
1

Data Warehouse Scenarios for Model Management1

Philip A. Bernstein, Erhard Rahm2

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 U.S.A.
philbe@microsoft.com, rahm@informatik.uni-leipzig.de

Abstract. Model management is a framework for supporting meta-data related
applications where models and mappings are manipulated as first class objects
using operations such as Match, Merge, ApplyFunction, and Compose. To dem-
onstrate the approach, we show how to use model management in two scenarios
related to loading data warehouses. The case study illustrates the value of model
management as a methodology for approaching meta-data related problems. It
also helps clarify the required semantics of key operations. These detailed
scenarios provide evidence that generic model management is useful and, very
likely, implementable.

1 Introduction

Most meta-data-related applications involve the manipulation of models and map-
pings between models. Such applications include data translation, data migration,
database design, schema evolution, schema integration, XML wrapper generation,
message mapping for e-business, schema-driven web site design, and data scrubbing
and transformation for data warehouses. By “model,” we mean a complex discrete
structure that represents a design artifact, such as an XML DTD, web-site schema,
interface definition, relational schema, database transformation script, semantic net-
work, or workflow definition. One way to make it easier to develop meta-data related
applications is to make model and mapping first-class objects with generic high-level
operations that simplify their use. We call this capability model management [1,2].

There are many examples of high-level algebraic operations being used for specific
meta-data applications [4, 7, 10, 11, 14]. However, these operations are not defined to
be generic across application domains. Our vision is to provide a truly generic and
powerful model management environment to enable rapid development of meta-data
related applications in different domains. To this end we need to define operations
that are generic, powerful, implementable, and useful.

In this paper, we take a step toward this goal by investigating the detailed
semantics of some of the operations proposed in [2]. We do this by walking through
the design of two specific data warehouse scenarios. In addition to providing evidence
that our model management approach can solve realistic problems, these scenarios

1 © Springer-Verlag. To appear in ER 2000 Conference Proceedings, see
http://www.springer.de/comp/lncs/index.html

2 On leave from University of Leipzig (Germany), Institute of Computer Science.

2

also demonstrate a methodology benefit: Reasoning about a problem using high-level
model management operations helps a designer focus on the overall strategy for
manipulating models and mappings the choice of operations and their order. We
believe that solution strategies similar to the ones developed in this paper can be
applied in other application domains as well.

We begin in Section 2 with definitions of the model management operations.
Sections 3 and 4 describe applications of these operations to two data warehouse
scenarios. Section 5 summarizes what we learned from this case study.

2 Model Representation and Operations

This section summarizes the model management approach introduced in [2]. We
represent models by objects in an object-oriented database. Some of the relationships
in the database are distinguished as containment relationships (e.g., by a “containment
flag” on the relationship). A model is identified by a root object r and consists of r
plus the objects that are reachable from r by following containment relationships.

A mapping, map, is a model that relates the objects of two other models, M1 and
M2. Each object in map, called a mapping object, has two properties, domain and
range, which point to objects in M1 and M2 respectively. It may also have a property
expr, which is an expression whose variables include objects of M1 and M2 referenced
by its domain and range; the expression defines the semantics of that mapping object.

For example, Fig. 1 shows two Customer relations represented as models M1 and
M2. Mapping map1 associates the objects of the two models. Mapping object m1 has
domain {C#}, range {CustID}, and expr “Cust.C# = Customer.CustID” (not shown).
Similarly for m2. For m3, the domain is {FirstName, LastName}, range is {Contact},
and expr is “Customer.Contact =Concatenate(Cust.FirstName, Cust.LastName)”.

map1
CustM1 Customer

CustID

Company

Contact

Phone

C#

CName

FirstName

M2

m1

m2

m3
LastName

map1
CustM1 Customer

CustID

Company

Contact

Phone

C#

CName

FirstName

M2

m1

m2

m3
LastName

Fig. 1. A simple mapping map1 between models M1 and M2

Models are manipulated by a repertoire of high-level operations including
• Match – create a mapping between two models
• ApplyFunction – apply a given function to all objects in a model
• Union, Intersection, Difference –applied to a set of objects
• Delete – delete all objects in a model
• Insert, Update – applied to individual objects in models

Unless a very controlled vocabulary is used in the models, the implementation of a
generic Match operation will rely on auxiliary information such as dictionaries of
synonyms, name transformations, analysis of instances, and ultimately a human

3

arbiter. Approaches to perform automatic schema matching have been investigated in
[3, 5, 7, 8, 9, 10, 12, 13].

By analogy to outer join in relational databases, we use OuterMatch to ensure that
all objects of an input model are represented in the match result. For instance, Right-
OuterMatch(M1, M2) creates and returns a mapping map that “covers” M2. That is,
every object o in M2 is in the range of at least one object m in map, e.g., by matching
o to the empty set, if o doesn’t match anything else (i.e., range(m) = {o}, domain(m) =
∅). For example, in Fig. 1, to make map1 a valid result of RightOuterMatch(M1, M2),
we need to add a node m4 in map1 with range(m4) = PhoneNo and domain(m4) = ∅ .

Since mappings are models, they can be manipulated by model operations, plus
two operations that are specific to mappings:

• Compose – return the composition of two mappings
• Merge – merge one model into another based on a mapping.

Compose, represented by • , creates a mapping from two other mappings. If map1

relates model M1 to M2, and map2 relates M2 to M3, then the composition map3 =
map1 • map2 is a mapping that relates M1 to M3. That is, given an instance x of M1,
(map1 • map2)(x) = map2(map1(x)), which is an instance of M3. There are right and left
variations, depending on which mapping drives the composition and is completely
represented in the result; we define RightCompose here.

The definition of composition must support mapping objects whose domains and
ranges are sets. For example, the domain of a mapping object m2 in map2 may be
covered by a proper subset of the range of a mapping object m1 in map1 (e.g., Fig. 2a).
Or, a mapping object in map2 whose domain has more than one member may use
more than one mapping object in map1 to cover it. For example, in Fig. 2b the domain
of m2 is covered by the union of the ranges of m1a and m1b.

M2 M3

map1

m2

m1

A
B C

M1

X

map2

m3

map1 • map2

a) domain(m2) ⊂ range(m1)

M3
map2

m2 C

map1 • map2

m3

b) domain(m2) is covered by two objects, m1a and m1b.

M2

map1

m1a

A
B

M1

Y
X

m1b

M2 M3

map1

m2

m1

A
B C

M1

X

map2

m3

map1 • map2

a) domain(m2) ⊂ range(m1)

M3
map2

m2 C

map1 • map2

m3

b) domain(m2) is covered by two objects, m1a and m1b.

M2

map1

m1a

A
B

M1

Y
X

m1b

Fig. 2. Composition with set-oriented domains and ranges (Examples)

In general, multiple mapping objects in map1 may be able to provide a particular
input to a mapping object in map2. For example, in Fig. 2a, a second object m1′ in
map1 may have A in its range, so either m1 or m1′ could provide input A to m2. In the
examples in this paper, each input of each M2 object, m, is in the range of at most one
map1 object, so there is never a choice of which map1 object should provide input to
m. However, for completeness, we give a general definition of composition that
handles cases where a choice of inputs is possible.

4

In the general case, the composition operation must identify, for each object o in
the domain of each mapping object m in map2, the mapping objects in map1 that
provide input to o. We define a function f for this purpose,

f: {m ∈ map2} × ∪ m ∈ map2 domain(m) → {m′ ∈ map1}
such that if f(m, o) = m′ then o ∈ range(m′) (i.e., m′ is able to provide input o to m).
Given f, we create a copy of each mapping object m in map2 and replace its domain by
its “new-domain,” which is the domain of the map1 objects that provide m’s input.
More precisely, for m ∈ map2, we define the set of objects that provide input to m:

input(m) = { f(m, o) | o ∈ domain(m) }
based on which, we define the new-domain(m) as follows:

if domain(m) ⊆ ∪ m′ ∈ input(m) range(m′) and domain(m) ≠ ∅
then new-domain(m) = ∪ m′ ∈ input(m) domain(m′) else new-domain(m) = ∅ .

So, the right composition of map1 and map2 with respect to f, represented by
map1 • f map2, is defined constructively as follows:
1. Create a shallow copy map3 of map2 (i.e., copy the mapping objects and their

relationships, but not the objects they connect to)
2. For each mapping object m″ in map3, replace domain(m″) by newdomain(m),

where m is the map2 object of which m″ is a copy.
This definition would need to be extended to allow f(m, o) to return a set of objects,
that is, to allow an object in domain(m) to take its input from more than one source.
We do not define f explicitly in later examples, since there is only one possible choice
of f and the choice is obvious from the context.

The above definitions leave open how to construct the expression for each mapping
object in the result of a composition, based on the expressions in the mapping objects
being composed. Roughly speaking, in step (2) of the above definition, each reference
to an object o in m″.domain should be replaced in m″.expr by the expression in the
map1 object that produces o. For example, in Fig. 2b, replace references to A and B in
m2.expr by m1a.expr and m1b.expr, respectively. However, this explanation is merely
intuition, since the details of how to do the replacement depend very much on the
expression language being used. In this paper, we use SQL.

The Merge operation copies some of the objects of one model M2 into another M1,
guided by a mapping, map. We finesse the details here, as they are not critical to the
examples at hand. As discussed in [2], a variety of useful semantics is possible.

3 Data Warehouse Scenario 1: Integrating a New Data Source

A data warehouse is a decision support database that is extracted from a set of data
sources. A data mart is a decision support database extracted from a data warehouse.
To illustrate model management operations, we consider two scenarios for extending
an existing data warehouse: adding a new data source (Section 3) and a new data mart
(Section 4). These are challenging scenarios that commonly occur in practice.

We assume a simple data warehouse configuration covering general order process-
ing. It has a relational data source described by schema rdb1 (shown in Fig. 3), a rela-
tional warehouse represented by star schema dw1 (Fig. 4), and mapping map1 between
rdb1 and dw1 (Fig. 5). We note the following observations about the configuration:

5

SHIPPING-METHODS

ShippingMethodID

ShippingMethod

REGION

RegionID

RegionDescription

PAYMENT

PaymentID

OrderID (FK)
PaymentMethodID (FK)
PaymentAmount
PaymentDate
CreditCardNumber
CardholdersName
CredCardExpDate

PAYMENT-METHODS

PaymentMethodID

PaymentMethod

BRANDS

BrandID

BrandDescription

ORDER-DETAILS

OrderDetailID

OrderID (FK)
ProductID (FK)
Quantity
UnitPrice
Discount

TERRITORY-REGION

TerritoryID (FK)
RegionID (FK)

TERRITORIES

TerritoryID

TerritoryDescription

EMPLOYEE-TERRITORY

EmployeeID (FK)
TerritoryID (FK)

EMPLOYEES

EmployeeID

FirstName
LastName
Title
EmailName
Extension
Workphone

PRODUCTS

ProductID

BrandID (FK)
ProductName
BrandDescription

ORDERS

OrderID

ShippingMethodID (FK)
EmployeeID (FK)
CustomerID (FK)
OrderDate
Quantity
UnitPrice
Discount
PurchaseOrdNumber
ShipName
ShipAddress
ShipDate
FreightCharge
SalesTaxRate

CUSTOMERS

CustomerID

CompanyName
ContactFirstName
ContactLastName
BillingAddress
City
StateOrProvince
PostalCode
Country
ContactTitle
PhoneNumber
FaxNumber

SHIPPING-METHODS

ShippingMethodID

ShippingMethod

REGION

RegionID

RegionDescription

PAYMENT

PaymentID

OrderID (FK)
PaymentMethodID (FK)
PaymentAmount
PaymentDate
CreditCardNumber
CardholdersName
CredCardExpDate

PAYMENT-METHODS

PaymentMethodID

PaymentMethod

BRANDS

BrandID

BrandDescription

ORDER-DETAILS

OrderDetailID

OrderID (FK)
ProductID (FK)
Quantity
UnitPrice
Discount

TERRITORY-REGION

TerritoryID (FK)
RegionID (FK)

TERRITORIES

TerritoryID

TerritoryDescription

EMPLOYEE-TERRITORY

EmployeeID (FK)
TerritoryID (FK)

EMPLOYEES

EmployeeID

FirstName
LastName
Title
EmailName
Extension
Workphone

PRODUCTS

ProductID

BrandID (FK)
ProductName
BrandDescription

ORDERS

OrderID

ShippingMethodID (FK)
EmployeeID (FK)
CustomerID (FK)
OrderDate
Quantity
UnitPrice
Discount
PurchaseOrdNumber
ShipName
ShipAddress
ShipDate
FreightCharge
SalesTaxRate

CUSTOMERS

CustomerID

CompanyName
ContactFirstName
ContactLastName
BillingAddress
City
StateOrProvince
PostalCode
Country
ContactTitle
PhoneNumber
FaxNumber

Fig. 3. Relational schema rdb1

GEOGRAPHY
PostalCode

TerritoryID
TerritoryDescription
RegionID
RegionDescription

CUSTOMERS
CustomerID

CustomerName
CustomerTypeID
CustomerTypeDescription
PostalCode
State

TIME
Date

DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

SALES
OrderID
OrderDetailID

CustomerID (FK)
PostalCode (FK)
ProductID (FK)
OrderDate (FK)
Quantity
UnitPrice
Discount

PRODUCTS
ProductID

ProductName
BrandID
BrandDescription

GEOGRAPHY
PostalCode

TerritoryID
TerritoryDescription
RegionID
RegionDescription

CUSTOMERS
CustomerID

CustomerName
CustomerTypeID
CustomerTypeDescription
PostalCode
State

TIME
Date

DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

SALES
OrderID
OrderDetailID

CustomerID (FK)
PostalCode (FK)
ProductID (FK)
OrderDate (FK)
Quantity
UnitPrice
Discount

PRODUCTS
ProductID

ProductName
BrandID
BrandDescription

Fig. 4. Star schema of data warehouse dw1

6

rdb1 dw1map1

Orders

OrderDetails

Customers

Territories

Region

Territory-region

Brands

Products

Times

Sales

Customers

Geography

Products

(a) High-level structure of map1 (b) Detailed structure of gray boxes in (a)

Brands

Products

BrandId

BrandDescription

ProductID

ProductName

BrandID

Products

ProductID

ProductName

BrandId

BrandDescription

rdb1 dw1map1

m6

m7

m8

m9

m1

m2

m3

m4

m5

m5

rdb1 dw1map1

Orders

OrderDetails

Customers

Territories

Region

Territory-region

Brands

Products

Times

Sales

Customers

Geography

Products

(a) High-level structure of map1 (b) Detailed structure of gray boxes in (a)

Brands

Products

BrandId

BrandDescription

ProductID

ProductName

BrandID

Products

ProductID

ProductName

BrandId

BrandDescription

rdb1 dw1map1

m6

m7

m8

m9

m1

m2

m3

m4

m5

m5

Fig. 5. The structure of map1. Dotted lines are containment relationships. Solid lines are
relationships to the domain and range of mapping objects.

BOOK

BookID

ISBN
Title
Year
RegularPrice
#pages
BookDescription

BOOK-ORDER

OrderID

CustomerID (FK)
OrderDate
ShipMethod
ShipCost

A-B

BookID (FK)
A-ID (FK)

Position

B-ORDERING

BookID (FK)
OrderID (FK)

Price
Tax

AUTHOR

A-ID

AName

PAYMENT

CustomerID (FK)

PType
CredCardNo
CredCardCompany
Expiration

B-C

BookID (FK)
CAT-ID (FK)

CUSTOMER

CustomerID

FirstName
LastName
Sex
Street
City
State
ZipCode
DateEntered

CATEGORY

CAT-ID

CAT-Name
SubCat-OF

BOOK

BookID

ISBN
Title
Year
RegularPrice
#pages
BookDescription

BOOK-ORDER

OrderID

CustomerID (FK)
OrderDate
ShipMethod
ShipCost

BOOK-ORDER

OrderID

CustomerID (FK)
OrderDate
ShipMethod
ShipCost

A-B

BookID (FK)
A-ID (FK)

Position

B-ORDERING

BookID (FK)
OrderID (FK)

Price
Tax

AUTHOR

A-ID

AName

AUTHOR

A-ID

AName

PAYMENT

CustomerID (FK)

PType
CredCardNo
CredCardCompany
Expiration

PAYMENT

CustomerID (FK)

PType
CredCardNo
CredCardCompany
Expiration

B-C

BookID (FK)
CAT-ID (FK)

B-C

BookID (FK)
CAT-ID (FK)

CUSTOMER

CustomerID

FirstName
LastName
Sex
Street
City
State
ZipCode
DateEntered

CUSTOMER

CustomerID

FirstName
LastName
Sex
Street
City
State
ZipCode
DateEntered

CATEGORY

CAT-ID

CAT-Name
SubCat-OF

CATEGORY

CAT-ID

CAT-Name
SubCat-OF

Fig. 6. Relational schema rdb2 (Book Orders)

7

Table 1. SQL statements defining the semantics of two mappings into dw1

map1 (rdb1rdb1rdb1rdb1 →→→→ dw1dw1dw1dw1) map3 (rdb2rdb2rdb2rdb2→→→→dw1dw1dw1dw1)
create view dw1.Sales (OrderID,OrderDetail-
ID, CustomerID, PostalCode, ProductID,
OrderDate, Quantity, UnitPrice, Discount) as
select O.OrderID, D.OrderDetailID, O.Custo-
merID, C.PostalCode, D.ProductID, O.Order-
Date, D.Quantity,D.UnitPrice, D.Discount
from rdb1.Orders O, rdb1.Order-details D,
rdb1.Customers C
where O.OrderID=D.OrderID and

O.CustomerID=C.CustomerID
order by O.OrderId, D.OrderDetailID

create view dw1.Sales (OrderID, OrderDetail-ID,
CustomerID, PostalCode, ProductID, OrderDate,
Quantity, UnitPrice, Discount) as
select O.OrderID, D.BookID, O.CustomerID,
C.ZipCode, D.BookID, O.OrderDate, 1, D.Price, 0
// Default-Settings quantity=1,discount=0
from rdb2.Book-orders O, rdb2.B-ordering D,
rdb2.Customer C
where O.OrderID=D.OrderID and
O.CustomerID=C.CustomerID
order by O.OrderId, D.OrderDetailID

create view dw1.Customers (CustomerID,
CustomerName, CustomerTypeID, Customer-
TypeDescription, PostalCode, State) as
select C.CustomerID, C.CompanyName,
C.CustomerID%4, case (C.CustomerID%4)
when 0 then 'Excellent' when 1 then 'Good'
when 2 then 'Average' when 3 then 'Poor'
else 'Average' end,
C.PostalCode, C. StateOrProvince

from rdb1.Customers C

create view dw1.Customers (CustomerID, …
State) as select C.CustomerID,
Concatenate (C.FirstName,C.LastName),
C.CustomerID % 4,
case (C.CustomerID % 4)
when 0 then 'Excellent' when 1 then 'Good'
when 2 then 'Average' when 3 then 'Poor'

else 'Average' end,
C. ZipCode, C. State

from rdb2.Customer C
create view dw1.Times (Date, DayOfWeek,
Month, Year, Quarter, DayOfYear, Holiday,
Weekend , YearMonth, WeekOfYear) as
select distinct O.OrderDate, DateName (dw,
D.OrderDate), DatePart(mm ,O.OrderDate),
DatePart(yy ,O.OrderDate), DatePart(qq,
O.OrderDate), DatePart(dy,O.OrderDate),'N',

case DatePart(dw,O.OrderDate) when (1)
then'Y' when (7) then 'Y' else 'N' end,

DateName(month, O.OrderDate) + '_' +
DateName(year,O.OrderDate),
DatePart(wk,O.OrderDate)
from rdb1.Orders O

create view dw1.Times(Date,…,WeekOfYear)
as select distinct O.OrderDate, DateName (dw,
D.OrderDate), DatePart(mm,O.OrderDate),
DatePart(yy ,O.OrderDate), DatePart(qq,
O.OrderDate), DatePart(dy,O.OrderDate), 'N',
case DatePart(dw,O.OrderDate)

when (1) then 'Y'
when (7) then 'Y' else 'N' end,

DateName(month, O.OrderDate) + '_' +
DateName(year,O.OrderDate),
DatePart(wk,O.OrderDate)
from rdb2.Book-orders O

create view dw1.Geography (PostalCode,
TerritoryID, TerritoryDescription, RegionID,
RegionDescription) as
select T.TerritoryID, T.TerritoryID,
T.TerritoryDescription, R.RegionID,
R.RegionDescription
from rdb1.Territories T, rdb1.Region R,
rdb1.Territory-region TR
where T.TerritoryID=TR.TerritoryID and

TR.RegionID=R.RegionID

create view dw1.Geography (PostalCode, …
RegionDescription) as
select distinct C.ZipCode, C.ZipCode,
NULL, NULL, NULL
from rdb2.Customer C
// Where clause dropped because required
attributes not existing

create view dw1.Products (ProductID, Pro-
ductName, BrandID, BrandDescription) as
select P.ProductID, P.ProductName,
B.BrandID, B.BrandDescription
from rdb1.Brands B, rdb1.Products P
where B.BrandID=P.BrandID

create view dw1.Products(ProductID, …) as
select B.BookID, B.Title, NULL, NULL
from rdb2.Book B
// Where clause dropped because required
attributes not existing

8

• We chose to write the expressions for map1 as SQL view definitions, shown in
column 1 of Table 1. There is one statement for each of the 5 mapping objects in
Fig. 5a (one per table in dw1). To create dw1, simply materialize the views.

• Only 8 out of 13 tables in rdb1 take part in domain(map1). In addition, only a sub-
set of these tables’ attributes are mapped to dw1, as is typical for data warehous-
ing. This is different from other areas, such as schema integration in federated
databases, where one strives for complete mappings to avoid information loss.

• Range(map1) fully covers dw1, since map1 is the only source of data for dw1.
• The SQL statements in map1 perform 1:1 attribute mappings (e.g., name substitu-

tion and type conversion) and complex transformations involving joins and user-
defined functions (in map1 for date transformations and customer classification).
Although all mappings in this example are invertible, this is not true in general,
e.g., if aggregate values are derived and mapped to the warehouse.

Suppose we want to integrate a second source into the warehouse. The new source
covers book orders and is described by a relational schema rdb2 (see Fig. 6). The
integration requires defining a mapping from rdb2 to the existing warehouse schema
dw1 and possibly changing dw1 to include new information introduced by rdb2. To
simplify the integration task, we want to re-use the existing mappings as much as
possible. The extent to which this can be achieved depends on the degree of similarity
between rdb2 and rdb1. Some of rdb2�s tables and attributes are similar to rdb1 and
dw1, but there are also new elements, e.g., on authors and categories. We present two
solutions for the integration task.

3.1 First Solution

Figure 7 illustrates the model management steps of our first solution. The elements
shown in boldface (rdb1, map1, dw1, rdb2) are given. A Venn-diagram-like notation
is used to show subsets. E.g., rdb1′ ⊆ rdb1 means every row of table rdb1′ is in rdb1.

The first solution exploits the similarities between rdb1 and rdb2 by attempting to
re-use map1 as much as possible. This requires a match between rdb2 and rdb1, to
identify which elements of map1 can be reused for rdb2. The match result is then com-
posed with map1, thereby reusing map1 to create a mapping between rdb2 and dw1.

rdb2′

rdb2′′

rdb1′

rdb1rdb1rdb1rdb1

rdb2rdb2rdb2rdb2

dw1dw1dw1dw1

map2

map1

map 3

dw2map4

map5

1. rdb1′ = domain(map1)
2. map2 = RightOuterMatch(rdb2, rdb1′)
3. map3 = ApplyFunction(map2,

default-settings) • f map1

4. rdb2′ = domain(map2)
5. rdb2′′ = subset of (rdb2 - rdb2′)

to be mapped to the warehouse
6. map4 = user-defined-mapping(rdb2′′ , dw2)
7. map5 = Match(dw1, dw2)
8. Merge (dw1, dw2, map5)

rdb2′rdb2′

rdb2′′rdb2′′

rdb1′

rdb1rdb1rdb1rdb1

rdb2rdb2rdb2rdb2

dw1dw1dw1dw1

map2

map1

map 3

dw2map4

map5

1. rdb1′ = domain(map1)
2. map2 = RightOuterMatch(rdb2, rdb1′)
3. map3 = ApplyFunction(map2,

default-settings) • f map1

4. rdb2′ = domain(map2)
5. rdb2′′ = subset of (rdb2 - rdb2′)

to be mapped to the warehouse
6. map4 = user-defined-mapping(rdb2′′ , dw2)
7. map5 = Match(dw1, dw2)
8. Merge (dw1, dw2, map5)

Fig. 7. Sequence of model management operations to integrate a new data source.

9

Match and RightOuterMatch
For the match between rdb2 and rdb1, it is unnecessary to consider all of schema rdb1,
but only the part that is actually mapped to dw1, namely rdb1′ = domain(map1). (The
latter assignment is just a macro for notational convenience. I.e., the program need not
construct a physical representation of rdb1′.) This avoids identifying irrelevant rdb1-
rdb2 overlaps (e.g., w.r.t. payment attributes) that are not used in the warehouse and
thus need not be mapped. In our example, rdb1′ is easy to identify: it simply consists
of the rdb1 tables and attributes being used in the SQL statements of map1.

Object matching is driven by the correspondence table in Table 2, which specifies
equivalence of attribute names or attribute expressions. The table consists mostly of
1:1 attribute correspondences (e.g., rdb2.Book.BookID matches rdb1.Products.Prod-
uctID, etc.). In one case, two rdb2 attributes are combined: concatenate (rdb2.Custo-
mer.FirstName, rdb2.Customer.LastName) matches rdb1.Customers.CompanyName.

Table 2. Correspondence table specifying equivalence of attributes in rdb2 and rdb1′

rdb2rdb2rdb2rdb2 rdb1rdb1rdb1rdb1′′′′
Customer.CustomerID Customers.CustomerID
Catenate(Customer.FirstName, Customer.LastName) Customers.CompanyName
Customer.ZipCode Customers.PostalCode
Customer.State Customers.StateOrProvince
Book-Orders.OrderID Orders.OrderID
Book-Orders. CustomerID Orders.CustomerID
Book-Orders.OrderDate Orders.OrderDate
B-Ordering.OrderID Order-Details.OrderID
B-Ordering.BookID Order-Details.ProductID
B-Ordering.Price Order-Details.UnitPrice
B-Ordering.BookID Order-Details.OrderDetailID
Book.BookID Products.ProductID
Book.Title Products.ProductName

We want to compose the result of the match operation between rdb2 and rdb1′ with
map1. However, not all rdb1′ elements have matching counterparts in rdb2, i.e., rdb1′
is a proper superset of range(Match(rdb2, rdb1′)). For instance, rdb2 has no equivalent
of the Quantity and Discount attributes in the Orders table or of the Brands and Region
tables, which are in rdb1′. Without this information, three of the five SQL statements
in map1 cannot be used, although only a few of the required attributes are missing.

To ensure that the match captures all of rdb1′, we use a RightOuterMatch of rdb2
and rdb1′, i.e., map2 = RightOuterMatch(rdb2, rdb1′) in step (2) of Fig. 7. We explain
in the next section what to do with objects in map2 that have an empty domain.

An alternative strategy is to perform a RightOuterMatch of rdb2 and rdb1. This
would allow the match to exploit surrounding structure not present in rdb1′, but pro-
duces a larger match result that would need to be manipulated later, an extra expense.

Composition
The next step is to compose map2 with map1 to achieve the desired mapping, map3,
from rdb2 to dw1. There are several issues regarding this composition. First, it needs a
to work for mapping objects that have set-valued domains. For example, the last

10

Create View statement in map1 represents a mapping object m5 in Fig. 5 with multiple
attributes for each of the tables in its domain. When composing map2 with map1, we
need “enough” mapping objects in map2 to cover domain(m), for each mapping object
m in map1. This is analogous to m1a and m1b covering A and B in Fig. 2b.

Second, the composition must create an expression in each mapping object that
combines the expressions in the mapping objects it is composing. This requires substi-
tuting objects in the mapping expressions (i.e., SQL statements) of map1. That is, it
replaces each rdb1′ attribute and its associated table by its rdb2 counterpart defined by
map2. The right column of Table 1 shows the resulting SQL statements that make up
map3, which can automatically be generated in this way. For example, in the Sales
query, since map2 maps B-Ordering.BookID in rdb2 to Order-Details.OrderDetailID in
rdb1, it substituted D.BookID for D.OrderDetailID in the Select clause.

Third, since map2 is the result of a RightOuterMatch, we need to deal with each
object m2 in map2 where domain(m2) is empty. The desired outcome is to modify the
SQL expression from map1 to substitute either NULL or a user-defined value for the
item in range(m2). One way to accomplish this is to extend map2 by adding dummy
objects with all the desired default values (e.g., “NULL”) to rdb2, and adding a dum-
my object to domain(m2) for each m2 in map2 where domain(m2) is empty. The latter
can be done by using the model management ApplyFunction operation to apply the
function “set domain(m2) = {dummy-object} where domain(m2) = ∅ ” to map2. This
makes the substitution of default values for range(m2) automatic (step (3) of Fig. 7).

As shown in the first Create View of Table 1, we use default values 1 and 0 for
attributes Quantity and Discount (resp.), which were not represented in rdb2. All other
unmatched attributes from rdb1′ are replaced by NULL. Note that this allows two
queries to be simplified (eliminating joins in the Geography and Products queries).

While the query substitutions implementing the composition are straightforward in
our example, problems arise if more complex match transformations have to be
incorporated, such as aggregates. This is because directly replacing attributes with the
equivalent aggregate expression can lead to invalid SQL statements, e.g., by using an
aggregate expression within a Where clause. Substitution is still possible, but requires
more complex rules than simple variable substitution.

Re-using existing transformations may not always be desirable, as these
transformations may only be meaningful for a specific source. For instance, the cus-
tomer mapping entails specific expressions for customer classification (second SQL
statement in Table 1), which may not be useful for a different set of customers. Such
situations could be handled by allowing the user to define new transformations.

Final Steps
The final integration steps check whether any parts of rdb2 not covered by the

previous steps should be incorporated into the warehouse. In our example one might
want to add authors as a new dimension to the data warehouse. Determining the parts
to be integrated obviously cannot be done automatically. Hence, we require a user-
defined specification of the additional mapping (step (6) of Fig. 7). Merging the
resulting warehouse elements with the existing schema dw1 may require combining
tables in a preliminary Match (step (7)) followed by the actual Merge (step (8)).

11

Observations
Obviously, Match and Compose are the key operations in the proposed solution to
achieve a re-use of an existing mapping. The use of SQL as the expression language
requires that these operations support mapping objects with set-valued domains and
ranges. The use of RightOuterMatch in combination with ApplyFunction to provide
default values allowed us to completely re-use the existing mapping

The power and abstraction level of the model management operations resulted in a
short solution program, a huge productivity gain over the specification and program-
ming work involved with current warehouse tools. This is especially remarkable given
the use of generic operations, not tailored to data warehousing. The main remaining
manual work is in supporting the Match operations (although its implementation can
at least partially be automated) and in specifying new mapping requirements that
cannot be derived from the existing schemas and mappings. Of course, more effort
may be needed at the data instance level for data cleaning, etc.

3.2 Alternative Solution

An alternative solution to integrate rdb2 is illustrated in Fig. 8. In contrast to the
previous solution, it first identifies which parts of rdb2 can be directly matched with
the warehouse schema. It tries to re-use the existing mapping map1 only for the
remaining parts of rdb2.

In step (1), we thus start by matching rdb2 with the warehouse schema dw1,
resulting in a mapping map2 that identifies common tables and attributes of rdb2 and
dw1. This gives a direct way to populate range(map2), called dw1′, by copying data
from domain(map2). Note that we do not have a RightOuterMatch since we can expect
that only some parts of dw1 can be derived from rdb2.

1. map2 = Match (rdb2, dw1)
2. rdb2′ = domain (map2)
3. dw1′ = range (map2)
4. map1′ = Copy(map1)
5. ApplyFunction(map1 ′, “for each x in range(m1),

if x is in dw1′ … ”) // see text for details
6. map3 = RightOuterMatch (rdb2, domain (map1′))
7. map4 = ApplyFunction(map3, defaults) • f map1′
8. map5 = Match(map4, map2)
9. Merge (map2, map4 , map5)
10. rdb2′′ = subset of (rdb2 - rdb2′ - domain(map4))

to be mapped to warehouse
11. map6 = user-defined mapping (rdb2′′ , dw2)
12. map7 = Match(dw1, dw2)
13. Merge (dw1, dw2, map7)

rdb2′

rdb2′′

rdb1′

rdb1rdb1rdb1rdb1

rdb2rdb2rdb2rdb2

dw1dw1dw1dw1

map3

map1

map
2

dw2

map6

map7

map1′

dw1′

map 4

map
5

1. map2 = Match (rdb2, dw1)
2. rdb2′ = domain (map2)
3. dw1′ = range (map2)
4. map1′ = Copy(map1)
5. ApplyFunction(map1 ′, “for each x in range(m1),

if x is in dw1′ … ”) // see text for details
6. map3 = RightOuterMatch (rdb2, domain (map1′))
7. map4 = ApplyFunction(map3, defaults) • f map1′
8. map5 = Match(map4, map2)
9. Merge (map2, map4 , map5)
10. rdb2′′ = subset of (rdb2 - rdb2′ - domain(map4))

to be mapped to warehouse
11. map6 = user-defined mapping (rdb2′′ , dw2)
12. map7 = Match(dw1, dw2)
13. Merge (dw1, dw2, map7)

rdb2′rdb2′

rdb2′′rdb2′′

rdb1′

rdb1rdb1rdb1rdb1

rdb2rdb2rdb2rdb2

dw1dw1dw1dw1

map3

map1

map
2

dw2

map6

map7

map1′

dw1′dw1′

map 4

map
5

Fig. 8. Alternative sequence of model management operations to integrate a new source

For those parts of the warehouse schema that cannot be matched directly with rdb2
(i.e., dw1 – dw1′), we try to re-use the existing mapping map1. We therefore create a
copy map1′ of map1 and, in step(5), use ApplyFunction to remove objects from the
range of map1′ that are in dw1′. That is, for each object m1 in map1′, “for each x in
range(m1), if x is in dw1′ and not part of a primary key, then remove x from range(m1)
and from the SQL statement associated with m1.” We avoid deleting primary key

12

attributes so that the mapping produced in steps (6)-(7) can be merged with existing
tables in steps (8)-(9). Deleting x from the SQL statement involves deleting x from the
Create View and deleting the corresponding terms of rdb1 from the Select clause, but
not, if present, from the Where clause, since its use there indicates that x is needed to
define a relevant restriction or join condition. After all such x are deleted from the
statement, additional equivalence-preserving simplifications of the statement may be
possible. In particular, if a dw1 table T is completely in dw1′, then the map1 SQL
statement for T will be eliminated from the result mapping map1′. The model
management algebra needs to be structured in a way that allows the SQL inferencing
plug-in to make such modifications to the SQL statement.

Next, we match rdb2 with the domain of map1′, called rdb1′ (step (6) of Fig. 8). It
is not sufficient to perform the match for rdb2 – rdb2′, even though rdb2′ has already
been mapped to dw1. This is because for some objects m1 in map1′, there may be an
object x in domain(m1) that maps to an object in rdb2′ but not to one in rdb2 – rdb2′.
There is no problem using x as input to m1 as well as mapping x directly to dw1 using
map2. As in the first solution, we use RightOuterMatch to ensure the resulting map
includes all elements of domain(map1′).

As in the previous solution, we use ApplyFunction to add default mappings for
elements of domain(map1′) that do not correspond to an element of rdb2 via map3.
And then we compose map3 and map1′, resulting in map4 (step (7)).

The mapping between rdb2 and dw1 computed so far consists of map2 and map4,
which we match and merge in steps (8) and (9). If map2 and map4 populate different
tables of dw1 then Merge is a simple union. However, if there is a table that they both
populate, more work is needed; hence the need for the preliminary Match forming
map5. For tables common to both maps, the two Create View statements need to be
combined. This may involve non-trivial manipulation of SQL w.r.t. key columns.

As in steps (5)-(8) of the first solution, there may be a user-defined mapping for
other rdb2 elements to add to the warehouse (steps (10)-(13) in Fig. 8). If there is any
overlap with previous maps, then these mappings too must be merged with other
Create View statements.

In our example, in step (1) we can directly match the dw1 tables Products,
Customers and Geography with rdb2 tables Book and Customer as only 1:1 attribute
relationships are involved. Among other things, this avoids the unwanted re-use of
CustomerTypeDescription, applied for rdb1. For the two other warehouse tables, Time
and Sales, we match rdb2 with rdb1 in step (6) to re-use the corresponding mapping
expressions in map1, particularly the time transformations and join query. We thus
have two mappings referring to different tables; their union in step (9) provides the
complete mapping from rdb2 to dw1.

Alternatively, instead of deriving the Sales table in steps (6)-(7), we could match
three of its attributes, OrderID, CustomerID, and OrderDate, with table Book-Orders
when creating map2 in step (1), and using map1 for the remaining attributes in steps
(6)-(7). We thus would use ApplyFunction in step (5) to eliminate the three attributes
from the Create View and Select clauses of the Sales statement in map1 and keep the
reduced query in map1′ (together with the Time query). We would leave the OrderID
and CustomerID attributes in the Where clause of the modified Sales query in step (5)
to perform the required joins. We thus obtain these two mapping statements for Sales:

13

Map2:
create view dw1.Sales (OrderID, CustomerID, OrderDate) as
select B.OrderID, B.CustomerID, B.OrderDate
from rdb2.Book-Orders B

Map4:
create view dw1.Sales1 (OrderID, OrderDetailID, PostalCode, ProductID, Quantity,
 UnitPrice, Discount) as
select D.OrderID, D.BookID, C.ZipCode, D.BookID, 1, D.Price, 0
from rdb2.Book-Orders O, rdb2.B-ordering D, rdb2.Customer C
where O.OrderID = D.OrderID and O.CustomerID = C.CustomerID
order by O.OrderId, D.BookID

Notice that we retain OrderID in Sales1, so we can match map2 and map4 in step (8)
to drive a Merge in step (9). The result corresponds to the SQL statement in the right
column of row 1 in Table1.

Observations
This approach applied similar steps to the first solution, in particular for RightOuter-
Match, RightCompose and ApplyFunction. Its distinguishing feature is the partial re-
use of an existing mapping, which is likely to be more often applicable than a
complete re-use. The new source was matched against both the warehouse and the
first source, leading to the need to merge mappings. The solution can be generalized
for more than one preexisting data source. In this case, multiple mappings to the
warehouse schema may be partially re-used for the integration of a new data source.

4 Data Warehouse Scenario 2: Adding a New Data Mart

The usage of model management operations described in Section 3 seems to be
typical, at least for data warehouse scenarios. To illustrate these recurring patterns, we
briefly consider a second scenario. We assume a given star schema dw, an existing
data mart dm1 and a mapping map1 from dw to dm1, where range(map1) = dm1. We
want to add a second data mart dm2. The task is to determine the mapping from dw to
dm2. Obviously this mapping must be complete with respect to dm2.

To solve the problem we can use solution patterns similar to Section 3, allowing us
to give a compact description. Three possibilities are illustrated in Fig. 9. Solution 1 is
the simplest approach; just apply RightOuterMatch to dw and dm2. This is possible if
the two schemas differ little in structure, e.g., if dm2 is just a subset of dw.

Solution 2 is useful if some but not all of dm2 can be matched with dw. We first
match dw with dm2 and then match the unmatched parts of dm2 with dm1 to re-use
the associated parts of map1. Remaining parts of dm2 are derived by a user-specified
mapping map6 and then merged in.

Solution 3 tries to maximally re-use the existing mapping map1 as in Section 3.1.
This is appropriate if the data marts are similarly structured and map1 contains
complex transformations that are worth re-using. We first compose map1 with the
match of dm1 and dm2. The rest of dm2 not covered by this mapping is matched with
dw. Any remaining dm2 elements are derived by a user-specified mapping map6.

14

Solution 1: map2 = RightOuterMatch (dw, dm2)

Solution 2: (no OuterMatch, but partial re-use of map1)

dm2′

dm2dm2dm2dm2

dm1dm1dm1dm1

map1
dw

map
2

map3

1. map2 = Match(dw, dm2)
2. dm2′ = range(map2)
3. map3 = Match(dm1, dm2 - dm2′)
4. map4 = map1 • f map3

5. map5 = Match(map4 , map2)
6. Merge(map2, map4 , map5)
7. map6 = user-defined-mapping(dw,

dm2 - dm2′ - range(map3))
8. map7 = Match(map2 , map6)
9. Merge (map2, map6 , map7)

map
6

map
4

map5

map7

dm2′

dm2dm2dm2dm2

dm1dm1dm1dm1dm1dm1dm1dm1

map1
dwdw

map
2

map3

1. map2 = Match(dw, dm2)
2. dm2′ = range(map2)
3. map3 = Match(dm1, dm2 - dm2′)
4. map4 = map1 • f map3

5. map5 = Match(map4 , map2)
6. Merge(map2, map4 , map5)
7. map6 = user-defined-mapping(dw,

dm2 - dm2′ - range(map3))
8. map7 = Match(map2 , map6)
9. Merge (map2, map6 , map7)

map
6

map
4

map5

map7

Solution 3: (maximal re-use of map1)
1. map2 = Match(dm1, dm2)
2. map3 = map1 • f map2

3. dm2′ = range(map2)
4. map4 = Match(dw, dm2 - dm2′)
5. map5 = Match(map4 , map3)
6. Merge(map3, map4 , map5)
7. map6 = user-defined-mapping(dw,

dm2 - dm2′- range(map3))
8. map7 = Match(map6 , map3)
9. Merge (map3, map6 , map7)

dm2′

dm2dm2dm2dm2

dm1dm1dm1dm1

map1
dw

map
3

map2

map
6

map
4

map5

map7

1. map2 = Match(dm1, dm2)
2. map3 = map1 • f map2

3. dm2′ = range(map2)
4. map4 = Match(dw, dm2 - dm2′)
5. map5 = Match(map4 , map3)
6. Merge(map3, map4 , map5)
7. map6 = user-defined-mapping(dw,

dm2 - dm2′- range(map3))
8. map7 = Match(map6 , map3)
9. Merge (map3, map6 , map7)

dm2′

dm2dm2dm2dm2

dm1dm1dm1dm1

map1
dw

map
3

map2

map
6

map
4

map5

map7

dm2′

dm2dm2dm2dm2

dm1dm1dm1dm1dm1dm1dm1dm1

map1
dwdw

map
3

map2

map
6

map
4

map5

map7

Fig. 9. Three alternatives to add a new data mart

5. Conclusions

We evaluated the application of a generic model management approach for two
data warehouse scenarios which used relational sources, star schemas, and SQL as an
expression language for mappings. We devised several alternatives for solving typical
mapping problems in a generic way: integrating a new data source and adding a new
data mart. The solutions re-use existing mappings to a large extent and combine
model operators in different ways. User interaction may be required to provide
semantic equivalence information for match operations and to specify new mapping
requirements that cannot be derived from existing models (mappings, schemata).

The study has deepened our understanding of two key operators: Match and
Compose. In particular, we introduced the notion of OuterMatch. We showed the need
for composition semantics to cover mapping objects with set-valued domains and
ranges. We also proposed a general way to provide default values by employing the
ApplyFunction operation. We expect this idiom will be commonly used when
composing mappings.

We would like the expression manipulation associated with Compose to be man-
aged by a module that can plug into the algebraic framework. One such module would
handle SQL. The examples in this paper show what such a module must be able to do.

We found the model management notation to be a useful level of abstraction at
which to consider design alternatives. By focusing on mappings as abstract objects,

15

the designer is encouraged to think about whether a mapping is total, is onto, has a
set-valued domain, can be composed with another mapping, and has a range entirely
contained within the set of interest. In this paper’s examples, at least, these were the
main technical factors in deriving the solution. Moreover, we introduced a Venn-
diagram-like notation, which enables quick comparisons between design choices, such
as Figures 7 and 8 and Solutions 2 and 3 of Fig. 9. These examples show that the
notation is a compact representation of each solution’s approach, highlighting how the
approaches differ.

Altogether, the study has provided evidence of the usefulness of a general model
management approach to manage models and mappings in a generic way. Further-
more, the considered level of detail suggests that model management is more than a
vision but likely to be implementable in an effective way.

Acknowledgments

We thank Alon Levy, Jayant Madhavan, Sergey Melnik, and Rachel Pottinger for
many suggested improvements to the paper. We are also grateful to the Microsoft
SQL Server group for providing the schemas used in the examples.

References
1. Bernstein, P.A.: Panel: Is Generic Metadata Management Feasible? VLDB 2000
2. Bernstein, P.A., Levy, A., Pottinger, R.: A Vision for Management of Complex Models.

MSR-TR-2000-53, http://www.research.microsoft.com/pubs/, June 2000
3. Doan, AH., Domingos, P., Levy, A.: Learning Source Descriptions for Data Integration.

Proc. WebDB 2000, pp. 81-92
4. Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., Wiederhold, G.: An Algebra for

Semantic Interoperation of Semistructured Data. Proc. 1999 IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX'99), Nov. 1999.

5. Li, W., Clifton, C.: Semantic Integration in Heterogeneous Databases using Neural
Networks. Proc. VLDB94

6. Li, W., Clifton, C.: SEMINT: A Tool for Identifying Attribute Correspondences in Hetero-
geneous Databases Using Neural Network. Data and Knowledge Engineering, 33 (1), 2000

7. Miller, R., Ioannidis, Y.E., Ramakrishnan, R.: Schema Equivalence in Hetereogeneous
Systems: Bridging Theory and Practice. Information Systems 19(1), 3-31, 1994

8. Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Translation.
Proc. VLDB98

9. Mitra, P., Wiederhold , G., Jannink, J.: Semi-automatic Integration of Knowledge Sources.
Proc. of Fusion '99, Sunnyvale, USA, July 1999

10. Mitra, P., Wiederhold, G., Kersten, M.: A Graph-Oriented Model for Articulation of
Ontology Interdependencies; Proc. Extending DataBase Technologies, EDBT 2000, LNCS
Springer Verlag.

11. Mylopoulos, J., Motschnig-Pitrik, R.: Partitioning Information Bases with Contexts. Proc.
3rd CoopIS, Vienna, pp. 44-54, May 1995.

12. Palopoli, L., Sacca, D., Ursino, D.: Semi-automatic, semantic discovery of properties from
database schemas. Proc. IDEAS, 1998.

13. Palopoli, L., Sacca, D., Ursino, D.: An automatic technique for detecting type conflicts in
database schemas. Proc. CIKM, 1998

14. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A Data
EXtraction, Processing and REStructuring System. ACM TODS 2,2: 134-174, 1977.

