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ABSTRACT 
In this paper, we describe an in-progress effort to augment the 
data integration capabilities of a service-oriented data integration 
product with the advanced matching capabilities of a knowledge-
based schema matching workbench, thereby providing a guided, 
interactive, and “what”-oriented design environment for use by 
data architects and integration engineers. The data integration 
product is the BEA AquaLogic Data Services Platform, which 
provides a declarative, XML-based foundation for integrating and 
service-enabling heterogeneous enterprise data sources in order to 
deliver data services for use by SOA applications.  The schema 
matching tool is the Harmony system from MITRE, a state-of-
the-art prototype system that maintains a growing knowledge base 
of matching information and employs a composite matching 
architecture beneath a rich UI to guide the ranking and decision-
making processes involved in schema matching. We motivate this 
work, review the capabilities of each of the systems, and sketch 
the architectural approach that we are taking to combining the two 
systems into a synergistic whole. 

1. INTRODUCTION 
A growing challenge faced by many enterprises today is how to 
access and analyze data residing in different sources such as 
database management systems (DBMSs), legacy systems, Web 
services, and XML files to name a few. This is due to three forms 
of heterogeneity, see Figure 1. The first, commonly termed 
physical heterogeneity, is due to the fact that different sources 
have different APIs and data formats. For example, an RDBMS 
source may provide a JDBC or ODBC interface, a file system a 
bytestream API to access XML files in unparsed character form, 

and a Web service source might be accessed using JAXRPC. 
Once this form of heterogeneity is resolved, the formal 
representation used by the alternative systems to describe their 
data might be different, sometimes termed logical heterogeneity. 
For example, one system may provide a relational representation 
while another provides an XML one. Most often the participating 
systems also exhibit differences in conceptual organization of 
data even though they pertain to the same application. This is 
commonly termed semantic heterogeneity and occurs when 
independent designers model the requirements of the same 
application. There are several reasons for having semantic as well 
as conceptual heterogeneity, ranging from enterprises acquiring 
one another to evolution of business units that merge after having 
developed systems that address their individual data needs [6]. 

A data integration system should address all three forms of 
heterogeneity of its target data sources. By doing so, it becomes a 
middleware layer that understands the conceptual, logical and 
physical organization of data in each participating data source. Its 
output is an integrated view that then pertains to an abstraction 
that truly serves the needs of the enterprise.  

The framework that empowers an integration engineer to author 
the desired abstraction layer is the focus of this paper. The ideal 

 

Figure 1: Semantic, logical and physical heterogeneity.    
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framework would be “what”-oriented, requiring the engineer to 
specify little more than the desired final abstraction and the 
participating data sources. In response, the framework determines 
the different forms of heterogeneity and how they are to be 
resolved. This is as compared to a “how”-oriented framework that 
requires the engineer to specify how the system should resolve 
heterogeneity. For example, BEA’s ALDSP 2.5 [2, 3] system 
provides a “what”-oriented interface to handling physical and 
logical heterogeneity. Its approach to semantic heterogeneity is 
“how”-oriented, however, because the engineer is required to 
have a priori knowledge of all data sources and to author the 
mapping expressions that instruct the system on how to integrate 
the data sources to resolve semantic heterogeneity. 

A “what”-oriented framework is desirable for two reasons. First, 
it minimizes the amount of data source specific (e.g., relational 
DBMS such as Oracle and IBM’s DB2, WSDL of W3C for Web 
services) knowledge required from the engineer to integrate data, 
enabling the engineer to focus on the final requirements of the 
enterprise. Second, at times, the final applications dictating the 
abstraction desired from a data integration effort are fluid and 
their requirements change continuously. This is particularly true 
during the early phases of an integration project life-cycle. A 
“what”-oriented framework empowers the engineer to rapidly 
change the integrated abstractions to focus on application 
changes. 

To realize a more “what”-oriented framework, we propose to 
build on the strengths of two complementary systems: BEA’s 
AquaLogic Data Services Platform (ALDSP) [2, 3] and MITRE’s 
Harmony [9, 10]. ALDSP employs a declarative foundation (not 
unlike [13]) to enable a user to design, develop, deploy, and 
maintain a framework that understands both the logical and 
semantic heterogeneity of data sources.  Harmony automatically 
suggests, at a high level, possible semantic correspondences 
between (at least) two schemata and provides an intuitive GUI to 
enable a user to refine those correspondences. The resulting 
combined system is the AquaLogic

 

data services platform 
integrated with harMONY, AL$MONY. 

The AL$MONY design decisions described here are based on a 
combination of our joint work, our experience with current BEA 
customers who have been developing services using ALDSP, and 
Harmony case studies [9]. In terms of joint work, we have 
exchanged ideas and software and have begun the process of 
defining and prototyping the relevant inter-system APIs. This 
workshop paper therefore describes the design of AL$MONY 
based on our progress thus far and our plans. The rest of the paper 
is organized as follows. Sections 2 and 3 provide overviews of 
ALDSP and Harmony, respectively. Section 4 describes the 
AL$MONY vision and how it synergistically integrates the best 
of ALDSP and Harmony. Section 5 concludes the paper. 

2. AquaLogic Data Services Platform  
The AquaLogic Data Services Platform (ALDSP) provides a 
service-oriented integrated view of enterprise data sources. A 
given view of enterprise data, termed a dataspace, consists of a set 
of interrelated data services. A data service has a “shape”, 
describing its information content. It may have a set of read 
functions, which are service calls that provide various ways to 
request access to one or more instances of the data service's 
business objects. In addition, a data service may include 

procedures that change its instances, i.e., insert, delete, and 
update. Moreover, a data service may have navigation functions 
to traverse relationships from one instance from one data service 
(e.g., Customer) to one or more instances of another (e.g., Order). 
ALDSP represents this shape information using XML Schema. 
Functions and procedures are represented as XQuery functions 
that can be invoked via Java calls, via Web services, in queries, 
and/or used to create other user defined data services. 

Figure 2 provides a high-level summary of the ALDSP approach 
to data services. The bottom right consists of a physical collection 
of data sources external to ALDSP. These might include a mix of 
databases, Web services, packaged applications, legacy 
mainframe data, and other data sources. When an integration 
engineer points ALDSP to an enterprise data source, ALDSP 
introspects the source’s metadata; it does so, for example, by 
obtaining the SQL metadata for a relational data source or 
processing the WSDL file for a Web service. This introspection 
guides the automatic creation of one or more physical data 
services that make the data source available for use in the XML 
world of ALDSP. Applying this process to a relational data source 
produces one data service per table or view. The return shape in 
this case is the natural XML representation of the table or view 
schema. In the presence of discoverable foreign key constraints, 
ALDSP also produces navigation functions across different data 
services. ALDSP introspects a Web service by processing its 
WSDL to yield one data service per distinct Web service 
operation return type. Multiple Web service operations might 
have the same return type and are modeled as multiple functions 
for the data service. The input signature of each function will be 
dictated by the input of the operation as specified by the WSDL. 
Other functional data sources are similarly modeled. The result, 
referred to as the physical model in Figure 2, is a uniform, 
“everything is a data service” view of the available data sources. 

The center of Figure 2 shows the view of data seen by client 
applications. Instead of interfacing with the underlying data 
sources directly, or even with the more uniform physical model, 
an ALDSP client application sees a meaningful set of interrelated 
logical data services. Each such data service is an abstraction of' 
some coarse-grained entity that was chosen to be meaningful to 
the integration engineer and to serve as a reasonable unit of 
interaction for client-server calls. Each logical data service is 
internally composed from one or more data services of the 
physical model (or logical data services belonging to lower 
abstraction levels) using XQuery as the service composition 
language. Data services belonging to lower abstraction levels 
appear to the composer as functions that consume and produce 
simple- and complex-typed XML data. XQuery is a declarative, 

 

Figure 2: Overview of ALDSP 



functional language well-suited to orchestrating such functions 
and also to transforming XML data in order to produce the 
desired business object shapes out of the information accessible 
from the underlying services. 

2.1 An Example of How to Build a Data 
Service Using XQuery 
To illustrate how one would use ALDSP to build a data service, 
consider an integration engineer who wishes to build a logical 
data service to retrieve customer profile information. Assume the 
relevant information resides in several different physical data 
sources. Suppose one relational DBMS, say Oracle, contains 
CUSTOMER and ORDER tables, while another DBMS, perhaps 
DB2, contains customer CREDIT_CARD information. These data 
sources are kept separate for security and auditing purposes. In 
addition to these relational data sources, assume a Web service 
provides a credit rating operation named getRating. The input to 
getRating is the customer’s name and social security number. Its 
output is an integer value representing the credit rating for the 

input customer. The engineer registers these with ALDSP by 
simply pointing it to each physical data source.  

Next, the engineer may author a function named getProfiles( ) to 
retrieve all instance of the integrated view. Figure 3 shows a 
screen-shot of the XQuery design view of ALDSP while 
performing this task. Its right side shows the desired integrated 
view. (Section 2.2 describes how the engineer may construct this 
target view using either a top-down or a bottom-up approach.) An 
instance of the target will consist of one customer, nested order 
data, nested credit card data, and a credit rating for a given 
customer. The engineer has already identified the relevant data 
sources by dragging them onto the canvas, see Figure 3. In 
addition, the engineer has employed this interface to map 
elements of the physical data sources to those of the target 
schema. 

Further examination of Figure 3 reveals that the engineer has 
correlated the different physical data sources with one another by 
specifying join conditions between them. For example, the 
engineer has specified joins between the CUSTOMER and 
CREDIT_CARD data sources using their CID element. 

 

Figure 3: XQuery design view. 



 

Figure 4: PROFILE data service. 

 

Figure 5: XQuery source view. 



Figure 4 shows the different functions and procedures specified 
by the engineer on the PROFILE data service, such as functions 
getProfilesByName( ) to obtain the integrated profiles for all 
customers with a specific name, getProfilesByID( ) to retrieve the 
profile for a customer by customer id, and getProfilesByRating( ) 
to get profiles for all customers with a specified credit rating. 
Specification of these functions is trivial; they can be defined as 
selections using getProfiles( ), which has encapsulated all of the 
integration and correlation details for the customer profile data 
service as a “get all instances” function. This “integrate once and 
reuse” design pattern for data services is extremely important as it 
is the key to achieving data independence in ALDSP. 

The lower left side of Figure 4 lists the navigation functions, i.e., 
getCOMPLAINTs( ) to retrieve instances from the COMPLAINT 
data service and getPAYMENTs( ) to retrieve instances of 
PAYMENTS data service pertaining to a given customer profile 
instance. Also, note the presence in the figure of the procedures 
createPROFILE, updatePROFILE, and deletePROFILE which 
create, update, and delete instances of PROFILE. Finally, the 
right side of Figure 4 shows the lower-level data services that 
constitute the PROFILE data service. 

Figure 5 shows the actual XQuery source that ALDSP generates 
for one of the data service functions specified on the PROFILE 
data service (namely the function from Figure 3). This method 
getProfiles( ) takes no arguments and is responsible for computing 
and returning the complete profiles for all customers that appear 
in the CUSTOMER table of the first relational database. An 
XQuery function provides access to the table contents in the body 
of the query. For each customer returned by that function, 
getProfiles( ) accesses the ORDER table to create the nested 
<ORDERS> element. In this example, this access is via a 
navigation function that ALDSP automatically created for this 
purpose based on the foreign key constraint of the ORDERS table 
on the CUSTOMER table. Also for each customer, the 
CREDIT_CARD table in the second DBMS is accessed, and 
finally the getRating operation of the credit rating Web service is 
invoked. The result of getProfiles( ) is a series of <PROFILE> 
elements, one per CUSTOMER, which integrates all of this 
information from the different data sources. The specification 
shown in Figure 5 is optimized by ALDSP prior to being executed 
[2]. 

2.2 ALDSP Lifecycle 
As should be evident from the example, ALDSP assumes the 
engineer has knowledge of the desired target view and how the 
physical data sources match and map both with the target schema 
and with one another. This might have been specified by the 
requirements of an application and its desired level of abstraction. 

The engineer may populate the desired target schema by taking 
either a top-down or bottom-up approach. With a top-down 
approach, the engineer represents the target schema in XSD and 
imports it into ALDSP’s data service view to construct the shape 
of the target data service, see Figure 3. With a bottom-up 
approach, the engineer again employs the XQuery design view, 

but in this case specifying no initial shape for the target. This 
results in an empty “return” schema. Next, the engineer registers 
the various physical data sources and then incrementally 
incorporates their schemas into the overall “return” schema for 
the data service as a side effect of the editing operations involved 
in building the first read function for the data service. 

With both top-down and bottom-up approaches, ALDSP assumes 
that the engineer has a priori knowledge of the relevant data 
services, elements of source data services that are equivalent to a 
desired target data element, and the transformations (if any are 
needed) to map these elements. For large target schemas requiring 
data from numerous data sources, the integration effort may 
become difficult, motivating the need for a tool such as Harmony 
to assist the engineer with the matching process. Such a tool is 
especially useful when the engineer’s a priori knowledge of 
physical and target data services is lacking. 

3. Harmony 
In the preceding section, we explained how the ALDSP IDE 
provides a convenient GUI for incrementally collecting, from the 
integration engineer, a set of known schema correspondences and 
mapping them into an executable XQuery function. In this 
section, we describe Harmony [9], a collection of tools that help a 
user to quickly identify the relevant schema correspondences. 
Armed with these correspondences, the integration engineer could 
more efficiently use ALDSP to author an XQuery function. 

We begin this section by describing the Harmony match engine 
that generates, for each possible correspondence, a confidence 
score that indicates the extent to which a pair of schema elements 
appear to match. The match engine includes a suite of match 
voters, each of which considers a particular body of evidence. A 
vote merger then combines the information provided by the voters 
to generate a single score. Unlike other schema matching tools, 
the Harmony match engine considers both the quality of the 
available evidence and the quantity of that evidence. 

Next we cover the Harmony GUI, which provides an intuitive 
interface for the integration engineer to indicate which of the 
possible schema correspondences are correct, and which are not. 
Possible correspondences indicated by the match engine are 
color-coded based on the confidence score. The GUI also 
provides a number of filters that allow the integration engineer to 
focus his attention. For example, the integration engineer can 
suppress all of the possible correspondences for which the 
confidence score is beneath some threshold. 

We then describe how an integration engineer would use 
Harmony (in its current form) as part of an integration project. 
Based on our experiences using Harmony, we realized it is not 
trivial to couple Harmony with other schema integration tools. 
This realization inspired the development of the Harmony 
integration workbench originally described in [9]. Section 4 
describes our current effort to use this workbench to implement 
AL$MONY, the integration of ALDSP with Harmony. 



3.1 Harmony Match Engine Overview 
The architecture for Harmony is shown in Figure 6. As indicated, 
it operates as follows. First, schemas are loaded and normalized 
into a canonical graph-based representation, and then the names 
and text definitions associated with schema elements undergo 
linguistic preprocessing (including tokenization, stemming, and 
stopword removal).The Harmony match engine is (in the parlance 
of [11]) a composite matcher, in that several match voters are run 
in parallel, and these results are combined by a vote merger. Each 
match voter considers some source of evidence to generate a 
match score for a particular (source element, target element) pair. 
Current match voters include bag-of-words, in which each 
element name and its definition is considered a “document” and 
the distance between each source and target element is determined 
using standard information retrieval techniques, bag-of-words 
with thesaurus expansion, edit distance of element names, and an 
acronym matcher. There is a built-in generic thesaurus (Roget); 
however, domain-specific thesauri and acronym dictionaries can 
also be used.  

The standard approach for arriving at confidence scores is to 
compute the ratio of positive evidence to total evidence. However, 
this approach ignores the fact that, for a given evidence ratio, 
more evidence is better than less evidence. Moreover, by 
considering the amount of evidence observed by each match 
voter, the vote merger can more flexibly combine match scores.  

In the Harmony match engine, match scores range from –1 to +1; 
intuitively, a match score of 0 indicates that, based on the 
evidence, the likelihood of a match is impossible to determine. As 
the ratio of positive evidence to total evidence increases, the 
match score should increase. For a fixed ratio, as the total 
evidence increases, the match score should also increase. 

Based on this intuition, we can establish some theoretic bounds. If 
there is an infinite amount of positive evidence, the match score 
should equal +1. However, if there is no positive evidence, but an 
infinite amount of negative evidence, the match score should 
equal –1. Finally, if there no evidence (of either type), the match 
score should be 0. 

Using these bounds, in [10] we show how to compute such a 
match score. For a given (source element, target element) pair, let 
poe represent the amount of positive observed evidence, and toe 
represent the total observed evidence. Given these values, the 
match score (ms) is defined as follows. 
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The numerator in this equation is based on the ratio of positive to 
total observed evidence. The denominator in this equation is a 
scaling factor based on the amount of positive observed evidence. 
Each match voter measures the observed evidence differently; 
in [10], we also describe a way to quantify evidence based on the 
documentation used to describe schema elements. 

The vote merger is responsible for combining multiple match 
scores into a single confidence value. This combination is based 
on multiple factors including the score (ms) generated by a given 
match voter, the amount of evidence available to that match voter 
(ef), and the weight assigned to that match voter. For each (source 
element, target element) pair, the match voter generates a single 
confidence value. 

The basic vote merging algorithm is a weighted average of the 
match scores generated by each match voter. If we assume that 
each match voter v is weighted equally, then the final confidence 
score (conf) is defined as follows, where V is the set of all match 
voters. 
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In general, ef needs to range from zero (indicating the absence of 
evidence), to one (given infinite evidence). Thus, any function 
that maps toe to the interval [0, 1] fulfills this condition. Note, 
though, that the match score is close to zero when there is little 
total evidence, and approaches ±1 as the total observed evidence 
approaches infinity. Based on this observation, Harmony uses the 
absolute value of the match score as ef. 
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Intuitively, this equation weights the match score generated by 
each match voter based on the magnitude of that score. This 
simplification works because a match score of zero indicates 
insufficient evidence to determine if the source element and target 
element match. A score close to ±1 indicates strong evidence 
either in support of a match, or against a match. 

The Harmony match engine iterates over every possible (source 
element, target element) pair and generates a confidence score. 
The integration engineer can visualize these values using the 
Harmony GUI. 
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Figure 6: Architectural overview of Harmony. 



3.2 Harmony GUI Overview 
Like many similar products, the Harmony GUI displays the 
source schema on the left side of the screen, and the target schema 
on the right side of the screen (see Figure 7). Potential 
correspondences are shown as lines (links) connecting a source 
element to a target element. Harmony color-codes these links 
based on the confidence score associated with that link. Green 
links indicate large positive confidence scores, yellow links 
indicate mediocre positive confidence scores, and red links 
indicate negative confidence scores. 

Using the GUI, the integration engineer can accept and reject 
potential links. He can also manually draw lines between a source 
and target element to indicate a true correspondence. 

The Harmony GUI supports a variety of filters that help the 
integration engineer focus his attention. These filters are loosely 
categorized as link filters and node filters. A link filter is a 
predicate that is evaluated against each candidate correspondence 
to determine if it should be displayed. A node filter determines if 
a given schema element should be enabled. An enabled element is 
displayed along with its links; a disabled element is grayed out 
and its links are not displayed. 

Harmony currently supports three different link filters, all of 
which show up as options on the right side of Figure 7. First, a 
confidence slider filters links based on the confidence assigned to 
a link by the Harmony match engine. Only links that exceed the 
specified threshold are displayed. Links that were drawn by the 
integration engineer, or were explicitly marked as correct, have a 
confidence score of +1. Similarly, links that have been explicitly 
rejected are given a score of –1. 

The second link filter determines if a link should be displayed 
based on whether it is human-generated or machine-suggested. 
The final link filter displays, for each source and/or target schema 
element, only those links whose confidence score is greater than 
all other links for either the source schema element or the target. 

For node filters, Harmony includes a depth filter and a sub-tree 
filter. The former enables only those schema elements that appear 
at a given depth or above. For example, in an ER model, entities 
appear at level 1, while attributes are at level 2. Thus, using this 
filter, the engineer can focus exclusively on matching entities. 
The sub-tree filter enables only those elements that appear in the 
indicated sub-schema. In Figure 7, a sub-tree filter has been 
applied to the source schema on the left. By combining this filter 
with the previous, the engineer can restrict his attention to the 
entities in a given sub-schema. 

 

Figure 7: Harmony provides several mechanisms for focusing the integration engineer’s attention. 



The Harmony GUI also supports iterative refinement through two 
mechanisms: When the match engine is invoked after some 
correspondences have been explicitly accepted or rejected (i.e., 
set to +1 or –1), this information is passed to the match engine 
and used in two ways. First, each match voter can learn from the 
user’s choices and refine any internal parameters [10]. Second, 
the Harmony vote merger weights the match voters based on their 
performance so far.  

In addition to accepting and rejecting specific links, the engineer 
can mark a sub-tree as complete. This action has two effects. 
First, it accepts every link pertaining to that sub-tree as accepted 
(if currently visible), or rejected (otherwise). Once a link has been 
accepted or rejected, the match engine will not modify that link. 
This ensures that links do not mysteriously disappear or appear 
should the user subsequently invoke the Harmony engine. 
Second, the action updates a progress bar that tracks how close 
the engineer is to having a complete set of correspondences. This 
feature was introduced at the request of integration engineers 
working on large schema integration problems that involve 
several dozen iterations. In the next section, we describe how an 
integration engineer uses the match engine and GUI to solve data 
integration problems. 

3.3 Harmony Lifecycle 
In [9], we introduced a task model for data integration. At a high 
level, we consider 17 integration tasks, grouped into five phases: 
schema preparation, schema matching, schema mapping, instance 
integration and finally system implementation. During the schema 
preparation phase, the source and target schemata are identified 
and transformed to a canonical model so that correspondences can 
be identified during the matching phase. These semantic 
correspondences are formalized in the third phase as explicit 
logical mappings. Once schema integration is complete, instance 
integration reconciles any remaining discrepancies. In the final 
phase the integration solution is deployed. 

The Harmony system targets the first two phases: schema 
preparation and schema matching. (ALDSP supports end-to-end 
integration by providing tools for schema preparation, schema 
mapping and system implementation.) Harmony supports schema 
preparation by providing schema importers for common formats 
such as XML Schema, RDF and OWL. In addition, the schemata 
can be augmented by introducing project-specific thesauri and 
acronym dictionaries. 

Once the integration engineer imports the source and target 
schemata, the GUI displays these on the left and right sides of the 
screen. The engineer can then manually identify semantic 
correspondences or run the Harmony match engine. Most of the 
engineer’s time is spent deleting spurious matches and manually 
drawing links between elements missed by the match engine. 

Eventually, the integration engineer reaches a point wherein all of 
the source and target schema elements have been matched (or 
marked as complete sans match). At this point, the engineer can 
export the project in several formats such as an Excel spreadsheet. 
The default format is to save the project as an RDF file in which 
each resource is a link between a source schema element and a 
target schema element. Because this file is plain RDF, it can be 
manipulated programmatically using an RDF query language. 

Unfortunately, it is still difficult to import this format into another 
integration tool (such as ALDSP). More generally, we have yet to 

observe a pair of integration tools from different vendors that can 
seamlessly interoperate. For a simple integration task involving 
only a dozen schema elements, we found that we needed to use 
five separate tools, with custom glue between each pair (!). 

This experience led us to consider creating a generic integration 
workbench that would allow heterogeneous data integration tools 
to communicate with one another via a shared blackboard and 
messaging framework. As a result, we introduced just such an 
integration framework in [9], which we summarize in the next 
section. 

3.4 Integration Workbench 
Our initial attempts to integrate Harmony with other schema 
integration tools revealed a key barrier to tool interoperability. 
While we as schema integration experts trumpet the advantages of 
a modular, federated architecture that presents a unified view of 
multiple data sources, we have not applied that same insight when 
developing our own systems. While some vendors may be moving 
in this direction internally, to support interoperability of their own 
tools, they have not published their approaches or interfaces. 
There would be obvious benefits to user organizations and small 
software companies to the development of a standard framework 
for combining schema integration tools. 

At the core of the Harmony workbench design is an integration 
blackboard, which is a shared knowledge repository. Mediating 
between the blackboard and the various schema integration tools 
is a workbench manager. The workbench manager provides 
several shared services, including transaction management, event 
services, and query evaluation. The following sections describe 
the integration blackboard and the workbench manager. 

The integration blackboard (IB) is a shared repository for 
information relevant to schema integration that is intended to be 
accessed by multiple tools, including schemata, mappings, and 
their component elements. We propose using RDF [3] for the IB, 
because: 1) it is natural for representing labeled graphs, 2) one 
can use RDF Schema to define useful built-in link types while 
still offering easy extensibility, 3) it is vendor-independent, and 
4) it has significant (and growing) development support. 

The basic contents of the IB are schema graphs and mapping 
matrices. However, in RDF, any element can be annotated; we 
use this feature to enrich the graphs and matrices with additional 
information. We predefine certain annotations using a controlled 
vocabulary; new integration tools can add others as required. 

The IB represents a schema as a directed, labeled graph. The 
nodes of this graph correspond to schema elements. In the 
relational model, these elements include relations, attributes and 
keys. In XML, they include elements and attributes. The edges of 
a schema graph correspond to structural relationships among the 
schema elements. These edges are object properties whose subject 
and object are both schema elements. For example, in the 
relational model, contains-table edges are used to link a database 
to the tables it contains. Tables are linked to attributes via 
contains-attribute edges. In XML, elements are linked to sub-
elements via contains-element edges, and to attributes via 
contains-attribute edges. For many schema languages, the edge-
types are specified by the modeling language, but with ontologies 
they are extensible. 

Inter-schema relationships can be represented conceptually as a 
mapping matrix. This matrix consists of headers (describing 



source and target elements) plus content: a row for each source 
element and a column for each target element. Mapping elements 
are also annotated: First, each cell is annotated with 
confidence-score, which ranges from –1 (definitely not a match) 
to +1 (definitely a match). Each row of the matrix is further 
annotated with a variable-name, and each column with code 
snippets that reference these variables. Finally, the matrix as a 
whole has a code annotation, which assembles the code snippets 
from the individual cells into an executable whole. The ability to 
attach code and other annotations makes mapping matrices a 
generalization of similarity matrices [1, 5]. While similarity 
matrices share knowledge only among multiple matchers, 
mapping matrices can be used by matchers, mappers, and code 
generators. 

All interaction with the IB occurs via the workbench manager, 
which coordinates matchers, mappers, importers, and other tools. 
The manager provides several services: First, it provides 
transactional updates to the IB. Second, following each update, it 
notifies the other tools using an event. Third, the manager 
processes ad hoc queries posed to the IB. The architecture for the 
integration workbench appears in Figure 8. 

Loaders are used during schema preparation to parse a schema 
from a file, database or metadata repository (including ancillary 
information such as definitions from a data dictionary) into the 
internal representation used by the IB. When the user invokes a 
loader, that tool places the new objects in the IB, which extends 
the mapping matrix accordingly and advises the other tools. 

Schema matching can be performed manually, as is the case for 
most commercial tools, or semi-automatically. Harmony supports 
both approaches. A match tool updates the cells of the mapping 
matrix. When correspondences are generated automatically, all of 
the interactions with the IB are wrapped in a transaction; no 
events are generated until the mapping matrix has been updated. 

Schema mapping can be performed manually or automatically as 
well [7], at least in principle, although we are unaware of any 
commercial automatic schema mapping tools. A mapping tool 
updates the code associated with each column. Both matchers and 
code generators may need to listen for these events to update their 
internal state. 

Finally, a code-generator assembles the code associated with each 
column into a coherent whole. Thus, the code-generator must 
understand how to assemble code snippets based on the structure 
of the target schema graph. 

Tools generate events whenever they make any change to the 
contents of the IB. The workbench manager propagates these 
events to allow any tool to respond to the update. A different type 
of event is generated for each major component of the IB so that a 
tool can register for only those events relevant to that tool. 

A schema loader generates a schema-graph event when it imports 
a schema into the workbench. Any tool with a GUI listens for 
these events and refreshes the display. A mapping-cell event is 
generated when a user manually establishes a correspondence. 
Multiple such events are triggered by an automatic matching tool. 
A mapping tool can listen for these events to propose a candidate 
transformation, such as a type conversion. Conversely, when a 
mapping tool establishes a transformation, it generates a mapping-
vector event. Match tools listen for these events to synchronize 
the mapping cells with the updated row or column. A code 

generation tool similarly listens for these events to synchronize 
the assembled mapping. The code generation tool, in turn, 
generates a mapping-matrix event when the user manually 
modifies the final mapping. 

The RDF blackboard and event model allow multiple integration 
tools to interoperate. In the next section, we describe our initial 
efforts to demonstrate this assertion by integrating Harmony and 
ALDSP. 

4. AL$MONY 
The goal of the AL$MONY (pronounced “all money”) project, 
short for AquaLogic

 

data services platform integrated with 
harMONY, is to combine the strengths of ALDSP and Harmony 
to provide an interactive user experience that facilitates the “easy” 
creation of new data services from a large and possibly choppy 
sea of enterprise data sources together with other, existing data 
services that may already have been created. As such, 
AL$MONY aims to simplify the matching and mapping of: 

1) Source data services to a target schema. E.g., map the CID 
element from the CUSTOMER source to the CID element of 
the data service target schema in Figure 3. 

2) Function outputs from available source data services to 
function inputs (and/or to a target schema). E.g., map the 
LAST_NAME and SSN elements from the CUSTOMER 
source to the lName and ssn input document schema of the 
getRating( ) Web service source call in Figure 3, and map 
the result of the Web service call into the target schema of 
the data service being defined. 

3) Available data services together, to combine them via joins 
or unions. E.g., create a join predicate between CID from 
CUSTOMER and CID from CREDIT_CARD in Figure 3. 

AL$MONY is designed to empower users to match and map data 
rapidly and interactively starting with much less knowledge than 
ALDSP requires today. Today, to build an integrated data 
service, an ALDSP integration engineer must come armed with 
knowledge of what/where the relevant data sources are and a 
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clear understanding of exactly how their schemas and their 
instances need to be matched and mapped. If the integration 
engineer lacks such in-depth, a priori knowledge of the data 
sources or how they should be integrated, AL$MONY should 
empower them to query and browse the metadata of the target 
schema and the available data services to obtain the knowledge 
needed to integrate them successfully. The kinds of questions 
posed by the user for a matching and mapping task may include:  

 
For a new (or ongoing) data service integration project, what 
data services appear likely to be of interest? 

 

For a given data service that has been determined to be of 
interest, what other data services appear likely to be of 
interest as well? 

 

For a given element or attribute within an identified set of 
interesting data services, what matches it within that set and 
should therefore be considered for mapping? 

These general questions cover a variety of more detailed, context-
specific questions that arise during the data service authoring 
process. For example, when matching and mapping multiple data 
services to the target schema of a new data service under 
construction, the developer may wish to inquire: “I have as my 
design goal the creation of a data service with target schema T – 
so what existing data services have relevant matching attributes?” 
Parts of this question are covered by the first two questions above. 
Effective user interfaces will clearly be a key component for 
enabling such context-specific questions to be asked in a useable, 
transparent way. These may include wizards that guide the 
developer through a set of question/answer screens specific to a 
context (in this case source selection) 

4.1 AL$MONY Lifecycle 
A key challenge, both from usability and architectural angles, is 
that AL$MONY must integrate the current Harmony and ALDSP 
lifecycles into a single, more unified user experience. We plan to 
realize this in two ways. Today, the Harmony model has a rather 
“waterfall”-like nature (e.g., matching precedes mapping), while 
the ALDSP data service editing UI is more interactive and 
incremental but presumes perfect a priori knowledge. To couple 
the two effectively, we will utilize the event model of the 
Harmony workbench to populate its blackboard from an ALDSP 
project. We will also integrate key features and ideas from the 
Harmony user interface with those of the ALDSP XQuery editor. 
Scale is another challenge, both in the number and sizes of data 
source schemas. ALDSP and Harmony have both focused to date 
more on “in the small” rather than “in the large” versions of the 
bulleted questions above, but we would like AL$MONY to 
eventually be capable of scaling up to the whole-enterprise level 
(and beyond). On the user interface side, techniques such as those 
presented in [12] offer a good start. We intend to build upon those 
ideas and explore others as well. 

As an example of lifecycle integration, when an integration 
engineer asks AL$MONY to enable access to a new data source 
such as a relational database management system, AL$MONY 
will employ ALDSP’s metadata import facilities to also populate 
the integration blackboard (IB) of Harmony. This should be 
relatively simple because ALDSP represents its data sources in 
XML Schema form, and transformation of XML Schema into 
Harmony’s directed, labeled graph model already exists; see the 

loader discussion of Section 3.4. Similarly, when the engineer 
drags such a source onto the query canvas, a Harmony event will 
be generated to add the source’s metadata to the current working 
set of schemas for its matching algorithms to operate on. 

4.2 AL$MONY User Experience 
Extending the graphical XQuery editor of ALDSP with the 
display-tailoring capabilities of Harmony’s user interface will 
yield a much more effective user experience for the integration 
engineer whose a priori knowledge is imperfect. When the 
engineer constructs an integrated target view in a top-down 
manner (see Section 2.2), after registering the shape of the target 
data service, the engineer should then be able to inquire about 
other data services that potentially relate to the elements of the 
target schema. In response, AL$MONY can invoke Harmony to 
obtain match suggestions with confidence scores and process 
them to determine the data services most likely to be relevant to 
the target data service. The color codes of Harmony can be used 
to highlight the different sources in the XQuery graphical view: 
green for positive, yellow for mediocre positive, and red for 
negative confidence scores. 

Once the set of suggested data sources has been provided, the 
engineer can employ AL$MONY’s graphical cues to choose the 
relevant data sources and drag-and-drop them onto the canvas of 
XQuery’s graphical view.  Graphical selection of an attribute of a 
data service (either source or target) should then also trigger 
AL$MONY to identify the potential matching elements of the 
displayed data services. Once again, Harmony’s color coding can 
be used to highlight these elements based on the computed 
confidence scores. The engineer can then use Harmony-style link 
and node filters to reduce screen clutter and explore the most 
relevant matches, per the discussion of Section 3.2, within the 
XQuery graphical mapping interface. 

It is important to remember that the integration engineer is the 
sole authority whose specified matches are final. In particular, 
matches will be finalized implicitly in AL$MONY through the 
creation of the concrete XQuery mapping expressions that the 
engineer specifies via their graphical editing work. AL$MONY 
must then support behavior similar to Harmony’s GUI when the 
engineer accepts or rejects specific link matches. For this reason, 
the engineer’s accept and reject decisions, inferred from their 
XQuery editing actions, will lead AL$MONY to generate events 
for the workbench manager of Harmony. Since XQuery editing is 
an interactive and incremental process, and since data services 
can also evolve further over time as things in the enterprise 
change and require them to be changed as well, AL$MONY must 
support an incrementally changing knowledge base of matching 
information. 

An interesting issue in the combined interface, which targets the 
interactive production of mappings as opposed to “just” matches, 
has to do with the role and the impact of type information. The 
ALDSP XQuery editor attempts to keep the engineer on a path 
where there is always a syntactically complete and fully type-
correct XQuery underlying the screen state. Matches that involve 
differently typed source and target elements or attributes could be 
used in AL$MONY to auto-suggest required type-conversions 
and related computations. The acceptance of such matches and 
mappings by the engineer can be remembered as a future hint 
that, at least in the context of the schemas currently involved, this 



particular type mismatch should not be interpreted by Harmony’s 
type-based matching module as a negative contribution to the 
likelihood of the validity of an overall match. More broadly, the 
question arises of how the availability of the detailed mapping 
expressions might be most effectively exploited to glean and 
retain knowledge for use in future matching runs. 

4.3 AL$MONY Architecture 
The Harmony integration workbench includes a rich API for 
interrogating the blackboard and for interacting with other 
pluggable integration tools. To handle the ALDSP/Harmony 
system interactions needed for the scenario above, we have 
created a simplified “matcher SPI” (service provider interface) 
for the ALDSP IDE to use to invoke the features of Harmony or 
possibly other matching service engines. Thus far this API 
enables ALDSP to ask Harmony to a) introduce manually 
identified matches into its IB and b) access the matching 
knowledge base and identify potential new semantic 
correspondences among the current set of schemas. Using the 
existing Harmony workbench API, we were able to implement 
these two SPI methods with minimal code. The first method 
essentially required three lines: 1) iterate over the set of manually 
identified matches, 2) lookup the corresponding cell of the 
mapping matrix, and 3) update the confidence score for that cell. 
The second required four lines: 1) invoke the Harmony match 
engine, 2) identify the modified cells, 3) iterate over these cells 
and 4) add the potential match to the result. While these 
interactions between Harmony and ALDSP are limited, the 
evidence so far suggests that the two integration tools can be very 
effectively integrated, with minimal effort, via the integration 
workbench. 

Ideally, AL$MONY should provide a plug-n-play framework so 
that it can be customized with knowledge libraries useful for 
different application domains. Harmony already supports the 
import of domain-specific thesauri to be used to detect additional 
candidate matches (e.g., that in the human resources domain, 
“employee” might correspond to “worker”). Beyond simple 
thesaurus-based term expansion, we would also like to support 
more full-featured ontologies such as UMLS, a widely used 
ontology of biomedical and health-related terms and their inter-
relationships. Harmony’s match algorithms could be extended to 
use “semantic distance” between terms as evidence in assigning 
scores for candidate matches. AL$MONY’s GUI must support 
ontology export as well as import. Export is useful when the 
user’s interaction with AL$MONY results in changes to a well-
established ontology such as UMLS. The user may then share 
their exported ontology with other colleagues who are utilizing 
AL$MONY for data integration activities in the same general 
domain.  

4.4 Moving Beyond Mapping 
Last but not least, our long-term vision for the AL$MONY effort 
extends beyond ALDSP/Harmony integration. A subsequent stop 
on the road from “in the small” to “in the large” exploitation of 
schema matching and semantic user assistance could involve the 
injection of Harmony-style matching capabilities into enterprise 
repository products such as the ALDSP Enterprise Repository, 
ALER [14]. ALER today is capable of providing metadata 
management functions for a variety of software assets, ranging 
from business processes and Web services to other common 

components and shared services (even whole applications). 
ALER records and maps the relationships and interdependencies 
that connect software assets in order to promote reuse, improve 
impact analysis, and so on. A key aspect of reuse is discovery, 
and in the world of SOA, many of the same source identification 
issues that we described for ALDSP appear, but on a larger scale, 
in the context of service and component discovery in an 
enterprise repository. 

A move toward integration in the large presents both challenges 
and opportunities. Current match algorithms do not scale to 
support discovery in large enterprise repositories such as the U.S. 
Department of Defense Metadata Registry, with its over 200 
conceptual models and over 150,000 attributes. In addition, it is 
an open research question how to best leverage detailed 
information on candidate matches to support discovery at the 
enterprise scale. Finally, integration in the large presents the 
following opportunity:  Given an enterprise repository containing 
thousands of services, a large number of mappings among them, 
and many thesauri and ontologies, how can we use this growing 
knowledge base to make continual improvements in our ability to 
match and map?  Recent work like [8] offers promising first steps 
toward such a vision.  

5. Conclusions and Future Research 
In this paper, we have presented a snapshot of an in-progress 
experimental effort between BEA Systems and MITRE to 
enhance the capabilities of a service-oriented data integration 
product (the BEA AquaLogic Data Services Platform) by guiding 
its interactive, XQuery-based data mapping capabilities using the 
composite matching recommendation and visualization features 
provided by a state-of-the-art, knowledge-based schema matching 
framework (Harmony). After examining some of the key 
challenges facing today’s data architects and data integration 
engineers, we reviewed the capabilities and strengths of the two 
systems and identified the potential synergistic effects that we 
believe the combination of the systems – dubbed the AL$MONY 
system – can offer to users. We described the approach we are 
taking to combining these two systems and discussed some of the 
challenges that we face in doing so. We hope to complete this 
integration effort during the remainder of calendar year 2007 and 
to then evaluate its success by offering users of the current 
systems an opportunity to take AL$MONY for a “test drive” on 
some of their larger matching and mapping problems. 
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