
Management Of Schema Evolution In Databases

JosC Andany Michel LConard Carole Palisser
CUI CUI LIST

Universid de Genbve Universitk de Gentve Universitk de Names
12 rue du Lac 12 I-UC du Lx Facultk dcs Sciences

CH- 1207 Gen&ve CH- 1207 GcnCve 2 rue de la Houssini&re
Switzerland Switzerland 44072 Names cedex

Tel. (22) 787.65.82 Tel. (22) 787.65.82 France
Tel. 40.37.49.02

Abstract
This paper presents a version model which
handles database schema changes and which
takes evolution into account. Its originality
is in allowing the development of partial
schema versions, or views of a schema.
These versions are created in the same
database from a common schema. We define
the set of authorised modifications on a
schema and the rules which guarantee its
coherence after transformation. Mechanisms
allowing data to be associated with each
version are also integrated in the model.

1. Introduction.
In the database life cycle, the schema evolution

problem first comes up during the design phase.
However, its evolutive aspect is not specific to this
phase. During the post-design phase, a schema can be
modified, for example after a significant evolution of
the application domain, or again in refining the
application description. Finally, this kind of
transformation is sometimes necessary for performance
reasons. Schema evolution handling during the
operational phase of a database is a complex problem.
During this stage, each schema change needs to take
into account previously stored data. In particular, such
transformations usually require storing previous schema
in order to retain accessibility to the associated data.
This leads at the same time to the problem of
managing different schema versions and that of the
correspondences between these versions and the data.

Software producers were undoubtedly the first to
meet the need of taking data evolution into account.
Numerous version managers were implemented in the
software engineering field, in order to manage the
different states generated during the design and
maintenance of a program [Rochkind,75], [Tichy,851,
[Kaiser,83], [Estublier,84]. The last few years have
seen the version control problem in new application
fields of DataBase Management Systems (DBMS) such
as Computer Aided Design (CAD). It is an important
direction for research and development in the field
[Katz,84], [Katz,86], [Katz,87], [Kim,85], [Batory,851,

[Chou,86], [Klahold,86], [Autran,87], [Fauvet,88],
[Palisser,89], [Palisser,90a]. [Palisser,89] contains a
synthesis of projects based on the version problem in
software engineering and in CAD.

In the DBMS field, at the present time, existing
version management systems are generally dedicated to
particular applications, principally around CAD. Little
rcscarch has been done on database version management
systems indepcndcnlly of specific application fields.
Notably, the study of database schema evolution
control is a recent subject of investigation. Our research
is situated in this area. A version schema model
[Palisscr,90b] has been defined for the Farandole 2
DBMS [Estier,89], [Falquet,89]. This system is based
on a data semantics model close to the extended Entity
Relationship and the object oriented ones. But the
principles of the version model are general and can be
applied to every model which allows the concept of
context ($3.2) to be defined.

In this paper, we start (42) by describing our
motives for taking into account schema modifications
and we prcscnt the principle methods of approach for
the management of such modifications. 93 explains the
data model used as a basis for the version model of $4.
95 introduces the set of transformations authorised on a
schema. 96 explains the mechanisms defined in order to
manage data correspnding to versions of schema.

2. Schema Modification Management.
2.1. Motivations, Principal Directions.

The motives behind schema modifications stem
from having to rcconsidcr the database structure, the
needs to bc satisfied and the computing environment.
As an example, consider a database specification for a
limited set of applications. It may be possible to cxtcnd
the application domain by transforming the schema.
Furthcrmorc, running certain applications may also be
too cxpcnsivc in terms of time because of bad data
organisation. Again, access to required information may
be difficult because certain useful access paths are not
available.

The organisational environment can also change:
new administrative procedures are created, new
information circuits are put in place. Certain

This work is part of the Rebirth project supported by the Swiss Kesearch Fund&ion (FNRS no 1.603-0.87)

Proceedings of the 17th International 161
Barcelona, September, 1991

Conference. on Very Large Data Bases

applications use the same information in new, ways, or
need new information. Information modelling is
changed, the schema following in order to remain
conform with the application field, Finally, the
computing environment in which the database is run
can evolve: new versions of systems, new DBMS, new
distributions of applications on different sites in the
case of distributed databases. The schema must bc
adapted to these changes.

These different points show that a schema is rarely
totally static and illustrate the need for evolution
mechanisms. To fill this need, there are three principal
lines of approach.

The fist consists of allowing schema modifications,
without retaining the pre-modification state. Each
schema change is applied irreversibly to the database,
without taking into account possible consequences to
the data. With the second approach, the method adopted
is close to that used during the database design phase.
At the start, the schema evolves independently of the
data. Then, after stabilisation, transformations are
reflected on the data. This means that they are converted
in order to correspond to the new schema. With this
technique, as with the prececding one, the evolution of
the database is not controlled. The validation of a new
schema leads to the destruction of its predecessor,
together with the corresponding data.

In the third approach, the state of the schema before
modification is conserved. This means managing a set
of schema versions. There are two ways of organising
this, leading to two types of version: historical and
parallel.

In the historical approach, any modification having
important repercussions on the schema generates a new
version. Each version is kept, along with its associated
data. This allows the constitution of database archives.
These versions, stored in separate memory regions, are
independent. Old versions are only accessible in
consultation mode. Any changes arc carried out on the
current version. The historical approach consists of
managing as many copies of the database as there are
versions.

In contrast to the preceding approach, with parallel
versions the different versions of schema are stored in a
common zone. They evolve in parallel and operale on
the same data collection. All the versions coexist and
the same set of operations is applicable to each of
them. They are accessible in consultation or in update
mode. Considering this approach to be the more
interesting, we will develop it in the paragraphs which
follow.

2.2. Previous Work.

The problem of schema version control is a recent
research topic. As far as we know, the principal work
done in the field has been carried out in the systems
Orion [Kim,88], [Kim,891 and Encore [Zdonik,86],
[Skarra,86], In the system Charly [Palisser,89],
[Palisser,90a] versions of schema are also taken into
account, although the approach adopted is not
comparable to that of the other two projects. Each
author proposes a different solution for managing
schema changes.

In Orion [Kim,89], the versions of schema are
conserved. Any change to the database structure creates
a new version of the complete schema. Accessible
objects are associated with each version. A version thus
corresponds to the complete state of the database at a
given moment. This means that testing the
conscqucnccs on the data of transforming parts of
schema cannot be carried out by developping partial,
parallel versions. For this type of experiment, a version
of the entire schema must be derived. This aspect is
problematic, since it can lead to managing a
considerable number of versions. In practice it is often
not ncccssary to gcncratc such versions, particularly
when the modifications are minor and only concern a
small part of the schema.

The Encore approach manages versions of classes (or
of types). Any modification of a class creates a new
version of the class and of its sub-classes. A version of
the global schema is subsequently created virtually by
taking advantage of the relationships between the
versions of different classes. This last point is
problematic. To represent the state of the schema at a
given moment, the user must choose a particular
version for each of the classes defined for the state and
establish links between the different versions. In
addition, the derivation of a version of a class requires
generation of new versions of all its sub-classes. This
crcatcs a problem when the schema contains a large
number of classes and when minor changes are made to
the root of the lattice. In this case, a new version must
bc gcncrated of each class derived from that modified.

In the two prcceeding approaches, versions of
schema and of objects are considered and treated
independently. For each version of a schema or of a
class, there exist several versions of objects. This
means that links must bc cstablishcd and maintained
bctwccn the versions of schema and those of
corresponding objects. The solution proposed in Charly
(a DBMS for CAD applications) [Palisser,89] consists
of not separating the treatment of versions of schema
and objects. An object version contains its complete
description. It does not correspond to a particular
instance of a fixed schema. In this way, versions of
schema and of objects are treated uniformly. This
mcans, in particular, that schema modifications are
handled in exactly the same way as those of objects.
Each modification generates a new version of an object,
made up of the schema and object values. This
approach, “version of schema by object”, gives rise,
however, to a problem. Different schema versions
cannot be recovcrcd. To do this requires considering the
set of versions of the data-base objects.

In [Kim,881 a fourth approach is indicated. This
consists of handling schema modifications by view
definitions, Any number of views may be defined on
the schema. From any given view, several others can
be derived, each corresponding to schema changes. Each
one operates on the same data collection. It will be seen
that this method is close to that adopted in the system
Farandolc 2.

Proceedings of the 17th International
Conference on Very Large Data Bases

162 Barcelona, September, 1991

3. The Data Model,
The data semantics model of Farandole 2, which

supported the version model defined here, can bc
considered as an extension of the Entity Relationship
model. It is based on the concepts of object, class, role
and generalisation/specialisation.

3.1. Basic Concepts.
In this model, objects of the same type are grouped

in a same named class. There exist two types of class:
atomic and composite. The former are terminal classes,
such as strings, integers, booleans, etc. Objects of
these classes are identified by their value. Thus, the
integer 6 is identified by the value 6.

A role has a name and a degree. It corresponds to a
function defined between two classes, an origin and a
domain. A role establishes a link between objects of
these classes. The origin class of a role is always
composite. The domain of a role can be composite or
atomic.

Objects of composite classes are each represented by
an identifier independent of their value. The value of an
object of a composite class is a tuple made up of
objects linked to it by roles. Thus, as shown in
figure 1, the value of an object of the class Vehicle is a
tuple made up of a licence number, its horse-power and
its chassis number, which arc rcspcctively objects of
the classes String, Integer and Chassis, the latter being
itself a composite class.

Horse-Power

Vehicle String

Chassis IA ‘ml

T [Chassil+-b Ineser
Chassis-Num

Figure 1: Origins and Domains of Classes

The roles Lit-Num, Horse-Power and Chassis-Num
lead to atomic classes and can be considered as
attributes. The role Chassis represents a link between
two composite classes: Vchiclc and Chassis.

The generalisation/spccialisation mechanism allows
specialisation of a class into sub-classes. We define the
super-class of a sub-class C as the class from which it
is directly derived and ancestors of C as being all
classes higher up in the derivation hierarchy of C. A
sub-class inherits all the roles of its super-class, and
thus, by recursion, those of all its ancestors. The
objects of a sub-class arc those objects of its supcr-
class about which particular information is desired.

A sub-class is defined by a spccialisation condition.
A specialisation condition is expressed as a triplet of
the form (r, o, v), where r is a conditional role based on
an ancestor class, o the condition operator and v its
value. A sub-class is made up uniquely of the object set
of its super-class verifying this condition. Every sub-
class has a unique, direct super-class. This means that
multiple inheritance is not authorised in Farandolc 2.

Figure 2 presents an example which will be referred
to in what follows. It describes the structure of an
airline company. To improve readability, only those

Proceedings of the 17th International
Conference on Very Large Data Bases

roles which link composite classes are shown
figure.

in the

-1
Figure 2: Airline Company

163

Rectangles represent classes, and arrows, roles. Sub-
classes are contained one inside the other. Thus the sub-
classes of Person are Passenger and Staff. Those of
Staff are Pilot and Radio, etc. A crew associates a pilot
and a radio operator. A flight is the association of a
crew, an airplane, a departure airport and an arrival
airport. Finally, a booking associates a passenger with
a flight.

3.2. Contexts.

The data model of Farandole 2 was created to manage
complex databases. In this field, it is often difficult for
a user to understand a schema globally. The definition
of partial views of the schema must also be allowed.
The notion of semantic context [Falquct,89],
[Falquct,91] is introduced for this reason.

A semantic context is an abstraction which allows
the regrouping of certain elements of the schema while
masking others. A context is used primarily to
facilitate database querying. It corresponds to the
particular semantics of links between constituant
classes. The semantics come from the connection
function [Maier,84] of the context. A connection
function of a context is defined over the set of its
classes. It delivers all the object tuples linked to the
context. Consider a context Ct and a set C of classes
(Cl, a’*, Cn) of Ct. The connection function of Ct
over C delivers all the object tuples act of instances of
Cl, “.I Cn which are associated with the roles of Ct.

A semantic context, defined on a database Db, can be
symbolised by a connected graph (N, E), where N is a
set of nodes and E a set of edges. Each node is a couple
of the form (n, C), whcrc n is the name of the node and
C a class of Db. So the same class may appear in
different nodes. An edge is a pair of nodes (ni, nj)

labelled by a role Ri, such that Ri links the classes
corresponding to ni and nj, The connectivity of the
graph is seen through the edges and specialisation
links. Any number of contexts can be defined on Db.

For example, in the schema of the airline company
(figure 2)‘ the context llight planning can be defined, as
illustrated in figure 3, by the association of the
following nodes and edges: &&x: (p,Person), (st,Staff),
(pi,Pilot), (r,Kadio), (s,Student). (gr,Graduate). (c,Crew).
(f,Flight), (a,Airplane), (a-dep,Airport), (a-ar,Airport).

Barcelona, September, 1991

J&&&: ((&Crew), (pi,Pilot)), ((c,Crew), (gr,Graduate)), means that all context modifications do not necessarily
I(c,Crew), (f,Flinht)], ((f,Flinht)), (a,Airplane)), generate new versions.
i(f,Flighi), (a de&Airport), (air-dep)),
(a-ar,Airport). &r-arrival)).

((f,Flight),

p:l

[

Person

Figure 3: The Flight Planning Context

Note that if there exists only one role linking the
nodes of an edge, it necessarily constitutes the implicit
label of the edge and is thus not declared. This is the
case of the edges ((c,Crew), (pi,Pilot)), ((c,Crew),
‘,gr&Ee;;e)), ((c.Crew, WighO). ((f,FWN,
a, ’

In addition, the nodes (p,Person), (&Staff),
(r,Radio), (s,Student) are not to be found in the
definitions of edges. They are however united by
specialisation links to at least one node on a context
edge, (pi,Pilot) and (gr,Graduate), thus assuring graph
connectivity. Note finally that the class Airport
participates in two nodes, This allows the rupture of
the loop generated by the roles air-depart and
air-arrival.

4. The Version Model.

In this paragraph, we present our version model.
This model aims at managing changes made to a
schema and storing its different versions.

4.1. Changeable Units.

The units which can be changed are the elements of
the schema to which version management applies. In
$2.2, four types of changeable units were given
(versions of: schema, classes, objects with schema,
views). These result in four methods of managing
schema modifications.

Our approach can be considered as being the fourth
one, which as far as we know has been little
developped. The changeable units selected arc contexts,
notion close to that of views. A context corresponds to
a portion of the schema. A context is made up of a set
of classes associated by roles chosen among those
defined in the database. It allows consultation, while
masking the set of classes and roles which are not
useful. It is thus versions of contexts which are to be
considered in what follows.

4.2. Definition Of The Concept Of Version.

In this model, a version is defined as a stable and
coherent state which the administrator or the designer
desires to keep. Generating a new version of a context
is a process which results from a human decision. This

From a given context version several other versions
of the same context can be derived. A context version
may also be considered as derived from several versions.
This means that the derivation organisation of versions
can be symbolised by a directed graph. As in [Kim,881
and [Palisser,89], we introduce the notion of generic
context to be able to globally apprehend the set of
versions of a context.

4.3. The Dif’f’erent Types Of Versions.
WC distinguish two version types, working and

stable versions. Changes are always carried out on a
working version. A stable version cannot be updated or
deleted. A working version can be transformed into a
stable one and vice versa This means that a stable
version has to return to the working state in order to be
modil’icd or dcletcd. Qucrics concern stable and working
versions.

Furthermore, at any time there exists one default
version for each context. The default version is that
which is selected when the user refers to the context
without specifying a particular version. It corresponds
to any version (working or stable) previously
determined by the user.

4.4. Generic Contexts And Versions.

As shown in $4.2, with each version is associated a
generic context. It is described as follows:

[id, name, first-version, default, [working-versions],
[stable-versions], next-version, root-class]

Id is the internal identifier of the context calculated
by the system. Name is an external identifier given by
the designer. First-version delivers the identification of
the first version of the version derivation graph. Default
indicates the default version of the context.
Working-versions and stable-versions correspond
respectively to the working and stable versions.
next-version gives the number of the next version
derived for the context. Root-class indicates the root
class of the generic context (cf 06).

A version is thus described as follows:
(id, gen,id, name, number.(successors], [previous],
date, state, [[nodes], [edges]]]
Id is the calculated internal version identifier, Gen-id

identifying its generic context. Name is the external
name of the version. Number corresponds to its
number: each version has a specific number which
allows it to be refcrcnced. Successors indicates the set
of its successors. Previous identifies the set of versions
from which it is derived. Date is the date of the last
modification of the version. State says whether it is
working or stable. Nodes and Edges correspond
respectively to the lists of nodes and edges in the
version.

5. Evolution Of The DataBase Schema.
5.1. Possible Transformation Types.

Within the adopted approach, a schema consists of a
set of contexts. Each context can evolve individually
into a set of versions. The transformations authorised

Proceedings of the 17th International
Conference on Very Large Data Bases

164 Barcelona, September, 1991

on the schema can thus affect it globally or partially in
applying to a version. Two types of transformation arc
thus considered: those carried out on the complctc
schema and those operating on a context version.
Among the former are considered the addition and
suppression of context versions. Among the latter are
considered the modifications of a context version. As
seen in $3.2, a context is represented by a graph in
which nodes correspond to classes and edges to links
between classes. As a consequence, two types 01
modification affecting the graph are again distinguish&
those which affect graph structure (addition or
suppression of a node or edge) and those which apply to
the contents of the graph (modification of a node or
$9).

On the other hand, name changes are not allowed.
This means that it is not possible to change the name
of a context, a node or a role. This restriction is
established for manipulation reasons. In fact, one of the
objectives of the version model definition prcscntcd
here is that data manipulation concerning a context
should be as independent as possible of its versions.
Name invariance is necessary to guarantee the
invariance of the manipulation programs applied to
several versions of a same context. By forbidding name
changes, the connection function of a generic context
remains the same for all its versions (cf. $3.2).

5.2. Sharing Version Elements.
Versions of the same or different contexts are not

devclopped in separate databases but in the same one,
from a common schema. They are not disjoint and thus
often share common elcmcnts. So when an operation is
tried out on a version the possible consequences on
other versions must be clearly circumscribed. No
modification of a version should repercute on others.

In the considered model, a version is a set of nodes
and edges. A node is a named class and an edge is a role
associated with a pair of nodes. Each element which has
just been enumerated can occur in more than one
version. For example, consider two generic contexts
CtI and Ct2, which each possess versions VI, V2 and
V3, The same nodes and edges can occur at the same
time in versions VI and V2 of CtI and VI and V3 of
Ct2.

What is more, even if a node or edge is not shared,
their elements (classes and roles) may be. Any action
carried out on a set of nodes and edges of a given
version thus requires verification of whether they or
their elements are present in other versions. WC dcfinc a
set of general rules which regulate the operations of
addition (Rl), suppression (R2) and modification (R3)
when an element (or a set of elcmcnts) is shared. By
element is understood node, edge, class or role.

l Rl, Adding an clcmcnt E to a version V
constitutes either an addition or a creation, depending
on whether E was or was not already defined in the
schema. In the first case, E is integrated in V and is
thus shared by several versions. In the second case, E
must be created. The creation of an element is local to
V. Addition of an element also rcquircs application of
the same procedure to its elements. For example, for a

node, there must be verification that the associated class
is already defined.

l K2. Suppressing an clement E in a version V
simply rcmovcs the clcmcnt from V. Furthermore, after
this, if E is not shared by another version and is
isolated, then E is effectively deleted. This process is
applied recursively to the elements which constitute E.
The mechanism used is thus that of garbage collection.

l K3. Modification of an element shared by other
versions is done on a copy and has thus no effect on the
other versions. For example, the modification, in a
version V, of a class C figuring in several versions is
carried out on a copy of C.

5.3. Modification Of The Database Schema.

5.3.1. Adding A Version.
Addition of’ a version can be done either by creation

in the initialisation phase, or by derivation from a
version of the same context.

Creation of a version automatically creates the link
with the associated generic context. A name must be
attributed to the version and a list of its nodes and edges
must bc added or created. A node is cithcr simple or the
root of a spccialisation tree. An cdgc corresponds to an
association between two nodes or to an attribute. In the
former case, two composite classes are linked and, in
the latter, a composite class and an atomic one. Note
that a specialisation link is not an edge. This type of
link is not defined at the level of edges of the graph but
appears in the definition of a node (class).

The creation of the first version of a context also
ncccssitates a choice, among the set of context classes,
of a particular class, the root of the context. This class,
which corresponds to a semantically dominant node,
must bc defined for each generic context. It is the entry
point to the context and is associated with all its
versions. Its functions will be detailed in $6.

As an example, suppose that the first version of the
gcncric context Flight planning has been created (cf.
Figure 3, $3.2). A version of a new generic context
(figure 4) can bc created to manage reservations for the
airline.

Figure 4: Version 1 Of The Context Reservation

Note thal the nodes (p:Person), (f:Flight),
(a:Airplanc), (a-dcp:Airport) and (a-ar:Airport), already
dcfincd in version 1 ot’ the context Flight planning
(figure 3, 33.2), arc shaucd by this new version. But the
nodes (pa: Passenger) and (b: Booking) did not exist in
the schema and were thus created.

Derivation of a new version is always done from a
previous version. A name must bc given to the new
version. It inherits by default the set of nodes and edges
of the version from which it is derived.

Proceedings of the 17th International
Conference on Very Large Data Bases

165 Barcelona, September, 1991

5.3.2, Suppression Of A Version.

When a version is suppressed, all its elcmcnts
become inactive, The suppression rule R2 (cf. $5.2)
must be respected. The version elements are effectively
suppressed if they are not linked to any other element
of the version set of the database. Suppressing a
version V leads to the suppression of the links with all
its derived versions which arc linked now to the
versions from which V was dcrivcd.

5.4. Modification Of A Version.
This paragraph presents the set of modifications

which can be made to a context version. It should be
remembered that, in the definition of a context version
(cf. §4.2), a modification does not necessarily generate
a new version.

5.4.1. Modification Of The Graph Structure.

l Addition Of A Node.

Following rule Rl (cf. §5.2), if the node exists in
the database, it is added to the considered version,
otherwise it is created. A node can correspond to a
super-class or a sub-class of a spccialisation tree In the
first case, only this node is intcgratcd into the version.
In the second case, all its ancestors must also bc added.
To create a node, it must be given a name and be
associated with a class, which has to be created if it
does not exist. If it is a sub-class, its super-class must
be specified togcthcr with a spccialisation condition.

l Adding An Edge.

The procedure for adding an edge is similar to that
for a node. It respects the sharing rule (RI). A role and
a pair of nodes must be associated with the edge. The
nodes must have been previously defined .for the
considered version. If the role dots not exist, it is
created by giving it a name and associating an origin
and a domain and specifying its degree of valuation.
The two classes of the role must correspond to those
figuring on the nodes of the edge.

Consider the case in which the airline company
needs to take into account booking goods on flights. A
new version (n”2) of the reservation context is derived.
To this version are added the following nodes: g:
Goods, f: Freight and pb: Pas-Book. They correspond,
respectively, to the description of goods, the booking
of these on a flight and the booking of passengers on
the flight. The classes Goods, Freight and Pas-Book,
which did not exist in the schema, arc created as in
figure 5. The edge defined between the two nodes is
made up of a new role. It is created by the attribution of
a name (goods-book), an origin class (Freight), a
domain (Goods) and a valuation dcgrcc of 1.

Figure 5: Version 2 Of The Context Reservation.

l Suppression Of A Node.

Suppressing a node consists of taking it out of the
version, together with all its associated edges. This
operation also removes the class associated with the
node, as long as it is not shared by other nodes of the
version (rule R2).

If this class is the super-class of a specialisation
tree, then all its dcrivcd classes are also removed from
the version. For cxamplc, in figure 5, if the node g:
Goods is removed from the version, the cdgc between
g: Goods and I: Freight is also removed, as is the role
goods-book. They are, however, effectively deleted
only if they are no longer linked to any element of the
set of versions of the database.

l Suppression 01‘ An Edge.

Suppressing an cdgc cuts the link bctwcen two
no&s. That is it removes the role figuring on the edge.
This latter operation only affects other version elements
if the role is conditional, that is defines a sub-class C.
In this case C and all its derived classes are removed
from the version. This operation must not invalidate
the connectivity of the graph or the rule R2.

54.2. Modification Of Graph Contents.

l Modification Of A Node.

Name changes not being allowed, node
modifications are cquivalcnt to those of classes.
Amongst thcsc are considcrcd the redefinition of the
super-class of a class and of a sub-class.

For reasons connected with objects, redefining the
super-class of a class C can only be carried out inside a
spccialisation tree. In a spccialisation tree, all objects
arc dcfincd at the lcvcl of the anccstof class. Thus the
transfer of a sub-class C of one tree to another would
lcad to the suppression 01 all the objects of C. What is
mom, this modification must not introduce a loop. The
new super-class of C must not bc derived from C. For
example, consider the specialisation tree of figure 6.

Proceedings of the 17th International
Conference on Very Large Data Bases

166 Barcelona, September, 1991

Cl l Modification Of An Edge.

Figure 6: Modification Of A Super-class.

In this example, the super-class of C3 is rcdcfincd.
This operation breaks the link between C2 and C3 and
creates a new link between C3 and Cg. The new super-
class of C3 cannot be situated outside the tree and must
not be a sub-class of C3.

Following rule R3, if the class to be modified is
shared, the modification is done on a copy.
Furthermore, copies of all classes down the
specialisation hierarchy must be generated. In the
preceeding example this comes down to copying classes
C3 and C4.

In the flight planning context (figure 3, $3.2),
widening the concept of student to all mcmbcrs of staff
could be required. As is illustrated by figure 7, this
comes down to modifying the super-class of the class
Student which passes from Radio to Staff. This
transformation requires the derivation of a new version
(n02) of the context.

1 p:Person

Figure 7: Version 2 of Flight Planning Context.

The modification of a sub-class applies to its
specialisation condition, that is to the conditional role,
the operator or the value. If a new conditional role is
attributed to a sub-class C, the role must have been
previously defined in one of the ancestor classes of C.
In the preceeding example (figure 7) the classes Person,
Staff and Pilot are defined as follows:

Person(Name:string; Age:integer; TypePcrsoxstring)
Staff sub-class of Person

if TypePerson = “cmploycc”
(Salary: integer; Function: string)
Pilot sub-class of Staff if Function = “pilot”
(NbFlightHours: integer)

The conditional role Function of the class Pilot can
be changed by choosing TypePerson as a new
conditional role, since it is defined in the ancestor class
Person.

Proceedings of the 17th International
Conference on Very Large Data Bases

Changes allowed on edges can affect their origin and
terminal nodes, as well as the valuation degree of their
roles. Because of name invariance, this operation is
cquivalcnt to a role modification.

hlodification of the origin or terminal nodes of an
cdgc can only be done inside a specialisation tree, for
rc;lsons similar to those discussed for classes. The
operation must rcspcct rule R3. Consider a role RI
having as origin and terminal nodes respectively N3 and
N6, illustrated in figure 8.

Figure 8: Modification Of Nodes Of A Role.

The only possible new origin nodes of RI are Nl,
N2, N4 or Ng. Replacing N3 by a node outside the tree
comes down to suppressing all the object associations
supported by RI. The same is true for the terminal
nodes. From this, the new terminal node of RI can
only be N7.

For example, the edge associated with nodes
b: booking and pa: Passenger of version 1 of the
context rcscrvation (cf. figure 4) goes through the role
pass-book, which has the class Booking as origin.
Al‘tcr the spccialisation of this class in sub-classes
Freight and Pas-Book (cf. figure 5), the role pass-book
can be modified and a new origin class, Pas-Book,
attributed.

While increasing the valuation degree of a role
crcatcs no problem, its diminution has consequences on
the data. If, in an object, the number of values of a role
is grcatcr than the new valuation degree, the object
rcccivcs an unknown value for the role. Let 01 be an
object to which a role Rl associates the values (VI, v2,
~3). If the valuation degree of RI is changed to 2, then
01 rcccives an unknown value for RI.

5.5. Rules Associated With Modifications.

WC define a set of rules which must always be
followed when the database schema is transformed. The
operations presented in $55.3 and 5.4 can thus only be
carried out if they do not violate these rules. This
guarantees the coherence of a schema after modification.

l RJ. The scl of nodes and edges of a version
must form a conncctcd graph. Thcrc are thus no isolated
nodes in the graph and each of them can be rcachcd
from the root node or class.

l R5. If a node belongs to a version, then all its
ancestors must also belong to the same version.

l R6. The role of an edge must necessarily link the
two classes dcfincd in the nodes.

l R7, The root class of a generic context can
nci ther bc supprcsscd nor modi ficd.

167
Barcelona, September, 1991

5.6. Schema Of A Database.

With the defined model, a user can consider a schema
either as a set of context versions or as a view of the
set of versions. In this latter case it is defined by
choosing a set of context versions. In the prccccding
paragraphs two generic contexts were dcfincd which
have each two versions (Flight planning (Version 1,
figure 3 (§3.2), Version 2, figure 7 ($5.4.2)) and
Reservation (Version 1, figure 4 (§5.3.1), Version 2,
figure 5 ($5.4.1))). A schema of the database Airline
can be defined by choosing version 1 of Flight
planning and version 2 of Reservation.

Note that different versions of the same gcncric
context can figure in the same schema. For example, a
schema can be made up from versions 1 and 2 of’ the
context Flight planning.

Version selection is done statically or dynamically.
In the first case versions are referenced by their
identifiers and those of their respective generic contexts.
In the second case, only the identifiers of the generic
contexts are specified. Version selection is carried out
by choosing default versions (cf. $4.3).

6. Object Management In A Version.
As was already underlined in the introduction, an

important problem in schema version management is
the establishment and maintcnancc of correct links
between different versions of the schema and the
objects. In particular, schema modification must not
lcad to the loss of data. Mechanisms have thcrcforc
been defined which allow the association with each
context version of the objects pertinent to that version.
It should be rcmcmbered that the subject covered hcrc is
not object version management but only schema
version control. For this reason, no account is taken of
the evolution of objects in a context version.

6.1. The Root Class Of A Context.

As seen previously (§5.3.1), with each generic
context is associated a unique root class. It corresponds
to a node of the context. This notion exists in order to
determine whether an object belongs to a given version.
The class is specified by the user. It is part of the
information common to the different versions of a
generic context. This means that it is associated with
its set of versions and can neither be modified nor
suppressed between one version and the next. From a
semantic point of view, it is an entry point in the
context which corresponds to a semantically dominant
node.

In the case where no spccialisation tree exists in the
context, the root is any class. Otherwise, it must not
be a sub-class. For example, for the generic context
reservation the root class is chosen to be Booking (cf.
$5.3.1, figure 4) and in the context flight planning, the
class Flight (cf. 43.2. figure 3).

6.2. Context Versions And Objects.

6.2.1. Objects Of The Root Class.

The notion of root class allows determination of
which objects belongs to a context version. With each

object of this class is associated the set of versions in
which it appears. For example, let Cl be the root class
of a context CT1 which owns the version set (VI, V2,
V3,V4)andletolbeanobjectofC1.Ifolappearsin
versions V1 and V2 of CT1 and not in V3 or V4, then
the set (VI, V2) is associated with the object 01, By
default, the context versions in which an object does
not participate are those which are not specified for the
object.

For example, the root class Booking of the generic
context reservation owns, in addition to its roles, a
multi-valued role (versions) which associates with each
ob.ject the list of versions to which it belongs.

Booking

Figure 9: The Root Class Of The Context Reservation.

6.2.2. Objects Belonging To A Version.
An object o of a class (different from the root class),

which is a component of a version V, belongs to V if
an object oc of the context version V can be built from
o by applying the connection function and after
verifying the integrity rules.

For example, figure 10 shows the objects of
version 1 of the context reservation. Thus, Paris
airport belongs to this version since it is linked to
flight ba234, which is linked in turn to the object of
the root class, the booking 345, which is declared as
belonging to the version. The airplane DC10 also
belongs to this version because even if it is not linked
to any object of the root class at present, it will belong
to the result obtained by applying the connection
function to this version.

Figure 10: Objects Belonging To A Version.

Now let Flight-Passenger and Military-Flight be
two cxclusivc sub-classes of Flight. Let the new
version V’ of the context reservation contain the classes
Booking, Flight-Passenger, Flight, Airplane and
Airport. Then all the objects of Military-Flight are also
objects of Flight, but they cannot be part of a V’ object
obtained by applying the connection function. Thus
they do not belong to V’.

6.3. Sharing A Root Class.

In a database, different generic contexts can share the
same root class. In this case, it is necessary to indicate
for each object of the class and for each generic context

Proceedings of the 17th International
Conference on Very Large Data Bases

168 Barcelona. September, 1991

the versions in which they appear. This comes to
associating with each object of the root class a pair,
whose first member is a context identifier and the
second a set of versions.

Let Ctl, Ct2, Ct3 bc generic contexts, each owning
the set of versions (VI, V2, . . . , Vn) and having the
same root class Cl, Consider the set of objects
(01,029 ***, on). For each object of the set it must bc
indicated not only in which versions it appears, but
also to which generic context it belongs. For cxamplc,
if 01 is defined in versions V1 and V2 of contexts Ctl
and 03, the following couples are associated with o 1:

01, (VlI V2))* (CQ(Vl* V2)).

6.4. Object Creation, Suppression And
Updating.

An object is always created, suppressed or updated in
a working version V of a context. It can either bc
created in the root class, or in any other class. In the
fist case, if the object already exists in the database, in
other versions, it is automatically integrated into V and
marked as belonging to it. If it does not exist, it must
be created and marked as belonging to V.

When an object of the root class is suppressed, if it
appears in no other context version than V, it is
effectively removed from the database. The links
between the object and objects of other classes arc
broken. If the object is shared between scvcral versions,
it is marked as no longer belonging to V. Following
the possession rules between an object and a version
defined for the root class (cf. §6.2.1), all objects which
reference it no longer appear in V.

The creation and the suppression of an object in a
class other than a root class are the usual operations of
creation and suppression.

Updating an object consists of modifying the value
of a role. If an object of a root class is shared by several
generic context versions, it can not have diffcrcnt
values for these versions. This means that object
updating is reflected on all the versions in which it
appears. One of the primary principles announced is
that this work applies not to object versions but
uniquely to the evolution of the database schema.

7. An Evolutionary Model.
We will show briefly how this version managcmcnt

model can be considered as an evolutionary database
model, Indeed it will undoubtedly improve llcxibility in
the use and transformation of a database. It also opens
new perspectives in the database design process.

7.1. Independance Between Manipulation
Programs And Schema.

An originality of this model rcsidcs in the
improvement of the invariance of manipulation
programs. Most manipulation programs which arc
applied to a context version V do not rcquirc any
rewriting before being applied to another version V’ 01
the same context. Of course rewriting is ncccssary if a
class belonging to V and missing in V’ is necdcd. This
property comes from the invariance of names ($5.1) and
the use of contexts [Falquet,89]. Indeed, schematically a

context can be considered as a large object and the
logical data access can be written without knowlcdgc of
all the classes and roles which compost it.

7.2. Object Lil’e Cycle.

Another originality of this model is its facilities for
designing and easily implementing object life cycles.
Roughly speaking we consider that an object life cycle
can bc divided into scvcral periods [Guyot,86]. Each
period dcfincs an object environment in terms of data,
integrity rules and processes. So a period provides the
set of dau which may be linked to the object, the set of
integrity rules which arc defined, the set of processes
which may be executed. The object environment
changes when an object leaves a period and enters a new
one. This version management system allows an object
life cycle to be designed and easily implemented. The
various periods correspond to context versions and the
root class of a context is the class of objects the life
cycle of which has to be implemented.

7.3. A New Solution To An Old Problem.

The version managcmcnt system can help to solve a
concrctc problem which WC introduce with an example.
A student, a faulty and a diploma have respectively a
number as idcutificr and a name. A diploma is dclivcred
by only one faculty. A student can be inscribed at only
one diploma d and in only one faculty, which must bc
the faculty delivering the diploma d. In order to avoid
any redundancy the relational schema will be:

St(St# St-Name) Dpl(Dpl# Dpl-Name)
Fac(Fac# Fat-Name)

K(St# Dpl#) S(Dpl# Fac#).

In fact thcrc arc two periods. Firstly every student is
allowed to choose a faculty, without choosing a
diploma. After three months every student has to
choose a diploma among the diplomas of the
previously chosen faculty. In order to store the facts
concerning the first period has the relation T(St# Fac#)
to bc implcmcntcd? If so, it will be redundant in the
second period.

With our approach a context Rcgisuation is built: it
is composed of St and Fat. St is its root class. Then
two versions of this context are built : the first one is
composed of St, Fat and T and corresponds to the fist
period. The second is composed of St, Dpl, Fat, R and
S and corresponds to the second period. This solution
does no! contain any redundancy.

8. Cunclusiun.
In this paper, a version model is proposed which

allows following the evolution of the database schema.
The version management mechanism is based on the
notion of context, which can be considered as an
cxtcnsion of the concept of view. Transformations are
carried out on parts of the schema. Any number of
ContcxLs can bc dcfincd on the database, each one
corresponding to part of the schema. Scvcral versions
can bc derived from a context. The method adopted is
thus close lo that which consists of managing versions
of views. WC can compare it with the “schema version”
and “class version” approaches. Roughly speaking the

Proceedings of the 17th International
Conference on Very Large Data Bases

169
Barcelona, September, 1991

granularity of the former seems to us to be too wide:
any schema transformation, even if it concerns only
one class, needs a version of the whole schema. In the
other hand, the granularity ol‘ the latter sczms to us LO
bc too narrow: each class is allowed to have scvcral
versions and so associations in a schema bctwccrl
classes must follow the various versions. The problem
becomes complex. The granularity of context seems to
us to be more appropriate.

As we showed in the last paragraph, :he version
model introduces a new approach for designing ;I
database. The concept of object life cycle can bc uscti,
the database design process may bc cvolutiorlarq.
Furthermore the model improves flexibility in Lhc USC
of databases: there is real indepcndcncc bctwcen data
schema and data programs.

The DBMS Farandolc 2 is in fact a laboratory
written in ADA which includes a classical DBMS
(built from ECRINS [Junet,861) and a process
environment. The concept of context is ~n~plcmcntctf.
The elementary data schema transfornlations arc
implemented. Version mechanism implcmcntation is in
progress.

9. Acknowledgements.

The authors thank Michael Griffiths for his help in
translating this paper.

10. References.
J. Auuan, C. Palisscr: Vucs ct Versions d’Objcts

Complexes-Une Application 2 la CAO, cn
Architccturc; 36mes Journe’es Buses de Don&es
Avunce’es, INRIA, Port Camarguc, May 1987.

D. Batory, W. Kim: Modcling Conccpls for VL.SI
CAD Objects; ACM TODS, Vol. 10, N”3, Scptcmbcr
1985.

H.T. Chou, W. Kim: A Unifying Framework for
Version Control in a CAD Environment; 12th VLDB
Conference, Kyoto, August 1986.

D.J. Ecklund, E.F. Ecklund, R.O. Eifrig, F.M.
Tongc: DVSS: A Distributed Version Storage Scrvcr
for CAD Applications; 13lh VLDB Confcrencr,
Brighton 1987.

J. Estublier, S. Ghoul, S. Krakowiak: Preliminary
experience with a configuration control system for
modular programs; ACM SICSOFT-SIGPLAN, April
1984.

T. Estier: Lc Mod& Farandolc 2 ct Ic Dictionnairc
du SGOOD; CUf Research Report, Gcncva, Scptcmbcr
1989.

T. Esticr, G. Falquct: QFE: un gCnCratcur
d’interfaces pour I’intcrrogation dcs bases de don&s h
I’aide de contextes stmantiqucs; Inforsid, ed. Eyrolles,
Biarritz, May 1990.

G. Falquet: Interrogation dc bases dc donnCcs B I’aidc
d’un modble skmantique; Thesis, Geneva University,
May 1989.

G. Falquet: F2 an object-oriented database model
with semantic contexts; CU1 Research Reporl, Gcncva,
January 1990.

M.C. Fauvet: ETIC, un SGBD pour la CA0 dans
un environnement partagC; Thesis, Grenoble
University, September 1988.

Proceedings of the 17th International
Conference on Very Large Data Bases 170

J. Guyot: Un modClc dc traitements pour les bases
dc donnCcs: un formalismc pour la conception, la
validation ct I’cxCculion dc la spbcification d’une
a[)plicalion; ‘l’he.n.s, Geneva Universify, June 1986.

31.Junct, G. Falquct, M. LConard: ECRINS/86: an
cxlctldcd crltity-rclationshlp data base managcmcnt
system and its semantic query language; 12th VLDB
Conference, Kyoto, Japan, August 1986.

G.E Kaiser, A.N. Habcrmann: An Environment for
System Version Control; in Digest of papers
COMPCOM Spring 83, IEEE Computer Sociely, San
Francisco, 1983.

K.H. Kat/, T.J. l.chrnann: Database Support for
Versions and Altcrnauvcs of Large Design Files; IEEE
Transacrions on Sofrware Engineering Conference, Vol.
SE 10, N”2, March 1984.

R.H. Katz, E. Chang, R. Bhateja: Version
hlodclling Concepts for Computer-Aided Design
Daubascs; ACM SIGMOD Conference on Munqment
ofDrm, May 1086.

R.I-i. Kale, E. Chang: Managing Change in a
Computer-Aided Design Database; 13lh VLDB
Conference, Brighton 1987.

W. Kim, D. Batory: A Model and Storage Technique
for Versions of VLSI CAD Objects: Conference on
Four&/ions of Dutu Organization, Kyoto, May 1985.

W. Kim, H.T. Chou: Versions of Schema for
Object-Oricntcd Dutabascs; IJlh VLL)L) Conference, Los
Angclcs, August 1988.

W. Kim, N. Ballou, H.T. Chou, J. F. Garza, D.
Woclk: Fcaturcs of the ORION Object-Oriented
Database System; in Object-Oricntcd Concepts,
Databases and Applications, cd. W. KIM and F. M.
L,ochovsky, ACM Press Fronlier Series, New York,
19x9.

P. Kluhold, Ci. Schlagctcr, W. Wilkes: A Gcncral
Model I’or Version Managcmcnt in Databases; 12th
VLDB Conference, Kyoto, August 1986.

D. Maicr, J.D. Ullman, M.Y. Vardi: On the
Foundation of the Universal Relation Model; ACM
TODS, Vol.9, N’2, 1984.

C. Palisscr: Charly, un Ccstionnairc de Versions
pour la CA0 cn Architccturc; Thesis, Aix-Marseilles
Univt,r.sily, Marscillcs, r\;ovcmbcr 1989.

C. Palisscr: Le ModCie dc Versions du SystEme
Charly; 62mes Journc’es Bases de Donnkes Avanckes,
INRIA, Montpellicr, September 1990.

C. Palisscr, J. Andany, M. Lbnard: Un ModClc de
Versions de SchCmas dc Bases dc Don&s; GUI
Research Rrlporl, Gcncva, July 1990.

M.J. Rochkind: The Source Code Control System;
/LYLE 7‘runsar:lion.c on Sofiwure Engineering, Vol. SE-
1, N”4, Dcccmbcr 1975.

A.H. Skarra, S.B. Zdonik: The Management of
Changing Types in an Object-Oricntcd Database;
OOPSLA Conference, Portland, Septcmbcr 1986.

W.F. Tichy: RCS-A System for Version Control;
S(ifiwure Prutice und experience, Vol. 15(7), July 1985.

S.B. Zdonik: Version Management in an Object-
Oricntcd Database; International Workshop. Trondhcim,
June 1986. Ed Rcidar Conradi et al. Lecture Notes in
Compuler Science N”244.

Barcelona, September, 1991

