
Creation and Management of Versions
in Multiversion Data Warehouse 1

Bartosz Bębel
Institute of Computing Science

Poznań University of Technology
Poznań, Poland

bartosz.bebel@
cs.put.poznan.pl

Johann Eder
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt, Austria

eder@isys.uni-klu.ac.at

Christian Koncilia
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt, Austria

koncilia@isys.uni-klu.ac.at

Tadeusz Morzy
Institute of Computing Science

Poznań University of Technology
Poznań, Poland
+48 61 6652370

tadeusz.morzy@cs.put.poznan.pl

Robert Wrembel
Institute of Computing Science

Poznań University of Technology
Poznań, Poland
+48 61 6652529

robert.wrembel@cs.put.poznan.pl

ABSTRACT
A data warehouse (DW) provides an information for analytical
processing, decision making, and data mining tools. On the one
hand, the structure and content of a data warehouse reflects a real
world, i.e. data stored in a DW come from real production
systems. On the other hand, a DW and its tools may be used for
predicting trends and simulating a virtual business scenarios. This
activity is often called the what-if analysis. Traditional DW
systems have static structure of their schemas and relationships
between data, and therefore they are not able to support any
dynamics in their structure and content. For these purposes,
multiversion data warehouses seem to be very promising. In this
paper we present a concept and an ongoing implementation of a
multiversion data warehouse that is capable of handling changes
in the structure of its schema as well as simulating alternative
business scenarios.

Categories and Subject Descriptors
H.2. [Database Management]: Logical Design – data models.

General Terms
Design, Experimentation, Performance.

Keywords
data warehouse, versioning, integrity constraints.

1. INTRODUCTION
A data warehouse (DW) integrates autonomous and

heterogeneous external data sources (EDSs) in order to provide an
information for analytical processing, decision making, and data
mining tools [11]. For a few recent years users of data
warehousing systems have been paying a special attention to the
analysis of operational data produced by OLTP (On-Line
Transaction Processing) applications, in order to discover trends,
anomalies, and patterns of behavior. Different analytical tools
enable the analysts to make better1decisions.

An important consequence of the autonomy of EDSs is that they
may evolve in time independently of each other and independently
of a data warehouse. The changes in EDSs can be categorized as:
(1) content changes, i.e. insert/update/delete records, and (2)
schema changes, i.e. add/modify/drop an attribute or a table that
are very common as reported in [19, 20]. Both types of changes
may lead to schema changes in a data warehouse. For instance,
adding a new attribute in one of the EDS may require adding this
attribute to the DW schema, if one would like to analyze values of
this attribute in the warehouse. Furthermore, even a content
modification in the EDS, e.g., inserting a new record, may lead to
a schema modification in the DW. For instance, inserting a new
product in an EDS may lead to modification of the structure of the
Products dimension in the DW.

Most of the research done so far with respect to the data
warehouse maintenance has focused on providing transactional
incremental DW refreshing under content changes of EDSs.
However, changes in the content of EDSs as well as changes in
the structure of EDSs may lead to schema changes of a DW. This
issue has not received much attention so far [7, 8, 19].

A naive approach to tackle the problem of schema changes is to
isolate the changes from a data warehouse. Isolation can be
accomplished by the middleware level. This technique may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC'04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04…$5.00.

1 This work is partially supported by the grant no. 4 T11C 019 23
from the Polish State Committee for Scientific Research
(KBN), Poland

717

2004 ACM Symposium on Applied Computing

applicable to a limited period of time only, since evolution of EDS
schemas will lead to inconsistencies between EDSs and their
descriptions at a data warehouse level. In a consequence, it may
restrict the usage of existing client analytical queries and reports
or the analyses may produce obsolete results. A more advanced
approach to tackle the problem of schema changes is to ensure the
correct propagation of these changes to the data warehouse
definition, i.e. the structure and content of a DW must be correctly
adjusted. The data warehouse schema adjustments can be done in
two different ways, namely schema evolution [3] and schema
versioning [16, 18].

The first approach consists in updating the schema and
transferring the data from an old schema into a new schema. Only
the current version of the schema is present. In contrast, the
second approach keeps track of the history of all versions of a
schema. Versioning can be done implicit by temporal extension or
explicit by physically storing different versions of data.

The process of good decision making often requires forecasting
future business behavior, based on present data and assumptions
made by decision makers. This kind of data processing is called
the what-if analysis. In this analysis, a decision maker simulates
changes in the real world, creates a virtual possible scenarios, and
explores them with OLAP queries. To this end, a data warehouse
must provide means of creating various data warehouse
alternatives, represented by different data warehouse versions.

In our project we propose two different kinds of versions: (1) real
versions, which handle changes made to EDSs, and (2) alternative
versions, which handle changes made by a user directly in a data
warehouse for the purpose of applying the what-if analysis. Real
versions represent previous states of EDS. These previous states
can be represented as a linear sequence of different real versions
as depicted in Figure 1. However, as future is not yet known,
alternative versions necessary for the what-if analysis have to be
represented by a branching time model as shown in Figure 1.
Notice that sometimes the user/administrator of a DW may be
interested in preserving old alternative versions. Consequently,
our approach also allows to manage different (branching)
alternative versions in the past.

Figure 1. Representation of real versions (Vi)

and alternative versions (Aj)

To illustrate the issues mentioned above, let us consider an
example of a police data warehouse, storing information about
committed violations and tickets given to drivers, in given
locations (cities located in provinces) at given periods of time.
Violations are organized into severity groups that define minimum
and maximum fines allowed for violations. Let us assume that as a
result of legislative changes, the borders of provinces changed
causing that some cities that had previously belonged to one
province, were moved to another one. This is an example of a
change in the real world that has an impact on a data warehouse
schema. In order to handle this change, a new real data warehouse
version should be created. Assuming that a certain percent of fines
paid in a city feeds the budget of that city, the police may
investigate how the city budget would increase if they moved a

violation from one group to a group of more severe violations.
This is an example of the real world simulation (the what-if
analysis) and it should be handled by an alternative data
warehouse schema version.

DW systems and OLAP tools existing on the market support
neither managing changes of a data warehouse structure nor the
what-if analysis functionality. [22] is an example of a software
tool that is able to deal with some evolution issues. However, it is
limited to some basic operations and is not able to cope with
complex operations as presented in [7]. Furthermore, the approach
presented in [22] does not support storing several alternative data
warehouse versions for the what-if analysis. Therefore, there is
evidently a need to develop techniques of management of schema
changes in data warehouse systems, techniques of managing
alternative "versions" of the same data warehouse, and build such
systems.

Our contribution. Our approach to the problem of maintaining a
DW under changes of schemas and contents of EDSs is based on
explicit versioning the whole data warehouse (i.e. schema and
data). Changes into a data warehouse structure and data are
reflected in a new, explicitly derived, version of a DW. The model
of a multiversion data warehouse that we developed allows
modeling alternative DW versions. The set of data originating
from one version, can be persistently stored in another version.

Maintaining real and alternative versions of the whole data
warehouse allows us on the one hand, to run queries that span
multiple versions and compare various factors computed in those
versions, and on the other hand, to create and manage alternative
virtual business scenarios required for the what-if analysis.

We implemented the mentioned approach as a prototype software
using Visual C++. Data and metadata are stored in an Oracle
database.

Paper organization. The rest of this paper is organized as
follows. Section 2 presents basic definitions in the field of data
warehouse technology. Section 3 presents a leading DW example.
Section 4 overviews existing approaches to DW evolution.
Section 5 discusses our concept of a multiversion data warehouse,
discusses types of data warehouse versions and their properties,
presents time integrity constraints defined for DW versions, as
well as sketches our data sharing technique. Section 6 briefly
presents our prototype multiversion data warehouse system.
Finally, Section 7 summarizes and concludes the paper.

2. BASIC DEFINITIONS
The most popular architecture of data warehouses are
multidimensional data cubes, where measures which are
instances of facts, i.e. subjects of analysis, that are described in
terms of hierarchically organized dimensions. Examples of
measures include: number of items sold, income, turnover, etc.
Typical examples of dimensions are Time, Geography, Products,
etc. A value of a measure in a n-dimensional cube is referenced by
a n-dimensional vector, where each element corresponds to an
element of a dimension.

Dimensions are usually organized in hierarchies. An example of a
hierarchical dimension is Geography, with Countries at the top,
that are composed of Regions, that in turn are composed of Cities.
A schema object in a hierarchy is called a level. Values in every
level are called dimension members.

718

Multidimensional cubes can be implemented either in MOLAP
(multidimensional OLAP) servers or in ROLAP (relational
OLAP) servers. In the former case, a cube is stored in
multidimensional array. In the latter case, a cube is implemented
as the set of relational tables, some of them represent dimensions,
and are called dimension tables, while others store values of
measures, and are called fact tables. In the paper, we will focus
our discussion on ROLAP implementation of a DW, but our
concept can also be used in a MOLAP implementation.

In the rest of this paper, we will use the definitions of a data
warehouse schema and a data warehouse instance as presented
in [7] and [8]. Hence, the schema of a data warehouse is the set of
all defined dimensions, dimension levels, dimension members,
hierarchical relations between dimension members and dimension
levels, and facts. The instances of a data warehouse are the
measures, i.e., the cell values stored in fact tables.

Therefore, we refer to each modification of a dimension,
dimension level, dimension member or fact as schema evolution
and schema versioning respectively.

3. MOTIVATING EXAMPLE
Let us consider the police data warehouse, mentioned in the
introduction. This DW stores data about violations committed by
drivers. Violations are inspected in various locations and at a
certain time. The police analyzes those data in order to find out
how many violations were committed in given cities at certain
periods of time. Cities where drivers are inspected are grouped
into administrative regions, whereas violations are organized into
groups.

The schema of the police DW is shown in Figure 2. The schema is
composed of the three following dimensions: Locations,
Violations, and Time. The Locations dimension is composed of
two levels, namely: Regions and Cities. The Violations
dimension is also composed of two levels: Violation_Groups and
Violations. Every dimension member of Violation_Groups
defines a minimum and maximum fine that can be given for a
given violation (attributes min_fine and max_fine, respectively).
The Time dimension has one level. Records in the
Violation_Groups, Violations, Regions, Cities, and Time tables
are called dimension members.

The Inspected_Violations fact table stores the information about:
number of violations committed (attribute nb_violations), total
fine paid by drivers for these violations (total_fine), and date the
violations were inspected (time_id). Let us further assume that the
tables store the following data.

Fig.2. An example schema of the police DW

select * from violation_groups;

----- ------- -------- --------
 1 Group A 10 100
 2 Group B 100 350

select viol_id, viol_name, gr_id from violations;
VIOL_ID VIOL_NAME GR_ID
------- ------------ ----------
 1 Violation 1 1
 2 Violation 2 1
 3 Violation 3 2

select * from cities; select * from regions;
CITY_ID CITY_NAME REG_ID REG_ID REG_NAME
------- --------- ------ ------ --------
 1 Poznań 1 1 Region A
 2 Warsaw 2 2 Region B
 3 Konin 1

select * from inspected_violations;
TIME_ID VIOL_ID CITY_ID NB_OF_VIOL TOTAL_FINE
------- ---------- ---------- ---------- ----------
 1 1 1 10 650
 1 2 1 25 900
 1 3 2 15 3200
 1 1 3 20 2000

Examples of user analytical queries that run on the DW may
include: (1) compute sum of fines ever paid and (2) compute sum
of fines paid in every city.

The data warehouse describes the real world that is likely to be
changing. In order to capture these kinds of changes real DW
versions are needed. The police may also want to simulate various
operational scenarios. To this end, alternative DW versions are
needed.

3.1 Real Data Warehouse Version
The real world represented in a DW may change. In our example,
changing the borders of regions may result in cites being moved
from one region to another. Such a change has an impact on the
analytical results received from a data warehouse.

Let us assume a query computing a sum of fines per region and its
result:
REG_NAME SUM(IVI.TOTAL_FINE)
-------------------- -------------------
Region A 3550
Region B 3200

After moving city “Konin” from “Region A” to “Region B”
results of the same query are different, e.g.:
REG_NAME SUM(IVI.TOTAL_FINE)
-------------------- -------------------
Region A 1550
Region B 5200

In order to handle this kind of changes as well as process and
analyze data properly we need a new version of a data warehouse,
describing the real world after changes. In this case an old DW
version would store data before an administrative-territorial
change, and a new DW version would store data after that change.

3.2 Alternative Data Warehouse Version
A DW may also be used for simulating various
operational/business scenarios. For example, assuming that a
certain percent of fines paid by drivers in a city feeds the local
budget, the police may investigate how the budget would increase
if they moved a violation from the group of ordinary violations to
a group of more severe ones. Let us assume that in this simulation
scenario “Violation 2” was moved from “Group A” to “Group B”. GR_ID GR_NAME MIN_FINE MAX_FINE

719

In order to create such a simulating environment, a data
warehouse must be able to create alternative versions of schema
and data as well as to manage these versions. The change must be
applied to the structure of the Violations dimension, consisting in
assigning a given violation to a new group of violations (a
violation’s foreign key update).

Next, a police decision maker may assume an increase in fines
paid by drivers. This assumption is based on an observation that
the higher the maximum fine allowed for a violation, the higher
the tickets on average. In such a simulating scenario, a new
version of fact data will also be created from the previous version.
The changes to fact data require computing new values of
total_fine for every affected record in Inspected_Violations. In
our example, only record <1, 2, 1, 25, 900> is affected, as it
describes violations of type “Violation 2”. More precisely, the
value of total_fine must be increased according to a new range of
values defined in “Group B”. Thus, we need a kind of conversion
function that would compute new values of facts based on original
data. In this scenario, the conversion function is written by a data
warehouse administrator. New values of the total_fine attribute
may be computed assuming that coefficient
(total_fine/nb_violations)/max_fine remains constant after
changing group assignment.

Having created a new simulation version of a DW, and having
converted the fact data, a decision maker may compare the real
situation with a hypothetical situation. In both cases the total sum
of fines as well as the sum of fines paid in each city is computed,
as shown below.

REAL CASE
SUM(IVI.TOTAL_FINE)

 6750

CITY_NAME SUM(IVI.TOTAL_FINE)
--------- -------------------
Konin 2000
Poznań 1550
Warsaw 3200

SIMULATION CASE
SUM(IVI.TOTAL_FINE)

 9000

CITY_NAME SUM(IVI.TOTAL_FINE)
----------- -------------------
Konin 2000
Poznań 3800
Warsaw 3200

In the simulation case city “Poznań” would substantially increase
its budget.

As we have shown in the above examples, data warehouse
versions are useful for handling changes in the real world as well
as for simulating various business scenarios. Real data warehouse
versions are applied in the first case, whereas alternative data
warehouse versions are applied in the second case. Both kinds of
versions are orthogonal.

4. RELATED WORK
The support of evolution of schema and data turned up to be
required in the applications of object–oriented databases to
Computer Aided Design, Engineering, and Manufacture systems.
The problem was intensively investigated and resulted in the
development of various approaches and prototypes, e.g. [23, 24,
25, 26, 27]. These and many other approaches were proposed for
versioning complex objects for a moderated size of the whole set
of data. In data warehouse systems objects being versioned have
very simple structure (several fact or dimension tables). The size

of a database is however very large. Therefore, those versioning
mechanisms are not suitable for data warehouse versioning.

The approaches to the management of changes in a data
warehouse can be classified into the two following categories that
support: (1) schema and data evolution: [3, 9, 10, 13], (2)
temporal and versioning extensions [5, 7, 8, 15, 1, 2, 4, 12, 14, 17,
19]. The approaches in the first category support only one data
warehouse schema and its instance. When a change is applied to a
schema all data described by the schema must be converted, that
incurs high maintenance costs.

In the approaches from the second category, in [5, 7, 8, 15]
changes are time stamped in order to create temporal versions.
However, [5] and [15] expose their inability to express and
process queries that span or compare several temporal versions of
data. On the contrary, the model and prototype of a temporal data
warehouse presented in [7, 8] support queries for a particular
temporal version of a DW or queries that span several versions. In
the latter case, conversion functions must be applied, as data in
temporal versions are virtual.

In [12, 14, 17, 19] implicit versioning in a data warehouse was
proposed. In all of the four approaches, versions are used for
avoiding conflicts and mutual locking between OLAP queries and
transactions refreshing a data warehouse. As versions are
implicitly created and managed by the system, these mechanisms
can not be used in the what–if analysis. The same drawback
applies to the previously discussed temporal data warehouses that
can manage only consecutive versions linearly ordered by time.

On the contrary, [2] proposes permanent user defined versions of
views in order to simulate changes in a data warehouse schema.
However, the approach supports only simple changes in source
tables and it does not deal either with typical multidimensional
schemas or evolution of facts or dimensions. Also [4] supports
permanent time stamped versions of data. The proposed
mechanism, however, uses one central fact table for storing all
versions of data. In a consequence, the set of schema changes that
may be applied to a data warehouse is limited, and only changes
of dimensions' structure are supported.

An approach supporting the what–if analysis was presented in [1].
It may be considered as a kind of virtual versioning. A
hypothetical query is executed on a virtual structure, called
scenario. Then, the system using substitution and query rewriting
techniques transforms the hypothetical query into an equivalent
query that is run on a real data warehouse. As this technique
computes new values of data for every hypothetical query, based
on virtual modifications, the performance problems will appear
for large warehouses.

5. MODEL OF A MULTIVERSION DATA
WAREHOUSE
In order to be able to manage changes in a data warehouse schema
a model of a data warehouse with versioning capabilities was
developed in [16]. In our approach, changes to a schema may be
applied to a new version of a data warehouse. This version, called
a child version, is explicitly derived by a DW administrator from
any previous version, called a parent version. A multiversion
data warehouse (MVDW) is composed of the set of its versions.
Every version of a MVDW is in turn composed of a schema
version and an instance version. The latter stores the set of data

720

consistent with its schema version. Versions of a data warehouse
form a version derivation graph. Each node of this graph
represents one version, whereas edges represent derived–from
relationships between two consecutive versions. In our approach,
a version derivation graph is a DAG.

5.1 Versions of a Data Warehouse
In our approach we distinguish two following kinds of data
warehouses versions: real versions and alternative versions. A
real version reflects changes in the real world. Real versions are
created in order to keep up with the changes in real business
environment, like for example: changing organizational structure
of a company, changing geographical borders of regions, creation
and closing shops, changing prices/taxes of products. Real
versions are linearly ordered by the time they are valid within.

The purpose of maintaining alternative versions is twofold.
Firstly, an alternative version is created from a real version in
order to support the what-if analysis. So, it is used for simulation
purposes. Several alternative versions may be created from the
same real versions. Secondly, such a version is created in order to
simulate changes in the structure of a DW schema. The purpose of
such versions is mainly the optimization of a DW structure and
system tuning. A DW administrator may create an alternative
version that would have a simple star schema instead of an
original snowflake schema, and then test the system performance
using new data structures. Alternative versions form a DAG.

Fig.3. An example of a set of DW versions

Figure 3 schematically shows real versions and alternative
versions. V0 is an initial real version of a DW. Based on V0, a
new real version V1 was created and in this version the Regions
level was added, new dimension members were inserted to this
level, and existing cities were classified according to regions.
Next, an alternative version V1.1 was derived from V1. In V1.1,
"Violation 2" was moved from "Group A" to "Group B", as
discussed in Section 3. Then, alternative version V1.1.1 was
derived from V1.1 and this newly derived version "City 2" was
moved from "Region North" to "Region South". V1 is also the
parent version for another alternative version V1.2, which
simulates the case when minimum fine of violation group "Group
A" was increased by 10%. Note that the data warehouse schemas
of V1.1, V1.2, and V1.1.1 are the same and are identical with their
parent version V1.

5.2 Time Constraints on Versions
Every version is valid within certain period of time. In order to
check a version validity, every real and alternative DW version
has associated, so called valid time, represented by two
timestamps, i.e. beginning valid time (BVT) and ending valid time

(EVT). For example, real version V0 (from Figure 3) is valid
within time t0 – BVT and t1 – EVT, whereas V1 is valid within t2
and t3. Alternative versions V1.1, V1.2, and V1.1.1 are valid
within the same time period as its parent real version. Below we
formally define version valid time constraints.

Let DWV be the set of data warehouse versions and Vi be a
version in DWV. Let be the version derivation dependency
between a parent Vm and a direct child version Vn.

Let T represent any real time, ti be time in T. Let VT be a set of
valid times and VTi = <tk, tl> where VTi in VT and {tk, tl} in T.

TC1: Real Versions Valid Time Constraint
Real versions are linearly ordered by their valid time. The ending
valid time of a parent real version may be the beginning valid time
of its child real version, or the valid time periods of parent and
child real DW versions are disjoint.

Let VTm = <ta, tb> be a validity time of data warehouse version
Vm and VTn = <tc, td> be a validity time of version Vn.

∀ (Vm, Vn) in DWV: Vm Vn then VTm ∩ VTn = ∅ or tb=tc.

This constraint is illustrated in Figure 4. The ending valid time of
real versions V1, i.e. t7 is the beginning valid time of real version
V2, where V2 is the child of V1.

Fig.4. Real and alternative versions and their valid time

constraint

TC2: Real–Alternative Versions Valid Time Constraint
A valid time of any alternative DW version is within the valid
time of its parent real version.

Let VTr = <ta, tb> be a valid time of real version Vr and VTa =
<tc, td> be a validity time of alternative version Va.

∀ (Vr, Va) in DWV: Vr Va then VTa ⊆ VTr

This constraint is illustrated in Figure 4. Two alternative versions
V1.1 and V1.2 were derived from real version V1. Valid time of
V1.1 is <t2, t5> and valid time of V1.2 is <t3, t6>, and both valid
times are within the scope of valid time of V1.

TC3: Alternative Parent–Child Versions Valid Time
Constraint
A valid time of a child alternative DW version is within a valid
time of its direct parent version.

Let VTy = <ta, tb> be a valid time of alternative version Vy and
VTz = <tc, td> be a valid time of alternative version Vz.

∀ (Vy, Vz) in DWV: Vy Vz then VTz ⊆ VTy

721

This constraint is illustrated in Figure 4. A child alternative
version V1.1.1 was derived from its parent alternative version
V1.1. Valid time of V1.1.1 is <t2, t4> and valid time of V1.1 is <t2,
t5>, where t5>t4.

From this constraint we can deduce that valid times of alternative
DW versions at the same level of the version derivation hierarchy
may overlap. It allow to represent alternative versions valid at the
same time, while constraints TC2 and TC3 hold.

Let VTy = <ta, tb> be a valid time of alternative version Vy, VTz =
<tc, td> be a valid time of alternative version Vz, and Vx be a
parent alternative version, where Vx Vy and Vx Vz.

∀ (Vy, Vz) in DWV: (VTy ∩ VTz ≠ ∅ or VTy ∩ VTz = ∅) and
(TC2 and TC3 hold).

According to the above observation, two alternative versions at
the same level of derivation hierarchy are presented, i.e. V1.1 and
V1.2. The valid time of V1.1 is <t2, t5> whereas the valid time of
V1.2 is <t3, t6>. In this case valid times of both versions overlap at
<t3, t5>, additionally, constraint TC2 holds as valid times of both
alternative child versions are within the valid time of their parent
real version V1.

5.3 Data Sharing between Versions of a Data
Warehouse
A naive approach to dealing with versions of data consists in
storing a physical copy of data in every DW version. As the size
of data warehouses is of terabytes, this approach is not suitable.
Therefore, in our prototype system we are implementing data
sharing technique, that is sketched in this section. This technique
consists in physically storing in a given DW version only those
data that were changed in a given version or are new. Other data,
common to a parent and its child versions are stored only in the
parent version and are shared by its child versions.

For the data sharing purpose every record, in a fact or a level
table, has attached the information about all DW versions this
record belongs to. At the implementation level, the information
about all versions a given record belongs to is represented in the
set of bitmaps, where one bitmap represents one DW version. The
number of bits in a bitmap equals to the number of records in a
given table. The ith bit in a bitmap, describing version Vm, is set to
1 if the ith record in a table, in DW version Vm, exists in this
version. Otherwise the bit is set to 0.

As an simplified example illustrating our data sharing technique
let us consider the content of the Inspected_Violations table (from
Section 3), as shown below. Initially this table exists in version
V1. Let us further assume that the alternative version V1.1 was
derived from V1, as discussed earlier in the paper. The change in
V1.1 concerned moving "Violation 2" from "Group A" to "Group
B". In this case, original records from V1 are shared also by V1.1.
To this end a new bitmap describing version V1.1 is added to the
table, as shown below.
Inspected_Violations (version V1)

TIME_ID VIOL_ID CITY_ID NB_OF_VIOL TOTAL_FINE V1 V1.1
------- ------- ------- ---------- ---------- ----- -----
 1 1 1 10 650 1 1
 1 2 1 25 900 1 1
 1 3 2 15 3200 1 1
 1 1 3 20 2000 1 1

Let us also assume that another real DW version, i.e. V2, was
derived from V1 and a new dimension Policemen was added.
After such a change records from the Inspected_Violations
(version V1) table can not be shared by V2. In a consequence, a
new Inspected_Violations (version V2) table is created at the
implementation level for storing records loaded into version V2.

On the one hand, physical sharing reduces storage overhead, but
on the other hand it slows down query processing. This is a trade
off between disk storage and good query performance. In the
process of a DW tuning (in order to increase query performance),
a DW administrator may give up the physical sharing of data
between, say parent version Vm and child version Vn, and may
decide to create the physical copy of data in version Vn. To this
end, in our prototype we are implementing a dump version
operation.

In order to reduce the number of existing alternative versions, by
default our system automatically removes all alternative DW
versions derived from version Vm when a new real version is
derived from Vm. It is because those alternative versions become
obsolete when a new real DW version is created. A decision
maker can however mark any alternative version persistent,
preventing it from removal while deriving a new real version.

6. PROTOTYPE MULTIVERSION DATA
WAREHOUSE
The model of a multiversion data warehouse presented in Section
5 is currently being implemented as a prototype multiversion data
warehouse management system. The beta version of this prototype
was implemented in Visual C++, whereas data and metadata are
stored in an Oracle database. The main management window of
our software is shown in Figure 5. It is composed of a version
navigator, located at the left hand side and schema viewer, located
at the right hand side. The schema viewer allows to among others:
(1) inspect the version derivation graph, (2) see the content of
every version, and (3) administrate versions. Whereas the schema
viewer graphically presents the schema of a selected version.

In the current implementation, a version of a data warehouse
schema can be modified by means of 12 operations [21]: creating
a new dimension, removing a dimension, creating a new level,
connecting a level into a dimension, disconnecting a level from a
dimension, removing a level from a schema, creating a new
attribute for a level, removing an attribute from a level, creating a
new fact table, creating a new attribute for a fact table, creating an
association between a fact table and a dimension, removing an
attribute from a fact table, removing an association between a fact
table and a dimension, removing a fact table from a schema.

In addition to the above 12 schema modification operations, our
prototype supports 3 operations that change the structure of
dimensions: (1) inserting a new dimension member into a given
level, (2) deleting a dimension member from a given level, (3)
changing the association of a sublevel dimension member to
another super–level member.

7. SUMMARY, CONCLUSIONS AND
FUTURE WORK
Commercial DW systems existing on the market have static
structure of their schemas and relationships between data. In a
consequence, they are not well suited for handling of any changes

722

that occurs in the real world. A novel approach to this problem is
based on a multiversion data warehouse.

In this paper we presented the concept of a multiversion data
warehouse, types of versions needed in such a warehouse, and we
defined inter-version time integrity constraints. A unique feature
of our model of a multiversion DW is its ability to represent
alternative versions of a data warehouse (required for the what-if
analysis) as well as physical separation of different DW versions.
We predict that on the one hand, queries spanning several versions
will run faster than in other approaches, discussed in Section 4, as
DW versions are physically stored, thus, no dynamic data
conversions are required. But on the other hand, the complexity of
DW metamodel reflecting versions and sharing common elements
as well as data will incur time overhead for processing queries
spanning several versions. Our concept is currently being
implemented as a prototype software. The first beta version of our
prototype supports the management of versions of a data
warehouse schema. Current work focuses on physical sharing of
data between several DW versions. Future work will concentrate
on: (1) developing a multiversion query language capable of
processing data from several DW versions, (2) developing new
mechanisms of indexing multiversion data, (3) developing a
model of transactions for a multiversion DW, (4) experimental
evaluation of schema and data management techniques as well as
efficiency of processing queries addressing several DW versions.

Fig.5. The main management window of the prototype

multiversion data warehouse system

8. REFERENCES
[1] Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.:

Hypothetical Queries in an OLAP Environment. Proc. of the
VLDB Conf., Egypt, 2000

[2] Bellahsene, Z.: View Adaptation in Data Warehousing
Systems. Proc. of the DEXA Conf., 1998

[3] Blaschka, M. Sapia, C., Hofling, G.: On Schema Evolution in
Multidimensional Databases. Proc. of the DaWak99
Conference, Italy, 1999

[4] Body, M., Miquel, M., Bédard, Y., Tchounikine A.: A
Multidimensional and Multiversion Structure for OLAP
Applications. Proc. of the DOLAP'2002 Conf., USA, 2002

[5] Chamoni, P., Stock, S.: Temporal Structures in Data
Warehousing. Proc. of the Data Warehousing and
Knowledge Discovery DaWaK, Italy, 1999

[6] Chaudhuri, S., Dayal, U.: An overview of data warehousing
and OLAP technology. SIGMOD Record, 26, 1997

[7] Eder, J., Koncilia, C.: Changes of Dimension Data in
Temporal Data Warehouses. Proc. of the DaWak 2001

Conference, Germany, 2001
[8] Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel

for Temporal Data Warehouses. Proc. of the CAISE'02
Conference, Canada, 2002

[9] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.:
Maintaining Data Cubes under Dimension Updates. Proc. of
the ICDE Conference, Australia, 1999

[10] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Updating
OLAP Dimensions. Proc. of the DOLAP Workshop, 1999

[11] Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.:
Fundamentals of Data Warehouses. Springer-Verlag, 2000,
ISBN 3-540-65365-1

[12] Kang, H.G., Chung, C.W.: Exploiting Versions for On–line
Data Warehouse Maintenance in MOLAP Servers. Proc. of
the VLDB Conference, China, 2002

[13] Koeller, A., Rundensteiner, E.A., Hachem, N.: Integrating
the Rewriting and Ranking Phases of View Synchronization.
Proc. of the DOLAP Workshop, USA, 1998

[14] Kulkarni, S., Mohania, M.: Concurrent Maintenance of
Views Using Multiple Versions. Proc. of the Intern. Database
Engineering and Application Symposium, 1999

[15] Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in
OLAP. Proc. of the VLDB Conference, Egypt, 2000

[16] Morzy, T., Wrembel, R.: Modeling a Multiversion Data
Warehouse: A Formal Approach. Proc. of the Int. Conf. on
Enterprise Information Systems - ICESI'2003, France, 2003

[17] Quass, D., Widom, J.: On–Line Warehouse View
Maintenance. Proc. of the SIGMOD Conference, 1997

[18] Roddick J.: A Survey of Schema Versioning Issues for
Database Systems. In Information and Software Technology,
volume 37(7):383-393, 1996

[19] Rundensteiner E., Koeller A., and Zhang X.: Maintaining
Data Warehouses over Changing Information Sources.
Communications of the ACM, vol. 43, No. 6, 2000

[20] Sjøberg D.: Quantifying Schema Evolution. Information
Software Technology 35, 1, 35-54, 1993

[21] Wrembel, R. Bębel B.: Schema Management in a
Multiversion Data Warehouse. Submitted to the First Special
Interest Symposium on Data Warehousing and Data Mining,
Germany, July, 2003

[22] SAP America, Inc. and SAP AG. Data Modelling with BW -
ASAP for BW Accelerator. 1998. http://www.sap.com

[23] Agrawal, R., Buroff, S., Gehani, N., Shasha, D. (1991).
Object Versioning in Ode. Proc. of the ICDE Conference

[24] Ahmed-Nacer M., Estublier J.: Schema Evolution in
Software Engineering. In: Databases – A new Approach in
ADELE environment. Computers and Artificial Intelligence,
19:183-203, 2000

[25] Bielikova M., Navrat P.: Modelling Versioned Hypertext
Documents. Proc. of the ECOOP´98, SCM-8 Symposium,
Belgium, 1998

[26] Cellary, W., Jomier, G. (1990). Consistency of Versions in
Object-Oriented Databases. Proc. of the VLDB Conference

[27] Kim, W., Chou, H. (1998). Versions of Schema for Object-
Oriented Databases. Proc. of the VLDB Conference

723

