.

[12] Robertson, G., Czerwinski M., and Churchill J. Visualization
of Mappings Between Schemas. Proceedings of the ACM
SIGCHI Conference. April 2005, Portland, OR.

[13] Shipman, D. The Functional Data Model and the Data
Language DAPLEX. ACM Trans. Database Syst., 6, 1
(March 1981), 140-173.

[14] www.bea.com/aler. BEA AquaLogic Enterprise Repository.
BEA Systems Inc., 2007.

http://www.bea.com/aler

