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Abstract 

 

Features specially devoted to schema evolution in the F2 object-
oriented database system are presented in this paper. They inclu-
de a meta-circular and reflective model where primitive opera-
tions (create, update, delete) on schema objects form a complete
taxonomy of schema changes. All the schema objects of a databa-
se are updatable and the consequences of these changes on ob-
jects are handled either by the trigger mechanism or by the
automatic enforcement of the model invariants. The non-traditio-
nal physical storage of objects is particularly well suited to effi-
ciently support schema changes.

 

1 Introduction

 

It has long been recognized that database management sys-
tems (DBMSs) should provide evolution features to ac-
commodate data structures to an ever changing application
environment. For instance, changes in system's require-
ment may occur during the design or implementation pha-
se, unexpected changes in the system's environment may
occur when the system is already in operation, etc. A desi-
gner needs then at different steps of the application lifecy-
cle, especially at the production phase (i.e. when data is
stored), to: (i) make the database structure (schema) 

 

evolve

 

when the application domain changes, (ii) 

 

complete

 

 and 

 

re-
fine

 

 the schema when it is incomplete, (iii) 

 

correct

 

 the
schema when it has mistakes, (iv) 

 

reuse

 

 the schema when
it has been used for a prototype.

Early relational DBMSs already provided basic evolution
operations such as creating or deleting tables and adding
table columns. With the advent of new data models com-
prising concepts like generalization/specialization, instan-
tiation, referential integrity, or objects behaviour, the
schema evolution problem becomes more complex. In par-
ticular, the following questions arise:

 • which schema changes should the system provide?

 • how to define their semantics?

 • how to implement them efficiently?

The starting point of the “Rebirth/F2” project was to con-
sider the evolution of schema and objects as an 

 

inherent

 

and fundamental property of a system rather than a “later-
added” functionality. Our experiences in semantic data
models [18] and information systems design [17][16] have
clearly shown that evolution could not be well integrated
into a DBMS by simply adding a set of features on top of
it. Quoting [23] about extensibility, we state that evolution
“cannot be retrofitted; it must be a fundamental goal and
permeate every aspect of the system’s design”. We adopted
this idea as a major principle to motivate our design deci-
sions at every level, including the data model, the object
manipulation operations and the object storage manage-
ment. This led us to develop the F2 database system proto-
type [14] [15] [2]. 

The F2 model is object-oriented and supports multiple ins-
tantiation, automated object classification and integrity
constraints (existential dependencies and keys). Objects
behaviour is defined by primitive methods (create, update,
delete) and triggered methods. Meta-circularity and reflec-
tivity are important features of the model. In F2 there is
only one kind of object: a class is an object and a meta-
class is a class whose instances are classes [12]. Thus there
is no conceptual or technical distinction between classes
and meta-classes. Consequently, the same primitive
methods are used to handle database objects as well as
schema objects and meta-schema objects. This makes F2
an uniform, flexible and easily extensible system. 

Schema evolution is inherent to the F2 system and is ac-
complished by applying primitive methods on schema ob-
jects. The trigger mechanism allows to alter the standard
behaviour of the primitive methods in order to define a spe-
cific semantics for some schema changes. In these cases
triggers execute methods which check conditions and per-
form repercussions on schema and database objects to
keep the database in a consistent state. 



 

To support schema changes with as few storage reorgani-
zation as possible we choose to implement a transposed
storage structure in F2. This physical structure possesses
interesting properties with respect to evolution, for instan-
ce adding or deleting an attribute is performed in constant
time whatever the size of the database.

The paper is organized as follows. Section 2 presents the
structural and behavioural aspects of the F2 data model.
Section 3 describes the F2 kernel and its manipulation.
Section 4 explains how schema evolution is supported in
F2 thanks to the kernel, the primitive methods and the trig-
gers. Section 5 discusses the physical storage used in F2.
Section 6 presents briefly other DBMSs supporting sche-
ma evolution. Section 7 summarizes the paper and gives
some future directions.

 

2 F2 model

 

The F2 model is based on the following concepts: object,
class, attribute and specialization. It supports multiple ins-
tantiation and automated classification of objects. It inclu-
des integrity constraints like existential dependencies and
keys. Objects behaviour is defined by primitive methods
and triggered methods.

 

2.1 Structural part of the model

Object, class, attribute

 

Each 

 

object

 

 is an instance of a class. An object has a sys-
tem-defined object identifier 

 

oid

 

 and a 

 

value

 

. The 

 

extent

 

 of
a class is the set of all its instances. There are two kinds of
classes: atomic and tuple classes. 

 

Atomic

 

 

 

classes

 

, like 

 

In-
teger

 

, 

 

Real

 

, 

 

String

 

, etc..., contain atomic objects which are
self-identifying, i.e. their oid is equal to their value. They
cannot be created, updated or deleted (these are called
“abstract objects” in [1]).

 

 

 

An interval is associated with an
atomic class to constrain its object values. 

 

Tuple

 

 

 

classes

 

have 

 

attributes

 

 that correspond to functions defined
between an 

 

origin class

 

 and a 

 

domain class

 

. The value of
an attribute for an object is either the 

 

unknown

 

 

 

value

 

 or a
set of objects belonging to the attribute’s domain class (the
unknown value is different from the empty set). The size of
this set is constrained by the 

 

minimal

 

 and 

 

maximal cardi-
nality

 

 of the attribute.

Example 1. The following F2 DDL [15] expressions define
an atomic class 

 

Boolean

 

 whose integer values belong to the
interval [0,1] and a tuple class 

 

Student

 

 with several attribu-
tes.

 

class Boolean: intBase (0..1);

class Student 
(reg_number: Integer, 
lastname: String, 
firstname: String * 1..4

/* min. card.= 1, max. card.= 4 */, 

nationality: String,
scholarship: Boolean,
in_dept: Department)

key (reg_number); /* key explained later */

 

The value of an object 

 

o

 

 in a tuple class 

 

C

 

 is a tuple formed
by the oids of objects linked to 

 

o

 

 through the attributes of

 

C

 

. For instance, an object 

 

s

 

 of class 

 

Student

 

 may have the
following value:

 

[reg_number: 98765, lastname: “Dunand”, first-
name: {“Henri”, “Marc”}, nationality: “Swiss”, 
scholarship: 1, in_dept: d]

 

where

 

 d

 

 is the oid of a 

 

Department

 

 instance.

 

Specialization

 

The 

 

generalization/specialization

 

 mechanism allows a
class, called 

 

subclass

 

, to be defined as a specialization of
some other existing class, called 

 

superclass

 

. The class hie-
rarchy is a forest, i.e. a collection of specialization trees.
The semantics of specialization in F2 corresponds to 

 

spe-
cialization

 

 

 

inheritance 

 

plus 

 

constraint inheritance

 

 as defi-
ned in [6]. A subclass inherits attributes from its superclass
and may have additional attributes. 

 

Specialization cons-
traints

 

 may be defined on a subclass as a set of triples <at-
tribute, operator, value>. The extent of a subclass is
composed of all the instances of its superclass which satis-
fy all its specialization constraints. 

 

Multiple instantiation

 

Subclasses are not exclusive, i.e. an object can belong to
several subclasses in the same specialization tree, this is of-
ten referred to as 

 

multiple instantiation

 

.

Example 2. An instance of class 

 

Student

 

 may simulta-
neously belong to both subclasses 

 

SwissStudent

 

 and 

 

Scho-
larStudent

 

 defined hereafter. This would mean that this
student is swiss 

 

and

 

 he has a scholarship.

 

subclass SwissStudent of Student
when nationality = “Swiss”

(canton: String);

subclass ScholarStudent of Student
when scholarship = 1

(organization: String,
amount: Integer);

 

Exclusive subclasses may of course be specified by defi-
ning exclusive specialization constraints on them. Multiple
instantiation is an elegant way to solve the problem of
combinatorial explosion of sparsely populated classes cau-
sed by multiple inheritance. Without multiple instantiation,
one must define in the last example, a subclass

 

Swiss&Scholar

 

 that inherits from both 

 

SwissStudent

 

 and

 

ScholarStudent

 

. This “intersection class” adds no new sta-
te and may rise name conflicts (same name of attributes in
two superclasses). Multiple instantiation is proposed in
[26] [31] [30] but is not supported by current commercial
OODBMSs.



 

Automated classification

 

In order to support the constraint inheritance semantics of
specialization, F2 possesses an

 

 automated classification

 

mechanism. When an object 

 

o

 

 is created in a class 

 

C

 

, this
mechanism finds in the specialization tree of 

 

C

 

 all the clas-
ses to which 

 

o

 

 may belong, according to its attribute va-
lues, and adds 

 

o

 

 to these classes. Similarly, when some
attribute value of 

 

o

 

 is updated, 

 

o

 

 must be re-classified and,
as a result, it may migrate between classes in the same spe-
cialization tree.

It is interesting to note that automated classification is a
way to implement “selection views” as defined in [32].
Automated classification is usually not supported by com-
mercial OODBMSs.

 

Existential dependency enforcement

 

Each attribute induces an existential dependency. The de-
pendencies are enforced according to the minimal cardina-
lity of the attribute. Let 

 

att

 

 be an attribute of class 

 

C

 

 with
domain class 

 

D 

 

and minimal cardinality 

 

min

 

. Let 

 

o

 

 be an
instance of 

 

C

 

 with 

 

att

 

(

 

o

 

) = {

 

d

 

1

 

, 

 

d

 

2

 

, ..., 

 

d

 

s

 

}. If one deletes 

 

d

 

1

 

from 

 

D

 

, 

 

d

 

1

 

 is removed from 

 

att

 

(

 

o

 

) in order to maintain re-
ferential integrity. If it lets the cardinality of 

 

att

 

(

 

o

 

) below

 

min

 

, 

 

o

 

 is automatically deleted from 

 

C

 

.

An existential dependency can be assigned to any attribute
whose domain class is tuple (by setting 

 

min

 

 greater than
zero). It is not related to a specific relationship between
classes, as in [7] [20] where dependency can be expressed
only on a composite attribute (is-part-of relationship).

 

Keys

 

A 

 

key

 

 of a tuple class 

 

C

 

 defines a constraint on 

 

C

 

 instances.
It is a subset of the attributes of 

 

C

 

 such that no two instan-
ces of 

 

C

 

 have the same values on this attributes set. A class
may have zero, one, or several keys. A subclass inherits the
keys of its superclass and may have additional keys.

Keys provide a useful mechanism to refer to objects in the
F2 manipulation language. If {

 

att

 

1

 

, 

 

att

 

2

 

, .., 

 

att

 

k

 

} is a key of
class 

 

C

 

, an expression of the form 

 

C

 

’[

 

att

 

1

 

: v

 

1

 

, 

 

att2: v2, ...,
attk: vk] designates the unique instance o of C such that
att1(o) = v1, ..., and attk(o) = vk. If k = 1 one can use the
simpler form C’v1. For instance, since {reg_number} is a
key of class Student, Student’[reg_number: 98765] and
Student’98765 both designate an unique student.

2.2 Objects behaviour

Three primitive methods are defined in F2 to manipulate
objects: create, update and delete. Primitive methods check
integrity constraints (existential dependencies, keys) and
perform automated classification.

Create

The Create method creates an object o in a class C and re-
turns its oid. With the provided attribute values, the method
checks cardinalities, keys, and classifies the object into
every subclass whose specialization constraints are satis-
fied. 

Example 3. The following F2 DML [15] expression creates
an object and adds it to class Student (root class of the spe-
cialization tree), class SwissStudent (constraint <nationa-
lity = “Swiss”> satisfied) and class ScholarStudent
(constraint <scholarship = 1> satisfied).

create SwissStudent’[reg_number: 98765, lastna-
me: “Dunand”, firstname: {“Henri”, “Marc”}, na-
tionality: “Swiss”, scholarship: 1, in_dept: 
Department’Math, canton: “Geneva”];

Update

The Update method updates the value taken by an object o
on an attribute att. As for Create, the method checks cardi-
nalities, keys and specialization constraints. It may make
the object o migrate between classes of the specialization
tree.

Example 4. The following expression updates the scho-
larship value of student number 98765 and consequently
removes it from class ScholarStudent.

update Student’98765 scholarship:0;

Delete

The Delete method deletes an object o from all the classes
it belongs to. In order to maintain existential dependencies,
it may cause other recursive deletions.

Example 5. Deleting the student number 98765 deletes it
from the classes Student and SwissStudent. Suppose that
this student is referenced by an object e in class Enrolment.
Since the attribute student has minimal cardinality 1, the
object e is also deleted. We can avoid the recursive deletion
by first setting student(e) to the unknown value, and then
deleting the student.

class Enrolment 
(student: Student,
course: Course);

delete Student’98765;

Triggers

F2 supports a trigger mechanism with six types of triggers:
pre-create, post-create, pre-update, post-update, pre-delete
and post-delete. A trigger associates a class and a trigger
type with a set of methods. When a primitive method M is
invoked on an instance of class C, the trigger for class C
and type pre-M executes the associated methods. If one of
these fails, the primitive method is rejected; else it is exe-
cuted and the methods associated with the trigger for class
C and type post-M are executed.



If a primitive method is invoked on an object that belongs
to several classes (multiple instantiation), the complete set
of associated triggers is involved, i.e. all the “pre” methods
are executed in an arbitrary order; if they all succeed M is
executed followed by all the “post” methods.

Example 6. The class Course has a computed attribute
nb_students which gives the number of students enrolled
in a course. A trigger for class Enrolment and type post-
create executes a method which increments the
nb_students value of the concerned course.

3 F2 kernel and database schemes

The F2 model is reflective and meta-circular, i.e. it is self-
descriptive and implemented using its own concepts. In F2
every class is an object and every object is an instance of a
class (i.e. every class is an instance of a class). The instan-
tiation hierarchy is finite by the fact that every class is an
instance of class Class which is an instance of itself. 

The F2 kernel is a set of objects which is necessary and suf-
ficient to describe the structure and behaviour of any F2 da-
tabase. In fact, the F2 kernel is a minimal database that
describes itself, it corresponds to what is also called the
meta-schema of the system. It is composed of all the clas-
ses and attributes shown in fig. 2 (attributes whose domain
class is atomic are not drawn to avoid overloading of the
graph).

A database schema is a user-defined set of classes, keys,
triggers, methods, etc. that describe the structure and beha-
viour of database objects. In current commercial OO-
DBMSs schema components are not standard objects, i.e.
one cannot apply the standard object creation, update, and
deletion operations to these objects. Since F2 treats classes
as standard objects, schema objects are not different from
database objects. Consequently, create, update and delete
methods are applicable to database objects as well as sche-
ma objects. Thus no special purpose methods had to be de-
fined to handle schema changes. Nevertheless, the
manipulation of schema objects must take into account the
database objects that the schema describes. Triggers may
be added for this purpose, in order to give a specific seman-
tics to schema changes as we will see in §4.3.

Example 7. The following operations create an atomic
class String30, a tuple class Department and an attribute of
Department with domain String30.

s := create AtomClass’[className: “String30”, 
classKind: “atomic”, isSubClass: 0, atomBase: 
“string”, maxLength: 30];

d := create TupleClass’ [className: “Depart-
ment”, classKind: “tuple”, isSubClass: 0];

create Attribute’[attName: “name”, origClass: 
d, domClass: s, minCard: 1, maxCard: 1];

This is exactly how the F2 DDL compiler translates the fol-
lowing class definitions:
class String30: stringBase [30];
class Department (name: String30);

Changing the domain of attribute name simply amounts to
the following update:
update Attribute’[attName: “name”, origClass: 
d] domClass: Class’String55;

To make class Department a subclass of class Organizatio-
nalUnit one could do the following:
update d isSubClass: 1; 
update d superClass: Class’OrganizationalUnit;

Since F2 makes no difference between schema and meta-
schema, one can create, update and delete meta-classes
with the same primitive methods. Thus one can easily ex-
tend the F2 data model by adding new classes to the kernel
and defining their behaviour with triggered methods. One
can also change the dynamic part of the model by (re)defi-
ning triggers attached to existing kernel classes.

4 Schema evolution

The schema evolution framework of a DBMS is usually
defined by a set of model invariants, a taxonomy of schema
changes and their semantics. In order to be usable, the set
of schema changes that forms the taxonomy must be “com-
plete” in a certain sense. In [7] a set of schema changes is

primitive method
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considered to be complete if given two arbitrary schemes it
is possible to transform one into the other by a finite se-
quence of these schema changes. We propose another defi-
nition of completeness: a set of changes is complete if it
contains all the possible primitive changes on the kernel
instances. This definition is stronger than the one given in
[7].

4.1 Model invariants

An invariant is a property which must be preserved across
schema and data changes. Invariants hold at every quies-
cent state of the schema, that is before and after a schema
change operation. F2 model invariants are:

I1: the value of an attribute is a set of objects that belong
to the attribute’s domain class and satisfies the cardi-
nality constraints.

I2: the instances of a subclass are exactly those of its su-
perclass that satisfy its specialization constraints.

I3: the extent of a class satisfies the class’ keys.
I4: the class hierarchy is a forest, i.e. a collection of spe-

cialization trees.
I5: attributes in a specialization tree have distinct names.
I6: key attributes of a class are attributes defined on that

class (local or inherited).
I7: the attribute used in a specialization constraint on a

subclass C is an attribute defined on the superclass of
C (local or inherited).

Other model invariants are consequences of the keys and
existential dependencies of the meta-schema objects. For
instance: the key {className} of class Class implies that
class names are unique; the attributes domClass and orig-
Class of class Attribute induce an existential dependency
between an attribute and its origin and domain classes.

4.2 Taxonomy

The F2 schema changes taxonomy is a direct consequence
of our definition of completeness. It is given by conside-
ring the F2 meta-schema (fig. 2) as a database schema and
applying all the primitive methods on its instances. This
contrasts with approaches that develop a taxonomy of
“useful” schema changes [7] [29] [36]. The obtained list of
schema changes is shown in figure 3.

4.3 Semantics of schema changes

To preserve the model invariants, we define the semantics
of schema changes in F2 with pre-conditions and post-ac-
tions. Pre-conditions must be satisfied to allow a schema
change to occur. Post-actions are executed on schema and
database objects to guarantee the consistency of the data-
base. F2 propagates schema changes instantly to main me-
mory objects and makes them permanent upon issuing a
commit operation.

Changes directly implemented by primitive methods

Some schema changes have neither pre-conditions nor
post-actions. They are simply executed by applying a pri-
mitive method on the schema. For example: delete an exis-
ting key, delete an existing trigger, update the action (set of
methods) of a trigger.

Other schema changes have a semantics which is already
implemented in the F2 model through keys and existential
dependencies. For example, when adding or renaming a
class, uniqueness of name is a pre-condition which is auto-
matically verified by the key {className} defined on class
Class. 
Another interesting example is to consider what happens
when a class C is deleted: all the attributes which have C as
origin or domain class are deleted and all the subclasses,
specialization constraints, keys and triggers of C are dele-
ted too. All these repercussions are automatically executed
when deleting a class thanks to existential dependencies

 • Create a new class
 • Delete an existing class
 • Update an existing class

Change its description:
Change its name (className), its interval if
atomic class (infInt, supInt, etc.), its maximal
length if string class (maxLength)

Modify its position in the class hierarchy:
Change its superclass (superClass), make it a
subclass / non-subclass, i.e. attach / detach it
from a specialization tree (isSubClass)

 • Create a new attribute of a class
 • Delete an existing attribute
 • Update an existing attribute:

Change its name (attName), its maximal cardinality
(maxCard), its minimal cardinality (minCard), its
domain class (domClass), its origin class
(origClass)

 • Create a new key of a class
 • Delete an existing key
 • Update an existing key: 

Change the class on which it is defined (ofClass), its
attributes (keyAtts), activate / deactivate it (active)

 • Create a new specialization constraint of a subclass
 • Delete an existing specialization constraint
 • Update an existing specialization constraint:

Change the subclass on which it is defined
(ofSubClass), its attribute (constAtt), its operator
(constOp), its value (constVal)

 • Create a new trigger over a class
 • Delete an existing trigger
 • Update an existing trigger:

Change the class over which it is defined (over), its
type (type), the set of methods it triggers (action)

 • Create a new method
 • Delete an existing method
 • Update an existing method:

Change its name (methodName), its code (code)

Fig. 3  Schema evolution taxonomy



induced by the meta-schema attributes origClass, dom-
Class, superClass, onSubClass, ofClass, over, which have
minimal cardinality 1. 

Changes implemented with triggers

Other schema changes have a specific semantics expressed
by pre-conditions and post-actions on schema and databa-
se objects. Their semantics is implemented by triggers. We
describe an example of such changes: change the super-
class of a subclass C.

Pre-conditions: the new superclass is in the specialization
tree of C and is not a successor of C (avoid cycles).

Post-actions on schema objects: let S be the set of classes
containing C and its successors. A class in S may lose in-
herited attributes from the old superclass of C. So:

 • if there is a class C’ in S on which is defined a key con-
taining a lost attribute, then delete this key.

 • if there is a class C’ in S on which is defined a specia-
lization constraint containing a lost attribute, then de-
lete this constraint.

Post-actions on database objects:

 • for each object o in C, if o is not in the new superclass,
then remove o from C and its successors.

 • for each object o in the new superclass, if o is not in C
and o satisfies the specialization constraints of C, then
put o in C and possibly C’s successors according to
their respective constraints.

Implementation: we define four methods: CheckSuper-
Class, SuppressInvalidKey, SuppressInvalidConstraint,
MigrateObjects. Then we create two triggers in the meta-
class Trigger:

create Trigger’[type: “pre-update”, over: 
Class’SubClass, action: Method’CheckSuper-
Class];

create Trigger’[type: “post-update”, over: 
Class’SubClass, action: {Method’SuppressInva-
lidKey, Method’SuppressInvalidCons-
traint,Method’MigrateObjects}];

The first trigger executes the method CheckSuperClass be-
fore updating a subclass. If it succeeds, the schema change
is done and the second trigger executes the methods Sup-
pressInvalidKey, SuppressInvalidConstraint and Migra-
teObjects.

5 Transposed physical storage: a non-clas-
sical approach

F2 uses the transposed storage approach [9]. At the physi-
cal storage level, attributes are seen as functions from ori-
gin oids to domain oids. Each attribute is stored into a
vector indexed by origin oids and consisting of a set of
physical pages not necessarily contiguous. Thus values of

a given attribute are grouped into physical areas. This way
of storing objects is not wide-spread in DBMSs. Relational
DBMSs as Oracle [27] or object-oriented DBMSs as Orion
[7] support a classical tuple-oriented storage scheme, i.e.
they store one tuple or object into one record.

5.1 Storage format

A tuple class C with n attributes att1, att2, ..., attn is stored
in (n+1) vectors, one vector for each attribute plus one vec-
tor for a state attribute state_C (fig. 4a). The state attribute
is managed internally by the DBMS and is not visible to
the end users. An object o of a class C has:

 • an oid <R, r> formed by the identifier R of the class C
(within the meta-class Class) and the identifier r of the
object o within the class C.

 • a value [att1: att1(r), att2: att2(r), ..., attn: attn(r)], whe-
re atti(r) is a set of identifiers of objects within the do-
main class of the attribute atti.

 • an internal state state_C(r) which is: a) negative, if o
does not belong to C; b) equal to zero, if o belongs to
C; c) greater than zero, if o belongs to C and is referen-
ced by objects (acts like a reference counter).
If o belongs to a subclass C’ of C, it has the oid <R’,
r>, which means that it keeps the same identifier r in-
side all the classes of a specialization tree (fig. 4b).

5.2 Advantages and disadvantages

Transposed storage is interesting in the context of schema
evolution for two reasons:

 • it avoids the reorganization of the physical storage. For
all the schema changes we mentioned the physical sto-
rage is not reorganized. In other words, a schema chan-
ge does not require to move data, which is often costly.
For example, if an attribute att of class C is deleted, the
physical pages of att are set free. The physical storage
is not affected, while with traditional storage the va-
lues of att must be removed from records of all exis-
ting instances of C. Since a class can have many
instances, this is potentially a very expensive underta-
king. Another example is add a new attribute to class
C. New physical pages are reserved to store later the
attribute values. Here again, the storage is left untou-
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ched. With traditional storage, all existing instances of
C will have a field added to their record to store the at-
tribute values.

 • it reduces considerably the number of input/output
operations from disk to main memory and vice-versa.
Schema changes do not bring whole objects into main
memory as with classical storage. Only the affected at-
tributes are loaded, thus reducing the number of input/
output operations. For example, when one updates the
domain class of an attribute att of class C, only the
physical pages of att are loaded into main memory (to
change att values). Their number is much smaller than
the number of physical pages of C instances, which are
loaded with traditional storage.

Transposed storage can be disadvantageous when retrie-
ving all the attribute values of some instances of a class C.
However transposed storage becomes advantageous when
computing an aggregate function (sum, average, etc.) on a
single attribute.

6 Related work

Orion [7] is an OODBMS which supports schema evolu-
tion. A set of invariants and rules (when an invariant can be
preserved by more than one way) is defined to guarantee
the consistency of the database schema. Schema changes
are categorized as: (1) changes to class definitions, inclu-
ding changes to instance variables and methods, (2) chan-
ges to the class hierarchy. The Orion approach, called
screening, defers the propagation of schema changes to
persistent objects. These changes are propagated to the af-
fected objects only when they are retrieved.
The framework of schema evolution in Goose [25] is based
on that of Orion. But Goose propagates schema changes
instantly to main memory objects and makes them perma-
nent upon issuing a save operation.

Gemstone [29] is another OODBMS which extends
Smalltalk-80 capabilities and supports simple inheritance.
A set of invariants is defined and a limited set of schema
changes is supported (changes to inheritance links and
changes to methods are not provided). The semantics of
these changes differs from that given in Orion. In the
Gemstone approach, called conversion, schema changes
are made instantly.

Otgen [22], an object-oriented system, supports more
complex schema changes (not local to class definitions) for
the purpose of reorganizing the database. A transformation
table is used to describe the relationships among objects
before and after the schema change. The table has an entry
for each class. It indicates how instances of that class
should be transformed. Schema changes are collected and
released as a unit. They are propagated to objects when the-
se are accessed.

Lispo2 [8] is a language extending Lisp with the O2 object-
oriented data model and orthogonal persistence. The
Lispo2 programming environment supports schema evolu-
tion operations and addresses their impact at the class, ins-
tance and method levels. The method compiler catches
inconsistencies in methods with regard to the schema and
may mark a method as invalid or recompile it. Lispo2 uses
a semi-lazy policy: for instances in main memory schema
changes are immediately propagated while for instances on
disk changes are performed when the instances are loaded
in main memory.

All these systems take the approach that applies a schema
change to a single schema and updates the affected instan-
ces. A second approach is to create a new version of the
modified object and keep the old one. Versions of different
granularities are proposed in the literature: schema ver-
sions in Orion [19], class versions in Encore [34] and in
[24], object versions in Charly [28]. A third approach is to
handle schema evolution with an external schema as views
in [11] and context versions in [5].

7 Conclusion

We showed in this paper that the F2 OODBMS is evolution
oriented thanks to:

 • a powerful data model that supports multiple instanti-
ation, automated classification and integrity cons-
traints as keys and existential dependencies.

 • a self-descriptive model allowing to treat database ob-
jects, schema objects and meta-schema objects simi-
larly, thus providing uniformity and extensibility of
the data model.

 • a trigger mechanism allowing primitive methods to
trigger other methods. It is used to implement the se-
mantics of schema changes.

 • a transposed storage that avoids database reorganiza-
tion and greatly reduces the execution time of schema
changes.

The F2 DBMS is composed of three layers. The lowest
layer implements persistent storage. It encapsulates the pa-
ging and block buffering mechanism, and a transaction
mechanism. The second layer implements the primitive
methods. The third layer includes the query and manipula-
tion language interpreter and the Ada application program
interface (API).

The whole code is written in Ada, using exclusively stan-
dard library packages. The choice of Ada proved to be ju-
dicious for at least two reasons: language features for
genericity have been extensively used in F2 and eased the
packages structure design, and second, the code was found
very easily portable on any platform with an Ada compiler.



It currently runs under VAX/VMS, DEC-Alpha/VMS, Su-
nOS and MacOS.

All the schema changes listed in this paper are supported
in the current F2 system. In addition, a user-friendly inte-
ractive schema editor eases the user’s task. 

One direction of our actual research activity consists in stu-
dying how schema evolution transactions could execute
concurrently. Another direction is to integrate the concept
of context versions defined in [5] and [3]. Contexts [4] are
abstraction that isolate the database user or programmer
from the database schema thus they can be used to hide
schema changes to users and application programs.
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