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ABSTRACT

Mapping composition is a fundamental operation in metadata
driven applications. Given a mapping over schemaando» and
a mapping over schemas, andos, the composition problem is
to compute an equivalent mapping ovar andos. We describe
a new composition algorithm that targets practical appibce. It
incorporates view unfolding. It eliminates as manysymbols as
possible, even if not all can be eliminated. It covers caists
expressed using arbitrary monotone relational operatuis ta a
lesser extent, non-monotone operators. And it introducesew
technique of left composition. We describe our implemeéotaiex-
plain how to extend it to support user-defined operatorspassent
experimental results which validate its effectiveness.

1. INTRODUCTION

A mapping is a relationship between the instances of tworselse
Some common types of mappings are relational queries, rela-
tional view definitions, global-and-local-as-view (GLAgsser-
tions, XQuery queries, and XSL transformations. The manipu
lation of mappings is at the core of many important data man-
agement problems, such as data integration, databasendasidy
schema evolution. Hence, general-purpose algorithms éorijpa-
lating mappings have broad application to data management.

Data management problems like those above often requite tha
mappings be composed. The composition of a mapping be-
tween schemas; ando. and a mappingn.s between schemas
o2 andos is a mapping betweesm; andos that captures the same
relationship between; andos asmi2 andmss taken together.

Given that mapping composition is useful for a variety of
database problems, it is desirable to develop a generpbpar
composition component that can be reused in many applicaét
tings, as was proposed in [1, 3]. This paper reports on theldpv
ment of such a component, an implementation of a new algorith
for composing mappings between relational schemas. Cadpar
past approaches, the algorithm handles more expressivgimgsp
makes a best-effort when it cannot obtain a perfect ansndydes
several new heuristics, and is designed to be extensible.

*Work performed during an internship at Microsoft Research.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct comiaeadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciahpgsion from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

Alan Nash*
U.C. San Diego
anash@cs.ucsd.edu

Sergey Melnik
Microsoft Research
melnik@microsoft.com

1.1 Applications of Mapping Composition

Composition arises in many practical settings. In dategiatigon,

a query needs to be composed with a view definition. If the view
definition is expressed using global-as-view (GAV), theis th an
example of composing two functional mappings: a view deéinit

that maps a database to a view, and a query that maps a view to
a query result. The standard approach is view unfolding,revhe
references to the view in the query are replaced by the vidiv de
nition [10]. View unfolding is simply function compositiomwhere

a function definition (i.e., the body of the view) is subdt for
references to the function (i.e., the view schema) in theyque

In peer-to-peer data management, composition is used pmsup
queries and updates on peer databases. When two peer éatabas
are connected through a sequence of mappings between é&term
diate peers, these mappings can be composed to relate the pee
databases directly. In Piazza [11], such composed mapirgys
used to reformulate XML queries. In theROHESTRAcollabora-
tive data sharing system [12], updates are propagated usimg
posed mappings to avoid materializing intermediate reteti

A third example is schema evolution, where a schemeavolves
to become a schems,. The relationship betweer ando; can
be described by a mapping. After has evolved, any existing
mappings involvingr1, such as a mapping froey to schemar,
must now be upgraded to a mapping frefhto 0. This can be
done by composing the-o1 mapping with thes;-o2 mapping.
Depending on the application, one or both of these mappirays m
be non-functional, in which case composing mappings is ngdéo
simply function composition.

A different schema evolution problem arises when an initial
schemao; is modified by two independent designers, producing
schemaw; andos. To merge them into a single schema, we need
a mapping betweet, ando; that describes their overlapping con-
tent [4, 9]. Thiso2-03 mapping can be obtained by composing
the o1-02 ando1-03 mappings. Even if the latter two mappings
are functions, one of them needs to be inverted before thepea
composed. Since the inverse of a function may not be a fumctio
this too entails the composition of non-functional mapging

Finally, consider a database design process that evolvéeas
o1 via a sequence of incremental modifications. This produces a
sequence of mappings between successive versions of tmach
from o1 to o2, then toos, and so forth, until the desired schema
oy IS reached. At the end of this process, a mapping from
to the evolved schema,, is needed, for example, as input to the
schema evolution scenarios above. This mapping can benebtai
by composing the mappings between the successive verditms o
schema. The following example illustrates this last saenar

ExamMPLE 1 Consider a schema editor, in which the designer mod-
ifies a database schema, resulting in a sequence of schettias wi



mappings between them. She starts with the schema
M ovies(mid, name, year, rating, genre, theater)

wheremid means movie identifier. The designer decides that only
5-star movies and no ‘theater’ or 'genre’ should be preseihé
database; she edits the table obtaining the following sehana
mapping:
FiveStar M ovies(mid, name, year)
ﬂ-mid,name,year(Urating:5(M OVieS)) g FiVeStarMOVies

@
To improve the organization of the data, the designer théts sipe
FiveStarMovies table into two tables, resulting in a new schema
and mapping
Names(mid, name) Years(mid, year)

Tmid,name,year (FiveStarMovies) C Names X Years (2)
The system composes mappings (1) and (2) into a new mapping:
C Names
C

T'mid,name (Urating:5 (M ovi eS))

Wmi(l,year(o—rating:S(M OVieS)) Years

With this mapping, the designer can now migrate data from the
old schema to the new schema, reformulate queries posedoger
schema to equivalent queries over the other schema, etc. [

1.2 Reated Work

Mapping composition is a challenging problem. Madhavan and
Halevy [6] showed that the composition of two given mappings
expressed as GLAV formulas may not be expressible in a finite
set of first-order constraints. Fagin, Kolaitis, Popa, aad T5]
showed that the composition of certain kinds of first-ordeypm
pings may not be expressible in any first-order language ley@an
infinite set of constraints. That is, that language isalesedunder
composition. Nash, Bernstein, and Melnik [8] showed thattr-

tain classes of first-order languages, it is undecidablesterchine
whether there is a finite set of constaints in the same laregtreg
represents the composition of two given mappings. Thesdtses
are sensitive to the particular class of mappings underiders
tion. But in all cases the mapping languages are first-ondeaae
therefore of practical interest.

In [5] Fagin et al. introduced a second-order mapping laggua
thatis closed under composition, namely second-order source-to-
target tuple-generating dependencies. A second-ordgudage is
one that can quantify over function and relation symbolsuple-
generating dependency specifies an inclusion of two cotijenc
queries1 C Q. Itis called source-to-target whép, refers only
to symbols from the source schema apgirefers only to symbols
from the target schema. The second-order language of [5] use
existentially quantified function symbols, which essdhtiean be
thought of as Skolem functions. Fagin et al. present a coitipos
algorithm for this language and show it can have practicale/éor
some data management problems, such as data exchange.gfowev
using it for that purpose requires a custom implementasarce
the language of second-order tuple-generating depereteiscnot
supported by standard SQL-based database tools.

Yu and Popa [14] considered mapping composition for second-
order source-to-target constraints over nested reldtsm@mas in
support of schema evolution. They presented a compositgm a
rithm similar to the one in [5], with extensions to handle tireg
and with signficant attention to minimizing the size of theule
They reported on a set of experiments using mappings on both s
thetic and real life schemas, to demonstrate that theirighgo is
fast and is effective at minimizing the size of the result.

Nash et al. [8] studied the composition of first-order caaigts
that are not necessarily source-to-target. They consiejeentien-
cies that can express key constraints and inclusions ofinotiye
queries@; C Q2 whereQ); andQ- may reference symbols from
both the source and target schema. They do not allow exiztent
quantifiers over function symbols. The composition of caaists
in this language is not closed and determining whether a cemp
sition result exists is undecidable. Nevertheless, they ga al-
gorithm that produces a composition, if it halts (which itymeot
do).

Like Nash et al. [8], we explore the mapping composition prob
lem for constraints that are not restricted to being sotwemrget.
Our algorithm strictly extends that of Nash et al. [8], whintiurn
strictly extends that of Fagin et al. [5] for source-to-ttrgmbed-
ded dependencies. If the inputis a set of source-to-targleédded
dependencies, our algorithm behaves similarly to thatjirefcept
that as in [8] we also attempt to express the result as embedde
dependencies through a deskolemization step. It is knoon fe-
sults in [5] that such a step can not always succeed. Furtiterm
we also apply a “left-compose” step which allows the aldontio
handle mappings on which the algorithm in [8] fails.

1.3 Contributions

Given the inherent difficulty of the problem and limitatioofspast
approaches, we recognized that compromises and spediai€fsa
would be needed to produce a mapping composition algorithm o
practical value. The first issue was which language to choose

Algebra-based rather than logic-based. We wanted our com-
position algorithm to be directly usable by existing datsbtools.
We therefore chose a relational algebraic language: Eappimg
is expressed as a set of constraints, each of which is eitben-a
tainment or equality of two relational algebraic expressioThis
language extends the algebraic dependencies of [13]. Eath c
straint is of the formty = F» or By C E> whereE; and F» are
arbitrary relational expressions containing not only sglproject,
and join but possibly many other operators. Calculus-bésed
guages have been used in all past work on mapping composition
we know of. We chose relational algebra because it is theukage
implemented in all relational database systems and molst tibés
therefore familiar to the developers of such systems, whadrerin-
tended users of our component. It also makes it easy to extend
language simply by allowing the addition of new operatorstitée
that the relational operators we handle are sufficient toesgem-
bedded dependencies. Therefore, the class of mappingh whic
algorithm accepts includes embedded dependencies antiowy a
ing additional operators such as set difference, goes loky@m.

Eliminatesone symbol at atime. Our algorithm for composing
these types of algebraic mappings gives a partial solutioanit
is unable to find a complete one. The heart of our algorithm is
a procedure to eliminate relation symbols from the interiated
signatures2. Such elimination can be done one symbol at a time.
Our algorithm makes a best effort to eliminate as many afati
symbols fromo, as possible, even if it cannot eliminate all of them.
By contrast, if the algorithm in [8] is unable to produce a ipiag
overo; andos with no o2-symbols, it simply runs forever or gives
up. In some cases it may be better to eliminate some symimots fr
o2 successfully, rather than insist on either eliminatingpéhem
or failing. Thus, the resulting mapping may be over o5, andos,
whered?, is a subset of» instead of over just; andos.

To see the value of this best-effort approach, consider gpoem
sition that produces a mapping that contains ar»-symbol S. If
m is later composed with another mapping, it is possible that t
latter composition can eliminatg. (We will see examples of this



later, in our experiments.) Also, the inability to elimieat may be
inherent in the given mappings. For exampemay be involved
in a recursive computation that cannot be expressed purédyms
of o1 andos such those of Theorem 1 in [8]:

RCS, S=tc(S), SCT

whereo1 = {R}, o2 = {S}, 03 = {T'} with R, S, T binary and
where the middle constraint says thfais transitively closed. In
this case,S cannot be eliminated, but is definable as a recursive
view on R and can be added to . To use the mapping, those non-
eliminatedo2-symbols may need to be populated as intermediate
relations that will be discarded at the end. In this exambpis t
involves low computational cost. In many applications ib&fter

to have such an approximation to a desired composition mgppi
than no mapping at all. Moreover, in many cases the extra cost
associated with maintaining the extra symbols is low.

Tolerancefor unknown or partially known operators. Instead
of rejecting an algebraic expression because it contaikeawn
operators which we do not know how to handle, our algorithm si
ply delays handling such operators as long as possible. (Boes
it needs no knowledge at all of the operators involved. Thihe
case, for example, when a subexpression that contains arownk
operator can be replaced by another expression. At othestim
we need only partial knowledge about an operator. Even if ave d
not have the partial knowledge we need, our algorithm dotfailo
globally, but simply fails to eliminate one or more symbdlattper-
haps it could have eliminated if it had additional knowle@dd@ut
the behavior of the operator.

Use of monotonicity. One type of partial knowledge that we ex-
ploit is monotonicity of operators. An operator is monotamene
of its relation symbol arguments if, when tuples are addetthad
relation, no tuples disappear from its output. For examgséect,
project, join, union, and semijoin are all monotone. Sdediénce
(e.g.,R—S) and left outerjoin are monotone in their first argument
(R) but not in their secondy). Our key observation is that when an
operator is monotone in an argument, that argument can Boeget
be replaced by a expression from another constraint. Fongbea
if we haveE; C RandE>; C S, then in some cases it is valid to
replaceR by E; in R— S, but not to replacé& by E». Athough ex-
isting algorithms only work with select project, join andiam, this
observation enables our algorithm to handle outerjoin diféer-
ence, and anti-semijoin. Moreover, our algorithm can hamdils
and bag semantics in many cases.

Normalization and denor malization. We call left-normalization
the process of bringing the constraints to a form where & rela
tion symbolS that we are trying to eliminate appears in a single
constraint alone on the left. The result is of the fofmC E
whereF is an expression. We define right-normalization similarly.
Normalization may introduce “pseudo-operators” such aseé3k
functions which then need to be eliminated by a denormatizat
step. Currently we do not do much left-normalization. Oghti
normalization is more sophisticated and, in particulan bandle
projections by Skolemization. The corresponding dendzatibn
is very complex. An important observation here is that ndizaa
tion and denormalization are general steps which may plgdsé
extended on an operator-by-operator basis.

L eft compose. One way to eliminate a relation symh®is to re-

thereby eliminatings from the constraint. Right composition is an
extension of the algorithms in [5, 8]. We also introduce tafin-
pose, which handles some additional cases where right cganpo
fails. Suppose we have the constraiftis C M (S) andS C Ei,
where M (S) is an expression that is monotonic $hbut which
we either do not know how to right-normalize or which would
fail to right-denormalize. Then left compose immediateiglgs

E; C M(En).

Extensibility and modularity. Our algorithm is extensible by
allowing additional information to be added separatelyef@ach op-
erator in the form of information about monotonicity andesufor
normalization and denormalization. Many of the steps ale-ru
based and implemented in such a way that it is easy to addaules
new operators. Therefore, our algorithm can be easily adajot
handle additional operators without specialized knowéedgout
its overall design. Instead, all that is needed is to add ndesr

Experimental study. We implemented our algorithm and ran
experiments to study its behavior. We used compositionlprod®
drawn from the recent literature [5, 7, 8], and a set of laygetsetic
composition tasks, in which the mappings were generateaiy c
posing sequences of elementary schema modifications. Ve use
these mappings to test the scalability and effectivenessicdlgo-
rithm in a systematic fashion. Across a range of composttsks,
it eliminated 50-100% of the symbols and usually ran in uraler
second. We see this study as a step toward developing a barichm
for composition algorithms.

The rest of the paper is organized as follows. Section 2 ptese
notation needed to describe the algorithm. Section 3 de=xri
the algorithm itself, starting with a high-level descriptiand then
drilling into the details of each step, one-by-one. Seclipnesents
our experimental results. Section 5 is the conclusion.

2. PRELIMINARIES

We adopt the unnamed perspective which references thieudittsi
of a relation by index rather than by namerelational expression
is an expression formed using base relations andhésic oper-
ators union U, intersectiom, cross product, set difference-,
projectiont and selectiorr as follows. The namé of a relation
is a relational expression. K, and E» are relational expressions,
then so are

Ey U E;
By — Es

FE1NEs
ae(E1)

E1 X E2
TI'[(El)

wherec is an arbitrary boolean formula on attributes (identified by
index) and constants andis a list of indexes. The meaning of
a relational expression is given by the standard set seosanfo
simplify the presentation in this paper, we focus on thesiclsix
relational operators and view the join operatoas a derived oper-
ator formed fromx, 7, ando. We also allow for user-defined oper-
ators to appear in expressions. The basic operators sharkfore

be considered as those which have “built-in” support, bey thre
not the only operators supported.

The basic operators differ in their behavior with respedrity.
Assume expressiof; has arityr and expressiot, has aritys.
Then the arity ofE; U Es, E1 N Ey, andE; — Es isr = s; the
arity of F1 x E isr + s; the arity ofo.(E1) isr; and the arity of

placeS’s occurrences in some constraints by the expression on ther; (Ey) is |I].

other side of a constraint that is normalized fr There are two
versions of this replacement, right compose and left compts
right compose, we use a constraiitC S that is right-normalized
for S and substitutd” for S on the left side of a constraint that is
monotonic inS, such as transforminBx S C T'intoRx E C T,

We define an additional operator which may be used in relakion
expressions called thekolem function A Skolem function has a
name and a set of indexes. Lgbe a Skolem function on indexes
I. Then f;(E1) is an expression of arity + 1. Intuitively, the
meaning of the operator is to add an attribute to the outplobse



values are some functighof the attribute values identified by the
indexes in/. We do not provide a formal semantics here. Skolem
functions are used internally as a technical device in 8e@&i5.

We consider constraints of two forms.céntainment constraint
is a constraint of the fornky; C FE», whereE; and E> are re-
lational expressions. Amquality constrainis a constraint of the
form E; = E,, whereFE; and E» are relational expressions. We
denote sets of constraints with capital Greek letters aditintual
constraints with lowercase Greek letters.

A signatureis a function from a set of relation symbols to posi-
tive integers which give their arities. In this paper, we theeterms
signature and schema synonymously. We denote signatuties wi
the lettero. (We denote relation symbols with uppercase Roman
lettersR, S, T, etc.) We sometimes abuse notation and use the
same symbob to mean simply the domain of the signature (a set
of relations).

active domains oA and B. In this case, we say that is given by
(01, 02, E12)-

Given two mappingsni2 andmes, thecompositionmiz o mos
is the unique mapping

{<A,C> : 3B(<A7 B> € mi2 and(B,C’) S m23}.

Assume two mappingsi12 andmes are given by(o1, o2, X12)
and (o2, 03, 323). The mapping composition problers to find
313 such thatni2 o mog is given by(o1, o3, ¥13).

Given a finite set of constrains over some schema and an-
other finite set of constraintS’ over some subschened of o we
say that® is equivalento ¥/, denoted: = ¥, if

1. (Soundness) Every databasé overo satisfying® when re-
stricted to only those relations iff yields a databasa’ over
o’ that satisfies’ and

An instanceof a database schema is a database that conforms to

that schema. We use uppercase Roman lettei3, C, etc to de-
note instances. If is an instance of a database schema containing
the relation symbaf, we denote bys* the contents of the relation
Sin A.

Given a relational expressiofl and a relational symbd¥, we
say thatE is monotonen S if whenever instanced and B agree
on all relations excepf and S* C S, thenE(A) C E(B).

In other words,E is monotone inS if adding more tuples t&
only adds more tuples to the query result. We say fhas anti-
monotonen S if wheneverA and B agree on all relations except
S andS4 C SZ, thenE(A) D E(B).

Theactive domairof an instance is the set of values that appear
in the instance. We allow the use of a special relational ©fmb
which denotes the active domain of an instanBecan be thought
of as a shorthand for the relational expresdigh , -, 7;(S:)
whereo = {S1,...,S,} is the signature of the database and
is the arity of relationS;. We also allow the use of another special
relation in expressions, the empty relatibn

An instanceA satisfiesa containment constrainf; C FEs if
E1(A) C E2(A). AninstanceA satisfiesan equality constraint
E, = E; if E1(A) = E2(A). We write A |= ¢ if the instanceA
satisfies the constraigtand A = X if A satisfies every constraint
in 3. Note thatd = Ey = E» iff A= E1 C E;andA | E; C
Es.

EXAMPLE 2 The constraint that the first attribute of a binary
relation S is the key for the relation, which can be expressed
in a logic-based setting as the equality-generating degesyd
S(z,y),S(z,2) — y = 2 may be expressed in our setting as a
containment constraint by making use of the active domdatiom

7T24(U1=3(52)) C 01:2(D2)

whereS? is short forS x S andD? is short forD x D. O

A mappings a binary relation on instances of database schemas.
We reserve the letter. for mappings. Given a class of constraints
L, we associate to every expression of the fdem, o2, X12) the
mapping

{(A,B) : (A, B) = E12}.

That is, it defines which instances of two schemas correspmnd
each other. Her&, is a finite subset of over the signature; U
o2, o1 is theinput (or source) signaturer, is theoutput (or target)
signature A is a database with signatuse and B is a database
with signatures,. We assume that; ando, are disjoint.(A, B)

is the database with signatusg U o> obtained by taking all the
relations inA and B together. Its active domain is the union of the

2. (Completeness) Every databasel’ over ¢’ satisfying the
constraints>’ can be extended to a databasever o sat-
isfying the constraint& by adding new relations i — o’
(not limited to the domain oft’).

ExAMPLE 3 The set of constraints
»:={RCS, SCT}

is equivalent to the set of constraité:= {R C T'}. O

Given this definition, we can restate the composition prolds
follows. Given a set of constrain®s;, overo; U o2 and a set of
constraints¥,3 overos U o3, find a set of constraints,5 over
o1 Uos such thablis U a3 = 343,

3. ALGORITHM

3.1 Oveview

At the heart of the composition algorithm (which appearshat t
end of this subsection), we have the procedureMiENATE which
takes as input a finite set of constrainisover some schema
that includes the relation symbgland which produces as output
another finite set of constraints’ overo — {S} such that’
¥, or reports failure to do so. On success, we say that we have
eliminatedS from X.

Given such a procedureLBMINATE we have several choices on
how to implement ©MPOSE which takes as input three schemas
o1, 02, andoz and two sets of constraini$; » andX.3 overo; Uos
ando2 U o3 respectively. The goal of @UPOSEis to return a set
of constraint2:3 overo; Uos. Thatis, its goal is to eliminate the
relation symbols fronwr,. Since this may not be possible, we aim
at eliminating from> := X1, U Y93 a setS of relation symbols in
o2 Which is as large as possible or which is maximal under some
other criterion than the number of relation symbols in itefldhare
many choices about how to do this, but we do not explore them in
this paper. Instead we simply follow the user-specified Bngeon
the relation symbols ia» and try to eliminate as many as possible
in that order?

We therefore concentrate in the remainder of Section 30m E
INATE. It consists of the following three steps, which we describe
in more detail in following sections:

!Note that which symbols will be eliminated will in generapead

on this user-defined order. Consider, for example, the caings

in the proof of Theorem 1 in [8] duplicated for two symbdélsand

So: exactly one of them can be eliminated and this will depend on
the order.



1. View unfolding
2. Left compose
3. Right compose

Each of the steps 1, 2, and 3 attempts to rentofrem 3. If any

of them succeeds, lEVMINATE terminates successfully. Otherwise,

ELIMINATE fails.

All three steps work in essentially the same way: given a con-
straint that contain$ alone on one side of a constraint and an ex-

pressionE on the other side, they substituifor S in all other
constraints.

EXAMPLE 4 Here are three one-line examples of how each of

these three steps transforms a set of two constraints irgqaina-
lent set with just one constraint:

1. S=RxT, n(U)—SCU = «n(U)—(RxT)CU
2. RCSNV, SCTxU = RC(TxU)NV
3.TxUCS, S—n(U)CR = (I'xU)—-n(U)CR O

To perform such a substitution we need an expression that con
tainsS alone on one side of a constraint. This holds in the example,

but is typically not the case. Another key feature of our &thm

is that it performsiormalizationas necessary to put the constraints
into such a form. In the case of left and right compose, we also

need all other expressions that cont&ito be monotone it$.

We now give a more detailed technical overview of the three

steps we have just introduced. To simplify the discussidovhe
we takeXY, := X to be the input to EIMINATE and X, to be
the result after step is complete. We usé&, F,, E; to stand for

arbitrary relational expressions and(.S) to stand for a relational

expression monotonic iff.

1. View Unfolding. We look for a constraing of the formS =

FE; in X whereE; is an arbitrary expression that does not

containS. If there is no such constraint, we sét := 3,
and go to Step 2. Otherwise, to obtain we removet and
replace every occurrence §fin every other constraint iR,

with E1. ThenX; = ¥y. Soundness is obvious and to show

completeness it is enough to st F.

2. Left Compose. If S appears on both sides of some con-
straint inX;, we exit. Otherwise, we convert every equality

constraintE; = E- that containsS into two containment
constraints®; C F> andE, C F; to obtainX;.

Next we check:] for right-monotonicityin S. That is, we

check whether every expressi@hin which .S appears to the

right of a containment constraint is monotonicSn If this
check fails, we sei; := 3; and go to Step 3.

Next we left-normalize every constraintiti for .S to obtain
Y. That is, we replace all constraints in whighappears
on the left with a single equivalent constragnof the form
S C E,. Thatis,S appears alone on the left §1 This is
not always possible; if we fail, we s&t; := ¥; and go to
Step 3.

If S does not appear on the left of any constraint, then we add

to X the constraing : S C E; and we sef; := D" where

r is the arity ofS. HereD is a special symbol which stands
for the active domain. Clearly, arfy satisfies this constraint.

Now to obtainX;” from £} we removet and for every con-
straintinX} of the formE> C M (S) whereM is monotonic
in S, we put a constraint of the forfi. C M (E;) in 37",

We call this stepasic left-compositiarFinally, to the extent

that our knowledge of the operators allows us, we attempt to

eliminateD" (if introduced) from any constraints, to obtain
Y. For examplel; N D" becomes; .

ThenX,; = ;. Soundness follows from monotonicity since
E, C M(S) C M(E,) and to show completeness it is
enough to sef := Fj.

. Right Compose. Right compose is dual to left-compose. We
check for left-monotonicity and we right-normalize as ie th
previous step to obtailly with a constraint of the form
E; C S. If S does not appear on the right of any constraint,
then we add ta} the constraing : £; C S and setf; :=
(. Clearly, anyS satisfies this constraint.

In order to handle projection during the normalization step
we may introduce Skolem functions. For exampte C
m1(S) whereR is unary ands is binary becomeg(R) C S.
The expressiorf(R) is binary and denotes the result of ap-
plying some unknown Skolem functighto the expression
R. The right-normalization step always succeeds for select,
project, and join, but may fail for other operators. If we fai
to normalize, we set; := Y5 and we exit.

g

Now to obtainX}’ from X5 we removet and for every con-
straint inX4 of the form M (S) C E» where M is mono-
tonic in S, we put a constraint of the form/ (E,) C E- in

¥5’. We call this stepbasic right-composition Finally, to

the extent that our knowledge of the operators allows us, we
attempt to eliminaté) (if introduced) from any constraints,

to obtainX;. For examplels; U ) becomesF, .

Then X} = ¥,. Soundness follows from monotonicity
since M(E;) C M(S) C E, and to show completeness
itis enough to sef := FE;.

Since during normalization we may have introduced Skolem
functions, we now need a right-denormalization step to re-
move such Skolem functions. Following [8], we call this part
deskolemization. Deskolemization is very complex and may
fail. If it does, we set; := ¥, and we exit. Otherwise, we
set>l; to be the result of deskolemization.

Procedure ELIMINATE
Input: Signaturer

Constraintss
Relation SymbolS

Output: Constraintss’ overo oro — {S}

1
2
3
4

. X' := VIEWUNFOLD(X, S). On success, retuiny’.

. X/ := LEFTCOMPOSKZX, S). On success, return’.
. ¥ := RIGHTCOMPOSHY, S). On success, retuim’.
. ReturnX and indicate failure.

Procedure CoMmPOSE
Input: Signaturesr, o2, 03

Constraints212, Yos
Relation Symbols

Output: Signaturer satisfyinge1 Uos C o C o1 Uoa Uos

Constraints overo

. Setg :=01 Uoa Uos.

. Setd = X1 U Yas.

. For every relation symbd € o» do:
¥ := ELIMINATE (0, X, S)

On success, set:= o — {S}.

. Returno, X.



THEOREM1 Algorithm COMPOSEIs correct.

Note thatx, N, anduU all behave in the same way from the

PROOF (Sketch) Correctness follows from the soundness and POint of view of MONOTONE thatis, MONOTONEE U Es, 5) =

completeness of the view unfolding, left-compose, and trigh
compose steps, and the proof of correctness of the deskaztari
algorithmin [8]. [

3.2 View Unfolding

The goal of the unfold views step is to eliminateat an early stage
by applying the technique of view unfolding. It takes as inpset

of constraints, and a symbok to be eliminated. It produces as
output an equivalent set of constraidts with S eliminated (in the
success case), or returfig (in the failure case). The step proceeds
as follows. We look for a constraigtof the formS = FE; in Xg
whereFE is an arbitrary expression that does not confailf there

is no such constraint, we sBt := X, and report failure. Other-
wise, to obtairX; we removet and replace every occurrencef

in every other constraint iy with E;. Note thatS may occur in
expressions that are not necessarily monotort ior that contain
user-defined operators about which little is known. In gitese,
becauses is defined by an equality constraint, the result is still an
equivalent set of constraints. This is in contrast to lefhpose and
right compose, which rely for correctness on the monotonici
expressions ity when performing substitution.

ExXAMPLE 5 Suppose the input constraints are given by
S:R1 XRQ, ﬂ(Rg—S)ng, ngTg—Uc(S).

Then unfold views deletes the first constraint and subsstlf x
R, for S in the second two constraints, producing

W(Ra*(R1 XRQ)) ng, T2 ngfo'c(R1 XRQ).

Note that in this example, neither left compose nor right pose
would succeed in eliminating. Left compose would fail because
the expressiofls — o.(.S) is not monotone ir6. Right compose
would fail because the expressiaiiRs — S) is not monotone in
S. Therefore view unfolding does indeed give us some extrapow
compared to left compose and right compose alone. O

3.3 Checking Monotonicity

The correctness of performing substitution to eliminate/mtzol

S in the left compose and right compose steps depends upon the o:

left-hand side (lhs) or right-hand side (rhs) of all conisitbeing

monotone inS. We describe here a sound but incomplete procedure

MonNoToNEfor checking this property. MNOTONEtakes as input
an expressiorZ and a symbolS. It returns ‘m’ if the expression
is monotone inS, ‘a’ if the expression is anti-monotone M ‘i’ if

the expression is independent®{for example, because it does not
containsS), and ‘u’ (unknown) if it cannot say how the expression
depends oy. For example, given the expressistx 7" and symbol

S as input, MONOTONE returns ‘m’, while given the expression
0e, (S) — 0c,(S) and the symbob, MONOTONETeturns ‘u’.

The procedure is defined recursively in terms of the six basic

relational operators. In the base case, the expression is-a s
gle relational symbol, in which case ®&NOTONE returns ‘m’ if
that symbol isS, and ‘i’ otherwise. Otherwise, in the recursive
case, MoNOTONE first calls itself recursively on the operands of
the top-level operator, then performs a simple table lodkaged
on the return values and the operator.
sionso(E1) andw(E:), we have that MNOTONE 0 (E1),S) =
MONOTONE®(E1),S) = MONOTONEE1, S) (in other words,

o andr do not affect the monotonicity of the expression). Other-
wise, for the binary expressio$, U E», E1 N B3, B x Eo, and

For the unary expres-

MONOTONEE; N E3,S) = MONOTONHE; X Ej3,S), for all
E,, E». Set difference—, on the other hand, behaves differently
than the others.

In order to support user-defined operators IONDTONE, we
just need to know the rules regarding the monotonicity ofaper-
ator in .S, given the monotonicity of its operands $h Once these
rules have been added to the appropriate tablesN®roNE sup-
ports the user-defined operator automatically.

3.4 Left Compose

Recall from Section 3.1 that left compose consists of foumma
steps, once equality constraints have been converted tainen
ment constraints. The first is to check the constraints fgintri
monotonicity inS, that is, to check whether every expressiom
which S appears to the right of a containment constraint is mono-
tonic in S. Section 3.3 already described the procedure for check-
ing this. The other three steps are left normalize, bastoctah-
pose, and eliminate domain relation. In this section we ritesc
those steps in more detail, and we give some examples ttrdtas
their operation.

3.4.1 Left Normalize

The goal of left normalize is to put the set of input constisin
a form such that the symbdl to be eliminated appears on the left
of exactly one constraint, which is of the foréh C E,. We say
that the constraints are thenl@ft normal form.In contrast to right
normalize, left normalize does not always succeed even@bdh
sic relational operators. Nevertheless, left composittonseful
because it may succeed in cases where right compositianfdail
other reasons. We give an example of this in Section 3.4.2.

We make use of the following identities for containment con-
straints in left normalize (note that here again the suptcof the
projection operatot: are omitted for readability):

U: Ei1UFEy; CE3«— E1 C E3, By C Es
By —FE; CFE3«— By CEUE;3
T W(El)gEQHElgEQXDT

G'C(El) Q E2 > E1 Q E2 U (DT — O'C(DT))

To each identity in the list, we associate a rewriting ruk tiakes
a constraint of the form given by the Ihs of the identity and-pr
duces an equivalent constraint or set of constraints of dnen f
given by the rhs of the identity. For example, from the iden-
tity for o we obtain a rule that matches a constraint of the form
o.(E1) C E, and rewrites it into equivalent constraints of the form
E, C E;U (D" —o0.(D")). Note that there is at most one rule for
each operator. So to find the rule that matches a particupesx
sion, we need only look up the rule corresponding to the tagimo
operator in the expression.

We do not know of identities covering all of the basic relatib
operators. In particular, constraints of the followingnfoseem to
be problematic:

Ei1NEyCE3, Ei1XEyCFEs FEi—FExCE;s,

where in the last constraink); is the expression that contains the
symbol S. For example, one might be tempted to think that the
constraintE; x B2 C Ej3 could be rewritten ag; C w(Es3), F2 C
w(E3). However, the following counterexample shows that this
rewriting is invalid:

E, — E», there are sixteen cases to consider, corresponding to theExAMPLE 6 Let R, S be unary relations and I&t be a binary re-

possible values of MNOTONE E, S) and MONOTONE E2, S).

lation. Define the instancd to be R4 := {1,2}, S* := {1,2},



T4 := {11,22}. ThenA E {R C m(T),S C m=(T)}, but
ABE{RxSCT}. 0

In addition to the basic relational operators, left norzslnay
be extended to handle user-defined operators by specifyilsgra
defined rewriting rule for each such operator.

Left normalize proceeds as follows. LEt be the set of input
constraints, and |t be the symbol to be eliminated froBy . Left
normalize computes a s&f; of constraints as follows. S&t; :=
31. We loop as follows, beginning @t= 1. In theith iteration,
there are two cases:

1. If there is no constraint iir; that containsS on the lhs in a
complex expression, s&f; to beIl'; with all the constraints
containingS on the |hs collapsed into a single constraint,
which has an intersection of expressions on the right. For
example,S C E;,S C E; becomesS C E1 N E,. If S
does not appear on the lhs of any expression, we adi to
the constraintS C D" wherer is the arity of S. Finally,
return success.

2. Otherwise, choose some constragint= E; C Es, where
FE; containsS. If there is no rewriting rule for the top-level
operator inEy, set¥] := ¥; and return failure. Otherwise,
setl'; 11 to be the set of constraints obtained fréinby re-
placing¢ with its rewriting, and iterate.

EXAMPLE 7 Suppose the input constraints are given by
R-SCT, =n(S)CU.

where S is the symbol to be eliminated. Then left normalization
succeeds and returns the constraints

RCSUT, SCUxD". O

EXAMPLE 8 Suppose the input constraints are given by
RNSCT, =n(S)CU.

Then left normalization fails, because there is no rule tiatgthe
lIhsof RNS CT. O

EXAMPLE 9 Suppose the input constraints are given by

RNTCS, UCx(S).

Since there is no constraint containifign the left, left normalize
adds the trivial constrairi C D", producing

RNTCS, UCH(S), SCD. O

3.4.2 Basic Left Compose

Among the constraints produced by left normalize, theresisgle
constraing := S C FE, that hasS onits |Ihs. In basic left compose,
we removet from the set of constraints, and we replace every other
constraint of the fornE, C M (S), whereM (.S) is monotonic in

S, with a constraint of the fornk’, C M(FE4). This is easier to
understand with the help of a few examples.

ExamMPLE 10 Consider the constraints from Example 7 after left
normalization:

RCSUT, SCUxD".

The expressio U T'is monotone inS. Therefore, we are able to
left compose to obtain

RC(UxD')UT.

Note although the input constraints from Example 7 could fss
well be put in right normal form, right compose would fail daeise
the expressiolk — S is not monotone ity. Thus left compose does
indeed give us some additional power. ]

ExAmMPLE 11 We continue with the constraints from Example 9:

RNTCS, UCn(S), SCD".
We left compose and obtain
RNT CD", UCnx(D").

Note that the active domain relatidn occurs in these constraints.
In the next section, we explain how to eliminate it. |

3.4.3 Eliminate Domain Relation

We have seen that left compose may produce a set of constraint
containing the symbaD which represents the active domain rela-
tion. The goal of this step is to eliminafe from the constraints, to
the extent that our knowledge of the operators allows, whiely
result in entire constraints disappearing in the procesgeils We

use rewriting rules derived from the following identities the ba-

sic relational operators:

E.UuD"=D"
E,—D" =0

ExND" = E
mr(D") = D!

(We do not know of any identities applicable to cross prodarct
selection.) In addition, the user may supply rewriting sufer
user-defined operators, which we will make use of if pres&€he
constraints are rewritten using these rules until no rufdiap. At

this point,D may appear alone on the rhs of some constraints. We
simply delete these, since a constraint of this form is Satiy

any instance. Note that we do not always succeed in elinnig#2i
from the constraints. However, this is acceptable, sinanatcaint
containingD can still be checked.

EXAMPLE 12 We continue with the constraints from Example 11:

RNTCD", UCn(D").

First, the domain relation rewriting rules are applied)diiey

RNTCD", U C D",

wherek is the arity ofr(D"). Then, since both of these constraints
have the domain relation alone on the rhs, we are able to gimpl
delete them. O

3.5 Right Compose

Recall from Section 3.1 that right compose proceeds thrdivgh
main steps. The first step is to check that every expresSitmat
appears to the left of a containment constraint is monotonit.
The procedure for checking this was described in SectionTha
other four steps are right normalize, basic right composgnt-+
denormalize, and eliminate empty relations. In this sective
describe these steps in more detail and provide some example

3.5.1 Right Normalize

Right normalize is dual to left normalize. The goal of rigbtmal-
ize is to put the constraints in a form whe§eappears on the rhs of
exactly one constraint, which has the foith C S. We say that
the constraints are then fight normal form We make use of the
following identities for containment constraints in rigidirmaliza-
tion (note that here again the subscripts of the projectmerator
« are omitted for readability):



U: B CEUEs— E — B C Es
— FE1 — FEy C E3
: EiCE;NE3 — By CEy,E1 CEs
X : E1 C Ey X E3 > w(Eq) C Ey,w(E1) C Es
—: Ei1CE,—FE;— F1CEy,E1NE; C0
Ei C7w(Es) « f(E1) C Ey
Ey Coc(Es2) < E1 C Eay E1 Coo(DT)

3

q

As in left normalize, to each identity in the list, we assteia
rewriting rule that takes a constraint of the form given bg ths

of the identity and produces an equivalent constraint oosebn-
straints of the form given by the rhs of the identity. For epéen
from the identity foro we obtain a rule that matches constraints of
the formE; C o.(E-) and produces the equivalent pair of con-
straintsEy C E; andE; C o.(D"). As with left normalize,
there is at most one rule for each operator. So to find the hale t
matches a particular expression, we need only look up tlescart
responding to the topmost operator in the expression. Itrasito
the rules used by left normalize, there is a rule in this bs&fach of
the six basic relational operators. Therefore right noizealways
succeeds when applied to constraints that use only basigomeh!
expressions.

Just as with left normalize, user-defined operators can pe su
ported via user-specified rewriting rules. If there is a wsfined
operator that does not have a rewriting rule, then right ratiza
may fail in some cases.

Note that the rewriting rule for the projection operatamay in-
troduce Skolem functions. The deskolemize step will latemapt
to eliminate any Skolem functions introduced by this rulewé
have additional knowledge about key constraints for the vas
lations, we use this to minimize the list of attributes on eththe
Skolem function depends. This increases our chances oféssiat
deskolemize.

Right normalize proceeds as follows. ¥t be the set of in-
put constraints, and lef be the symbol to be eliminated froRx.
Right normalize computes a sEf, of constraints as follows. Set
'y := X2. We loop as follows, beginning d@t= 1. In theith
iteration, there are two cases:

1. If there is no constraint ifv; that containsS on the rhs in a
complex expression, s&t, to be the same ds; but with all
the constraints containingon the rhs collapsed into a single
constraint containing a union of expressions on the left. Fo
example,F; C S, E> C S becomesk; UFE; C S. If S
does not appear on the rhs of any expression, we ad to
the constrainf C S. Finally, return success.

2. Otherwise, choose some constragint= E; C Es, where
E> containsS. If there is no rewriting rule corresponding to
the top-level operator ifrs, sett) := X5 and return failure.
Otherwise, sef'; ;1 to be the set of constraints obtained from
T'; by replacingg with its rewriting, and iterate.

ExampPLE 13 Consider the constraints given by
SxTCU, TCoaoc(S)xmn(R).

Right normalize leaves the first constraint alone and rewribe
second constraint, producing

SxTCU, =#(T)CS, =(T)Co.(D"), =(T)Cn(R).

Notice that rewriting stopped for the constrair(tl’) C w(R) im-
mediately after it was produced, becauseoes not appear on its
rhs. O

EXAMPLE 14 Consider the constraints given by
RCw(Sx(TNU)), SCoc(T).

Right normalize rewrites the first constraint and leavesstéond
constraint alone, producing

m(f(R) €S, w(f(R)STNU, SCoc(T).

Note that a Skolem functiori was introduced in order to handle
the projection operator. After right compose, the desk&demro-
cedure will attempt to get rid of the Skolem functign O

3.5.2 Basic Right Compose

After right normalize, there is a single constraint= E; C S
which hasS on its rhs. In basic right compose, we remg@vigom
the set of constraints, and we replace every other constvhthe
form M (S) C E., whereM (S) is monotonic inS, with a con-
straint of the formM (E1) C E». This is easier to understand with
the help of a few examples.

ExamMPLE 15 Recall the constraints produced by right normalize
in Example 13:

SxTCU, w(T)CS, =«(T)Co.(D"), =(T)Cn(R).

Given those constraints as input, basic right compose jpesiu
m(T)xT CU, =(T)Co.(D"), =(T)Cr(R).

Since the constraints contain no Skolem functions, in tageove
are done. O

EXAMPLE 16 Recall the constraints produced by right normalize
in Example 14:

T(f(R) C S, w(f(R)CTNU, SCou(T).
Given those constraints as input, basic right compose jpexiu
m(f(R) €TNU,  w(f(R)) € oc(T).

Note that composition is not yet complete in this case. Weneitd
to try to complete the process by deskolemizing the comgtad
get rid of f. This process is described in the next section. [

3.5.3 Right-Denormalize

During right-normalization, we may introduce Skolem fuaos in
order to handle projection. For example, we transfétrx m (.5)
whereR is unary ands is binary tof; (R) C S. The subscript 1 in-
dicates thaf’ depends on position 1 @. Thatis,f1(R) is a binary
expression where to every value fhanother value is associated
by f. Thus, after basic right-composition, we may have constsai
with Skolem functions in them. The semantics of such coimgta
is that they hold iff there existomevalues for the Skolem functions
which satisfy the constraints. The objective of the degkdtation
step is to remove such Skolem functions. It is a complex &p-st
procedure based on a similar procedure presented in [8].
Procedure BSKOLEMIZE(X)

. Unnest

. Check for cycles

. Check for repeated function symbols
. Align variables

. Eliminate restricting atoms

. Eliminate restricted constraints

OO WNBE



7.
8.
9.
10.
11.
12.

Here we only highlight some aspects specific to this implemen
tation. First of all, as we already said, we use an algebsada
representation instead of a logic-based representatioSkalem
function for us is a relational operator which takes-aary expres-
sion and produces an expression of arity 1. Our goal at the end
of step 3 is to produce expressions of the form

7TO'fg...O'(R1 X RQ X ..o X Rk)

Check for remaining restricted constraints
Check for dependencies

Combine dependencies

Remove redundant constraints

Replace functions with-variables
Eliminate unnecessatyvariables

Here

m selects which positions will be in the final expression,

e the outers selects some rows based on values in the Skolem
functions,

f,g,...is asequence of Skolem functions,

the innerc selects some rows independently of the values in
the Skolem functions, and

(R1 X Rz x ... X Ry) is a cross product of possibly repeated
base relations.

The goal of step 4 is to make sure that across all constrailhts,
these expressions have the same arity for the part afteikibiers
functions. This is achieved by possibly padding with fhesym-
bol. Furthermore, step 4 aligns the Skolem functions in sualay
that across all constraints the same Skolem functions appedhe
same sequence. For example, if we have the two expresgioR$
andg; (S) with R, S unary, step 4 rewrites them as

7Tl3g2f1(R X S) and7T24ng1(R X S)

Here R x S is a binary expression wit® in position 1 andS in
position 2 andg: f1(R x S) is an expression of arity 4 wittR
in position 1,.S in position 2, f in position 3 depending only on
position 1, andy in position 4 depending only on position 2.

The goal of step 5 is to eliminate the outer seleciwoand of
step 6 to eliminate constraints having such an outer seleclihe
remaining steps correspond closely to the logic-basedagpr

Deskolemization is complex and may fail at several of thpste
above. The following two examples illustrate some casesrevhe
deskolemization fails.

ExampPLE 17 Consider the following constraints from [5] where
E,F,C,D are binary and, = {F,C}:

ECF, m(FE)Cm(C), m(E)Cm(C)
T46 0'1:372:5(F x C x C) - D
Right-composition succeeds at eliminatifgo get
m(E) Cmi(C), m(E) Cmi(C)
46 0'1:372:5(E x C % C) g D
Right-normalization foC' yields
mi3f12(E) CC, masg12(E) CC
71'460'1:3,2:5(E x C' x C) cD
and basic right-composition yields 4 constraints inclgdin
Ta601=3,2=5(E X (m13 f12(E)) x (m3f12(E))) € D

which causes deskolemize to fail at step 3. Therefore, right
compose fails to eliminaté’. As shown in [5] eliminatingC' is
impossible by any means. O

3.5.4 Eliminate Empty Relation

Right compose may introduce the empty relation synfbiokto

the constraints during composition in the case whgréoes not
appear on the rhs of any constraint. In this step, we attempt t
eliminate the symbol, to the extent that our knowledge oftjher-
ators allows. This is usually possible and often result®mstraints
disappearing entirely, as we shall see. For the basic sakitop-
erators, we make use of rewriting rules derived from theofoilhg
identities for the basic relational operators:

EiUud=FE Eind=10 Ei—-0=F
0—E c.(0)=10 mr(0) =0

In addition we allow the user to supply rewriting rules foets
defined operators. The constraints are rewritten usingethdes
until no rule applies. At this point, some constraints mayehtine
form @ C E,. These constraints are then simply deleted, since they
are satisfied by any instance. We do not always succeed imakim

ing the empty relation symbol from the constraints. Howgethés

is acceptable, since a constraint contairfirgan still be checked.

4. EXPERIMENTS

Prior work [5, 8] showed that characterizing the class of piags
that can be composed is very difficult, even when no outeisjoin
unions, or difference operators are present in the mappamg c
straints. In this section we make a first attempt to exploeex
imentally the boundaries of mappings that can be composkd. U
mately, our goal is to develop a mapping composition benckma
that can be used to compare competing implementations of map
ping composition. The experiments that we report on coulchfa
part of such a benchmark. Due to space limitations we focub@n
key results; a more detailed discussion is in [2].

All composition problems used in our experiments are alkgla
for online download in a machine-readable forrhattle designed a
plain-text syntax for specifying mapping composition ssklap-
ping constraints are encoded according to the index-bdgebraic
notation introduced in Section 2. We built a parser thatsasin-
put a textual specification of a composition problem and edsv
it into an internal algebraic representation, which is feadar al-
gorithm. A sample run of the algorithm on mappings that conta
relational operators union, difference, and left outerjisi shown
in [2].

We used two data sets in our experiments. The first one cantain
22 composition problems drawn from the recent literature7[5
8], which illustrate subtle composition issues. The ativacess
of this data set is that the expected output mappings weiteder
manually and documented in the literature, sometimes dsimggl
proofs. So, this data set serves as a test suite that can thdause
verifying implementations of composition.

The second data set used in the experiments is syntheting Usi
synthetic mappings appears to be the primary way to studsycie
ability and effectiveness of mapping composition; this rapgh
was also followed in [14]. Our study is based on the schema evo
lution scenarios outlined in the introduction. Specifigalle focus
on schema editing and schema reconciliation tasks, sinppimg
adaptation can be viewed as a special case of schema réatoil
where one of the input mappings is fixed.

In the study based on synthetic mappings, we determine the
success rate of our algorithm in eliminating symbols fori-var
ous composition tasks, measure its execution time, andtigete
the contributions of the main steps of the algorithm on itsrev
all performance. To generate synthetic data for our exparis)

2http://iresearch.microsoft.com/db/ModelMgt/compasii



Primitive | Description Input relation ~ Output relation(s) Mapping straint(s)

AR Add relation 0 R(A,B)

DR Drop relation R(A) 0 0

AA Add attribute R(A) S(A,C) R =ma(S)

DA Drop attribute R(A),Ce A SA-{C} Ta—ic}(R) =S

D Add default R(A) S(A,C) R x {c} =5; R=ma(occ=c(95))

H Horizontal partitioning R(A),C € A  S(A),T(A) 0Cc=cg(R) =8, 00=cr(R)=T; R=5SUT
Y, Vertical partitioning R(A,B,C) S(A,B),T(A,C) wmaB(R)=S;mac(R)=T;R=SXaT
N Normalization R(A,B,C) S(A,B), T(A,C) same as verticalta (T') C wa(S)

Sub Subset R(A) S(A) RCS

Sup Superset R(A) S(A) RDOS

Figure 1: Schema evolution primitives

we developed a tool which we call schema evolution simula-
tor. The simulator is driven by a weighted set of schema evolu-
tion primitives, such as adding or dropping attributes aidtions,
schema normalization, and vertical partitioning. It proglsi an

symbol works well in many cases, but fails in others due to de-
Skolemization. Leveraging key constraints in a more diveay,
e.g., using specialized rules in the composition algorjthmay in-
crease its coverage.

evolved schema and a mapping between the original schema and In the remaining space we present some details of our stuay. T

the evolved schema.

In the schema editing scenario, we run the simulator to mimic
the schema transformation operations performed by a dstate:
signer. The mapping between the original schema and therdurr

experiments were conducted on a 1.5 GHz Pentium M machine.

4.1 Schema Evolution Simulator

state of the schema is composed with the mapping produced byFigure 1 lists the schema evolution primitives implemeritedur

each subsequent schema evolution primitive. We recorditwess
or failure of each composition operation for the applieadnjtives.

To study schema reconciliation, we use the simulator toyred
a large number of evolved schemas and mappings for a givgn ori
inal schema. We then compose the generated mappings pairwis
using our composition tool.

Our key observations from this study are summarized below:

e Our algorithm is very effective in performing composition.

In most settings, it is able to eliminate as much as a half of
the symbols from the intermediate signature, and oftenfall o
them (Figures 2,5-7).
The algorithm’s median running time is in the subsecond
range for mappings containing hundreds of constraints (Fig
ures 3-5,7).

evolution primitives are applied to schemas (Figure 7).
Certain kinds of schema evolution primitives are more {ikel
to produce complications for composition than others (Fig-
ures 2,3,5).

Key constraints do not substantially affect the symbol-
eliminating power of the algorithm, yet significantly inese
the running time (Figures 2,3).

It is beneficial to keep the symbols that could not be elimi-

simulator. Each primitive takes zero or one relation as irgnd
produces zero or more new relations and constraints. Thipeal
constraints link the output relations to the input relasiar rep-
resent key or inclusion constraints on the output relatidnsthe
figure, we use the named perspective on the relational agebr
simplify the exposition. Attribute lists are shown in bokld.,A),
keys are underlined, and lower case symbols denote cossidra
shown list of primitives covers a large fraction of thosedisethe
schema evolution and data integration literature.

The first four primitivesAR, DR, AA, andDA add or delete rela-
tions and attributes. PrimitivRR creates a new relation. The arity
of the new relation is chosen at random between some minimaal a
maximal relation arity (2 and 10, in our study). If keys aralgied,
the created relation may have a key whose size is chosen dretwe
some minimal and maximal value (1 and 3, in our study). Pmit

Composition becomes increasingly harder as more schemaAA adds a new attribut€’ to the relationR, i.e., produces a new

relation S that containg” and all existing attribute of R. The
mapping constraink = wa (S) states thak can be reconstructed
as a projection o%. Primitive DA is complementary té\A.
PrimitivesD, H, V, andN have forward and backward variants.
The forward variant, labeled with subscript ‘f’, containslythe
constraints that define the output relations in terms of et re-
lations. The backward variant (‘b’) contains only the coaistts
that define the inputs in terms of the outputs (all forward laack-

nated in the mappings as second-order constraints as long agvard variants are listed on the x-axis in Figure 2).

possible. Subsequent composition operations may eliminat
up to a third of those symbols [2].

Our algorithm appears to be order-invariant on the studied
data sets, i.e., it eliminates the same fraction of symbols n

matter in what order the symbols are tried (in the loop in

Line 3 of procedure GMPOSEIn Section 3.1).

We found that the output constraints produced by our algarit
are often more verbose than the ones derived manually, so sim
plification of output mappings is essential. An example afhsu
simplification is detecting and removing implied consttairMap-
ping simplification appears to be a problem of independdatést
and is out of scope of this paper. Furthermore, we found that o
technique of representing key constraints using the adteain

The forward and backward variants reflect distinct evolusioe-
narios, as we explain in more detail in [2]. For example, i@
D adds an attribut€ with a default value:. The forward variant
Dy outputs the mapping constraifitx {c} = S, while Dy, outputs
R = ma(oc=c(S5)). Thus,D; states thatS is determined byR
and that the newly added attribufé containsc-values only. Dy,
produces a weaker constraint that allows attribtit€' to contain
other values beyond

Primitive H performs a lossless horizontal partitioning of the in-
put relationR. The vertical partitioning primitive¥, V¢, Vi, are
the only ones that require the input relatiénto have a key. The
attribute set ofR is partitioned across output relatioSsandT'.
Primitive N captures the schema normalization rule from database
textbooks. The constantscr, andcgs used in the primitive® and



@ no keys @ keys B no unfolding & no right compose ‘

Fraction of symbols eliminated

s
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\w.

(A

7

N SUB SUP

H Vvf Vb VvV Nf

Figure 2: Eliminated symbols per primitive

H and their variants are drawn from a fixed-size pool of coristan
(in our study, of size 10).

All evolution primitives discussed above produce equatiip-
straints. Some schema integration and data exchange gxeimar
the literature assume the so-called open-world semartios&p-
ping constraints. To accommodate these scenarios in o@rexp
iments, we added two further primitiveSub and Sup. Com-
position of mapping constraints produced $yb and Sup with
those of other primitives yields inclusion constraintd theneralize
global-local-as-view (GLAV) settings. For example, apptythe
DA primitive produces the constrainty _ ;) (R) = S. Applying
the Sub primitive thereafter may produce the constrathtC 7.
Composing the two yields the constraitg ¢, (R) C T

Event Vectorsin each run, the schema evolution simulator ap-
plies a sequence eflits Each edit consists of executing a particu-
lar schema evolution primitive followed by mapping compiosi.

An event vectospecifies the proportions of primitives of a certain
kind appearing in an edit sequence.

We are not aware of studies that investigated the frequehcy o
schema evolution primitives used in real-world evoluticersar-
ios. Thus, we assume that all primitives are applied withsémae
frequency, with the exception of adding attribut@g\(is twice as
frequent) and dropping relationBR is five times less frequent). In
[2], we specify three other event vectors and discuss theiact.

4.2 Study on Synthetic Mappings

The output mapping produced by the composition algorithrg ma
be exponentially larger than the input mappings. To corttiel
exponential blowup, the algorithm aborts whenever the wttitp-
input size ratio exceeds a certain factor (100, in our stutly® size

of mappings is measured as the total number of operatorssaatio
constraints. In our experiments, the algorithm fails tonéliate
only about 1% of symbols due to such blowup.

Schema Editing Scenariosigure 2 shows the success rate
of our algorithm in composing the mappings of an edit seqgeenc
Four configurations are examined (‘no keys’, ‘keys’, ‘no aidf
ing’, ‘no right compose’). The data for each configuratiorsved-
tained as follows: in each run, 100 edits are applied to aaanhgl
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Figure 4: Sorted execution time across 100 runsfor ‘no keys

the algorithm is disabled. Similarly, for ‘no right compas¥er-
tical partitioning is not applicable if no keys are presé¢herefore
the respective bars remain empty in all configurations beysk

The figure shows that the symbols introduced by some priegtiv
are easier to eliminate than othekk, V¢, andN¢ are the ‘hardest’
primitives. Adding keys to schemas does not significantfgcf
the symbol-eliminating power of the algorithm. Turning eféw
unfolding or right compose weakens the algorithm substnti

The execution times for this experiment are in Figure 3. Dis-
abling view unfolding or adding keys increases the runninget
significantly. When a keyed relation is eliminated, its keyn¢
straints need to be propagated to all expressions thaereferit.
So, mappings produced in the ‘keys’ setting contain on @era
218 constraints with 4,300 relational operators, as oppts®5
constraints with 800 operators for ‘no keys’. The mediarcakien
time per run (for all 100 edits) is around 0.2 sec for ‘no keyrsd
‘no right compose’, 2.8 sec for ‘keys’, 2.1 sec for ‘no unfioigl
— a tenfold increase (not shown in the figure). The reasondor r
porting the median time instead of the average time is exéisgl
in Figure 4: most runs have close running times except foma fe
outliers that skew the average. This graph is characterastioss
all experiments.

Figure 5illustrates the impact of inclusion constraints @qual-
ity constraints) on a few selected schema evolution pristiand
the overall running time. Each edit sequence correspontting
valuex on thez-axis is constructed by using the event vector ob-
tained as a copy of the Default vector in which the proportién
Sub andSup primitives is set tar. On average, the composition

generated schema of a default size 30. The mappings producedasks become more difficult (the total fraction of symbolsnel

in each edit are composed. The proportions of primitiveshin t
edit sequence correspond to the Default event vector. Tinbars
shown for each configuration are averaged across 100 ruret. Th
is, 10,000 composition tasks are executed for each configora

In the ‘no keys’ and ‘keys’ configurations all features of tie
gorithm are exploited; in the latter the relations may comkays.
In the ‘no unfolding’ configuration, the View Unfolding molduof

inated in all edits decreases) since the effectivenessen¥ vin-
folding drops. However, the algorithm fails faster as itedt$ the
symbols that cannot be isolated on either the left or rigthe sif
constraints, and so the overall running time decreases.

Schema Reconciliation ScenaridgSgure 6 depicts a
schema reconciliation scenario. Each task consists of oeimg
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left compose (not shown) does not have a noticeable impaitteon
symbol-eliminating power of the algorithm for the settingsed
in the study, mostly because the simulator does not intreduny
relational operators beyonrd 7, U, X, x.

5. CONCLUSIONS

This paper presented a new algorithm for composition ofireial
algebraic mappings that extends significantly the algoritiin [5,

8]. It has many new features: it makes a best effort to eliteina
as many symbols as possible; it can handle unknown or ggrtial
known operators, including ones that are not monotonicliofal
their arguments; it introduces the left-compose transétion; and

it is highly extensible. We demonstrated its value by an expe
imental study of its effectiveness on a large set of synth#yi-
generated mappings.
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