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Pontificia Universidad Católica de Chile
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A schema mapping is a specification that describes how data from a source schema is to be mapped

to a target schema. Once the data has been transferred from the source to the target, a natural

question is whether one can undo the process and recover the initial data, or at least part of it. In

fact, it would be desirable to find a reverse schema mapping from target to source that specifies

how to bring the exchanged data back.

In this article, we introduce the notion of a recovery of a schema mapping: it is a reverse mapping,

M′ for a mapping M, that recovers sound data with respect to M. We further introduce an order

relation on recoveries. This allows us to choose mappings that recover the maximum amount of

sound information. We call such mappings maximum recoveries. We study maximum recoveries

in detail, providing a necessary and sufficient condition for their existence. In particular, we prove

that maximum recoveries exist for the class of mappings specified by FO-TO-CQ source-to-target

dependencies. This class subsumes the class of source-to-target tuple-generating dependencies used

in previous work on data exchange. For the class of mappings specified by FO-TO-CQ dependencies,

we provide an exponential-time algorithm for computing maximum recoveries, and a simplified

version for full dependencies that works in quadratic time. We also characterize the language

needed to express maximum recoveries, and we include a detailed comparison with the notion

of inverse (and quasi-inverse) mapping previously proposed in the data exchange literature. In

particular, we show that maximum recoveries strictly generalize inverses. We finally study the

complexity of some decision problems related to the notions of recovery and maximum recovery.
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Católica de Chile; email: {marenas,jperez}@ing.puc.cl; C. Riveros, Oxford University Computing

Laboratory, Oxford, United Kingdom; email: cristian.riveros@comlab.ox.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/12-ART22 $10.00

DOI 10.1145/1620585.1620589 http://doi.acm.org/10.1145/1620585.1620589

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.



22:2 • M. Arenas et al.

ACM Reference Format:
Arenas, M., Perez, J., and Riveros, C. 2009. The recovery of a schema mapping: bringing exchanged

data back. ACM Trans. Datab. Syst. 34, 4, Article 22 (December 2009), 48 pages.

DOI = 10.1145/1620585.1620589 http://doi.acm.org/10.1145/1620585.1620589

1. INTRODUCTION

A schema mapping is a specification that describes how data from a source
schema is to be mapped to a target schema. In recent years, a lot of atten-
tion has been paid to the development of solid foundations for the problem
of exchanging data using schema mappings [Fagin et al. 2005a; Libkin 2006;
De Giacomo et al. 2007]. These developments are a first step towards provid-
ing a general framework for exchanging information, but they are definitely
not the last one. As pointed out by Bernstein [2003], many information system
problems involve not only the design and integration of complex application ar-
tifacts, but also their subsequent manipulation. This has motivated the need for
the development of a general infrastructure for managing schema mappings.

A framework for managing schema mappings, called model management,
was proposed by Bernstein [2003]. In this framework, operators like match,
merge and compose are used to manipulate mappings [Bernstein 2003; Mel-
nik 2004; Melnik et al. 2005]. Another important operator that naturally
arises in this context is the inverse, which plays an important role in schema
evolution [Bernstein and Melnik 2007]. Once the data has been transferred
from the source to the target, the goal of the inverse is to recover the ini-
tial source data. If a mapping M′ is an inverse of a mapping M, then M′

is an ideal mapping to bring the data exchanged through M back to the
source.

The process of inverting schema mappings turned out to be a nontrivial task
[Fagin 2007; Fagin et al. 2008]. Fagin [2007] proposed a first formal definition
for what it means for a schema mapping M′ to be an inverse of a schema
mapping M. Roughly speaking, Fagin’s definition is based on the idea that
a mapping composed with its inverse should be equal to the identity schema
mapping. More formally, Fagin [2007] introduces an identity schema mapping
Id, suitably adapted for the case of mappings specified by source-to-target tuple-
generating dependencies (st-tgds). Then he says that M′ is an inverse of M
if M ◦ M′ = Id. This notion turns out to be rather restrictive, as it is rare,
that a schema mapping possesses an inverse. In view of this limitation, in a
subsequent work, Fagin et al. [2008] introduce the notion of a quasi-inverse
of a schema mapping. The idea of the quasi-inverse is to relax the notion of
inverse by not differentiating between source instances that are equivalent for
data exchange purposes. Although numerous noninvertible schema mappings
possess natural and useful quasi-inverses [Fagin et al. 2008], there are still
simple mappings specified by st-tgds that have no quasi-inverse. Moreover,
the notions of inverse and quasi-inverse are defined by considering identity
mapping Id, which is only appropriate for mappings that are closed down on
the left [Fagin 2007] and, in particular, for mappings specified by st-tgds. This
leaves out numerous mappings of practical interest.
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In this article, we revisit the problem of inverting schema mappings. Al-
though our motivation is similar to that of previous work, we follow a different
approach. In fact, our main goal is not to define a notion of inverse mapping,
but instead to give a formal definition for what it means for a schema mapping
M′ to recover sound information with respect to a schema mapping M. We call
such an M′ a recovery of M. We use a general definition of schema mapping,
where mappings are simply defined as binary relations with pairs (I, J ), where
I is a source instance and J is a target instance. Our notion of recovery is ap-
plicable to this general definition of mapping. Given that, in general, there may
exist many possible recoveries for a mapping, we introduce an order relation on
recoveries. This naturally gives rise to the notion of maximum recovery, which
is a mapping that brings back the maximum amount of sound information.

As a motivating example, consider a database with relations Emp(name,
works in, lives in) and DrivesWork(name), the former to store names of em-
ployees and the places where they work and live, and the latter to store the
names of employees who drive to work. Assume that the information about em-
ployees has to be transferred to an independent database that contains relation
Shuttle(name), which stores the names of employees who take a shuttle bus to
go to work. A schema mapping ME-S between these two databases is defined
by the following dependency:

Emp(x, y , z) ∧ y �= z ∧ ¬DrivesWork(x) → Shuttle(x). (1)

An example of a reverse mapping M1 that recovers sound information with
respect to ME-S is Shuttle(x) → ∃u∃v Emp(x, u, v); it is correct to bring back
to relation Emp every employee in relation Shuttle, but since Shuttle does not
store information about the places where employees work and live, variables
u and v are existentially quantified. Furthermore, it is also correct to assume
that if an employee name has been brought back from relation Shuttle, then
the places where this employee works and lives are different. Thus, mapping
M2 defined by Shuttle(x) → ∃u∃v (Emp(x, u, v) ∧ u �= v) is also a correct way of
recovering information with respect to ME-S. On the other hand, it is clear that
mapping M3 defined by Shuttle(x) → ∃u Emp(x, u, u) is not a correct way of
recovering information with respect to ME-S, since M3 assumes that in every
recovered instance, every employee in relation Shuttle works and lives in the
same place.

Formally, an instance J is said to be a solution for an instance I under a
mapping M if (I, J ) ∈ M, and the space of solutions for I under M is defined
as the set of all instances J such that (I, J ) ∈ M. Then if M is a mapping
from a source schema to a target schema and M′ is a reverse mapping from
target to source, we say that M′ is a recovery of M if for every source instance
I , the space of solutions for I under the composition of mappings M and M′

contains I itself. That is, I must be a possible solution for itself under mapping
M ◦ M′. Under this definition, mappings M1 and M2 above are recoveries of
ME-S, while mapping M3 is not a recovery of ME-S.

Being a recovery is a sound but mild requirement. Then it would be desir-
able to have some criteria to compare alternative recoveries. In our motivating
example, if one has to choose between M1 and M2 as a recovery of M, then
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one would probably choose M2, since this mapping says not only that every
employee who takes a shuttle bus works and lives in some place, but also that
those places must be different. Intuitively, M2 is more informative than M1

with respect to M. Furthermore, if M4 is a mapping defined by dependency:

Shuttle(x) → ∃u∃v (Emp(x, u, v) ∧ u �= v ∧ ¬DrivesWork(x)),

then M4 is a recovery of ME-S that is more informative than M2; M4 addition-
ally states that if an employee is brought back from relation Shuttle, then it is
known that she/he does not drive to work. In general, if M′ is a recovery of M,
then the smaller the space of solutions generated by the composition M ◦ M′,
the more informative M′ is about the initial source instances. We formalize this
notion by saying that M′ is at least as informative as M′′ with respect to M, if
for every source instance I , the space of solutions for I under M ◦ M′ is con-
tained in the space of solutions for I under M ◦ M′′. This order on recoveries
gives rise to a notion of maximum recovery. Going back to our example, it can
be shown that mapping M4 is a maximum recovery of ME-S.

In this article, we study the notions of recovery and maximum recovery. The
following are our main technical contributions:

—For the general notion of schema mapping considered in this article, we pro-
vide a necessary and sufficient condition for the existence of a maximum
recovery. We use this condition to show that maximum recoveries are guar-
anteed to exist for a large class of schema mappings, namely for mappings
specified by FO-TO-CQ source-to-target dependencies. An FO-TO-CQ depen-
dency is a formula of the form ∀x̄(ϕS(x̄) → ∃ ȳ ψT(x̄, ȳ)), where ϕS(x̄) is a
first-order formula over the source schema and ψT(x̄, ȳ) is a conjunction
of relational atoms over the target schema. Notice that every st-tgd is an
FO-TO-CQ dependency. We further show that maximum recoveries exist even
if we enrich the class of FO-TO-CQ dependencies with arbitrary source depen-
dencies, equality-generating target dependencies and weakly acyclic sets of
tuple-generating target dependencies.

—We provide a detailed comparison among the notions of inverse, quasi-
inverse, and maximum recovery. Most notably, we show that for the class
of mappings considered in Fagin [2007] and Fagin et al. [2008], if a mapping
M is invertible, then M′ is an inverse of M if and only if M′ is a maximum
recovery of M. For this class of mappings, we also show that, if a mapping
M is quasi-invertible, then M has a maximum recovery, and, furthermore,
every maximum recovery of M is a quasi-inverse of M.

—In this example, a maximum recovery for mapping ME-S is obtained just by
reversing the arrow of dependency (1). However in general, the process of
computing maximum recoveries is more involved. For mappings specified by
FO-TO-CQ dependencies, we provide an exponential-time algorithm for com-
puting maximum recoveries. For the case of full FO-TO-CQ dependencies, that
is dependencies that do not use existential quantifiers in their conclusions,
we provide a quadratic-time algorithm for computing maximum recoveries.
It is worth mentioning that these algorithms can also be used for comput-
ing inverses and quasi-inverses. We also investigate the language needed to
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express maximum recoveries for mappings specified by FO-TO-CQ dependen-
cies, providing justification for the dependency language used in the output
of these algorithms.

—We study the complexity of some problems related to the notions of recovery
and maximum recovery. We show that even for the case of st-tgds, testing
whether a mapping M′ is a recovery of a mapping M is undecidable. As a
corollary, we obtain the same undecidability result for the notions of inverse,
quasi-inverse, and maximum recovery. When restricted to full st-tgds, we
prove lower complexity bounds for this problem: it is �P

2 -complete when M
is specified by a set of full st-tgds, and coNP-complete when both M and M′

are specified by full dependencies.

Organization of the article. We start by introducing the terminology used in
the article in Section 2. In Section 3, we formally define the notions of recovery
and maximum recovery, and we develop several tools to study these notions.
In particular, we provide in Section 3.2, a necessary and sufficient condition
that characterizes the existence of maximum recoveries for general mappings.
In Section 4, we use the tools developed in Section 3 to study the problem of
the existence of maximum recoveries for the most common mappings used in
practice. We prove positive results in Section 4.1, and some negative results in
Section 4.2. In Section 5, we show how to apply the notion of maximum recovery
in a significant practical situation. We compare the notion of maximum recovery
with the previous notions of inverse and quasi-inverse in Section 6. In Section 7,
we provide algorithms for computing maximum recoveries. In Section 8, we
study the language needed to express maximum recoveries. Finally, we study
in Section 9 the complexity of some decision problems related to the notions of
recovery and maximum recovery. Concluding remarks are in Section 10.

This article is a substantially extended version of Arenas et al. [2008]. Be-
sides containing the complete proofs of all the results stated in Arenas et al.
[2008], this version includes new results. In Section 3.1, we provide characteri-
zations of when a mapping M′ is a maximum recovery of a mapping M. All the
results in this section are new. In Arenas et al. [2008], the schema evolution
problem was mentioned as a natural application of the notion of maximum re-
covery. In this article, in Section 5, we take a step forward and formally prove
that the notion of maximum recovery can be used to provide a good solution
for this problem. In Section 7, we also include new and simplified versions of
the algorithms for computing maximum recoveries, which exploit an interest-
ing connection with query rewriting. In the same section, we prove a theorem
about the minimum size of maximum recoveries of mappings given by st-tgds
(Theorem 7.5), that was not provided in Arenas et al. [2008].

2. PRELIMINARIES

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having
a fixed arity ni. Let D be a countably infinite domain. An instance I of R assigns
to each relation symbol Ri of R a finite ni-ary relation R I

i ⊆ Dni . The domain
dom(I ) of instance I is the set of all elements that occur in any of the relations
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R I
i . Inst(R) is defined to be the set of all instances of R. Given instances I, J ∈

Inst(R), we write I ⊆ J to denote that, for every relation symbol Ri of R, it
holds that R I

i ⊆ R J
i .

As is customary in the data exchange literature, we consider instances with
two types of values: constants and nulls Fagin et al. 2005a, 2008; Fagin 2007.
More precisely, let C and N be infinite and disjoint sets of constants and nulls,
respectively, and assume that D = C ∪ N. If we refer to a schema S as a source
schema, then Inst(S) is defined to be the set of all instances of S that are con-
structed by using only elements from C, and if we refer to a schema T as a
target schema, then Inst(T) is defined as usual (instances of T are constructed
by using elements from both C and N). In this article, we use S to refer to a
source schema and T to refer to a target schema.

Given schemas R1 and R2, a schema mapping (or just mapping) from R1

to R2 is a nonempty subset of Inst(R1) × Inst(R2). As is customary in the data
exchange literature, if S is a source schema and T is a target schema, a mapping
from S to T is called source-to-target mapping (st-mapping), and a mapping from
T to S is called target-to-source mapping (ts-mapping) [Fagin et al. 2008].

If M is a schema mapping from R1 to R2 and I is an instance of R1, then we
say that an instance J of R2 is a solution for I under M, if (I, J ) ∈ M. The set
of solutions for I under M is denoted by SolM(I ). The domain of M, denoted by
dom(M), is defined as the set of instances I such that SolM(I ) �= ∅. Notice that
the symbol dom(·) is used to denote both the domain of an instance and of a
mapping, as this does not create any confusion in the article. Furthermore, given
schema mappings M12 from R1 to R2 and M23 from R2 to R3, the composition
of M12 and M23 is defined as the usual composition of binary relations, that is
M12 ◦ M23 = {(I1, I3) | ∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23}. If M12 ◦ M23 is
nonempty, then there exists a unique mapping M13, from R1 to R3, such that
M13 = M12 ◦ M23.

2.1 Dependencies and Definability of Mappings

In this article, CQ is the class of conjunctive queries and UCQ is the class of
unions of conjunctive queries. If we extend these classes by allowing equali-
ties, inequalities, or negation (of atoms), then we use superscripts =, �= and ¬,
respectively. Thus, for example, CQ= is the class of conjunctive queries with
equalities and UCQ¬ is the class of unions of conjunctive queries with nega-
tion. FO is the class of all first-order formulas with equality. Slightly abusing
notation, we use C(·) to denote a built-in unary predicate such that C(a) holds
if and only if a is a constant, that is, a ∈ C. If L is any of the previous query
languages, then LC is the extension of L allowing predicate C(·). For example,
CQ�=,C is the class of conjunctive queries with inequalities and predicate C(·).

Dependencies. Let L1, L2 be query languages and R1, R2 be schemas with
no relation symbols in common. A sentence � over R1∪R2∪{C(·)} is an L1-TO-L2

dependency from R1 to R2 if � is of the form ∀x̄ (ϕ(x̄) → ψ(x̄)), where (1) x̄ is
the tuple of free variables in both ϕ(x̄) and ψ(x̄); (2) ϕ(x̄) is an L1-formula over
R1 ∪ {C(·)} if C(·) is allowed in L1, and over R1 otherwise; and (3) ψ(x̄) is an L2-
formula over R2 ∪ {C(·)} if C(·) is allowed in L2, and over R2 otherwise. We call
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ϕ(x̄) the premise of �, and ψ(x̄) the conclusion of �. If S is a source schema and
T is a target schema, an L1-TO-L2 dependency from S to T is called an L1-TO-L2

source-to-target dependency (L1-TO-L2 st-dependency), and an L1-TO-L2 depen-
dency from T to S is called an L1-TO-L2 target-to-source dependency (L1-TO-L2

ts-dependency).
Three fundamental classes of dependencies for data exchange, and in partic-

ular for inverting schema mappings, are source-to-target tuple-generating de-
pendencies (st-tgds), full source-to-target tuple-generating dependencies (full
st-tgds) and target-to-source disjunctive tuple-generating dependencies with
inequalities and predicate C(·) [Fagin et al. 2005a, 2008]. The former corre-
sponds to the class of CQ-TO-CQ st-dependencies, and the latter is an extension
of the class of CQ�=,C-TO-UCQ ts-dependencies. An FO-TO-CQ dependency is full
if its conclusion does not include existential quantifiers and, thus, the class of
full st-tgds corresponds to the class of full CQ-TO-CQ st-dependencies.

Semantics of dependencies, safeness. Let I be an instance of a schema R =
{R1, . . . , Rm}. Instance I can be represented as an (R ∪ {C(·)})-structure AI =
〈A, R A

1 , . . . , R A
m, CA〉, where A = dom(I ) is the universe of AI , R A

i = R I
i for

i ∈ [1, m] and CA = A ∩ C. This representation is used to define the semantics
of FO over source and target instances (here we assume familiarity with some
basic notions of first-order logic).

Let R1 = {S1, . . . , Sm} be a schema and I an instance of R1. If ϕ(x̄) is an
FO-formula over R1 ∪ {C(·)} and ā is a tuple of elements from dom(I ), then
we say that I satisfies ϕ(ā), denoted by I |= ϕ(ā), if and only if AI |= ϕ(ā).
Whenever it holds that I |= ϕ(ā), we say that ā is an answer for ϕ over instance
I . Furthermore, let R2 = {T1, . . . , Tn} be a schema with no relation symbols in
common with R1, and J an instance of R2. Then K = (I, J ) is an instance of
R1 ∪ R2 defined as SK

i = SI
i and T K

j = T J
j , for i ∈ [1, m] and j ∈ [1, n]. Notice

that dom(K ) = dom(I ) ∪ dom(J ). If ϕ(x̄) is an FO-formula over R1 ∪ R2 ∪ {C(·)}
and ā is a tuple of elements from dom(I ) ∪ dom(J ), then we say that (I, J )
satisfies ϕ(ā), denoted by (I, J ) |= ϕ(ā), if and only if AK |= ϕ(ā). As usual, we
say that an instance satisfies a set � of dependencies if the instance satisfies
each dependency in �.

We impose the following safety condition on L1-TO-L2 dependencies. Recall
that an FO-formula ϕ(x̄) is domain-independent if its answer depends only on
the database instance but not on the underlying domain (see Fagin [1982] for
a formal definition). Let R1 and R2 be schemas with no relation symbols in
common and � = ∀x̄ (ϕ(x̄) → ψ(x̄)) an L1-TO-L2 dependency from R1 to R2.
Then we say that � is domain-independent if both ϕ(x̄) and ψ(x̄) are domain-
independent. The following strategy can be used to evaluate �: Given instances
I , J of R1 and R2, respectively, we have that (I, J ) |= � if and only if for every
tuple ā of elements from dom(I ), if I |= ϕ(ā), then every component of tuple
ā is in dom(J ) and J |= ψ(ā). We note that this strategy cannot be used for
non-domain-independent L1-TO-L2 dependencies.

Definability of mappings. Let R1 and R2 be schemas with no relation sym-
bols in common and � a set of FO-sentences over R1 ∪ R2 ∪ {C(·)}. We say that
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a mapping M from R1 to R2 is specified by �, denoted by M = (R1, R2, �), if
for every (I, J ) ∈ Inst(R1) × Inst(R2), we have that (I, J ) ∈ M if and only if
(I, J ) |= �.

Proviso. In this article, every set � of dependencies is finite, and if � is a
set of L1-TO-L2 dependencies, then we assume that every dependency in � is
domain-independent (as defined above). Furthermore, we omit the outermost
universal quantifiers from L1-TO-L2 dependencies and, thus, we write ϕ(x̄) →
ψ(x̄) instead of ∀x̄ (ϕ(x̄) → ψ(x̄)). Finally, for the sake of readability, we write
ϕ(x̄, ȳ) → ψ(x̄) instead of (∃ ȳ ϕ(x̄, ȳ)) → ψ(x̄) in some examples, as these two
formulas are equivalent.

3. RECOVERIES AND THEIR MAXIMA

Let M be a mapping from a schema R1 to a schema R2, and Id the identity
schema mapping over R1, that is, Id = {(I, I ) | I∈ Inst(R1)}. When trying to
invert M, the ideal would be to find a mapping M′ from R2 to R1 such that,
M ◦ M′ = Id. If such a mapping exists, we know that if we use M to exchange
data, the application of M′ gives as a result exactly the initial source instance.
Unfortunately, in most cases this ideal is impossible to reach. For example, it is
impossible to obtain such an inverse if M is specified by a set of st-tgds [Fagin
2007]. The main problem with such an ideal definition of inverse is which, in
general, no matter whichM′ we choose, we will have not one but many solutions
for a source instance under M ◦ M′.

If for a mapping M, there is no mapping M1 such that M ◦ M1 = Id, at
least we would like to find a schema mapping M2 that does not forbid the
possibility of recovering the initial source data. That is, we would like that for
every instance I ∈ dom(M), the space of solutions for I under M◦M2 contains
I itself. Such a schema mapping M2 is called a recovery of M.

Definition 3.1. Let R1 and R2 be two schemas, M a mapping from R1 to
R2 and M′ a mapping from R2 to R1. Then M′ is a recovery of M if and only if
(I, I ) ∈ M ◦ M′ for every instance I∈ dom(M).

Being a recovery is a sound but mild requirement. Indeed, a schema map-
ping M from R1 to R2 always has as recoveries, for example, mappings
M1 = Inst(R2) × Inst(R1) and M2 = M−1 = {(J, I ) | (I, J )∈M}. If one has
to choose between M1 and M2 as a recovery of M, then one would probably
choose M2 since the space of possible solutions for a source instance I under
M ◦ M2 is smaller than under M ◦ M1. In fact, if there exists a mapping M3

such that M ◦M3 = Id, then one would definitely prefer M3 over M1 and M2.
In general, if M′ is a recovery of M, then the smaller the space of solutions gen-
erated by M◦M′, the more informative M′ is about the initial source instances.
This notion induces an order among recoveries:

Definition 3.2. Let M be a mapping and M′, M′′ recoveries of M. We say
that M′ is at least as informative as M′′ for M, and write M′′ �M M′, if and
only if M ◦ M′ ⊆ M ◦ M′′.
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Moreover, we say that M′ and M′′ are equally informative for M, denoted by
M′ ≡M M′′, if M′′ �M M′ and M′ �M M′′.

Example 3.3. Let M be an st-mapping specified by st-tgd:

P (x, y) ∧ R( y , z, u) → T (x, y , z).

Then the ts-mapping M1 specified by T (x, y , z) → ∃vP (x, v) is a recovery of M,
as well as the ts-mapping M2 specified by T (x, y , z) → P (x, y) ∧ ∃u R( y , z, u).
Intuitively, both M1 and M2 recover sound information given the definition
of M. Furthermore, it can be shown that M1 �M M2, which agrees with the
intuition that M2 recovers more information than M1.

If for a mapping M, there exists a recovery M′ that is at least as informative
as any other recovery of M, then M′ is the best alternative to bring exchanged
data back, among all the recoveries. Intuitively, such a mapping M′ recovers
the maximum amount of sound information. Such a mapping M′ is called a
maximum recovery of M.

Definition 3.4. Let M′ be a recovery of a mapping M. We say that M′ is
a maximum recovery of M if for every recovery M′′ of M, it is the case that
M′′ �M M′.

Notice that if M1 and M2 are maximum recoveries of a mapping M, then
they are equally informative for M, that is, M1 ≡M M2.

Example 3.5. Consider st-mapping M and ts-mapping M2 from Exam-
ple 3.3. Intuitively, M2 is doing the best effort to recover the information
exchanged by M. In fact, it can be shown that M2 is a maximum recovery
of M.

3.1 Characterizing Maximum Recoveries

In this section, we focus on the problem of characterizing when a mapping M′

is a maximum recovery of a mapping M. For doing this, we need the notion of
reduced recovery. A mapping M′ is a reduced recovery of M if M′ is a recovery
of M and for every (I1, I2) ∈ M ◦ M′, it holds that I2 ∈ dom(M).

Example 3.6. Consider an st-mapping M, specified by CQ-TO-CQ �= st-
dependency A(x, y) → P (x, y) ∧ x �= y . Notice that there are source instances
that are not in the domain of M. For example, for the instance I1 such that
AI1 = {(1, 1), (1, 2)}, we have that SolM(I1) = ∅, and thus I1 /∈ dom(M). Let M′

be the ts-mapping specified by the ts-dependency P (x, y) → A(x, y). It is easy
to see that M′ is a recovery of M, but not a reduced recovery of M. In fact, the
target instance J such that P J = {(1, 2)} has I1 as solution. Thus, if we consider
the source instance I2 such that AI2 = {(1, 2)}, we conclude that (I2, J ) ∈ M
and (J, I1) ∈ M′, which implies that (I2, I1) ∈ M ◦ M′ and, hence, that M′ is
not a reduced recovery of M since I1 /∈ dom(M).

Consider now the ts-mapping M′′ obtained from M′ by removing from this
mapping all the tuples (J, I ) such that I �∈ dom(M). Then it holds that M′′ is
a reduced recovery of M.
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As shown in Example 3.6, whenever M′ is a recovery of M, one can extract
from M′ a reduced recovery M′′ of M by discarding all the pairs of instances
(J, I ) of M′ such that I /∈ dom(M). The obtained reduced recovery M′′ is at
least as informative as M′ for M since M◦M′′ ⊆ M◦M′. The following lemma
formalizes this intuition. It shows that we can focus on reduced recoveries in
order to find maximum recoveries.

LEMMA 3.7. If M′ is a maximum recovery of M, then M′ is a reduced recov-
ery of M.

PROOF. By contradiction, assume that M′ is a maximum recovery of M and
M′ is not a reduced recovery of M. Then there exists (I1, I2) ∈ M◦M′ such that
I2 �∈ dom(M). Define mapping M′′ ⊆ M′ as M′′ = {(J, I ) ∈ M′ | I ∈ dom(M)}.
Given thatM′ is a recovery ofM, we have thatM′′ is a recovery ofM. Moreover,
M ◦ M′′ � M ◦ M′ since M′′ ⊆ M′ and (I1, I2) �∈ M ◦ M′′. Thus, we have that
M′ �M M′′ but M′′ ��M M′, which contradicts the fact that M′ is a maximum
recovery of M.

From the definition of maximum recovery, one can notice that in principle, it
is difficult to verify whether a mapping M′ is a maximum recovery of a mapping
M, as it requires comparingM′ with all the other recoveries ofM. However, the
following proposition shows two alternative and useful conditions for checking
whether a mapping M′ is a maximum recovery of a mapping M, which only
depend on the structure of mappings M and M′. These conditions also show
that reduced recoveries are necessary for characterizing the notion of maximum
recovery (notice that in (3), we are also implicitly using the notion of reduced
recovery).

PROPOSITION 3.8. Let M and M′ be mappings. Then the following conditions
are equivalent:

(1) M′ is a maximum recovery of M.
(2) M′ is a reduced recovery of M and M = M ◦ M′ ◦ M.

(3) M′ is a recovery of M and for every (I1, I2) ∈ M ◦ M′, it is the case that
∅ � SolM(I2) ⊆ SolM(I1).

PROOF. In this proof, we assume that M is a mapping from a schema R1 to
a schema R2, and M′ is a mapping from R2 to R1.

(1) ⇒ (2) Assume that M′ is a maximum recovery of M. By Lemma 3.7,
we know that M′ is a reduced recovery of M. Given that M′ is a recovery of
M, we have that (I, I ) ∈ M ◦ M′ for every I ∈ dom(M), which implies that
M ⊆ M ◦ M′ ◦ M. Thus, we only need to show that M ◦ M′ ◦ M ⊆ M. On the
contrary, assume that there exists (I1, J1) ∈ M◦M′ ◦M such that (I1, J1) �∈ M.
Then, there exist instances I2 and J2 such that (I1, J2) ∈ M, (J2, I2) ∈ M′, and
(I2, J1) ∈ M. Note that J1 �= J2 and I1 �= I2, because we are assuming that
(I1, J1) �∈ M. Let M� be a mapping from R2 to R1 defined as:

M� = {(J, I ) ∈ M′ | I �= I2} ∪ {(J1, I2)}.
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Given thatM′ is a recovery ofM and (I2, J1) ∈ M, we have thatM� is a recovery
of M. Now, consider the pair (I1, I2). We know that (I1, I2) ∈ M ◦M′, but given
that (I1, J1) �∈ M and (J1, I2) is the only tuple in M� where I2 appears as the
second component, we have that (I1, I2) �∈ M ◦ M�. Thus, M ◦ M′ �⊆ M ◦ M�

and, therefore, M� �M M′. We obtain a contradiction since M′ is a maximum
recovery of M.

(2) ⇒ (3) Assume that M′ is a reduced recovery of M and M = M ◦M′ ◦M,
and let (I1, I2) be in M◦M′. Given that M′ is a reduced recovery of M, we have
that I2 ∈ dom(M) and, therefore, ∅ � SolM(I2). Next we show that SolM(I2) ⊆
SolM(I1).

Let J ∈ SolM(I2). Then given that (I1, I2) ∈ M ◦ M′, we have that (I1, J ) ∈
M ◦M′ ◦M. Thus, given that M = M ◦M′ ◦M, we have that (I1, J ) ∈ M and,
hence, J ∈ SolM(I1).

(3) ⇒ (1) Assume thatM′ is a recovery ofM and for every (I1, I2) ∈ M◦M′, it
is the case that ∅ � SolM(I2) ⊆ SolM(I1). For the sake of contradiction, suppose
that M′ is not a maximum recovery for M. So there exists a recovery M′′ for
M such that M′′ ��M M′, that is, M ◦M′ �⊆ M ◦M′′. Then there exists a tuple
(I, I ′) ∈ M◦M′ such that (I, I ′) �∈ M◦M′′. By hypothesis ∅ � SolM(I ′) and, thus,
I ′ is an instance in dom(M). Since M′′ is a recovery for M, then we have that
(I ′, I ′) is a tuple in M ◦M′′. Furthermore, there exists an instance J such that
(I ′, J ) ∈ M and (J, I ′) ∈ M′′. By hypothesis, we know that SolM(I ′) ⊆ SolM(I ),
so if (I ′, J ) ∈ M then (I, J ) ∈ M. Then we have (I, J ) ∈ M and (J, I ′) ∈ M′′,
so we conclude that (I, I ′) ∈ M ◦ M′′, which is a contradiction.

The second condition of the previous theorem is a desirable property for
a reverse mapping. Intuitively, M′ does not lose information when bringing
data back from the target, if the space of solutions of every instance of the
source does not change after computing M ◦ M′. That is, for every instance
I of S, it holds that SolM(I ) = SolM◦M′◦M(I ) (or more succinctly, M = M ◦
M′ ◦M). In general, recoveries do not satisfy this condition, but Proposition 3.8
shows that maximum recoveries satisfy it. And not only that, it also shows
that maximum recoveries are the only reduced recoveries that satisfy condition
M = M◦M′ ◦M in the space of recoveries for M, thus providing an alternative
characterization of when M′ is a maximum recovery of M.

3.2 A Necessary and Sufficient Condition for the Existence
of Maximum Recoveries

An important issue about the notion of recovery is whether for every mapping
M, there always exists a maximum recovery. To answer this question, we in-
troduce the notion of witness, and use it to provide a necessary and sufficient
condition for the existence of a maximum recovery for a mapping M.

Definition 3.9. Let M be a mapping from a schema R1 to a schema R2 and
I ∈ Inst(R1). Then instance J ∈ Inst(R2) is a witness for I under M if for every
I ′ ∈ Inst(R1), if J ∈ SolM(I ′), then SolM(I ) ⊆ SolM(I ′).

Example 3.10. Consider the st-mapping M given by the set of st-tgds
{A(x) → P (x), B(x) → P (x) ∧ R(x)}, and let I be a source instance such that
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AI = ∅ and BI = {a}. Notice that the set of solutions for I under M is the set of
all instances J such that a ∈ P J and a ∈ R J . Consider now the target instance
J � such that P J � = {a}. It is easy to see that if a source instance I ′ contains
J � as solution, then I ′ also has as solution every target instance J such that
a ∈ P J and a ∈ R J . Thus, we have that J � is a witness for I under M, as for
every source instance I ′, if J � ∈ SolM(I ′), then SolM(I ) ⊆ SolM(I ′).

Example 3.10 shows that a witness for an instance I under a mapping M is
not necessarily a solution for I under M. We say that J is a witness solution
for I if J is both a witness and a solution for I . A witness solution can be
considered as an identifier for a space of solutions; if J is a witness solution for
instances I1 and I2, then SolM(I1) = SolM(I2). Other identifiers for spaces of
solutions have been proposed in the data exchange literature. For example, for
the specific case of st-tgds, we prove in Section 4.1 that the notion of universal
solution introduced in Fagin et al. [2005a] is stronger than the notion of witness
solution, in the sense that every universal solution is a witness solution but
the opposite does not hold. For other classes of st-dependencies, the notions
of universal and witness solution are incomparable (see Section 4.2 for some
examples).

The notion of witness together with the notion of reduced recovery can also
be used to characterize when a mapping M′ is a maximum recovery of M. In
fact, the following lemma shows that witness instances are the building blocks
of maximum recoveries.

LEMMA 3.11. Let M and M′ be mappings. The following statements are
equivalent:

(1) M′ is a maximum recovery of M,
(2) M′ is a reduced recovery of M, and for every (I1, J ) ∈ M and (J, I2) ∈ M′,

J is a witness for I2 under M.

PROOF. In this proof, we assume that M is a mapping from a schema R1 to
a schema R2, and M′ is a mapping from R2 to R1.

(1) ⇒ (2) By Lemma 3.7, we know that M′ is a reduced recovery of M and,
therefore, we only need to prove that for every (I1, J ) ∈ M and (J, I2) ∈ M′, J
is a witness for I2 under M. Assume that I is an instance of R1 such that J ∈
SolM(I ). Since (I, J ) ∈ M and (J, I2) ∈ M′, we conclude that (I, I2) ∈ M ◦ M′,
and thus, by Proposition 3.8 we obtain that SolM(I2) ⊆ SolM(I ). We have shown
that for every I , if J ∈ SolM(I ) then SolM(I2) ⊆ SolM(I ), which proves that J
is a witness of I2.

(2) ⇒ (1) Assume that M′ is a reduced recovery of M such that, for every
(I1, J ) ∈ M and (J, I2) ∈ M′, J is a witness for I2 under M. Next we show that
M′ is a maximum recovery of M.

By Proposition 3.8 and given that M′ is a reduced recovery of M, we know
that to prove the maximality of M′, we only need to show that for every (I1, I2) ∈
M◦M′, it is the case that SolM(I2) ⊆ SolM(I1). Take an arbitrary (I1, I2) ∈ M◦
M′. Thus, there exists an instance J of R2 such that (I1, J ) ∈ M, (J, I2) ∈ M′.
By hypothesis, J is a witness for I2 under M. By the definition of a witness
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instance and given that J ∈ SolM(I1), we conclude SolM(I2) ⊆ SolM(I1). This
was to be shown.

The previous lemma is used in the next result to provide a necessary and
sufficient condition for the existence of maximum recoveries.

THEOREM 3.12. A mapping M has a maximum recovery if and only if for
every I ∈ dom(M), there exists a witness solution for I under M.

PROOF. In this proof, we assume that M is a mapping from a schema R1 to
a schema R2, and M′ is a mapping from R2 to R1.

(⇒) Assume that M′ is a maximum recovery of M. Then by Lemma 3.11,
for every (I1, J ) ∈ M and (J, I2) ∈ M′, J is a witness for I2 under M. Let
I ∈ dom(M). Given that M′ is a recovery of M, we have that (I, I ) ∈ M ◦ M′.
Thus, there exists an instance J of R2 such that (I, J ) ∈ M, (J, I ) ∈ M′ and
J is a witness for I under M. We conclude that there exists J ∈ SolM(I ) such
that J is a witness solution for I under M.

(⇐) Assume that for every instance I ∈ dom(M), there exists JI ∈ SolM(I )
such that JI is a witness for I under M, and let M� be a mapping defined as
{(JI , I ) | I ∈ dom(M)}. It is easy to see that M� is a reduced recovery of M.
Furthermore, given that for every (J, I ) ∈ M�, J is a witness for I under M,
we conclude from Lemma 3.11 that M� is a maximum recovery of M.

4. ON THE EXISTENCE OF MAXIMUM RECOVERIES

In this section, we focus on source-to-target mappings, that is mappings from a
source schema S to a target schema T. Recall that instances of S are constructed
by using only elements from C (constants), while instances of T are constructed
by using elements from both C and N (constants and nulls). This is the most
common class of mappings in the data exchange literature [Fagin et al. 2005,
2005a; Arenas et al. 2004; Afrati et al. 2008], and specifically in the literature
on inverting schema mappings [Fagin 2007; Fagin et al. 2008]. We note that
the recovery of an st-mapping is a target-to-source mapping.

On the positive side, we prove our main results regarding classes of st-
mappings that admit maximum recoveries. Namely, we show that if M is an st-
mapping specified by a set of FO-TO-CQ dependencies, then M has a maximum
recovery. Furthermore, we also show that the extension of this class with source
dependencies, equality-generating target dependencies, and weakly acyclic sets
of tuple-generating target dependencies [Deutsch and Tannen 2003; Fagin et al.
2005a] also admits maximum recoveries (these classes of dependencies are de-
fined in Section 4.1). These results are in sharp contrast with the results of
Fagin [2007], and Fagin et al. [2008], where it was shown that even for full
st-tgds, inverses and quasi-inverses are not guaranteed to exist.

On the negative side, we show that if we enrich the conclusion of FO-TO-CQ
dependencies by adding inequalities, or disjunction, or negation, the existence
of maximum recoveries is not guaranteed.
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4.1 Positive Results

In Fagin et al. [2005a], the class of universal solutions for st-mappings was
identified as a class of solutions that has good properties for data exchange.
These solutions play an important role in this section. To formally intro-
duce this concept, we review the necessary terminology from Fagin et al
[2005a].

Let J1 and J2 be instances of the same schema R. A homomorphism h from J1

to J2 is a function h : dom(J1) → dom(J2) such that, for every R ∈ R and every
tuple (a1, . . . , ak) ∈ R J1 , it holds (h(a1), . . . , h(ak)) ∈ R J2 . Given a set A ⊆ D,
we say that a homomorphism h from J1 to J2 is the identity on A, if h(a) = a
for every a ∈ A ∩ dom(J1). Let M be an st-mapping, I a source instance, and
J a solution for I under M. Then J is a universal solution for I under M, if
for every solution J ′ for I under M, there exists a homomorphism from J to
J ′ that is the identity on C. The next lemma shows an important relationship
between universal and witness solutions.

LEMMA 4.1.

(1) Let M be an st-mapping specified by a set of FO-TO-CQ dependencies and I,
a source instance. Then every universal solution for I under M is a witness
solution for I under M.

(2) There exists an st-mapping M specified by a set of st-tgds and a source
instance I such that, I has a witness solution underM that is not a universal
solution for I under M.

PROOF. In order to prove the first part of the lemma, let M be an st-mapping
specified by an set of FO-TO-CQ dependencies, I a source instance and J be a
universal solution for I under M. Thus, we have that for every source instance
I1 and solution J1 for I1 under M, if there exists a homomorphism from J1 to J2

that is the identity on I1, then (I1, J2) ∈ M (this is shown in Fagin et al. [2005a]
for the case of st-tgds). We use this property to prove that J is a witness solution
for I under M. Assume that J ∈ SolM(I ′) for an arbitrary source instance I ′,
and let J ′ ∈ SolM(I ). Given that J is a universal solution for I , we know that
there is a homomorphism h from J to J ′ that is the identity on C. Thus, we have
that h is the identity on dom(I ′), and therefore, (I ′, J ′) ∈ M since (I ′, J ) ∈ M.
We conclude that SolM(I ) ⊆ SolM(I ′). Since I ′ is an arbitrary source instance,
we have that J is a witness for I under M.

For the second part of the lemma, let M = (S, T, �) be an st-mapping, where
S = {P (·, ·)}, T = {R(·, ·)} and � = {P (x, y) → ∃z(R(x, z) ∧ R(z, y))}. Assume
that I is a source instance defined as P I = {(a, a)}, where a is an arbitrary
element of C. It was shown in Fagin et al. [2005a] that, every universal solution
J for I contains two tuples, (a, b) and (b, a) in R J , with b ∈ N. Thus, the solution
J ′ for I defined as R J ′ = {(a, a)} is not a universal solution for I . It is not difficult
to see that J ′ is a witness solution for I . In fact, if a source instance I ′ is such
that J ′ ∈ SolM(I ′), then dom(I ′) ⊆ {a} and, hence, I ′ is either the empty source
instance or I ′ = I . In both cases we conclude that SolM(I ) ⊆ SolM(I ′), which
implies that J ′ is a witness solution for I .
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It is known that for st-mappings specified by FO-TO-CQ dependencies,
universal solutions exist for every source instance [Fagin et al. 2005a; Arenas
et al. 2004]. Then from Theorem 3.12 and Lemma 4.1, we obtain the following
theorem.

THEOREM 4.2. If M is an st-mapping specified by a set of FO-TO-CQ st-
dependencies, then M has a maximum recovery.

Example 4.3. In Fagin et al. [2008], it was shown that the schema mapping
M specified by full st-tgd E(x, z) ∧ E(z, y) → F (x, y) ∧ M (z) has neither a
quasi-inverse nor an inverse. It is possible to show that the schema mapping
M′ specified by:

F (x, y) → ∃u(E(x, u) ∧ E(u, y)),

M (z) → ∃v∃w(E(v, z) ∧ E(z, w)),

is a maximum recovery of M.

Source and target dependencies. Fix source and target schemas S and T. If
α is an FO-sentence over S, then we say that α is a source FO-dependency,
and if β is an FO-sentence over T ∪ {C(·)}, then we say that β is a target
FO-dependency. We assume that both source and target FO-dependencies are
domain-independent.

Let �st, 
s, 
t be sets of source-to-target, source, and target FO-dependencies,
respectively. We say that an st-mapping M is specified by �st, 
s, and 
t, and
we write M = (S, T, �st, 
s, 
t), if M is specified by �st∪
s∪
t. Given that both

s and 
t are sets of domain-independent sentences, we have that (I, J ) |= �st∪

s ∪ 
t, if and only if (I, J ) |= �st, I |= 
s and J |= 
t. Thus, source constraints
affect the domain of an st-mapping, while target constraints affect its set of
possible solutions. Notice that these roles switch when considering ts-mappings.
Our next results show that maximum recoveries have good properties regarding
source constraints.

LEMMA 4.4. Let M1 be an st-mapping and M�
1 a maximum recovery of M1.

If 
s is a set of source FO-dependencies and M2 = {(I, J ) ∈ M1 | I |= 
s}, then
M�

2 = {(J, I ) ∈ M�
1 | I |= 
s} is a maximum recovery of M2.

PROOF. First we show that M�
2 is a recovery of M2. Assume that I ∈

dom(M2). Then there exists a target instance J such that (I, J ) ∈ M1 and
(I, J ) |= 
s. Thus, we have that I ∈ dom(M1), and then, given that M�

1 is a
recovery of M1, it holds that (I, I ) ∈ M1 ◦ M�

1. Therefore, there exists a target
instance K such that (I, K ) ∈ M1 and (K , I ) ∈ M�

1. Thus, given that I |= 
s,
we obtain that (I, I ) ∈ M2 ◦ M�

2. Since I is an arbitrary source instance in
dom(M2), we conclude that M�

2 is a recovery of M2.
Given that M�

2 is a recovery of M2, from Proposition 3.8 we have that M�
2

is a maximum recovery of M2 if for every (I1, I2) ∈ M2 ◦ M�
2, it is the case

that ∅ � SolM2
(I2) ⊆ SolM2

(I1). Assume that (I1, I2) ∈ M2 ◦ M�
2. Then there

exists a target instance J such that (I1, J ) ∈ M2 and (J, I2) ∈ M�
2. Then,

we have that (I1, J ) ∈ M1 and I1 |= 
s, and that (J, I2) ∈ M�
1 and I2 |= 
s.

Since M�
1 is a maximum recovery of M1, we obtain from Proposition 3.8 that

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.



22:16 • M. Arenas et al.

∅ � SolM1
(I2) ⊆ SolM1

(I1). Now, notice that if an instance I |= 
s, then it
is straightforward to prove that SolM1

(I ) = SolM2
(I ) by the construction of

M2. Since I1 |= 
s and I2 |= 
s, then we have that SolM1
(I1) = SolM2

(I1) and
SolM1

(I2) = SolM2
(I2). Given that ∅ � SolM1

(I2) ⊆ SolM1
(I1), we conclude that

∅ � SolM2
(I2) ⊆ SolM2

(I1). This was to be shown.

Notice that M1 in Lemma 4.4 is an arbitrary st-mapping. Thus, we obtain
the following corollary from Theorem 4.2.

PROPOSITION 4.5. If M is an st-mapping specified by a set of FO-TO-CQ st-
dependencies together with a set of source FO-dependencies, then M has a max-
imum recovery.

Example 4.6. Let M2 = (S, T, �st, 
s) be an st-mapping, where S =
{A(·, ·, ·)}, T = {B(·, ·), C(·, ·)} and

�st = {A(x, y , z) → B(x, y) ∧ C( y , z)},

s = {A(x, y , z) ∧ A(x ′, y , z ′) → z = z ′}.

Notice that 
s is a set of functional dependencies. Consider st-mapping
M1 = (S, T, �st). Then ts-mapping specified by �ts = {B(x, y) ∧ C( y , z) →
∃u A(x, y , u) ∧ ∃w A(w, y , z)} is a maximum recovery of M1. Thus, we have by
Lemma 4.4 that ts-mapping M�

2 specified by �ts and 
s is a maximum recovery
of M2. We observe that �ts ∪ 
s is logically equivalent to:

B(x, y) ∧ C( y , z) → A(x, y , z), (2)

A(x, y , z) ∧ A(x ′, y , z ′) → z = z ′. (3)

In this case, we obtained what was expected; since �st is a lossless decompo-
sition of relation A according to 
s, dependency (2) joins relations B and C to
reconstruct the source instances.

We show in Section 4.2 that, if the full power of FO is allowed in target
dependencies, then maximum recoveries are not guaranteed to exist. For this
reason, we focus here on equality-generating dependencies and weakly acyclic
tuple-generating dependencies, that are known to have good properties for data
exchange. Let R be a schema. An equality-generating dependency (egd) over R
is an FO-sentence ∀x̄(ϕ(x̄) → (xi = x j )), where ϕ(x̄) is a conjunctive query
over R, and xi, x j are among the variables in x̄. A tuple-generating dependency
(tgd) over R is an FO-sentence ∀x̄(ϕ(x̄) → ψ(x̄)), where both ϕ(x̄) and ψ(x̄) are
conjunctive queries over R.

To present the notion of weak acyclicity, we need to introduce some terminol-
ogy. For a set � of tgds over R, define the dependency graph G of � as follows:

(1) add a node (R, i) to G for every relation R ∈ R and every attribute i ≤ nR ,
where nR is the arity of R;

(2) add an edge (R, i) → (T, j ) to G if there exists a sentence ∀x̄(ϕ(x̄) → ψ(x̄))
in � such that if x ∈ x̄ occurs in the attribute i of R in ϕ, then x occurs in
the attribute j of T in ψ ;

(3) add a special edge (R, i) →∗ (T, j ) to G if there exists a sentence ∀x̄(ϕ(x̄) →
ψ(x̄)) in � such that if x ∈ x̄ occurs in the attribute i of R in ϕ, then there
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exists an existentially quantified variable y that occurs in the attribute j
of T in ψ .

We say that a set �, of tgds is weakly acyclic [Deutsch and Tannen 2003; Fa-
gin et al. 2005a] if its dependency graph has no cycle through a special edge.
Weak acyclicity has been shown to be indispensable for the tractability of some
important data exchange problems [Fagin et al. 2005a, 2005b; Kolaitis et al.
2006; Gottlob and Nash 2006], and thus it is a common assumption in the
area.

In the following theorem, we show that maximum recoveries are guaranteed
to exist in the general setting where target egds and weakly acyclic sets of
target tgds are allowed.

THEOREM 4.7. Let M = (S, T, �st, 
s, 
t) be an st-mapping, where �st is a
set of FO-TO-CQ st-dependencies, 
s is a set of source FO-dependencies, and 
t
is the union of a set of target egds and a weakly acyclic set of target tgds. Then
M has a maximum recovery.

PROOF. Let M = (S, T, �st, 
s, 
t) be an st-mapping, where �st is a set of
FO-TO-CQ dependencies, 
s is a set of source dependencies, and 
t is the union of
a set of egds and a weakly acyclic set of tgds, and let M1 = (S, T, �st, 
t). From
Lemma 4.4, we know that in order to prove that M has a maximum recovery,
it is enough to show that M1 has a maximum recovery. Next we prove the
latter.

Given that �st is a set of FO-TO-CQ dependencies and 
t is the the union of
a set of egds and a weakly acyclic set of tgds, for every instance I ∈ dom(M1),
we have that (1) there exists a universal solution J for I under M1, and (2) for
every solution J1 for I under M and instance J2 of T that satisfies 
t, if there
exists a homomorphism from J1 to J2 that is the identity on I , then (I, J2) ∈ M
(these two properties are proved in Fagin et al. [2005a] for the case of st-tgds).
We use these conditions to prove that M1 has a maximum recovery.

From Theorem 3.12, we know that to prove M1 has a maximum recovery, it is
enough to show that every I1 ∈ dom(M1) has a witness solution under M1. Let
I1 be an instance of S such that I1 ∈ dom(M1) and J1 a universal solution for I1.
Next we show that J1 is a witness solution for I1. Assume that J1 ∈ SolM1

(I2) for
an arbitrary source instance I2. We need to prove that SolM1

(I1) ⊆ SolM1
(I2). Let

J ∈ SolM1
(I1). Given that J1 is a universal solution for I1, we know that there is

a homomorphism h from J1 to J that is the identity on C. Furthermore, given
that J ∈ SolM1

(I1), we have that J |= 
t. Thus, we conclude that J ∈ SolM1
(I2),

since (I2, J1) ∈ M1, J |= 
t and h is a homomorphism from J1 to J that is the
identity on dom(I2) (given that h is the identity on C and dom(I2) ⊆ C). This
concludes the proof of the theorem.

Notice that the positive results of this section do not say anything about the
language needed to express maximum recoveries. In Sections 7 and 8, we study
this problem.
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4.2 Negative Results

In Section 4.1, we prove that FO-TO-CQ st-mappings have maximum recover-
ies using the relationship between universal and witness solutions shown in
Lemma 4.1. If we go beyond CQ in the conclusions of dependencies, these notions
become incomparable. For example, consider an st-mapping M1 specified by
CQ-TO-CQ �= dependencies P (x) → ∃ y R(x, y) and S(x) → ∃ y (R(x, y) ∧ x �= y),
and let I be a source instance such that P I = {a}. Target instance J1 such
that R J1 = {(a, n)}, with n ∈ N, is a universal solution but not a witness
for I , while target instance J2 such that R J2 = {(a, a)} is a witness but not
a universal solution for I . In this example, every source instance has a wit-
ness solution, and thus M1 has a maximum recovery. In fact, dependencies
R(x, y) → P (x)∨S(x) and R(x, y)∧x �= y → S(x) specify a maximum recovery
of M1. As a second example, consider st-mapping M2 specified by CQ-TO-UCQ
dependency P (x) → R(x) ∨ S(x). In this case, every source instance has a wit-
ness solution, and only the empty source instance has a universal solution. In
fact, dependencies R(x) → P (x) and S(x) → P (x) specify a maximum recovery
of M2.

We have shown examples of mappings that have maximum recoveries and
are specified by dependencies with inequalities and disjunctions in the conclu-
sions. However, the following proposition shows that this is not a general phe-
nomenon. If we slightly enrich the language used in the conclusions of FO-TO-CQ
dependencies, then the existence of maximum recoveries is not guaranteed,
even if premises are restricted to be conjunctive queries.

PROPOSITION 4.8. There exist st-mappings specified by (1) CQ-TO-CQ �=,
(2) CQ-TO-UCQ, and (3) CQ-TO-CQ¬ dependencies, that have no maximum
recoveries.

PROOF. (1) CQ-TO-CQ �=: Let S = {F (·), G(·), H(·)}, T = {R(·, ·)}, and M =
(S, T, �) an st-mapping specified by the following set � of CQ-TO-CQ �= st-
dependencies:

F (x) → R(x, x),

G(x) → ∃ y R(x, y),

H(x) → ∃ y(R(x, y) ∧ x �= y).

Let I1 be an instance of S such that GI1 = {a} and F I1 = H I1 = ∅, where a is an
arbitrary element of C. Next we show that there is no J ∈ SolM(I1) such that
J is a witness for I1 under M. Then by Theorem 3.12, M has no maximum
recovery. For the sake of contradiction, assume that J is a witness solution for
I1 under M. Given that J is a solution for I1, we have that (a, b) ∈ R J for some
b. We need to consider two cases, depending on b. If b = a, then the instance
I2 where F I2 = {a} and GI2 = H I2 = ∅ is such that J ∈ SolM(I2), but it is
not the case that SolM(I1) ⊆ SolM(I2). If b �= a, then the instance I3 where
H I3 = {a} and F I3 = GI3 = ∅ is such that J ∈ SolM(I3), but it is not the case
that SolM(I1) ⊆ SolM(I3).

(2) CQ-TO-UCQ: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M = (S,
T, �) an st-mapping specified by the following set � of CQ-TO-UCQ
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st-dependencies:

F (x) → R(x) ∨ S(x),

G(x) → S(x) ∨ T (x),

H(x) → T (x) ∨ R(x).

Let I be an instance of S such that F I = {a} and GI = H I = ∅, where a is an
arbitrary element of C. Next we show that there is no J ∈ SolM(I ) such that
J is a witness for I under M. For the sake of contradiction, assume that J is
a witness solution for I under M. Given that J is a solution for I , we have
that a ∈ R J or a ∈ SJ . Assume without loss of generality that a ∈ SJ , and
consider instance I1 of S such that GI1 = {a} and F I1 = H I1 = ∅. Then we
have that J ∈ SolM(I1) and, therefore, SolM(I ) ⊆ SolM(I1) since J is a witness
solution for I under M. Let J1 be an instance of T such that R J1 = {a} and
SJ1 = T J1 = ∅. We have that J1 ∈ SolM(I ) but J1 �∈ SolM(I1), which contradicts
the fact that SolM(I ) ⊆ SolM(I1).

Given that there is no witness solution for I under M, we conclude by The-
orem 3.12 that M does not have a maximum recovery.

(3) CQ-TO-CQ¬: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·)}, and M = (S, T, �)
an st-mapping specified by the following set � of CQ-TO-CQ¬ st-dependencies:

F (x) → R(x),

G(x) → R(x) ∧ S(x),

H(x) → R(x) ∧ ¬S(x).

Let I1 be an instance of S such that F I1 = {a} and GI1 = H I1 = ∅, where a is an
arbitrary element of C. Next we show that there is no J ∈ SolM(I1) such that
J is a witness for I1 under M. For the sake of contradiction, assume that J is
a witness solution for I1 under M. Given that J is a solution for I1, we have
that a ∈ R J . We need to consider two cases depending on whether a belongs to
SJ or not. If a ∈ SJ , then the instance I2 where GI2 = {a} and H I2 = F I2 = ∅
is such that J ∈ SolM(I2), but it is not the case that SolM(I1) ⊆ SolM(I2). If
a /∈ SJ , then the instance I3 where H I3 = {a} and F I3 = GI3 = ∅ is such that
J ∈ SolM(I3), but it is not the case that SolM(I1) ⊆ SolM(I3).

Given that there is no witness solution for I1 under M, we conclude by The-
orem 3.12 that M does not have a maximum recovery.

We conclude this section by showing that, if the full power of FO is allowed
in target dependencies, then maximum recoveries are not guaranteed to exist.

PROPOSITION 4.9. There exists an st-mapping specified by a set of st-tgds plus
a set of target FO-dependencies that has no maximum recovery.

PROOF. Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M = (S, T, �st,

t), an st-mapping specified by the following set �st of st-tgds:

F (x) → R(x),

G(x) → S(x),

H(x) → T (x),
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Fig. 1. The schema evolution problem.

and the following set 
t of target FO-dependencies:

R(x) → S(x) ∨ T (x).

Let I be an instance of S such that F I = {a} and GI = H I = ∅, where a is an
arbitrary element of C. Next we show that there is no J ∈ SolM(I ) such that J
is a witness for I under M. For the sake of contradiction, assume that J is a
witness solution for I under M. Given that J is a solution for I , we have that
a ∈ SJ or a ∈ T J (since a ∈ R J ). Assume without loss of generality that a ∈ SJ ,
and consider instance I1, of S such that GI1 = {a} and F I1 = H I1 = ∅. Then we
have that J ∈ SolM(I1), and therefore SolM(I ) ⊆ SolM(I1), since J is a witness
solution for I under M. Let J1 be an instance of T such that R J1 = T J1 = {a}
and SJ1 = ∅. We have that J1 ∈ SolM(I ) but J1 �∈ SolM(I1), which contradicts
the fact that SolM(I ) ⊆ SolM(I1).

Given that there is no witness solution for I under M, we conclude by The-
orem 3.12, that M does not have a maximum recovery.

5. AN APPLICATION OF MAXIMUM RECOVERIES

One of the main reasons for the study of the issues of composing and inverting
schema mappings is to solve the schema evolution problem [Fagin et al. 2005;
Fagin 2007]. Two main scenarios have been identified for this problem, which
are shown in Figure 1. In scenario (a), a mapping M from a schema S to a
schema T has already been constructed, and it has been decided that target
schema T will be replaced by a new schema U. In particular, the relationship
between schemas T and U has been given through a mapping M′. The schema
evolution problem is then to provide a mapping from S to U, considering the
metadata provided by M and M′. As pointed out in Kolaitis [2005], the process
of constructing a schema mapping is time consuming, and thus one would like to
solve the schema evolution problem by automatically reusing the metadata that
is given. In scenario (a), it is possible to do this by using the composition operator
[Fagin et al. 2005; Kolaitis 2005]; the mapping M◦M′ correctly represents the
relationship between schemas S and U.

Scenario (b) in Figure 1 is similar to scenario (a), but in this case it has been
decided to replace source schema S by U. As in (a), the relationship between S
and U is given by a mapping, that is again called M′. The natural question at
this point is whether a combination of mappings M and M′ could be used to
provide the right mapping, or at least a good mapping, from U to T according to
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the metadata provided by M and M′. It has been argued that the combination
of the inverse and composition operators can be used for this purpose, and the
mapping (M′)−1 ◦ M has been proposed as a solution for the schema evolution
problem [Fagin 2007], where (M′)−1 represents an inverse of mapping M′. But,
unfortunately, it has not been formally studied to what extend (M′)−1 ◦ M is
the right solution for the schema evolution problem. In this section, we address
this issue for the common case of mappings given by st-tgds, and show that if
(M′)−1 is the maximum recovery of M′, then (M′)−1 ◦M is the best solution in
a precise sense for the schema evolution problem.

For the rest of this section, let S be a source schema, T, and U, target schemas,
M = (S, T, �), and M′ = (S, U, �′), where � and �′ are sets of st-tgds. If
M� is a mapping from U to T, what properties should it satisfy in order to be
considered a good solution for the schema evolution problem? Or, in other words,
what properties should M� satisfy to be considered a good representation of the
metadata provided by M and M′? Assume that I is an instance of S, and let
J be a solution for I under M′. If J properly represents the information in I ,
then one would consider M� a good representation of the metadata provided by
M and M′ if the space of solutions for I under M is the same as the space of
solutions for J under M�, that is, SolM(I ) = SolM� (J ). Or, at least, one would
expect that none of the instances in SolM(I ) are ruled out by M� when mapping
data from J , that is, SolM(I ) ⊆ SolM� (J ). In this section, we use this simple
criterion to compare different solutions for the schema evolution problem.

To formalize this criterion, for every instance I of S, we first need to choose
a particular solution J under M′. A natural candidate for this is the canon-
ical universal solution [Fagin et al. 2005a], which has been identified in the
database literature as a solution with several desirable properties [Fagin et al.
2005a; Hernich and Schweikardt 2009]. In the following, we show how to com-
pute the canonical universal solution for a source instance I under the schema
mapping M′ = (S, U, �′). For every st-tgd in �′ of the form ϕ(x̄) → ∃ ȳ ψ(x̄, ȳ),
where x̄ = (x1, . . . , xk) and ȳ = ( y1, . . . , y�) are tuples of distinct variables,
and for every k-tuple ā from dom(I ) such that I |= ϕ(ā), do the following. First
choose an �-tuple n̄ of distinct fresh values from N, and then include all the
conjuncts in ψ(ā, n̄) in the canonical universal solution for I . Furthermore, the
canonical universal solution only contains tuples that are obtained by applying
the previous procedure [Fagin et al. 2005a].

Example 5.1. Assume that �′ = {S(x1, x2) → ∃ y1∃ y2 (T (x1, y1) ∧ U (x2,
y2, y1))} and that I is a source instance such that SI = {(a, b), (c, d )}. Given
that I |= S(a, b), this procedure chooses a tuple (n1, n2) of fresh null values,
and then it adds tuples (a, n1) to T and (b, n2, n1) to U in the canonical uni-
versal solution J for I under �′. In the same way, given that I |= S(c, d ), the
procedure chooses a tuple (n3, n4) of fresh null values, and then it adds tuples
(c, n3) to T J and (d , n4, n3) to U J . Finally, given that (a, b) and (c, d ) are the
only tuples from dom(I ) for which I satisfies formula S(x, y), we conclude that
T J = {(a, n1), (c, n3)} and U J = {(b, n2, n1), (d , n4, n3)}.

It is important to notice that the canonical universal solution for I under
M′ corresponds to the naïve chase of I with �′ (see Section 6 for more details
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about the chase procedure). Thus, we use the term chase�′ (I ) to denote the
canonical universal solution for I under M′. With this notation, the criterion
is formalized as follows: A mapping M� from U to T is said to be a solution for
the schema evolution problem for M and M′ if for every instance I of S, it holds
that:

SolM(I ) ⊆ SolM� (chase�′ (I )).

The previous criterion also suggests a way to compare alternative solu-
tions for the schema evolution problem; the closer the space of solutions
SolM� (chase�′ (I )) is to SolM(I ) the better is M� as a solution for the schema
evolution problem. In the following proposition, we show that under this crite-
rion, the notion of maximum recovery can be used to obtain the best solution
for the schema evolution problem.

PROPOSITION 5.2. Let S be a source schema, T, U target schemas, M = (S,
T, �), and M′ = (S, U, �′), where � and �′ are sets of st-tgds. Then there exists
a maximum recovery N of M′ such that:

(1) N ◦ M is a solution for the schema evolution problem for M and M′, and
(2) for every solution M� for the schema evolution problem for M and M′, and

for every instance I of S, it holds that:

SolN◦M(chase�′ (I )) ⊆ SolM� (chase�′ (I )).

PROOF. Let N = {(chase�′ (I ), I ) | I ∈ Inst(S)}. Given that dom(M′) = S,
we have that N is a reduced recovery of M′. Moreover, for every (J, I ) ∈ N ,
given that J = chase�′ (I ), we have that J is a witness solution for I under M′

by Lemma 4.1 and the fact that chase�′ (I ) is a universal solution for I under
M′ [Fagin et al. 2005a; Arenas et al. 2004]. Thus, by Lemma 3.11, we conclude
that N is a maximum recovery of M′. Next we show that N satisfies the two
conditions of the proposition.

(1) For every instance I of S, we have that (chase�′ (I ), I ) ∈ N and, thus, we
conclude that SolM(I ) ⊆ SolN◦M(chase�′ (I )). Thus, we have that N ◦ M is a
solution for the schema evolution problem for M and M′.

(2) Let M� be a solution for the schema evolution problem for M and
M′, and I an instance of S. We need to show that SolN◦M(chase�′ (I )) ⊆
SolM� (chase�′ (I )).

Assume that J ∈ SolN◦M(chase�′ (I )). Then there exists an instance I ′ of S
such that (chase�′ (I ), I ′) ∈ N and (I ′, J ) ∈ M. Given that M� is a solution
for the schema evolution problem for M and M′, we have that SolM(I ′) ⊆
SolM� (chase�′ (I ′)) and, hence, J ∈ SolM� (chase�′ (I ′)). But, by definition of N ,
we have that chase�′ (I ′) = chase�′ (I ) since (chase�′ (I ), I ′) ∈ N . Thus, we have
that J ∈ SolM� (chase�′ (I )). This concludes the proof of the proposition.

Notice that an ideal solution for the schema evolution problem for mappings
M and M′ is a mapping M� such that SolM(I ) = SolM� (chase�′ (I )), for ev-
ery source instance I . The following corollary of Proposition 5.2 shows that if
such a solution exists, then one can focus on the solutions constructed by using
maximum recoveries in order to find an ideal solution.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.



The Recovery of a Schema Mapping: Bringing Exchanged Data Back • 22:23

COROLLARY 5.3. Let S be a source schema, T, U, target schemas, M = (S, T,
�) and M′ = (S, U, �′), with �, �′ sets of st-tgds. If there exists an ideal solution
for the schema evolution problem for M and M′, then there exists a maximum
recovery N of M′ such that N ◦M is an ideal solution for the schema evolution
problem for M and M′.

From Proposition 5.2 and the previous corollary, we conclude that the
combination of the maximum recovery and the composition operator is ap-
propriate to provide a solution for the schema evolution problem shown in
Figure 1 (b). We also note that maximum recovery can be replaced neither by
inverse nor by quasi-inverse in Proposition 5.2, as it is known that even for full
st-tgds, inverses and quasi-inverses are not guaranteed to exist [Fagin 2007;
Fagin et al. 2008].

6. COMPARISON WITH THE NOTIONS OF INVERSE AND QUASI-INVERSE

In this section, we study the relationship between the notion of maximum re-
covery and the notions of inverse and quasi-inverse [Fagin 2007; Fagin et al.
2008].

We start by recalling the definition of inverse proposed in Fagin [2007]. A
mappingM is closed-down on the left if whenever (I, J ) ∈ M and I ′ ⊆ I , it holds
that (I ′, J ) ∈ M. Fagin [2007] defines a notion of inverse focusing on mappings
that satisfy this condition. More precisely, let S be a source schema. Fagin first
defines an identity mapping Id as {(I1, I2) | (I1, I2) ∈ Inst(S) × Inst(S) and I1 ⊆
I2}, which is appropriate for closed-down on the left mappings [Fagin 2007].
Then he says that a ts-mapping M′ is an inverse of an st-mapping M if and
only if M ◦ M′ = Id.

Since it is rare that a schema mapping possesses an inverse, Fagin et al.
[2008] introduce the notion of a quasi-inverse of a schema mapping in
Fagin et al. [2008]. The idea behind quasi-inverses is to relax the notion of
inverse of a mapping by not differentiating between source instances that
are data-exchange equivalent. Let M be a mapping from a source schema S
to a target schema T. Instances I1 and I2 of S are data-exchange equivalent
with respect to M, denoted by I1 ∼M I2, if SolM(I1) = SolM(I2). Further-
more, given a mapping M1 from S to S, mapping M1[∼M, ∼M] is defined as
{(I1, I2) ∈ Inst(S) × Inst(S) | ∃(I ′

1, I ′
2) : I1 ∼M I ′

1, I2 ∼M I ′
2 and (I ′

1, I ′
2) ∈ M1}.

Then a ts-mapping M′ is a quasi-inverse of an st-mapping M if (M ◦ M′)[∼M
, ∼M] = Id[∼M, ∼M].

The definitions of inverse and quasi-inverse are appropriate for closed-down
on the left mappings. In fact, some counterintuitive results are obtained if
one removes this restriction. For example, let S = {P (·)}, T = {R(·)}, and M
be a mapping from S to T specified by dependency ∀x (P (x) ↔ R(x)). In this
case, mapping M′ specified by ∀x (R(x) ↔ P (x)) is an ideal inverse of M since
M ◦ M′ = Id = {(I, I ) | I ∈ Inst(S)}. However, M′ is neither an inverse nor a
quasi-inverse of M (although it is a maximum recovery of M). Moreover, the
definitions of inverse and quasi-inverse are only appropriate for total mappings,
that is, mappings M such that dom(M) is the set of all source instances. In fact,
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as shown in the following proposition, if an st-mapping M is not total, then M
is neither invertible nor quasi-invertible.

PROPOSITION 6.1. Let M be a mapping from a source schema S to a target
schema T. If M is not a total mapping, then M is neither invertible nor quasi-
invertible.

PROOF. Assume that M is not a total mapping, that is, there is an instance I
of S for which SolM(I ) = ∅. We first show thatM is not invertible. By hypothesis,
for every mapping M′ ⊆ Inst(T) × Inst(S), it holds that there is no instance I ′

such that (I, I ′) ∈ M◦M′, and, therefore, M◦M′ �= Id. Thus, we conclude that
M is not invertible.

Second, we show that M is not quasi-invertible. Let M′ be a mapping from
T to S. Given that SolM(I ) = ∅, it holds that Sol(M◦M′)[∼M,∼M](I ) = ∅. In fact, if
we assume that (I, I1) ∈ (M ◦ M′)[∼M, ∼M], then there exist instances I ′ and
I ′

1 of S such that I ∼M I ′, I1 ∼M I ′
1 and (I ′, I ′

1) ∈ M ◦ M′. But if I ∼M I ′, then
it holds that SolM(I ′) = SolM(I ) = ∅. Thus, we conclude that SolM◦M′ (I ′) = ∅,
which contradicts the fact that (I ′, I ′

1) ∈ M ◦ M′. On the contrary, we have
that (I, I ) ∈ Id[∼M, ∼M] since I ∼M I and (I, I ) ∈ Id. Thus, we have that
(M ◦M′)[∼M, ∼M] �= Id[∼M, ∼M]. Therefore, we conclude that M is not quasi-
invertible.

From the discussion in the previous paragraph, to compare the notions of
maximum recovery, inverse, and quasi-inverse, we need to focus on the class
of total st-mappings that are closed-down on the left. This class includes, for
example, the st-mappings specified by UCQ �=-TO-CQ st-dependencies. Our first
result is a corollary of Propositions 3.22 and 3.24 in Fagin et al. [2008] and
Theorem 4.2.

PROPOSITION 6.2. There exists an st-mapping M specified by a set of full st-
tgds that is neither invertible nor quasi-invertible, but has a maximum recovery.

This result combined with the following theorem, shows that the notion of max-
imum recovery strictly generalizes the notion of inverse.

THEOREM 6.3. Let M be a total st-mapping that is closed-down on the left,
and assume that M is invertible. Then M′ is an inverse of M if and only if M′

is a maximum recovery of M.

PROOF. (⇒) Let M′ be an inverse of M. Then (I1, I2) ∈ M ◦ M′ if and only
if I1 ⊆ I2 and, thus, M′ is a recovery of M since I1 ⊆ I1. Thus, from Proposi-
tion 3.8, we know that M′ is a maximum recovery of M if and only if for every
(I1, I2) ∈ M ◦ M′, it is the case that ∅ � SolM(I2) ⊆ SolM(I1). But if I1 ⊆ I2, we
immediately conclude that ∅ � SolM(I2) ⊆ SolM(I1) since M is a closed down
on the left and total st-mapping.

(⇐) Let M′ be a maximum recovery of M. In order to show that M′ is an
inverse of M, we need to show that (I1, I2) ∈ M◦M′ if and only if I1 ⊆ I2. First,
assume that I1 ⊆ I2. Given that I2 is a source instance and M′ is a recovery
of M, we know that (I2, I2) ∈ M ◦ M′. Thus, given that M is closed-down on
the left, we have that (I1, I2) ∈ M ◦M′. Second, assume that (I1, I2) ∈ M ◦M′.
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Given that M is invertible, there exists an inverse M′′ of M. Then M′′ is a
recovery of M. Thus, given that M′ is a maximum recovery of M, we have that
M◦M′ ⊆ M◦M′′. We infer that (I1, I2) ∈ M◦M′′ since (I1, I2) ∈ M◦M′, which
implies that I1 ⊆ I2 since M′′ is an inverse of M. This concludes the proof of
the proposition.

The exact relationship between the notions of quasi-inverse and maximum
recovery is shown in the following theorem. It is worth emphasizing that if an
st-mapping M is quasi-invertible, then it admits a maximum recovery and,
furthermore, every maximum recovery of M is also a quasi-inverse of M.

THEOREM 6.4.

(1) Let M be a total st-mapping that is closed-down on the left, and assume that
M is quasi-invertible. Then M has a maximum recovery and, furthermore,
M′ is a maximum recovery of M if and only if M′ is a quasi-inverse and a
recovery of M.

(2) There exists an st-mapping M specified by a set of st-tgds and a ts-mapping
M′ specified by a set of ts-tgds such that, M′ is a quasi-inverse of M but not
a maximum recovery of M.

To prove the proposition, we need the following lemma. Recall that an st-
mapping M has the (∼M, ∼M)-subset property if, for every pair of source in-
stances I1, I2 such that SolM(I2) ⊆ SolM(I1), there exist instances I ′

1 and I ′
2

such that I1 ∼M I ′
1, I2 ∼M I ′

2 and I ′
1 ⊆ I ′

2. An inspection of the proof of Theorem
3.19 in Fagin et al. [2008], reveals that the (∼M, ∼M)-subset property is still a
necessary condition for quasi-invertibility for arbitrary st-mappings. We state
this result in the following lemma, and we also include a proof here using our
notation. In this proof, we use (I1, I2) ∼M (I ′

1, I ′
2) to indicate that I1 ∼M I ′

1 and
I2 ∼M I ′

2.

LEMMA 6.5. [Fagin et al. 2008] Let M be an arbitrary st-mapping. If M is
quasi-invertible, then M has the (∼M, ∼M)-subset property.

PROOF. Assume that M′ is a quasi-inverse of M, and let (I1, I2) be a pair of
source instances such that SolM(I2) ⊆ SolM(I1). We need to prove that there
exist source instances I ′

1 and I ′
2 such that (I1, I2) ∼M (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2. Given

that I2 ∼M I2 and I2 ⊆ I2, we have that (I2, I2) ∈ Id[∼M, ∼M]. Thus, given
that M′ is a quasi-inverse of M, we have that (I2, I2) ∈ (M◦M′)[∼M, ∼M] and,
therefore, there exists a pair of instances (I3, I4) such that (I2, I2) ∼M (I3, I4)
and (I3, I4) ∈ M ◦M′. Then there exists a target instance J such that (I3, J ) ∈
M and (J, I4) ∈ M′. Now, given that I2 ∼M I3 and (I3, J ) ∈ M, we obtain that
(I2, J ) ∈ M. Since SolM(I2) ⊆ SolM(I1), it also holds that (I1, J ) ∈ M, and then
(I1, I4) ∈ M ◦ M′. Thus, given that (I1, I4) ∼M (I1, I4), we obtain that (I1, I4) ∈
(M ◦ M′)[∼M, ∼M]. Therefore, since (M ◦ M′)[∼M, ∼M] = Id[∼M, ∼M], there
exists a pair of source instances (I5, I6) such that (I1, I4) ∼M (I5, I6) and I5 ⊆ I6.
Finally, given that I2 ∼M I4 and I4 ∼M I6, we have that (I1, I2) ∼M (I5, I6).
Thus, we conclude that there exists a pair of source instances (I5, I6) such that
(I1, I2) ∼M (I5, I6) and I5 ⊆ I6. This concludes the proof of the lemma.
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PROOF OF THEOREM 6.4. Recall that M′ is a quasi-inverse of M if (M ◦ M′)
[∼M, ∼M] = Id[∼M, ∼M], that is if the following statements are equivalent for
every pair of instances I1 and I2:

(a) There are instances I ′
1 and I ′

2 such that (I1, I2) ∼M (I ′
1, I ′

2) and I ′
1 ⊆ I ′

2.

(b) There are instances I ′′
1 and I ′′

2 such that (I1, I2) ∼M (I ′′
1 , I ′′

2 ) and (I ′′
1 , I ′′

2 ) ∈
M ◦ M′.

Now to prove (1), let M be an st-mapping that is closed-down on the left, and
assume that M is quasi-invertible. From Theorem 3.12, to prove that M has
a maximum recovery, we need to prove that M has witness solutions for ev-
ery source instance. Assume that M′ is a quasi-inverse of M, and let I be an
arbitrary source instance. By the definition of quasi-inverse, and given that
(I, I ) ∼M (I, I ) and I ⊆ I (condition (a)) we know that there exist I1 and I2

such that (I, I ) ∼M (I1, I2) and (I1, I2) ∈ M ◦ M′ (condition (b)). Then, there
is a target instance J such that (I1, J ) ∈ M and (J, I2) ∈ M′. We claim that
J is a witness solution for I . First note that, since I ∼M I1 and (I1, J ) ∈ M,
we have that J ∈ SolM(I ). Now assume that there is an instance I ′ such that
J ∈ SolM(I ′), we must prove that SolM(I ) ⊆ SolM(I ′). Given that J ∈ SolM(I ′)
and (J, I2) ∈ M′, we obtain that (I ′, I2) ∈ M ◦ M′. Thus, (I ′, I ) ∼M (I ′, I2)
and (I ′, I2) ∈ M ◦ M′ (condition (b)) and, hence, there exists a pair of source
instances (K1, K2) such that (I ′, I ) ∼M (K1, K2) and K1 ⊆ K2 (condition (a)).
Given that M is closed-down on the left, we obtain that SolM(K2) ⊆ SolM(K1),
and then from (I ′, I ) ∼M (K1, K2) we conclude that SolM(I ) ⊆ SolM(I ′). This
was to be shown.

Now, we show that, provided that M is quasi-invertible, it holds that every
maximum recovery of M is also a quasi-inverse of M. Let M′ be a maximum
recovery of M, we have to show that condition (a) holds if and only if condition
(b) holds.

(a) ⇒ (b): Let I1 and I2 be source instances, and assume that there exist
instances I ′

1 and I ′
2 such that (I1, I2) ∼M (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2. Given that M is

quasi-invertible, we have thatM is a total st-mapping and, hence, I ′
2 ∈ dom(M).

Then given thatM′ is a maximum recovery ofM, we have that (I ′
2, I ′

2) ∈ M◦M′.
Thus, sinceM is closed-down on the left and I ′

1 ⊆ I ′
2, we obtain (I ′

1, I ′
2) ∈ M◦M′,

which proves that (b) holds.
(b) ⇒ (a): Let I1 and I2 be source instances, and assume that (I1, I2) ∼M

(I ′′
1 , I ′′

2 ) and (I ′′
1 , I ′′

2 ) ∈ M ◦ M′. Given that M′ is a maximum recovery of
M, we have by Proposition 3.8 that SolM(I ′′

2 ) ⊆ SolM(I ′′
1 ). Thus, given that

(I1, I2) ∼M (I ′′
1 , I ′′

2 ), we conclude that SolM(I2) ⊆ SolM(I1). Now, given that M
is quasi-invertible, by Lemma 6.5 we know that M satisfies the (∼M, ∼M)-
subset property. Then from SolM(I2) ⊆ SolM(I1), we obtain that there exist
instances I ′

1 and I ′
2 such that, (I1, I2) ∼M (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2, which was to be

shown.
It only left to show that, if M′ is both a quasi-inverse and a recovery of M,

then M′ is a maximum recovery of M. Assume then that M′ is a quasi-inverse
and a recovery of M, and let (I1, I2) ∈ M ◦ M′. From Proposition 3.8 and the
facts that M′ is a recovery of M and M is a total mapping, to prove that M′ is
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a maximum recovery of M, we need to show that SolM(I2) ⊆ SolM(I1). Given
that (I1, I2) ∼M (I1, I2) and (I1, I2) ∈ M ◦ M′ (condition (b)), there exists a pair
(I ′

1, I ′
2) such that (I1, I2) ∼M (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2 (condition (a)). Now, given that

M is closed-down on the left, we obtain that SolM(I ′
2) ⊆ SolM(I ′

1) and, therefore,
SolM(I2) ⊆ SolM(I1) since (I1, I2) ∼M (I ′

1, I ′
2).

We now prove statement (2) of Theorem 6.4. Let M be specified by st-tgds
P (x) → T (x) and R(x) → T (x), and M′ specified by ts-tgd T (x) → P (x). M′ is a
quasi-inverse for M (see Fagin et al. [2008]), but M′ is not a maximum recovery
of M given that, for example, for the source instance I such that R I = {a} and
P I = ∅, we have that I ∈ dom(M) but (I, I ) �∈ M ◦ M′.

6.1 On Necessary and Sufficient Conditions for the Existence
of Inverses and Quasi-Inverses

In Section 3, we identify a necessary and sufficient condition for the existence
of maximum recoveries. For the case of the inverse (quasi-inverse), a condition
called subset property ((∼M, ∼M)-subset property) was identified in Fagin et al.
[2008] as necessary and sufficient for testing invertibility (quasi-invertibility),
for the case of st-mappings specified by st-tgds. In this section, we first show
that the subset property ((∼M, ∼M)-subset property) is not a sufficient condition
for testing invertibility (quasi-invertibility) if one goes beyond st-tgds. Then we
show that these conditions can be extended to the class of total and closed-down
on the left st-mappings, by combining them with any necessary and sufficient
condition for the existence of maximum recoveries.

An st-mapping has the subset property if for every pair of instances I1, I2

such that SolM(I2) ⊆ SolM(I1), it holds that I1 ⊆ I2. An st-mapping M has
the (∼M, ∼M)-subset property if for every pair of instances I1, I2 such that
SolM(I2) ⊆ SolM(I1), there exist instances I ′

1 and I ′
2 such that I1 ∼M I ′

1, I2 ∼M
I ′

2 and I ′
1 ⊆ I ′

2.

PROPOSITION 6.6. There exist total and closed-down-on-the-left st-mappings
specified by (1) CQ-TO-CQ �=, and (2) CQ-TO-UCQ dependencies, that satisfy both
the subset and (∼M, ∼M)-subset property and are neither invertible nor quasi-
invertible.

PROOF. We start by showing that there exist st-mappings that are total,
closed-down-on-the-left, and specified by CQ-TO-CQ�=, CQ-TO-UCQ dependen-
cies, that satisfy the subset property but are not invertible.

(1) CQ-TO-CQ �=: Let S = {F (·), G(·), H(·)}, T = {R(·, ·, ·, ·)} and M = (S, T, �),
an st-mapping specified by the following set � of CQ-TO-CQ �= st-dependencies:

F (x) → ∃ y1∃ y2∃ y3(R(x, y1, y2, y3) ∧ y1 �= y2),

G(x) → ∃ y1∃ y2∃ y3(R(x, y1, y2, y3) ∧ y1 �= y3),

H(x) → ∃ y1∃ y2∃ y3(R(x, y1, y2, y3) ∧ y2 �= y3).

First, we show that M satisfies the subset property. Let I1 and I2 be source
instances. We have to show that, if SolM(I2) ⊆ SolM(I1) then I1 ⊆ I2. Assume
then that SolM(I2) ⊆ SolM(I1). Let n1, n2 be two elements in N such that n1 �= n2,
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and let J1 be a target instance such that:

R J1 = F I2 × {n1} × {n2} × {n1} ∪ (GI2 ∪ H I2 ) × {n1} × {n1} × {n2}.
Clearly J1 ∈ SolM(I2), and then J1 ∈ SolM(I1). Thus, for every a ∈ F I1 , there
exists a tuple (a, b1, b2, b3) in R J1 such that b1 �= b2, which implies that a ∈ F I2

(by definition of J1 and the fact that all the tuples in (GI2 ∪H I2 )×{n1}×{n1}×{n2}
do not satisfy condition b1 �= b2). We conclude that F I1 ⊆ F I2 . Similarly, we can
use instances J2:

R J2 = GI2 × {n1} × {n1} × {n2} ∪ (F I2 ∪ H I2 ) × {n1} × {n2} × {n1},
and J3:

R J3 = H I2 × {n1} × {n2} × {n1} ∪ (F I2 ∪ GI2 ) × {n1} × {n2} × {n2},
to show that GI1 ⊆ GI2 and H I1 ⊆ H I2 , respectively. We conclude that I1 ⊆ I2.

We show now that M is not invertible. From Theorem 6.3 and the fact that
M is closed-down on the left, to prove that M is not invertible, it is enough to
prove that M does not have a maximum recovery. Let I1 be the instance such
that F I1 = {a} and GI1 = H I1 = ∅, where a is an arbitrary element of C. Next
we show that there is no J ∈ SolM(I1) such that J is a witness for I1, which
implies by Theorem 3.12 that M does not have a maximum recovery. On the
contrary, assume that I1 has a witness solution J1. Given that (I1, J1) ∈ M, we
have that R J1 contains a tuple (a, b1, b2, b3) with b1 �= b2. We consider two cases,
depending on the values of b2 and b3. In the first case we assume that b2 = b3,
and in the second case we assume that b1 �= b3. Consider source instance I2 such
that GI2 = {a} and F I2 = H I2 = ∅. We have that J1 ∈ SolM(I2), but it is not the
case that SolM(I1) ⊆ SolM(I2), which contradicts the fact that J1 is a witness
solution for I1. Second, assume that b2 �= b3, and consider source instance I3

such that H I3 = {a} and F I3 = GI3 = ∅. We have that J1 ∈ SolM(I3), but it is
not the case that SolM(I1) ⊆ SolM(I3), which contradicts the fact that J1 is a
witness solution for I1. This concludes the proof that the mapping M specified
by CQ-TO-CQ �= st-dependencies is not invertible.

(2) CQ-TO-UCQ: Let S = {F (·), G(·), H(·)}, T = {R(·), S(·), T (·)} and M = (S,
T, �), an st-mapping specified by the following set, �, of CQ-TO-UCQ depen-
dencies:

F (x) → R(x) ∨ S(x),

G(x) → S(x) ∨ T (x),

H(x) → T (x) ∨ R(x).

We show first that M satisfies the subset property. Let I1 and I2 be source
instances. Then we have to show that, if SolM(I2) ⊆ SolM(I1), then I1 ⊆ I2.
For the sake of contradiction, assume SolM(I2) ⊆ SolM(I1) and I1 �⊆ I2. Then
either F I1 �⊆ F I2 , or GI1 �⊆ GI2 , or H I1 �⊆ H I2 . Assume first that F I1 �⊆ F I2 . Then
there exists an element a such that a ∈ F I1 but a /∈ F I2 . Let J be a solution
for I2 such that R J = F I2 , SJ = ∅ and T J = GI2 ∪ H I2 . Now, for every solution
J ′ ∈ SolM(I1), we have that a ∈ R J ′

or a ∈ SJ ′
. Thus, given that a /∈ R J

and SJ = ∅, we obtain that J /∈ SolM(I1), and then SolM(I2) �⊆ SolM(I1),
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which contradicts our initial assumption. By using a similar argument, we can
show that if GI1 �⊆ GI2 , then SolM(I2) �⊆ SolM(I1), and if H I1 �⊆ H I2 , then
SolM(I2) �⊆ SolM(I1), which also lead to a contradiction.

In the proof of Proposition 4.8, we show that this set of CQ-TO-UCQ dependen-
cies does not have a maximum recovery. Thus, from Theorem 6.3, we conclude
that M is not invertible.

To conclude the proof of the proposition, we show that examples of CQ-TO-CQ �=

and CQ-TO-UCQ dependencies satisfy the (∼M, ∼M)-subset property but are not
quasi-invertible. In this proof, we need the following facts. Let M be an arbi-
trary st-mapping. Given that I ∼M I for every source instance, if M satisfies
the subset property, then M also satisfies the (∼M, ∼M)-subset property. Fur-
thermore, if M satisfies the subset property, then I1 ∼M I2 if and only if I1 = I2.
Thus, if M satisfies the subset property, we have that M has an inverse if and
only if M has a quasi-inverse.

We now prove that both examples satisfy the (∼M, ∼M)-subset property but
are not quasi-invertible. We know that both mappings satisfy the subset prop-
erty, which by the previous discussion implies that both mappings satisfy the
(∼M, ∼M)-subset property. Furthermore, we also know that both mappings are
not invertible, and therefore, they are not quasi-invertible by the previous dis-
cussion and the fact that both mappings satisfy the subset property. This con-
cludes the proof of the proposition.

It turns out that by using the machinery developed for maximum recoveries,
it is possible to provide necessary and sufficient conditions for the existence of
inverses and quasi-inverses.

PROPOSITION 6.7. Let M be a total st-mapping that is closed-down on the
left.

(1) M is invertible if and only if M has a maximum recovery and satisfies the
subset property.

(2) M is quasi-invertible if and only if M has a maximum recovery and satisfies
the (∼M, ∼M)-subset property.

The proposition is a corollary of Lemmas 6.8 and 6.9.

LEMMA 6.8. Let M be a total st-mapping that is closed-down on the left. The
following statements are equivalent:

(1) M is quasi-invertible.
(2) M has a maximum recovery and satisfies the (∼M, ∼M)-subset property.
(3) For every source instance I1, there exists J ∈ SolM(I1) such that, for every

instance I2 such that J ∈ SolM(I2), there exists a pair (I ′
1, I ′

2) ∼M (I1, I2)
such that I ′

2 ⊆ I ′
1.

PROOF. (1) ⇒ (2). It follows directly from Lemma 6.5 and Theorem 6.4.
(2) ⇒ (3). Assume that M has a maximum recovery. Then by Theorem 3.12,

we have that M has witness solutions for every source instance (note that
M is a total mapping). That is, for every source instance I1, there exists a
target instance J ∈ SolM(I1), such that for every source instance I2, such that
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J ∈ SolM(I2), it is the case that SolM(I1) ⊆ SolM(I2). Thus, given that M
satisfies the (∼M, ∼M)-subset property, we obtain that there exists (I ′

1, I ′
2) such

that (I1, I2) ∼M (I ′
1, I ′

2) and I ′
2 ⊆ I ′

1. We conclude that (3) holds.
(3) ⇒ (1). For every source instance I , let UI be the set of all target instances

J ∈ SolM(I ) that satisfy condition (3), and M′ = {(J, I ) |, I is a source instance
and J ∈ UI }. Notice that (I, I ) ∈ M ◦ M′ for every source instance I . Next
we show that M′ is a quasi-inverse of M, that is we show that (M ◦ M′)[∼M
, ∼M] = Id[∼M, ∼M]. Let (I1, I2) be an arbitrary pair of source instances. First,
assume that there exists a pair (I ′

1, I ′
2) such that (I1, I2) ∼M (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2.

We need to show that there exists a pair (I ′′
1 , I ′′

2 ) such that (I1, I2) ∼M (I ′′
1 , I ′′

2 )
and (I ′′

1 , I ′′
2 ) ∈ M◦M′. Given that M is closed-down on the left, (I ′

2, I ′
2) ∈ M◦M′

and I ′
1 ⊆ I ′

2, we conclude that (I ′
1, I ′

2) ∈ M ◦M′ and, therefore we can take I ′′
1 to

be I ′
1 and I ′′

2 to be I ′
2. Second, assume that there exists a pair (K1, K2) such that

(I1, I2) ∼M (K1, K2) and (K1, K2) ∈ M◦M′. We need to prove that there exists a
pair (K ′

1, K ′
2) such that (I1, I2) ∼M (K ′

1, K ′
2) and K ′

1 ⊆ K ′
2. Given that (K1, K2) ∈

M ◦ M′, there exists a J such that (K1, J ) ∈ M and (J, K2) ∈ M′. Thus, by
definition of M′, we have that J ∈ UK2

. Hence, given that J ∈ SolM(K1), we
obtain that there exists a pair (K ′

1, K ′
2) such that (K1, K2) ∼M (K ′

1, K ′
2) and

K ′
1 ⊆ K ′

2. Therefore, from the fact that (I1, I2) ∼M (K1, K2), we conclude that
(I1, I2) ∼M (K ′

1, K ′
2) and K ′

1 ⊆ K ′
2. This concludes the proof of the lemma.

LEMMA 6.9. Let M be a total st-mapping that is closed-down on the left. The
following statements are equivalent:

(1) M is invertible.
(2) M has a maximum recovery and satisfies the subset property.
(3) For every source instance I1, there exists J ∈ SolM(I1), such that for every

instance I2 such that J ∈ SolM(I2), it holds that I2 ⊆ I1.

PROOF. (1) ⇒ (2). Assume that M is invertible, and let M′ be an inverse of
M. By Theorem 6.3, we know that M′ is a maximum recovery of M. It remains
to prove thatM satisfies the subset property. Suppose that SolM(I2) ⊆ SolM(I1),
then we need to prove that I1 ⊆ I2. Given that (I2, I2) ∈ M ◦ M′, there exists
a target instance J such that (I2, J ) ∈ M and (J, I2) ∈ M′. Thus, given that
SolM(I2) ⊆ SolM(I1), we have that (I1, J ) in M. We conclude that (I1, I2) ∈
M ◦ M′, which implies that I1 ⊆ I2 since M′ is an inverse of M.

(2) ⇒ (3). As we pointed out in the proof of Proposition 6.6, if M satisfies the
subset property, then M satisfies the (∼M, ∼M)-subset property and for every
pair of source instances I1, I2, it holds that I1 ∼M I2 if and only if I1 = I2. Thus,
(2) ⇒ (3) is a direct consequence of the implication (2) ⇒ (3) of Lemma 6.8.

(3) ⇒ (1). For every source instance I , let UI be the set of all target instances
J ∈ SolM(I ) that satisfy condition (3), and let M′ = {(J, I ) | I is a source
instance and J ∈ UI }. Notice that (I, I ) ∈ M ◦ M′ for every source instance I .
Next we show that M′ is an inverse of M, that is we show that for every pair
of source instances I1, I2, it holds that (I1, I2) ∈ M ◦ M′ if and only if I1 ⊆ I2.
First, assume that (I1, I2) ∈ M◦M′. Then there exists a target instance J such
that (I1, J ) ∈ M and (J, I2) ∈ M′. By definition of M′, we have that J ∈ UI2

.
Thus, given that J ∈ SolM(I1), we obtain that I1 ⊆ I2. Second, assume that
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I1 ⊆ I2. Then given that (I2, I2) ∈ M ◦M′ and M is closed-down on the left, we
obtain that (I1, I2) ∈ M ◦ M′. This concludes the proof of the lemma.

As a corollary of Lemma 6.9, we obtain that an extension of the notion of
witness solution can be used to provide a necessary and sufficient condition
for invertibility. Given an st-mapping M, we say that a target instance J is
a strong witness for a source instance I under M, if for every source instance
I ′ such that J ∈ SolM(I ′), it holds that I ′ ⊆ I . Notice that if a mapping M is
closed-down on the left and J is a strong witness for I , then J is a witness for I .

COROLLARY 6.10. A total and closed-down-on-the-left st-mapping M is in-
vertible if and only if every source instance has a strong witness solution
under M.

7. COMPUTING MAXIMUM RECOVERIES

In Section 4.1, we show that every st-mapping specified by a set of FO-TO-CQ
dependencies has a maximum recovery, but up to this point we have not said
anything about the language needed to express it. In this section, we show
that every st-mapping specified by a set of FO-TO-CQ dependencies has a maxi-
mum recovery specified by a set of CQC-TO-FO dependencies. In fact, we provide
an algorithm that computes maximum recoveries for st-mappings specified by
FO-TO-CQ dependencies. Our algorithm runs in exponential time when map-
pings are given by sets of FO-TO-CQ dependencies, and can be adapted to run in
quadratic time when the input is a mapping specified by a set of full FO-TO-CQ
dependencies.

7.1 Preliminaries

In this section, we introduce the basic terminology used in our algorithm, and
we also present some results that are important in its formulation.

Our algorithm is based on query rewriting, and thus, we start by reviewing
some basic results about it. Let M = (S, T, �) be an st-mapping such that �

is a set of FO-TO-CQ dependencies, and let Q be a query over schema T. Given
a source instance I , the set of certain answers of Q over I under M, is the set
of tuples that belong to the evaluation of Q over every possible solution for I
under M. We denote this set by certainM(Q , I ). Thus,

certainM(Q , I ) =
⋂

J∈SolM(I )

Q(J ).

Then a query Q ′ is said to be a rewriting of Q over the source if Q ′ is a query
over S such that for every I ∈ Inst(S), it holds that Q ′(I ) = certainM(Q , I ).
That is, to obtain the set of certain answers of Q over I under M, we just have
to evaluate its rewriting Q ′ over instance I .

The computation of a rewriting of a conjunctive query is a basic step in
the algorithm presented in this section. This problem has been extensively
studied in the database area [Levy et al. 1995; Abiteboul and Duschka 1998]
and, in particular, in the data integration context [Halevy 2000, 2001; Lenzerini
2002]. In particular, the class of CQ-TO-CQ dependencies corresponds to the
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class of GLAV mappings in the data integration context [Lenzerini 2002], and as
such, the techniques developed to solve the query-rewriting problem for GLAV
mappings can be reused in our context. It is important to notice that most of
the query rewriting techniques have been developed for two subclasses of GLAV
mappings, namely GAV mappings, which essentially correspond to the class of
mappings specified by full CQ-TO-CQ dependencies [Lenzerini 2002], and LAV
mappings, which are mappings specified by CQ-TO-CQ dependencies of the form
R(x1, . . . , xk) → ψ(x1, . . . , xk), where R is a source predicate [Lenzerini 2002].
However, it is possible to reuse a large part of the work in this area, since a
GLAV mapping can be represented as the composition of a GAV and a LAV
mapping.

Example 7.1. Assume that M is specified by dependency:

R(x) ∧ S(x) → ∃ y T (x, y).

Then M is equivalent to the composition of a GAV mapping specified by de-
pendency R(x) ∧ S(x) → U (x) and a LAV mapping specified by dependency
U (x) → ∃ y T (x, y), where U is an auxiliary relation.

More formally, let M be a mapping specified by a set of CQ-TO-CQ depen-
dencies and Q a conjunctive query over the target of M. Then one can obtain
a rewriting of Q over the source as follows. First, one constructs, as in the
previous example, a GAV mapping M1 and a LAV mapping M2, such that
M = M1 ◦ M2. Second, one obtains a rewriting Q ′ of Q over the source of M2

by adopting one of the algorithms proposed in the literature for query rewriting
for LAV mappings [Levy et al. 1996; Duschka and Genesereth 1997; Pottinger
and Halevy 2001]. Finally, one obtains a rewriting Q ′′ of Q ′ over the source of
M1, which is the desired rewriting of Q , by simply unfolding Q ′ according to
the dependencies of mapping M1 [Lenzerini 2002].

It should be noticed that the time complexity of the rewriting procedure is
exponential in the size of the mapping and the query, and that this procedure
can also be used for the case of mappings specified by FO-TO-CQ dependencies.
IfM is specified by a set of FO-TO-CQ dependencies, then by using the same idea
as in Example 7.1, it is possible to show that M is equivalent to the composition
of a mapping M1 specified by a set of full FO-TO-CQ dependencies and a LAV
mapping M2. Thus, given that the query unfolding process can be carried out
over a set of full FO-TO-CQ dependencies in the same way as for GAV mappings,
the process described here can be used to compute in exponential time, the
rewriting of a target conjunctive query over the source of M.

For the sake of completeness, in this article we propose a novel exponential-
time algorithm, that given a mapping M specified by a set of FO-TO-CQ st-
dependencies and a conjunctive query Q over the target schema, produces a
rewriting of Q over the source of M. This algorithm does not follow the ap-
proach described here as it directly uses the dependencies specifying M to con-
struct a query rewriting (it does not decompose M into the composition of two
mappings). In particular, the time complexity of the algorithm is exponential,
so it could be used as an alternative query rewriting algorithm.
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LEMMA 7.2. There exists an algorithm QUERYREWRITING that, given an st-
mapping M = (S, T, �), with � a set of FO-TO-CQ dependencies, and a conjunc-
tive query Q over schema T, computes a domain-independent FO query Q ′ that
is a rewriting of Q over the source. The algorithm runs in exponential time and
its output is of exponential size in the size of � and Q.

PROOF. The proof of the lemma is given in electronic Appendix A.1.

Another notion that would be used in the proof of correctness of our algorithm
(and also in other proofs in the following sections), is the notion of chase. This
notion is tightly related with certain answers and rewriting of queries [Fagin
et al. 2005a; Arenas et al. 2004]. Assume that M = (S, T, �) is an st-mapping,
where � is a set of FO-TO-CQ dependencies. Let I be an instance of S, and let
JI be an instance of T constructed as follows. For every dependency σ ∈ �

of the form ϕ(x̄) → ∃ ȳ ψ(x̄, ȳ), with x̄ = (x1, . . . , xm), ȳ = ( y1, . . . , y�) tuples
of distinct variables, and for every m-tuple ā of elements from dom(I ) such
that I |= ϕ(ā), do the following. Choose an �-tuple n̄ of distinct fresh values
from N, and include all the conjuncts of ψ(ā, n̄) in JI . We call instance JI the
chase of I with �, and write JI = chase�(I ). In Fagin et al. [2005a], the authors
prove several properties of chase�(I ). In particular, the authors show that if
Q is a conjunctive query over T, then the set of certain answers of I under
M is equal to the set of tuples in Q(chase�(I )) that only contains constant
values. We denote this last set of tuples by Q(chase�(I ))↓. Thus, we have that
certainM(Q , I ) = Q(chase�(I ))↓. Notice that if Q ′ is a rewriting over the source
of a conjunctive query Q , then it holds that Q ′(I ) = Q(chase�(I ))↓.

7.2 Computing Maximum Recoveries in the General Case

In this section, we propose an algorithm that, given a mappings M specified by
a set of FO-TO-CQ dependencies, returns a maximum recovery of M.

It is known that the simple process of reversing the arrows of source-to-target
dependencies does not necessarily produce inverses, since conclusions of differ-
ent dependencies may be related [Fagin 2007], since conclusion of a dependency
may be implied by the conclusions of other dependencies. The algorithm pre-
sented in this section first searches for these relations among conclusions of
dependencies, and then suitably composes the premises of related dependen-
cies and reverses the arrows to obtain a maximum recovery. Let us give some
intuition with an example. Consider a mapping M specified by the FO-TO-CQ
dependencies:

ϕ1(x1, x2) → ∃v(P (x1, v) ∧ R(v, x2)), (4)

ϕ2( y1, y2) → P ( y1, y2) (5)

ϕ3(z1, z2) → 1, z2), (6)

where ϕ1, ϕ2, and ϕ3 are arbitrary FO formulas with two free variables. In this
case, the conjunction of the conclusions of (5) and (6) implies the conclusion of
(4) when y2 is equal to z1 and both are existentially quantified. The idea behind
the algorithm is to make explicit these types of relationships. For instance, we
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could replace (4) by the dependency:

ϕ1(u1, u2) ∨ ∃ y2∃z1

(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

) →
∃v(P (u1, v) ∧ R(v, u2)). (7)

It can be proved that the set of dependencies obtained by replacing for-
mula (4) by (7) is logically equivalent to the initial set of dependencies. Af-
ter making explicit these types of relationships between dependencies, the al-
gorithm reverses the arrows to obtain a maximum recovery. When reversing
the arrows, we also need to impose an additional constraint. In this exam-
ple, given that (4) is a non-full dependency, when reversing (5), the algorithm
needs to force variable y2 in P ( y1, y2) to take values only from the set C,
that is, we have to use dependency P ( y1, y2) ∧ C( y2) → ϕ2( y1, y2) instead of
P ( y1, y2) → ϕ2( y1, y2). This is because, given a source instance I such that
I |= ϕ1(a, b), dependency (4) could be satisfied by including a tuple of the form
P (a, n) in a target instance, where n ∈ N, and value n should not be passed to a
source instance by a recovery (see Proposition 8.1 for a formal justification for
the use of predicate C(·)). In fact, as a safety condition, the algorithm presented
in this section uses predicate C(·) over each variable that passes values from
the target to the source. Summing up, the following set of dependencies defines
a maximum recovery of the mapping M above:

P ( y1, y2) ∧ C( y1) ∧ C( y2) → ϕ2( y1, y2)

R(z1, z2) ∧ C(z1) ∧ C(z2) → ϕ3(z1, z2),

∃v(P (u1, v) ∧ R(v, u2)) ∧ C(u1) ∧ C(u2) → ϕ1(u1, u2) ∨ ∃ y2∃z1

(ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1).

The following algorithm uses a query rewriting procedure to find the types of
relationships between these dependencies. In fact, in the example, the formula:

ϕ1(u1, u2) ∨ ∃ y2∃z1

(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
, (8)

that appears as the premise of (7), makes explicit the relationship between the
conclusion ∃v(P (u1, v)∧R(v, u2)) of FO-TO-CQ dependency (4) and dependencies
(4), (5), and (6). But not only that, it can be shown that (8) is a rewriting of
∃v(P (u1, v) ∧ R(v, u2)) over the source schema (according to dependencies (4),
(5) and (6)).

In the algorithm, if x̄ = (x1, . . . , xk), then C(x̄) is a shorthand for C(x1) ∧ · · ·∧
C(xk).

Algorithm MAXIMUMRECOVERY(M)

Input: An st-mapping M = (S, T, �), where � is a set of FO-TO-CQ dependencies.
Output: A ts-mapping M′ = (T, S, �′), where �′ is a set of CQC-TO-FO dependencies
and M′ is a maximum recovery of M.

(1) Start with �′ as the empty set.

(2) For every dependency σ ∈ � of the form ϕ(x̄) → ∃ ȳψ(x̄, ȳ), do the following:
(a) Let Q be the conjunctive query defined by ∃ ȳψ(x̄, ȳ).
(b) Use QUERYREWRITING(M, Q) to compute an FO formula α(x̄) that is a rewriting

of ∃ ȳψ(x̄, ȳ) over the source.
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(c) Add dependency ∃ ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) to �′.
(3) Return M′ = (T, S, �′).

THEOREM 7.3. Let M = (S, T, �) be an st-mapping, where � is a set of
FO-TO-CQ dependencies. Then MAXIMUMRECOVERY(M) computes a maximum re-
covery of M in exponential time in the size of �, which is specified by a set of
CQC-TO-FO dependencies.

PROOF. From Lemma 7.2, it is straightforward to conclude that the algo-
rithm runs in exponential time. Assume that M′ = (T, S, �′) is the output of
MAXIMUMRECOVERY(M). We first show that M′ is a recovery of M, that is, we
show that for every instance I of S, it holds that (I, I ) ∈ M ◦ M′.

We show now that (chase�(I ), I ) ∈ M′ and, thus, since (I, chase�(I )) ∈ M, we
obtain that (I, I ) ∈ M◦M′. Let σ ′ ∈ �′, we need to show that (chase�(I ), I ) |= σ ′.
Assume that σ ′ is of the form ∃ ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄), and that ā is a tuple of
values such that chase�(I ) |= ∃ ȳψ(ā, ȳ)∧C(ā). We have to show that I |= α(ā).
Now, consider the conjunctive query Qψ defined by formula ∃ ȳψ(x̄, ȳ). Since
C(ā) holds and chase�(I ) |= ∃ ȳψ(ā, ȳ), we obtain that ā ∈ Qψ (chase�(I ))↓.
Thus, by the properties of the chase, we know that ā ∈ certainM(Qψ , I ). Con-
sider now the query Qα defined by formula α(x̄). By the definition of MAXI-
MUMRECOVERY, we know that Qα is a rewriting of Qψ over schema S, and then
certainM(Qψ , I ) = Qα(I ). Thus, we have that ā ∈ Qα(I ), and then I |= α(ā)
which was to be shown.

To complete the proof, we show that if (I1, I2) ∈ M ◦M′, then ∅ � SolM(I2) ⊆
SolM(I1). Thus, by Proposition 3.8 and since M′ is a recovery of M, we ob-
tain that M′ is a maximum recovery of M. Let (I1, I2) ∈ M ◦ M′, and J �

an instance of T such that (I1, J �) ∈ M and (J �, I2) ∈ M′. Notice first that
dom(M) = Inst(S), and then ∅ � SolM(I2). Therefore, we only have to prove that
SolM(I2) ⊆ SolM(I1). Let J ∈ SolM(I2), we need to show that J ∈ SolM(I1). Let
σ ∈ � be a dependency of the form ϕ(x̄) → ∃ ȳψ(x̄, ȳ), and assume that I1 |= ϕ(ā)
for some tuple ā of constant values. We show next that J |= ∃ ȳψ(ā, ȳ). Since
I1 |= ϕ(ā) we know that for every J ′ ∈ SolM(I1), it holds that J ′ |= ∃ ȳψ(ā, ȳ).
In particular, it holds that J � |= ∃ ȳψ(ā, ȳ). By the definition of the algorithm,
we know that there exists a dependency ∃ ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) in �′, such
that α(x̄) is a rewriting of ∃ ȳψ(x̄, ȳ) over S. Then since J � |= ∃ ȳψ(ā, ȳ), ā
is a tuple of constant values, and (J �, I2) |= �′, we know that I2 |= α(ā).
Now consider the queries Qψ and Qα defined by formulas ∃ ȳψ(x̄, ȳ) and
α(x̄), respectively. Since I2 |= α(ā), we know that ā ∈ Qα(I2). Furthermore,
we know that Qα(I2) = certainM(Qψ , I2), and then ā ∈ certainM(Qψ , I2). In
particular, since J ∈ SolM(I2), we know that ā ∈ Qψ (J ), from which we con-
clude that J |= ∃ ȳψ(ā, ȳ). We have shown that for every σ ∈ � of the form
ϕ(x̄) → ∃ ȳψ(x̄, ȳ), if I1 |= ϕ(ā) for some tuple ā, then J |= ∃ ȳψ(ā, ȳ). Thus, we
have that (I1, J ) |= � and therefore J ∈ SolM(I1). This concludes the proof of
the theorem.

From Theorems 6.3 and 6.4, we have that if � is an invertible (quasi-
invertible) set of st-tgds, then MAXIMUMRECOVERY computes an inverse
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(quasi-inverse) of �. In Fagin et al. [2008], algorithms for computing inverses
and quasi-inverses are proposed for the case of mappings given by st-tgds. It is
important to note that our algorithm works not only for st-tgds but also for the
larger class of FO-TO-CQ dependencies. For the latter class, it is not clear how to
extend the algorithms from Fagin et al. [2008] to produce inverses and quasi-
inverses, as the notion of generator used in these algorithms (Definition 4.2
in Fagin et al. [2008]) becomes undecidable for FO-TO-CQ dependencies.

The next lemma shows that when the input of algorithm MAXIMUMRECOVERY

is a mapping M specified by a set of st-tgds, then its output is a maximum
recovery of M specified by a set of CQC-TO-UCQ= dependencies. The proof of
the lemma follows directly from the proof of Lemma 7.2.

LEMMA 7.4. Let M = (S, T, �) be an st-mapping such that � is a set of
st-tgds, and Q a conjunctive query over schema T. Then algorithm QUERY

REWRITING(M, Q) in Lemma 7.2 has as output a query Q ′ in UCQ= that is a
rewriting of Q over the source.

Thus, if the input of our algorithm is a mapping given by a set � of st-tgds, it
computes a maximum recovery given by a set �′ of CQC-TO-UCQ= dependencies.
In general, the set �′ computed by our algorithm could be of exponential size
in the size of �. The following result shows that this exponential blow-up could
not be avoided.

THEOREM 7.5. There exists a family of st-mappings {Mn = (Sn, Tn, �n)}n≥1,
such that �n is a set of st-tgds of size linear in n, and every set �′ of CQC-TO-UCQ=

ts-dependencies that specifies a maximum recovery of Mn is of size 
(2n).

PROOF. Let Sn = {R(·), A1(·), B1(·), . . . , An(·), Bn(·)}, Tn = {P1(·), . . . , Pn(·)},
and �n the set of st-tgds:

R(x) → ∃ y(P1( y) ∧ · · · ∧ Pn( y)),

A1(x) → P1(x),

B1(x) → P1(x),

...

An(x) → Pn(x),

Bn(x) → Pn(x).

Let Mn = (Sn, Tn, �n) and assume that M′ = (Tn, Sn, �′) is a maximum recov-
ery of Mn, where �′ is a set of CQC-TO-UCQ= ts-dependencies. We first prove
some facts about �′. Through the proof, we let a be a fixed element in C, and IR a
source instance, such that R IR = {a} and AIR

i = BIR
i = ∅ for every i ∈ {1, . . . , n}.

Since M′ is a recovery of Mn, we have that (IR , IR) ∈ Mn ◦ M′. Thus, there
exists an instance J � such that (IR , J �) |= �n and (J �, IR) |= �′. We show first
that the domain of J � is composed only by null values. On the contrary, assume
that there exists a constant element b ∈ C such that b ∈ dom(J �). Then it holds
that b ∈ P J �

k for some k ∈ {1, . . . , n}. Consider a source instance I ′ such that
AI ′

k = BI ′
k = {b}, R I ′ = ∅, and AI ′

i = BI ′
i = ∅ for every i ∈ {1, . . . , n} with i �= k.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.



The Recovery of a Schema Mapping: Bringing Exchanged Data Back • 22:37

The target instance J ′ where P J ′
k = {b} and P J ′

i = ∅ for every i ∈ {1, . . . , n}
with i �= k, is such that (I ′, J ′) ∈ Mn. Notice that J ′ ⊆ J �. Now since �n

is a set of st-tgds, we know that Mn is closed-up on the right, obtaining that
(I ′, J �) ∈ Mn. Thus, given that (J �, IR) ∈ M′ we have that (I ′, IR) ∈ Mn ◦ M′.
This last fact contradicts Proposition 3.8 since M′ is a maximum recovery of
Mn and SolMn(IR) �⊆ SolMn(I ′).

We claim now that there must exist a dependency σ ∈ �′ such that J �

satisfies the premise of σ . Assume that this is not the case. Then since �′ is a
set of CQC-TO-UCQ= formulas, it would be the case that (J �, I∅) |= �′, where
I∅ is the empty source instance. Thus, we have that (IR , I∅) ∈ Mn ◦ M′ which,
by Proposition 3.8, contradicts the fact that M′ is a maximum recovery of Mn

since SolMn(I∅) �⊆ SolMn(IR). Assume now that σ is a dependency in �′ whose
premise is satisfied by J �. We show next that the premise and the conclusion
of σ must be Boolean formulas. On the contrary, assume that σ is of the form
ϕ(x̄) → ψ(x̄), where x̄ is a tuple of m variables with m > 0. Since we are
assuming that J � satisfies the premise of σ , there exists an m-tuple b̄ such that
J � |= ϕ(b̄). We know that ϕ(x̄) is a domain-independent formula, then it holds
that every component of b̄ is in dom(J �). We have shown before that dom(J �)
is composed only by nulls and, thus, every component of b̄ is a null value. Now,
since (J �, IR) |= σ and J � |= ϕ(b̄), it must be the case that IR |= ψ(b̄). We also
know that ψ(x̄) is domain independent, then every component of b̄ must be in
dom(IR), which leads to a contradiction since dom(IR) = {a} and a ∈ C. In the
rest of the proof, we let �′′ ⊆ �′ be the set of all the dependencies σ of the form
ϕ → ψ such that J � |= ϕ, where ϕ and ψ are Boolean formulas. Notice that
�′′ �= ∅.

We have the necessary ingredients to show that �′ is of size 
(2n). Consider
for every n-tuple d̄ = (d1, . . . , dn) ∈ {0, 1}n, the set of source relation symbols
Sd̄ = {U1(·), . . . , Un(·)} such that Ui = Ai if di = 0 and Ui = Bi if di = 1. We now
show that for each of the 2n tuples d̄ , there must exist a dependency σ ∈ �′′ of
the form ϕ → ψ such that ψ has a disjunct that mentions exactly the relation
symbols in Sd̄ . This is enough to show that �′ is of size 
(2n). Fix a tuple d̄
and consider a source instance Id̄ such that for every U ∈ Sn, if U ∈ Sd̄ then
U Id̄ = {a}, otherwise U Id̄ = ∅. Since M′ is a maximum recovery of Mn, there
exists a target instance Jd̄ such that (Id̄ , Jd̄ ) |= �n and (Jd̄ , Id̄ ) |= �′. Let JP be a
target instance such that P JP

i = {a} for every i ∈ {1, . . . , n}. It is straightforward
to see that JP ⊆ Jd̄ . It is also easy to see that, if θ is a Boolean query in CQC over
Tn, then JP |= θ . To see this just take a homomorphism h from the conjunctions
of θ to the facts in JP , such that h(x) = a for every existential variable in θ ,
and note that C(h(x)) holds for every variable, since a ∈ C. Thus, given that
queries in CQC are monotone and JP ⊆ Jd̄ , we have that Jd̄ |= θ for every CQC

Boolean query θ over Tn. In particular, we have that for every ϕ → ψ ∈ �′′, it
holds that Jd̄ |= ϕ. Then it must hold that Id̄ |= ψ for every ϕ → ψ ∈ �′′. This
last fact implies that for every ϕ → ψ ∈ �′′, there exists a formula α such that
α is one of the disjunctions of ψ and Id̄ |= α (recall that ψ is a query in UCQ=).
Let 
 be a set containing all such formulas α, that is α is a formula in 
 if and
only if there exists a dependency ϕ → ψ ∈ �′′ such that α is a disjunction in ψ
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and Id̄ |= α. Note that every α ∈ 
 is a CQ= Boolean query, and since Id̄ |= α,
it could not be the case that α mentions relation symbols of Sn outside Sd̄ . We
now show that one of the queries in 
 mentions exactly the relation symbols in
Sd̄ . On the contrary, assume that for every α ∈ 
, it is the case that α mentions
a proper subset of the relation symbols of Sd̄ . Consider for every α ∈ 
 a fresh
constant value cα, and a source instance Iα such that for every U ∈ Sn, we have
U Iα = {cα} if the relation symbol U is mentioned in α, and U Iα = ∅ otherwise.
It is clear that Iα |= α for every α ∈ 
. Let I
 = ⋃

α∈
 Iα. Notice that for every
α ∈ 
, it holds that I
 |= α. Recall that for every ϕ → ψ ∈ �′′, there exists a
formula α ∈ 
 such that α is one of the disjunctions of ψ . Hence, we obtain that
I
 |= ψ for every ϕ → ψ ∈ �′′. We also know that J � |= ϕ for every ϕ → ψ ∈ �′′,
obtaining that (J �, I
) |= �′′. Notice that �′′ contains all the dependencies of
�′ such that J � satisfies their premises and, thus, (J �, I
) |= �′. Then since
(IR , J �) |= �n and (J �, I
) |= �′, we have that (IR , I
) ∈ Mn ◦M′. We show now
that SolMn(I
) �⊆ SolMn(IR), which contradicts Proposition 3.8. Notice first that
for every target instance J ∈ SolMn(IR), there exists an element c ∈ dom(J )
such that c ∈ P J

i for every i ∈ {1, . . . , n}. We prove that there exists an instance
in SolMn(I
) that does not satisfy this last property. Consider for every α ∈ 


the target instance Jα = chase�n(Iα), and let J
 = ⋃
α∈
 Jα. It is easy to see

that J
 ∈ SolMn(I
). Notice that since every α ∈ 
 mentions a proper subset
of the relation symbols of Sd̄ , there exists an index i ∈ {1, . . . , n} such that
AIα

i = BIα

i = ∅, and then there exists an index i ∈ {1, . . . , n} such that P Jα

i = ∅.
Moreover, since dom(Jα) ∩ dom(Jα′) = ∅ for every pair of distinct elements α, α′

of 
, we obtain that there is no element c ∈ dom(J
) such that c ∈ P J


i for
every i ∈ {1, . . . , n}. Thus, J
 /∈ SolMn(IR) implying that SolMn(I
) �⊆ SolMn(IR),
which leads to the contradiction previously mentioned. We have shown that
there exists a formula α ∈ 
 such that α mentions exactly the relation symbols
in Sd̄ . Thus, there exists a dependency σ ∈ �′′ ⊆ �′ such that the conclusion
of σ has a disjunct that mentions exactly the relation symbols in Sd̄ . This last
property holds for every one of the 2n distinct tuples d̄ , which implies that �′

is of size exponential in the size of �n.

7.3 Computing Maximum Recoveries in the Full Case

Recall that a full FO-TO-CQ dependency does not include any existential quan-
tifiers in its conclusion. In this section, we show that for mappings given by full
FO-TO-CQ dependencies, maximum recoveries can be computed in polynomial
time. This result is based on the fact that given a query composed of a single
atom and with no existentially quantified variables, one can compute a rewrit-
ing of that query in quadratic time. This is formalized in the following lemma,
where ‖�‖ denotes the size of �.

LEMMA 7.6. There exists an algorithm QUERYREWRITINGATOM that given an
st-mapping M = (S, T, �), with � a set of FO-TO-CQ dependencies, and a con-
junctive query Q over schema T composed by a single atom and with no existen-
tial quantifiers, computes in time O(‖�‖2) a domain-independent FO query Q ′

that is a rewriting of Q over the source. Moreover, if � is a set of full FO-TO-CQ
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st-dependencies where each dependency has a single atom in its conclusion, then
the algorithm runs in time O(‖�‖).

PROOF. The proof of the lemma is given in electronic Appendix A.2.

By using algorithm QUERYREWRITINGATOM, we can compute in quadratic time
a maximum recovery for mappings given by full dependencies.

Algorithm MAXIMUMRECOVERYFULL(M)

Input: An st-mapping M = (S, T, �), where � is a set of full FO-TO-CQ dependencies,
each dependency with a single atom in its conclusion.
Output: A ts-mapping M′ = (T, S, �′), where �′ is a set of CQ-TO-FO dependencies and
M′ is a maximum recovery of M.

(1) Start with �′ as the empty set.

(2) For every atom R(x̄) that is the conclusion of a dependency in �, do the following:
(a) Let Q be the conjunctive query defined by R(x̄).
(b) Use QUERYREWRITINGATOM(M, Q) to compute an FO formula α(x̄) that is a rewrit-

ing of R(x̄) over the source.
(c) Add dependency R(x̄) → α(x̄) to �′.

(3) Return M′ = (T, S, �′).

THEOREM 7.7. Let M be an st-mapping specified by a set � of full FO-TO-CQ
st-dependencies, each dependency with a single atom in its conclusion. Then
MAXIMUMRECOVERYFULL(M) computes a maximum recovery of M in time
O(‖�‖2), which is specified by a set of CQ-TO-FO dependencies.

PROOF. Since � is a set of full FO-TO-CQ st-dependencies, each dependency
with a single atom in its conclusion, algorithm QUERYREWRITINGATOM(M, Q)
runs in linear time. Thus, it is straightforward to see that algorithm MAXIMUM-
RECOVERYFULL runs in quadratic time. The correctness of the algorithm follows
from the proof of Theorem 7.3. We only notice here that the output of algorithm
MAXIMUMRECOVERYFULL does not include predicate C(·). Since � is a set of full
dependencies, chase�(I ) is composed only by constant values and, thus, C(·) is
not needed in the proof of Theorem 7.3.

Notice that in Theorem 7.7, we assume that every dependency has a sin-
gle atom in its conclusion. Nevertheless, this theorem can be extended to the
general case; from a set � of arbitrary full FO-TO-CQ st-dependencies, one
can obtain as follows, an equivalent set �′ of full FO-TO-CQ st-dependencies
having a single atom in the conclusion of each constraint. For every depen-
dency ϕ(x̄) → ψ(x̄) in � and atom R( ȳ) in ψ(x̄), where ȳ ⊆ x̄, the dependency
ϕ(x̄) → R( ȳ) is included in �′. Thus, to apply Theorem 7.7 to �, we first con-
struct �′ from � and then apply procedure MAXIMUMRECOVERYFULL. It is impor-
tant to notice that �′ could be of quadratic size in the size of �, and hence, by the
fact that algorithm QUERYREWRITINGATOM runs in linear time and the definition
of procedure MAXIMUMRECOVERYFULL, it follows that a maximum recovery for a
mapping specified by an arbitrary set of full FO-TO-CQ st-dependencies can be
computed in cubic-time.
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As for the general case, from Theorems 6.3 and 6.4, we know that this algo-
rithm computes an inverse (quasi-inverse) if � is an invertible (quasi-invertible)
set of full st-tgds. The algorithm in Fagin et al. [2008] for computing an inverse
of a set � of full st-tgds returns a set �′ of CQ �=-TO-CQ dependencies of ex-
ponential size in ‖�‖. The algorithm in Fagin et al. [2008] for computing a
quasi-inverse of a set � of full st-tgds returns a set �′ of CQ �=-TO-UCQ depen-
dencies, which is also of exponential size in ‖�‖. In both cases, our algorithm
works in quadratic time and returns a set �′ of CQ-TO-UCQ= dependencies,
which is of quadratic size in ‖�‖.

7.4 Computing Maximum Recoveries for Mappings with Source Dependencies

We conclude this section by showing how algorithm MAXIMUMRECOVERY can be
extended to handle arbitrary source constraints.

By using Lemma 4.4, we can extend algorithm MAXIMUMRECOVERY to handle
source constraints. Given an st-mapping M = (S, T, �st, 
s), where �st is a
set of FO-TO-CQ st-dependencies (from S to T) and 
s is a set of source FO-
dependencies (over S), algorithm MAXIMUMRECOVERY can be used to produce a
maximum recoveryM�

1 = (T, S, �ts) for st-mappingM1 = (S, T, �st), where �ts

is a set of CQC-TO-FO ts-dependencies from T to S, and then M� = (T, S, �ts, 
s)
is output as a maximum recovery of M.

8. THE LANGUAGE OF MAXIMUM RECOVERIES

Given a mapping M specified by a set of FO-TO-CQ dependencies, algorithm
MAXIMUMRECOVERY produces a maximum recovery of M that is specified by a
set of CQC-TO-FO dependencies. In this section, we study some properties of the
language needed to express maximum recoveries, which provides justification
for the language used in the output of algorithm MAXIMUMRECOVERY. Moreover,
we also show that the extension of this algorithm to handle target constraints
is not immediate, as there exists a mapping specified by a set of FO-TO-CQ de-
pendencies plus a set of target egds that has no maximum recovery specified by
a set of FO-sentences, and the same holds for a weakly acyclic set of target tgds.

A first question about the output of MAXIMUMRECOVERY is whether predicate
C(·) is really needed. In Fagin et al. [2008], it is proved that C(·) is needed when
computing quasi-inverses of st-mappings specified by st-tgds, if quasi-inverses
are expressed using st-tgds with inequalities in the premises and disjunction in
the conclusions. Here we show that C(·) is needed when computing maximum
recoveries for st-mappings specified by st-tgds, even if we allow the full power
of FO to express maximum recoveries.

PROPOSITION 8.1. There exists an st-mapping M = (S, T, �) specified by a
set � of st-tgds that has no maximum recovery specified by a set of FO-sentences
over S ∪ T not using predicate C(·).

PROOF. The proof of the proposition is given in electronic Appendix B.1.

In Section 4, it is proved that adding disjunction, inequalities or negation to
the conclusions of FO-TO-CQ dependencies generates st-mappings that do not
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necessarily have maximum recoveries. Hence, it would be desirable to stay in
the class of FO-TO-CQ dependencies when dealing with maximum recoveries.
In particular, it would be desirable to have an algorithm that takes as input
a set � of FO-TO-CQ st-dependencies, and produces a set �′ of FOC-TO-CQ ts-
dependencies which is a maximum recovery of �. Thus, a second important
question about the algorithm MAXIMUMRECOVERY is whether it could be modified
to produce a set of FOC-TO-CQ ts-dependencies as output. Unfortunately, the
following proposition shows that this could not be the case, even if we allow
disjunction in the conclusions of the output dependencies.

PROPOSITION 8.2. There exists an st-mapping specified by a set of FO-TO-CQ
st-dependencies that has no maximum recovery specified by a set of FOC-TO-UCQ
ts-dependencies.

PROOF. The proof of the proposition is given in electronic Appendix B.2.

From the proof of Proposition 8.2 , we obtain that there exists an st-mapping
specified by a set of CQ �=-TO-CQ dependencies that has no maximum recovery
specified by a set of FOC-TO-UCQ dependencies.

A third question about the output of MAXIMUMRECOVERY is whether the full
power of FO is really needed in the conclusions of the dependencies returned
by the algorithm. For example, could it be the case that CQC-TO-UCQ=,¬ de-
pendencies suffice to specify maximum recoveries for st-mappings specified by
FO-TO-CQ dependencies? Theorem 8.3 shows that this could not be the case.
In fact, we show that for L and L′ fragments of FO (satisfying some regularity
conditions), if CQC-TO-L′ dependencies suffice to specify maximum recoveries
for mappings given by L-TO-CQ dependencies, then L′ must be at least as ex-
pressive as L.

In Theorem 8.3, we use the following terminology. We say that a fragment
L of FO is closed under conjunction and existential quantification, if for every
pair of formulas ϕ and ψ in L, there exist formulas α and β in L such that, α

is equivalent to ϕ ∧ ψ and β is equivalent to ∃x ϕ. Furthermore, we say that
L is closed under free-variable substitution, if for every formula ϕ(x̄) in L and
substitution μ for x̄, there exists a formula α(μ(x̄)) in L that is equivalent to
ϕ(μ(x̄)). Notice that all the fragments of FO used in this article are closed under
conjunction, existential quantification and free-variable substitution. Finally,
we say that an FO-sentence � is nontrivial if � is neither a contradiction nor
a valid sentence.

THEOREM 8.3. Let L and L′ be fragments of FO that are closed under
conjunction, existential quantification, and free-variable substitution. If there
exists a nontrivial sentence � in L that is not equivalent to any sentence
in L′, then there exists an st-mapping specified by a set of L-TO-CQ st-
dependencies that has no maximum recovery specified by a set of CQC-TO-L′

ts-dependencies.

PROOF. The proof of the theorem is given in electronic Appendix B.3.

In Section 7, we show that algorithm MAXIMUMRECOVERY can be extended
to handle arbitrary source constraints. In Theorem 4.7, we show that if an
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st-mapping M is specified by a set of FO-TO-CQ dependencies, a set of target
egds and a weakly acyclic set of target tgds, then M has a maximum recovery.
Thus, a natural question is whether MAXIMUMRECOVERY can be extended to this
class of mappings with target dependencies. Unfortunately, the following propo-
sition shows that the extension of the algorithm to handle target constraints is
by no means immediate.

PROPOSITION 8.4.

(1) There exists an st-mapping M specified by a set of st-tgds plus a set of target
egds that has no maximum recovery specified by a set of FO-sentences.

(2) There exists an st-mapping M specified by a set of st-tgds plus a weakly
acyclic set of target tgds that has no maximum recovery specified by a set of
FO-sentences.

PROOF. The proof of the proposition is given in electronic Appendix B.4.

9. COMPLEXITY RESULTS

In Fagin [2007], two problems are identified as important decision problems for
the notion of inverse: (1) to check whether a mapping M is invertible, and (2)
to check whether a mapping M2 is an inverse of a mapping M1. These ques-
tions are considered in the context of st-tgds in Fagin [2007], where they are
also relevant for the notion of quasi-inverse [Fagin et al. 2008]. In this context,
the problem of verifying whether a mapping M has a maximum recovery be-
comes trivial, as every mapping specified by this type of dependency admits a
maximum recovery. In fact, this question is also trivial for the larger class of
mappings specified by FO-TO-CQ dependencies. The goal of this section is to
show that the problem of verifying, given mappings M and M′, whether M′ is
a maximum recovery of M, is undecidable. To this end, we prove a stronger re-
sult, namely that undecidability still holds if maximum recovery is replaced by
the weaker notion of recovery in the previous problem. We start by considering
mappings specified by full st-tgds.

PROPOSITION 9.1. The problem of verifying, given mappings M = (S, T, �)
and M′ = (T, S, �′), where � is a set of full st-tgds and �′ is a set of ts-tgds,
whether M′ is a recovery of M, is �P

2 -complete. Moreover, if �′ is a set of full
ts-tgds, then this problem is coNP-complete.

We note that the problem considered in this proposition becomes undecidable if
� is a set of full FO-TO-CQ dependencies (this is a straightforward consequence
of the undecidability of the problem of verifying whether an FO sentence is
finitely satisfiable [Libkin 2004]). For this reason, in this section we focus on st-
tgds. To prove the proposition, we start by showing a simple but useful lemma.

LEMMA 9.2. Let M be an st-mapping specified by a set of st-tgds. Assume
that M′ is a ts-mapping such that whenever (I1, I2) ∈ M ◦ M′, it holds that
I1 ⊆ I2. Then M′ is an inverse of M if and only if M′ is a recovery of M.

PROOF. The proof of the lemma is given in electronic Appendix C.1.
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To prove Proposition 9.1, we also need to introduce some terminology and
prove a technical lemma. Let � be a set of CQ-TO-CQ dependencies from a
schema R1 to a schema R2 and I an instance of R1. We denote by k� the
maximum, over all members ϕ ∈ �, of the number of conjuncts that appear
in the premise of ϕ, and by |I | the total number of tuples in I , that is, |I | =∑

R∈R1
|R I |, where |R I | is the number of tuples in R I . Moreover, we define the

notion of I being N-connected as follows. Let GI = (VI , EI ) be a graph such
that: (1) VI is the set of all tuples t ∈ R I , for some R ∈ R1, and (2) a tuple
(t1, t2) ∈ EI if and only if there exists a null value n ∈ N that is mentioned both
in t1 and t2. Then I is N-connected if the graph GI is connected. An instance
I1 is an N-connected sub-instance of I , if I1 is a sub-instance of I and I1 is N-
connected. Finally, I1 is an N-connected component of I , if I1 is an N-connected
sub-instance of I and there is no N-connected sub-instance I2 of I such that I1

is a proper sub-instance of I2.

LEMMA 9.3. Let M = (S, T, �) and M′ = (T, S, �′) be schema mappings,
where � is a set of full st-tgds and �′ is a set of ts-tgds. Then M′ is a recovery
of M if and only if for every source instance I such that |I | ≤ k� · k�′ and
N-connected component K of chase�′ (chase�(I )), there exists a homomorphism
from K to I that is the identity on C.

PROOF. The proof of the lemma is given in electronic Appendix C.2.

PROOF OF PROPOSITION 9.1. First, we assume that �′ is a set of full ts-tgds, and
we show that the problem of verifying whether M′ is not a recovery of M is
NP-complete. From Lemma 9.3 and the fact that �′ is a set of full ts-tgds, we
have that M′ is not a recovery of M if and only if there exists a source instance
I such that |I | ≤ k� · k�′ and there exists a tuple in chase�′ (chase�(I )) that is
not in I . The latter is an NP property; to check whether it holds, it is enough to
guess an instance I such that |I | ≤ k� ·k�′ , and then guess the chase steps that
produce a tuple that is not in I . Thus, we have that the problem of verifying
whether M′ is not a recovery of M is in NP.

To show that the problem is coNP-hard we use a result from Fagin [2007].
In the proof of Theorem 14.9 in Fagin [2007], it was shown that, given a
propositional formula ϕ, one can construct two mappings M = (S, T, �) and
M′ = (T, S, �′) with � and �′ sets of full st-tgds and full ts-tgds, respectively,
such that M′ is an inverse of M if and only if ϕ is not satisfiable. Moreover,
the mappings constructed in that proof were such that if (I1, I2) ∈ M ◦M′ then
I1 ⊆ I2. Then from Lemma 9.2, we know that M′ is an inverse of M if and only if
M′ is a recovery of M. We have that M′ is a recovery of M if and only if ϕ is not
satisfiable. Thus, the hardness results follows then from the well-known fact
that, testing whether a propositional formula is satisfiable is an NP-complete
problem.

Second, we assume that �′ is a set of ts-tgds, and we show that the problem
of verifying whether M′ is a recovery of M is �P

2 -complete. From Lemma 9.3,
we have that M′ is a recovery of M if and only if for every source instance I
such that |I | ≤ k� · k�′ and N-connected component K of chase�′ (chase�(I )),
there exists a homomorphism from K to I that is the identity on C. Given that
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the size of I , as well as the size of K , is polynomial in the size of M and M′,
and that the homomorphism problem is in NP, we have that the problem of
verifying whether M′ is a recovery of M is in �P

2 . To prove that this problem is
indeed �P

2 -complete, we give a reduction from the problem of verifying whether
a quantified propositional formula:

ϕ = ∀u1 · · · ∀u�∃v1 · · · ∃vm ψ, (9)

is valid, where ψ is a 3-CNF propositional formula. This problem is known to
be �P

2 -complete [Du and Ko 2000].
Let S = {T V (·, ·), R0(·, ·, ·), R1(·, ·, ·), R2(·, ·, ·), R3(·, ·, ·)} and T = {U1(·, ·, ·),

. . . , U�(·, ·, ·)}. Next we define schema mappings M = (S, T, �) and M′ =
(T, S, �′) such that, ϕ is valid if and only if M′ is a recovery of M. The first
argument of predicate T V is used to store the truth value true, while its second
argument is used to store the truth value false. Predicate R0 is used to store
the truth assignments that satisfy the clauses of the form u ∨ v ∨ w (clauses
without negative literals). Assuming that variables x, y store values true and
false, respectively, the following formula is used to define R0:

ϕ0(x, y) = R0(x, x, x) ∧ R0(x, x, y) ∧ R0(x, y , x) ∧ R0( y , x, x) ∧
R0(x, y , y) ∧ R0( y , x, y) ∧ R0( y , y , x).

Similarly, predicate R1 is used to store the truth assignments that satisfy the
clauses of the form u∨v∨¬w, predicate R2 is used to store the truth assignments
that satisfy the clauses of the form u ∨ ¬v ∨ ¬w, and predicate R3 is used to
store the truth assignments that satisfy the clauses of the form ¬u ∨ ¬v ∨ ¬w.
Again assuming that variables x, y store values true and false, respectively,
the following formulas are used to define R1, R2 and R3:

ϕ1(x, y) = R1(x, x, x) ∧ R1(x, x, y) ∧ R1(x, y , x) ∧
R1( y , x, x) ∧ R1(x, y , y) ∧ R1( y , x, y) ∧ R1( y , y , y),

ϕ2(x, y) = R2(x, x, x) ∧ R2(x, x, y) ∧ R2(x, y , x) ∧
R2(x, y , y) ∧ R2( y , x, y) ∧ R2( y , y , x) ∧ R2( y , y , y),

ϕ3(x, y) = R3(x, x, y) ∧ R3(x, y , x) ∧ R3( y , x, x) ∧
R3(x, y , y) ∧ R3( y , x, y) ∧ R3( y , y , x) ∧ R3( y , y , y).

Finally, the first argument of predicate Ui is used to store the truth value of
propositional variable ui, for every i ∈ {1, . . . , �}. We include two extra argu-
ments in Ui for a technical reason that will become clear when we prove that
the reduction is correct.

Set � of full st-tgds is given by the following dependency:

T (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →
U1(x, x, y) ∧ U1( y , x, y) ∧ · · · ∧ U�(x, x, y) ∧ U�( y , x, y). (10)

Set �′ of ts-tgds is given by the following dependency:

U1(u1, x, y) ∧ · · · ∧ U�(u�, x, y) → ∃v1 · · · ∃vm θ (u1, . . . , u�, v1, . . . , vm), (11)

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.



The Recovery of a Schema Mapping: Bringing Exchanged Data Back • 22:45

where θ (u1, . . . , u�, v1, . . . , vm) is defined as follows. If 3-CNF formula ψ in (9)
is equal to C1 ∧ · · · ∧ Ck , where each Ci is a clause, then θ = θ1 ∧ · · · ∧ θk , where
θi is obtained from Ci as follows. Without loss of generality, we assume that in
Ci, the positive literals appear before the negative literals (if Ci has at least
one positive literal). Then if Ci = u ∨ v ∨ w, we have that θi = R0(u, v, w), if
Ci = u ∨ v ∨ ¬w, we have that θi = R1(u, v, w), if Ci = u ∨ ¬v ∨ ¬w, we have
that θi = R2(u, v, w), and if Ci = ¬u ∨ ¬v ∨ ¬w, we have that θi = R3(u, v, w).
For example, if ϕ = ∀u1∀u2∃v1 ((u1 ∨ v1 ∨ ¬u2) ∧ (u1 ∨ u2 ∨ v1)), then:

� = {T V (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →
U1(x, x, y) ∧ U1( y , x, y) ∧ U2(x, x, y) ∧ U2( y , x, y)},

�′ = {U1(u1, x, y) ∧ U2(u2, x, y) → ∃v1 (R1(u1, v1, u2) ∧ R0(u1, u2, v1))}.

Next we show that ϕ is valid if and only if M′ is a recovery of M.

(⇒) Assume that ϕ is valid. From Lemma 9.3, to show that M′ is a recovery
of M, it is enough to prove that for every instance I of S and N-connected
component K of chase�′ (chase�(I )), there exists a homomorphism from K
to I that is the identity on C. Next we show that this is the case.
Let I1 be an instance of S. By definition of � and �′, and in partic-
ular because of the inclusion of the two extra arguments in each Ui,
we have that if K is an N-connected component of chase�′ (chase�(I1)),
then there exists a pair of values a, b in dom(I1) such that: (1) I1 |=
T (a, b)∧ϕ0(a, b)∧ϕ1(a, b)∧ϕ2(a, b)∧ϕ3(a, b), (2) chase�(I1) |= U1(c1, a, b)∧
· · · ∧U�(c�, a, b), where each ci is either a or b, and (3) K is generated from
∃v1 · · · ∃vm θ (c1, . . . , c�, v1, . . . , vm) when computing chase�′ (chase�(I1)). As-
sume that in the construction of K , variable vi is replaced by value ni ∈ N,
for every i ∈ {1, . . . , m}. Given that ϕ is valid, we know that for the truth
assignment σ1 such that σ1(ui) = ci, for every i ∈ {1, . . . , �}, there exists
a truth assignment σ2 such that σ1 ∪ σ2 satisfies propositional formula
ψ in (9). From this we conclude that function h defined as h(ni) = σ2(vi)
(i ∈ {1, . . . , m}) and h(c) = c (c ∈ C) is a homomorphism from K to I that
is the identity on C.

(⇐) Assume that M′ is a recovery of M, and let I be an instance of S such that
T I = {(a, b)}, where a and b are two distinct elements from C, and

R I
0 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a)},

R I
1 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, b)},

R I
2 = {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)},

R I
3 = {(a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)}.

Given that M′ is a recovery of M, we have that (I, I ) ∈ M ◦M′. Thus, for
every tuple (c1, . . . , c�) ∈ {a, b}�, there exists a tuple (d1, . . . , dm) ∈ {a, b}m

such that I |= θ (c1, . . . , c�, d1, . . . , dm). Hence, by the definitions of θ , R I
0 ,

R I
1 , R I

2 and R I
3 , we conclude that ϕ is a valid formula. This concludes the

proof of the theorem.
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Proposition 9.1 is in sharp contrast with the results of Fagin [2007], where it
is shown that the problem of verifying, given schema mappings M = (S, T, �)
and M′ = (T, S, �′), with � a set of full st-tgds and �′ a set of full ts-tgds,
whether M′ is an inverse of M is DP-complete.1 The lower complexity for the
case of the recovery is not surprising, as the notion of recovery is much weaker
than the notion of inverse. However, the situation is different for the case of
non-full st-tgds.

THEOREM 9.4. The problem of verifying, given mappings M = (S, T, �) and
M′ = (T, S, �′), where � is a set of st-tgds and �′ is a set of ts-tgds, whether M′

is a recovery of M is undecidable.

PROOF. The proof of the theorem is given in electronic Appendix C.3.

As a corollary of Theorem 9.4 and the results in Section 6, we obtain the
following undecidability results for maximum recoveries, inverses2 and quasi-
inverses.

COROLLARY 9.5. The problems of verifying, given mappings M = (S, T, �)
and M′ = (T, S, �′), where � is a set of st-tgds and �′ is a set of ts-tgds, whether
(1) M′ is a maximum recovery of M, (2) M′ is an inverse of M, and (3) M′ is a
quasi-inverse of M, are all undecidable.

PROOF. The proof of the corollary is given in electronic Appendix C.4.

10. CONCLUDING REMARKS

In this article, we introduce the notion of a recovery of a mapping: a reverse map-
ping that recovers sound information. We introduce an order relation on recover-
ies, from which the notion of maximum recovery naturally arises. As our results
show, maximum recoveries possess good properties that justify their usage in
data exchange and metadata management. Most notably, maximum recoveries
exist for the large class of mappings specified by FO-TO-CQ dependencies.

An important open problem is the decidability of the existence of maximum
recoveries for classes of dependencies beyond FO-TO-CQ, for example the classes
of FO-TO-UCQ and FO-TO-CQ �= dependencies. Although we have concentrated
on the relational case, a characteristic of the notions of recovery and maxi-
mum recovery is that they are bounded neither to a specific data model nor
to a specific language for expressing schema mappings. As part of our fu-
ture work, we plan to study these notions for other semantics, for example,
closed world semantics [Libkin 2006], and for other data models, for example,
XML.

1A problem is in DP if it is the intersection of an NP problem and a coNP problem [Papadimitriou

1993].
2The undecidability of the problem of verifying whether a mapping M′ is an inverse of a mapping

M was already mentioned in Fagin [2007]. As pointed out in that paper, this result was actually

proved by the first author (M. Arenas) in an unpublished manuscript.
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