
Implementing Mapping Composition

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

Todd J. Green∗

U. of Pennsylvania
tjgreen@cis.upenn.edu

Sergey Melnik
Microsoft Research

melnik@microsoft.com

Alan Nash∗

U.C. San Diego
anash@cs.ucsd.edu

ABSTRACT
Mapping composition is a fundamental operation in metadata
driven applications. Given a mapping over schemasσ1 andσ2 and
a mapping over schemasσ2 andσ3, the composition problem is
to compute an equivalent mapping overσ1 andσ3. We describe
a new composition algorithm that targets practical applications. It
incorporates view unfolding. It eliminates as manyσ2 symbols as
possible, even if not all can be eliminated. It covers constraints
expressed using arbitrary monotone relational operators and, to a
lesser extent, non-monotone operators. And it introduces the new
technique of left composition. We describe our implementation, ex-
plain how to extend it to support user-defined operators, andpresent
experimental results which validate its effectiveness.

1. INTRODUCTION
A mapping is a relationship between the instances of two schemas.
Some common types of mappings are relational queries, rela-
tional view definitions, global-and-local-as-view (GLAV)asser-
tions, XQuery queries, and XSL transformations. The manipu-
lation of mappings is at the core of many important data man-
agement problems, such as data integration, database design, and
schema evolution. Hence, general-purpose algorithms for manipu-
lating mappings have broad application to data management.

Data management problems like those above often require that
mappings be composed. The composition of a mappingm12 be-
tween schemasσ1 andσ2 and a mappingm23 between schemas
σ2 andσ3 is a mapping betweenσ1 andσ3 that captures the same
relationship betweenσ1 andσ3 asm12 andm23 taken together.

Given that mapping composition is useful for a variety of
database problems, it is desirable to develop a general-purpose
composition component that can be reused in many application set-
tings, as was proposed in [1, 3]. This paper reports on the develop-
ment of such a component, an implementation of a new algorithm
for composing mappings between relational schemas. Compared to
past approaches, the algorithm handles more expressive mappings,
makes a best-effort when it cannot obtain a perfect answer, includes
several new heuristics, and is designed to be extensible.
∗Work performed during an internship at Microsoft Research.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

1.1 Applications of Mapping Composition
Composition arises in many practical settings. In data integration,
a query needs to be composed with a view definition. If the view
definition is expressed using global-as-view (GAV), then this is an
example of composing two functional mappings: a view definition
that maps a database to a view, and a query that maps a view to
a query result. The standard approach is view unfolding, where
references to the view in the query are replaced by the view defi-
nition [10]. View unfolding is simply function composition, where
a function definition (i.e., the body of the view) is substituted for
references to the function (i.e., the view schema) in the query.

In peer-to-peer data management, composition is used to support
queries and updates on peer databases. When two peer databases
are connected through a sequence of mappings between interme-
diate peers, these mappings can be composed to relate the peer
databases directly. In Piazza [11], such composed mappingsare
used to reformulate XML queries. In the ORCHESTRAcollabora-
tive data sharing system [12], updates are propagated usingcom-
posed mappings to avoid materializing intermediate relations.

A third example is schema evolution, where a schemaσ1 evolves
to become a schemaσ′

1. The relationship betweenσ′
1 andσ1 can

be described by a mapping. Afterσ1 has evolved, any existing
mappings involvingσ1, such as a mapping fromσ1 to schemaσ2,
must now be upgraded to a mapping fromσ′

1 to σ2. This can be
done by composing theσ′

1-σ1 mapping with theσ1-σ2 mapping.
Depending on the application, one or both of these mappings may
be non-functional, in which case composing mappings is no longer
simply function composition.

A different schema evolution problem arises when an initial
schemaσ1 is modified by two independent designers, producing
schemasσ2 andσ3. To merge them into a single schema, we need
a mapping betweenσ2 andσ3 that describes their overlapping con-
tent [4, 9]. Thisσ2-σ3 mapping can be obtained by composing
the σ1-σ2 andσ1-σ3 mappings. Even if the latter two mappings
are functions, one of them needs to be inverted before they can be
composed. Since the inverse of a function may not be a function,
this too entails the composition of non-functional mappings.

Finally, consider a database design process that evolves a schema
σ1 via a sequence of incremental modifications. This produces a
sequence of mappings between successive versions of the schema,
from σ1 to σ2, then toσ3, and so forth, until the desired schema
σn is reached. At the end of this process, a mapping fromσ1

to the evolved schemaσn is needed, for example, as input to the
schema evolution scenarios above. This mapping can be obtained
by composing the mappings between the successive versions of the
schema. The following example illustrates this last scenario.

EXAMPLE 1 Consider a schema editor, in which the designer mod-
ifies a database schema, resulting in a sequence of schemas with

mappings between them. She starts with the schema

Movies(mid, name, year, rating, genre, theater)

wheremid means movie identifier. The designer decides that only
5-star movies and no ‘theater’ or ’genre’ should be present in the
database; she edits the table obtaining the following schema and
mapping:

FiveStarMovies(mid, name, year)

πmid,name,year(σrating=5(Movies)) ⊆ FiveStarMovies (1)

To improve the organization of the data, the designer then splits the
FiveStarMovies table into two tables, resulting in a new schema
and mapping

Names(mid, name) Years(mid, year)

πmid,name,year(FiveStarMovies) ⊆ Names 1 Years (2)

The system composes mappings (1) and (2) into a new mapping:

πmid,name(σrating=5(Movies)) ⊆ Names

πmid,year(σrating=5(Movies)) ⊆ Years

With this mapping, the designer can now migrate data from the
old schema to the new schema, reformulate queries posed overone
schema to equivalent queries over the other schema, etc.

1.2 Related Work
Mapping composition is a challenging problem. Madhavan and
Halevy [6] showed that the composition of two given mappings
expressed as GLAV formulas may not be expressible in a finite
set of first-order constraints. Fagin, Kolaitis, Popa, and Tan [5]
showed that the composition of certain kinds of first-order map-
pings may not be expressible in any first-order language, even by an
infinite set of constraints. That is, that language is notclosedunder
composition. Nash, Bernstein, and Melnik [8] showed that for cer-
tain classes of first-order languages, it is undecidable to determine
whether there is a finite set of constaints in the same language that
represents the composition of two given mappings. These results
are sensitive to the particular class of mappings under considera-
tion. But in all cases the mapping languages are first-order and are
therefore of practical interest.

In [5] Fagin et al. introduced a second-order mapping language
that is closed under composition, namely second-order source-to-
target tuple-generating dependencies. A second-order language is
one that can quantify over function and relation symbols. A tuple-
generating dependency specifies an inclusion of two conjunctive
queries,Q1 ⊆ Q2. It is called source-to-target whenQ1 refers only
to symbols from the source schema andQ2 refers only to symbols
from the target schema. The second-order language of [5] uses
existentially quantified function symbols, which essentially can be
thought of as Skolem functions. Fagin et al. present a composition
algorithm for this language and show it can have practical value for
some data management problems, such as data exchange. However,
using it for that purpose requires a custom implementation,since
the language of second-order tuple-generating dependencies is not
supported by standard SQL-based database tools.

Yu and Popa [14] considered mapping composition for second-
order source-to-target constraints over nested relational schemas in
support of schema evolution. They presented a composition algo-
rithm similar to the one in [5], with extensions to handle nesting,
and with signficant attention to minimizing the size of the result.
They reported on a set of experiments using mappings on both syn-
thetic and real life schemas, to demonstrate that their algorithm is
fast and is effective at minimizing the size of the result.

Nash et al. [8] studied the composition of first-order constraints
that are not necessarily source-to-target. They consider dependen-
cies that can express key constraints and inclusions of conjunctive
queriesQ1 ⊆ Q2 whereQ1 andQ2 may reference symbols from
both the source and target schema. They do not allow existential
quantifiers over function symbols. The composition of constraints
in this language is not closed and determining whether a compo-
sition result exists is undecidable. Nevertheless, they gave an al-
gorithm that produces a composition, if it halts (which it may not
do).

Like Nash et al. [8], we explore the mapping composition prob-
lem for constraints that are not restricted to being source-to-target.
Our algorithm strictly extends that of Nash et al. [8], whichin turn
strictly extends that of Fagin et al. [5] for source-to-target embed-
ded dependencies. If the input is a set of source-to-target embedded
dependencies, our algorithm behaves similarly to that in [5], except
that as in [8] we also attempt to express the result as embedded
dependencies through a deskolemization step. It is known from re-
sults in [5] that such a step can not always succeed. Furthermore,
we also apply a “left-compose” step which allows the algorithm to
handle mappings on which the algorithm in [8] fails.

1.3 Contributions
Given the inherent difficulty of the problem and limitationsof past
approaches, we recognized that compromises and special features
would be needed to produce a mapping composition algorithm of
practical value. The first issue was which language to choose.

Algebra-based rather than logic-based. We wanted our com-
position algorithm to be directly usable by existing database tools.
We therefore chose a relational algebraic language: Each mapping
is expressed as a set of constraints, each of which is either acon-
tainment or equality of two relational algebraic expressions. This
language extends the algebraic dependencies of [13]. Each con-
straint is of the formE1 = E2 or E1 ⊆ E2 whereE1 andE2 are
arbitrary relational expressions containing not only select, project,
and join but possibly many other operators. Calculus-basedlan-
guages have been used in all past work on mapping composition
we know of. We chose relational algebra because it is the language
implemented in all relational database systems and most tools. It is
therefore familiar to the developers of such systems, who are the in-
tended users of our component. It also makes it easy to extendour
language simply by allowing the addition of new operators. Notice
that the relational operators we handle are sufficient to express em-
bedded dependencies. Therefore, the class of mappings which our
algorithm accepts includes embedded dependencies and, by allow-
ing additional operators such as set difference, goes beyond them.

Eliminates one symbol at a time. Our algorithm for composing
these types of algebraic mappings gives a partial solution when it
is unable to find a complete one. The heart of our algorithm is
a procedure to eliminate relation symbols from the intermediate
signatureσ2. Such elimination can be done one symbol at a time.
Our algorithm makes a best effort to eliminate as many relation
symbols fromσ2 as possible, even if it cannot eliminate all of them.
By contrast, if the algorithm in [8] is unable to produce a mapping
overσ1 andσ3 with noσ2-symbols, it simply runs forever or gives
up. In some cases it may be better to eliminate some symbols from
σ2 successfully, rather than insist on either eliminating allof them
or failing. Thus, the resulting mapping may be overσ1, σ′

2, andσ3,
whereσ′

2 is a subset ofσ2 instead of over justσ1 andσ3.
To see the value of this best-effort approach, consider a compo-

sition that produces a mappingm that contains aσ2-symbolS. If
m is later composed with another mapping, it is possible that the
latter composition can eliminateS. (We will see examples of this

later, in our experiments.) Also, the inability to eliminateS may be
inherent in the given mappings. For example,S may be involved
in a recursive computation that cannot be expressed purely in terms
of σ1 andσ3 such those of Theorem 1 in [8]:

R ⊆ S, S = tc(S), S ⊆ T

whereσ1 = {R}, σ2 = {S}, σ3 = {T} with R, S, T binary and
where the middle constraint says thatS is transitively closed. In
this case,S cannot be eliminated, but is definable as a recursive
view onR and can be added toσ1. To use the mapping, those non-
eliminatedσ2-symbols may need to be populated as intermediate
relations that will be discarded at the end. In this example this
involves low computational cost. In many applications it isbetter
to have such an approximation to a desired composition mapping
than no mapping at all. Moreover, in many cases the extra cost
associated with maintaining the extraσ2 symbols is low.

Tolerance for unknown or partially known operators. Instead
of rejecting an algebraic expression because it contains unknown
operators which we do not know how to handle, our algorithm sim-
ply delays handling such operators as long as possible. Sometimes,
it needs no knowledge at all of the operators involved. This is the
case, for example, when a subexpression that contains an unknown
operator can be replaced by another expression. At other times,
we need only partial knowledge about an operator. Even if we do
not have the partial knowledge we need, our algorithm does not fail
globally, but simply fails to eliminate one or more symbols that per-
haps it could have eliminated if it had additional knowledgeabout
the behavior of the operator.

Use of monotonicity. One type of partial knowledge that we ex-
ploit is monotonicity of operators. An operator is monotonein one
of its relation symbol arguments if, when tuples are added tothat
relation, no tuples disappear from its output. For example,select,
project, join, union, and semijoin are all monotone. Set difference
(e.g.,R−S) and left outerjoin are monotone in their first argument
(R) but not in their second (S). Our key observation is that when an
operator is monotone in an argument, that argument can sometimes
be replaced by a expression from another constraint. For example,
if we haveE1 ⊆ R andE2 ⊆ S, then in some cases it is valid to
replaceR by E1 in R−S, but not to replaceS by E2. Athough ex-
isting algorithms only work with select project, join and union, this
observation enables our algorithm to handle outerjoin, setdiffer-
ence, and anti-semijoin. Moreover, our algorithm can handle nulls
and bag semantics in many cases.

Normalization and denormalization. We call left-normalization
the process of bringing the constraints to a form where a rela-
tion symbolS that we are trying to eliminate appears in a single
constraint alone on the left. The result is of the formS ⊆ E

whereE is an expression. We define right-normalization similarly.
Normalization may introduce “pseudo-operators” such as Skolem
functions which then need to be eliminated by a denormalization
step. Currently we do not do much left-normalization. Our right-
normalization is more sophisticated and, in particular, can handle
projections by Skolemization. The corresponding denormalization
is very complex. An important observation here is that normaliza-
tion and denormalization are general steps which may possibly be
extended on an operator-by-operator basis.

Left compose. One way to eliminate a relation symbolS is to re-
placeS’s occurrences in some constraints by the expression on the
other side of a constraint that is normalized forS. There are two
versions of this replacement, right compose and left compose. In
right compose, we use a constraintE ⊆ S that is right-normalized
for S and substituteE for S on the left side of a constraint that is
monotonic inS, such as transformingR×S ⊆ T into R×E ⊆ T ,

thereby eliminatingS from the constraint. Right composition is an
extension of the algorithms in [5, 8]. We also introduce leftcom-
pose, which handles some additional cases where right compose
fails. Suppose we have the constraintsE2 ⊆ M(S) andS ⊆ E1,
whereM(S) is an expression that is monotonic inS but which
we either do not know how to right-normalize or which would
fail to right-denormalize. Then left compose immediately yields
E2 ⊆ M(E1).

Extensibility and modularity. Our algorithm is extensible by
allowing additional information to be added separately foreach op-
erator in the form of information about monotonicity and rules for
normalization and denormalization. Many of the steps are rule-
based and implemented in such a way that it is easy to add rulesor
new operators. Therefore, our algorithm can be easily adapted to
handle additional operators without specialized knowledge about
its overall design. Instead, all that is needed is to add new rules.

Experimental study. We implemented our algorithm and ran
experiments to study its behavior. We used composition problems
drawn from the recent literature [5, 7, 8], and a set of large synthetic
composition tasks, in which the mappings were generated by com-
posing sequences of elementary schema modifications. We used
these mappings to test the scalability and effectiveness ofour algo-
rithm in a systematic fashion. Across a range of compositiontasks,
it eliminated 50-100% of the symbols and usually ran in undera
second. We see this study as a step toward developing a benchmark
for composition algorithms.

The rest of the paper is organized as follows. Section 2 presents
notation needed to describe the algorithm. Section 3 describes
the algorithm itself, starting with a high-level description and then
drilling into the details of each step, one-by-one. Section4 presents
our experimental results. Section 5 is the conclusion.

2. PRELIMINARIES
We adopt the unnamed perspective which references the attributes
of a relation by index rather than by name. Arelational expression
is an expression formed using base relations and thebasic oper-
ators union∪, intersection∩, cross product×, set difference−,
projectionπ and selectionσ as follows. The nameS of a relation
is a relational expression. IfE1 andE2 are relational expressions,
then so are

E1 ∪ E2 E1 ∩ E2 E1 × E2

E1 − E2 σc(E1) πI(E1)

wherec is an arbitrary boolean formula on attributes (identified by
index) and constants andI is a list of indexes. The meaning of
a relational expression is given by the standard set semantics. To
simplify the presentation in this paper, we focus on these basic six
relational operators and view the join operator1 as a derived oper-
ator formed from×, π, andσ. We also allow for user-defined oper-
ators to appear in expressions. The basic operators should therefore
be considered as those which have “built-in” support, but they are
not the only operators supported.

The basic operators differ in their behavior with respect toarity.
Assume expressionE1 has arityr and expressionE2 has aritys.
Then the arity ofE1 ∪ E2, E1 ∩ E2, andE1 − E2 is r = s; the
arity of E1 × E2 is r + s; the arity ofσc(E1) is r; and the arity of
πI(E1) is |I|.

We define an additional operator which may be used in relational
expressions called theSkolem function. A Skolem function has a
name and a set of indexes. Letf be a Skolem function on indexes
I. ThenfI(E1) is an expression of arityr + 1. Intuitively, the
meaning of the operator is to add an attribute to the output, whose

values are some functionf of the attribute values identified by the
indexes inI. We do not provide a formal semantics here. Skolem
functions are used internally as a technical device in Section 3.5.

We consider constraints of two forms. Acontainment constraint
is a constraint of the formE1 ⊆ E2, whereE1 andE2 are re-
lational expressions. Anequality constraintis a constraint of the
form E1 = E2, whereE1 andE2 are relational expressions. We
denote sets of constraints with capital Greek letters and individual
constraints with lowercase Greek letters.

A signatureis a function from a set of relation symbols to posi-
tive integers which give their arities. In this paper, we usethe terms
signature and schema synonymously. We denote signatures with
the letterσ. (We denote relation symbols with uppercase Roman
lettersR, S, T , etc.) We sometimes abuse notation and use the
same symbolσ to mean simply the domain of the signature (a set
of relations).

An instanceof a database schema is a database that conforms to
that schema. We use uppercase Roman lettersA, B, C, etc to de-
note instances. IfA is an instance of a database schema containing
the relation symbolS, we denote bySA the contents of the relation
S in A.

Given a relational expressionE and a relational symbolS, we
say thatE is monotonein S if whenever instancesA andB agree
on all relations exceptS andSA ⊆ SB , thenE(A) ⊆ E(B).
In other words,E is monotone inS if adding more tuples toS
only adds more tuples to the query result. We say thatE is anti-
monotonein S if wheneverA andB agree on all relations except
S andSA ⊆ SB , thenE(A) ⊇ E(B).

Theactive domainof an instance is the set of values that appear
in the instance. We allow the use of a special relational symbol D

which denotes the active domain of an instance.D can be thought
of as a shorthand for the relational expression

Sn

i=1

Sai

j=1
πj(Si)

whereσ = {S1, . . . , Sn} is the signature of the database andai

is the arity of relationSi. We also allow the use of another special
relation in expressions, the empty relation∅.

An instanceA satisfiesa containment constraintE1 ⊆ E2 if
E1(A) ⊆ E2(A). An instanceA satisfiesan equality constraint
E1 = E2 if E1(A) = E2(A). We writeA |= ξ if the instanceA
satisfies the constraintξ andA |= Σ if A satisfies every constraint
in Σ. Note thatA |= E1 = E2 iff A |= E1 ⊆ E2 andA |= E2 ⊆
E1.

EXAMPLE 2 The constraint that the first attribute of a binary
relation S is the key for the relation, which can be expressed
in a logic-based setting as the equality-generating dependency
S(x, y), S(x, z) → y = z may be expressed in our setting as a
containment constraint by making use of the active domain relation

π24(σ1=3(S
2)) ⊆ σ1=2(D

2)

whereS2 is short forS × S andD2 is short forD × D.

A mappingis a binary relation on instances of database schemas.
We reserve the letterm for mappings. Given a class of constraints
L, we associate to every expression of the form(σ1, σ2, Σ12) the
mapping

{〈A, B〉 : (A, B) |= Σ12}.

That is, it defines which instances of two schemas correspondto
each other. HereΣ12 is a finite subset ofL over the signatureσ1 ∪
σ2, σ1 is theinput (or source) signature, σ2 is theoutput (or target)
signature, A is a database with signatureσ1 andB is a database
with signatureσ2. We assume thatσ1 andσ2 are disjoint.(A, B)
is the database with signatureσ1 ∪ σ2 obtained by taking all the
relations inA andB together. Its active domain is the union of the

active domains ofA andB. In this case, we say thatm is given by
(σ1, σ2, Σ12).

Given two mappingsm12 andm23, thecompositionm12 ◦ m23

is the unique mapping

{〈A, C〉 : ∃B(〈A, B〉 ∈ m12 and〈B, C〉 ∈ m23}.

Assume two mappingsm12 andm23 are given by(σ1, σ2, Σ12)
and (σ2, σ3, Σ23). The mapping composition problemis to find
Σ13 such thatm12 ◦ m23 is given by(σ1, σ3, Σ13).

Given a finite set of constraintsΣ over some schemaσ and an-
other finite set of constraintsΣ′ over some subschemaσ′ of σ we
say thatΣ is equivalentto Σ′, denotedΣ ≡ Σ′, if

1. (Soundness) Every databaseA overσ satisfyingΣ when re-
stricted to only those relations inσ′ yields a databaseA′ over
σ′ that satisfiesΣ′ and

2. (Completeness) Every databaseA′ over σ′ satisfying the
constraintsΣ′ can be extended to a databaseA over σ sat-
isfying the constraintsΣ by adding new relations inσ − σ′

(not limited to the domain ofA′).

EXAMPLE 3 The set of constraints

Σ := {R ⊆ S, S ⊆ T}

is equivalent to the set of constraintsΣ′ := {R ⊆ T}.

Given this definition, we can restate the composition problem as
follows. Given a set of constraintsΣ12 overσ1 ∪ σ2 and a set of
constraintsΣ23 over σ2 ∪ σ3, find a set of constraintsΣ13 over
σ1 ∪ σ3 such thatΣ12 ∪ Σ23 ≡ Σ13.

3. ALGORITHM

3.1 Overview
At the heart of the composition algorithm (which appears at the
end of this subsection), we have the procedure ELIMINATE which
takes as input a finite set of constraintsΣ over some schemaσ
that includes the relation symbolS and which produces as output
another finite set of constraintsΣ′ overσ − {S} such thatΣ′ ≡
Σ, or reports failure to do so. On success, we say that we have
eliminatedS from Σ.

Given such a procedure ELIMINATE we have several choices on
how to implement COMPOSE, which takes as input three schemas
σ1, σ2, andσ3 and two sets of constraintsΣ12 andΣ23 overσ1∪σ2

andσ2 ∪ σ3 respectively. The goal of COMPOSEis to return a set
of constraintsΣ13 overσ1 ∪ σ3. That is, its goal is to eliminate the
relation symbols fromσ2. Since this may not be possible, we aim
at eliminating fromΣ := Σ12 ∪ Σ23 a setS of relation symbols in
σ2 which is as large as possible or which is maximal under some
other criterion than the number of relation symbols in it. There are
many choices about how to do this, but we do not explore them in
this paper. Instead we simply follow the user-specified ordering on
the relation symbols inσ2 and try to eliminate as many as possible
in that order.1

We therefore concentrate in the remainder of Section 3 on ELIM -
INATE. It consists of the following three steps, which we describe
in more detail in following sections:

1Note that which symbols will be eliminated will in general depend
on this user-defined order. Consider, for example, the constraints
in the proof of Theorem 1 in [8] duplicated for two symbolsS1 and
S2: exactly one of them can be eliminated and this will depend on
the order.

1. View unfolding
2. Left compose
3. Right compose

Each of the steps 1, 2, and 3 attempts to removeS from Σ. If any
of them succeeds, ELIMINATE terminates successfully. Otherwise,
ELIMINATE fails.

All three steps work in essentially the same way: given a con-
straint that containsS alone on one side of a constraint and an ex-
pressionE on the other side, they substituteE for S in all other
constraints.

EXAMPLE 4 Here are three one-line examples of how each of
these three steps transforms a set of two constraints into anequiva-
lent set with just one constraint:
1. S = R × T , π(U) − S ⊆ U ⇒ π(U) − (R × T) ⊆ U

2. R ⊆ S ∩ V , S ⊆ T × U ⇒ R ⊆ (T × U) ∩ V

3. T × U ⊆ S, S − π(U) ⊆ R ⇒ (T × U) − π(U) ⊆ R

To perform such a substitution we need an expression that con-
tainsS alone on one side of a constraint. This holds in the example,
but is typically not the case. Another key feature of our algorithm
is that it performsnormalizationas necessary to put the constraints
into such a form. In the case of left and right compose, we also
need all other expressions that containS to be monotone inS.

We now give a more detailed technical overview of the three
steps we have just introduced. To simplify the discussion below,
we takeΣ0 := Σ to be the input to ELIMINATE and Σs to be
the result after steps is complete. We useE, E1, E2 to stand for
arbitrary relational expressions andM(S) to stand for a relational
expression monotonic inS.

1. View Unfolding. We look for a constraintξ of the formS =
E1 in Σ0 whereE1 is an arbitrary expression that does not
containS. If there is no such constraint, we setΣ1 := Σ0

and go to Step 2. Otherwise, to obtainΣ1 we removeξ and
replace every occurrence ofS in every other constraint inΣ0

with E1. ThenΣ1 ≡ Σ0. Soundness is obvious and to show
completeness it is enough to setS = E1.

2. Left Compose. If S appears on both sides of some con-
straint inΣ1, we exit. Otherwise, we convert every equality
constraintE1 = E2 that containsS into two containment
constraintsE1 ⊆ E2 andE2 ⊆ E1 to obtainΣ′

1.

Next we checkΣ′
1 for right-monotonicityin S. That is, we

check whether every expressionE in whichS appears to the
right of a containment constraint is monotonic inS. If this
check fails, we setΣ2 := Σ1 and go to Step 3.

Next we left-normalize every constraint inΣ′
1 for S to obtain

Σ′′
1 . That is, we replace all constraints in whichS appears

on the left with a single equivalent constraintξ of the form
S ⊆ E1. That is,S appears alone on the left inξ. This is
not always possible; if we fail, we setΣ2 := Σ1 and go to
Step 3.

If S does not appear on the left of any constraint, then we add
to Σ′′

1 the constraintξ : S ⊆ E1 and we setE1 := Dr where
r is the arity ofS. HereD is a special symbol which stands
for the active domain. Clearly, anyS satisfies this constraint.

Now to obtainΣ′′′
1 from Σ′′

1 we removeξ and for every con-
straint inΣ′′

1 of the formE2 ⊆ M(S) whereM is monotonic
in S, we put a constraint of the formE2 ⊆ M(E1) in Σ′′′

1 .
We call this stepbasic left-composition. Finally, to the extent
that our knowledge of the operators allows us, we attempt to

eliminateDr (if introduced) from any constraints, to obtain
Σ2. For exampleE1 ∩ Dr becomesE1.

ThenΣ2 ≡ Σ1. Soundness follows from monotonicity since
E2 ⊆ M(S) ⊆ M(E1) and to show completeness it is
enough to setS := E1.

3. Right Compose. Right compose is dual to left-compose. We
check for left-monotonicity and we right-normalize as in the
previous step to obtainΣ′′

2 with a constraintξ of the form
E1 ⊆ S. If S does not appear on the right of any constraint,
then we add toΣ′′

2 the constraintξ : E1 ⊆ S and setE1 :=
∅. Clearly, anyS satisfies this constraint.

In order to handle projection during the normalization step
we may introduce Skolem functions. For exampleR ⊆
π1(S) whereR is unary andS is binary becomesf(R) ⊆ S.
The expressionf(R) is binary and denotes the result of ap-
plying some unknown Skolem functionf to the expression
R. The right-normalization step always succeeds for select,
project, and join, but may fail for other operators. If we fail
to normalize, we setΣ3 := Σ2 and we exit.

Now to obtainΣ′′′
2 from Σ′′

2 we removeξ and for every con-
straint inΣ′′

2 of the formM(S) ⊆ E2 whereM is mono-
tonic in S, we put a constraint of the formM(E1) ⊆ E2 in
Σ′′′

2 . We call this stepbasic right-composition. Finally, to
the extent that our knowledge of the operators allows us, we
attempt to eliminate∅ (if introduced) from any constraints,
to obtainΣ3. For exampleE1 ∪ ∅ becomesE1.

Then Σ′′′
2 ≡ Σ2. Soundness follows from monotonicity

sinceM(E1) ⊆ M(S) ⊆ E2 and to show completeness
it is enough to setS := E1.

Since during normalization we may have introduced Skolem
functions, we now need a right-denormalization step to re-
move such Skolem functions. Following [8], we call this part
deskolemization. Deskolemization is very complex and may
fail. If it does, we setΣ3 := Σ2 and we exit. Otherwise, we
setΣ3 to be the result of deskolemization.

Procedure ELIMINATE

Input: Signatureσ
ConstraintsΣ
Relation SymbolS

Output: ConstraintsΣ′ overσ or σ − {S}

1. Σ′ := V IEWUNFOLD(Σ, S). On success, returnΣ′.
2. Σ′ := LEFTCOMPOSE(Σ, S). On success, returnΣ′.
3. Σ′ := RIGHTCOMPOSE(Σ, S). On success, returnΣ′.
4. ReturnΣ and indicate failure.

Procedure COMPOSE

Input: Signaturesσ1, σ2, σ3

ConstraintsΣ12, Σ23

Relation SymbolS
Output: Signatureσ satisfyingσ1 ∪ σ3 ⊆ σ ⊆ σ1 ∪ σ2 ∪ σ3

ConstraintsΣ overσ

1. Setσ := σ1 ∪ σ2 ∪ σ3.
2. SetΣ = Σ12 ∪ Σ23.
3. For every relation symbolS ∈ σ2 do:
4. Σ := ELIMINATE (σ,Σ, S)
5. On success, setσ := σ − {S}.
6. Returnσ, Σ.

THEOREM 1 AlgorithmCOMPOSEis correct.

PROOF. (Sketch) Correctness follows from the soundness and
completeness of the view unfolding, left-compose, and right-
compose steps, and the proof of correctness of the deskolemization
algorithm in [8].

3.2 View Unfolding
The goal of the unfold views step is to eliminateS at an early stage
by applying the technique of view unfolding. It takes as input a set
of constraintsΣ0 and a symbolS to be eliminated. It produces as
output an equivalent set of constraintsΣ1 with S eliminated (in the
success case), or returnsΣ0 (in the failure case). The step proceeds
as follows. We look for a constraintξ of the formS = E1 in Σ0

whereE1 is an arbitrary expression that does not containS. If there
is no such constraint, we setΣ1 := Σ0 and report failure. Other-
wise, to obtainΣ1 we removeξ and replace every occurrence ofS

in every other constraint inΣ0 with E1. Note thatS may occur in
expressions that are not necessarily monotone inS, or that contain
user-defined operators about which little is known. In either case,
becauseS is defined by an equality constraint, the result is still an
equivalent set of constraints. This is in contrast to left compose and
right compose, which rely for correctness on the monotonicity of
expressions inS when performing substitution.

EXAMPLE 5 Suppose the input constraints are given by

S = R1 × R2, π(R3 − S) ⊆ T1, T2 ⊆ T3 − σc(S).

Then unfold views deletes the first constraint and substitutesR1 ×
R2 for S in the second two constraints, producing

π(R3 − (R1 × R2)) ⊆ T1, T2 ⊆ T3 − σc(R1 × R2).

Note that in this example, neither left compose nor right compose
would succeed in eliminatingS. Left compose would fail because
the expressionT3 − σc(S) is not monotone inS. Right compose
would fail because the expressionπ(R3 − S) is not monotone in
S. Therefore view unfolding does indeed give us some extra power
compared to left compose and right compose alone.

3.3 Checking Monotonicity
The correctness of performing substitution to eliminate a symbol
S in the left compose and right compose steps depends upon the
left-hand side (lhs) or right-hand side (rhs) of all constraints being
monotone inS. We describe here a sound but incomplete procedure
MONOTONEfor checking this property. MONOTONEtakes as input
an expressionE and a symbolS. It returns ‘m’ if the expression
is monotone inS, ‘a’ if the expression is anti-monotone inS, ‘i’ if
the expression is independent ofS (for example, because it does not
containS), and ‘u’ (unknown) if it cannot say how the expression
depends onS. For example, given the expressionS×T and symbol
S as input, MONOTONE returns ‘m’, while given the expression
σc1(S) − σc2(S) and the symbolS, MONOTONEreturns ‘u’.

The procedure is defined recursively in terms of the six basic
relational operators. In the base case, the expression is a sin-
gle relational symbol, in which case MONOTONE returns ‘m’ if
that symbol isS, and ‘i’ otherwise. Otherwise, in the recursive
case, MONOTONE first calls itself recursively on the operands of
the top-level operator, then performs a simple table lookupbased
on the return values and the operator. For the unary expres-
sionsσ(E1) andπ(E1), we have that MONOTONE(σ(E1), S) =
MONOTONE(π(E1), S) = MONOTONE(E1, S) (in other words,
σ andπ do not affect the monotonicity of the expression). Other-
wise, for the binary expressionsE1 ∪ E2, E1 ∩ E2, E1 × E2, and
E1 − E2, there are sixteen cases to consider, corresponding to the
possible values of MONOTONE(E1, S) and MONOTONE(E2, S).

Note that×, ∩, and∪ all behave in the same way from the
point of view of MONOTONE, that is, MONOTONE(E1 ∪E2, S) =
MONOTONE(E1 ∩ E2, S) = MONOTONE(E1 × E2, S), for all
E1, E2. Set difference−, on the other hand, behaves differently
than the others.

In order to support user-defined operators in MONOTONE, we
just need to know the rules regarding the monotonicity of theoper-
ator inS, given the monotonicity of its operands inS. Once these
rules have been added to the appropriate tables, MONOTONEsup-
ports the user-defined operator automatically.

3.4 Left Compose
Recall from Section 3.1 that left compose consists of four main
steps, once equality constraints have been converted to contain-
ment constraints. The first is to check the constraints for right-
monotonicity inS, that is, to check whether every expressionE in
which S appears to the right of a containment constraint is mono-
tonic in S. Section 3.3 already described the procedure for check-
ing this. The other three steps are left normalize, basic left com-
pose, and eliminate domain relation. In this section we describe
those steps in more detail, and we give some examples to illustrate
their operation.

3.4.1 Left Normalize
The goal of left normalize is to put the set of input constraints in
a form such that the symbolS to be eliminated appears on the left
of exactly one constraint, which is of the formS ⊆ E2. We say
that the constraints are then inleft normal form.In contrast to right
normalize, left normalize does not always succeed even on the ba-
sic relational operators. Nevertheless, left compositionis useful
because it may succeed in cases where right composition fails for
other reasons. We give an example of this in Section 3.4.2.

We make use of the following identities for containment con-
straints in left normalize (note that here again the subscripts of the
projection operatorπ are omitted for readability):

∪ : E1 ∪ E2 ⊆ E3 ↔ E1 ⊆ E3, E2 ⊆ E3

− : E1 − E2 ⊆ E3 ↔ E1 ⊆ E2 ∪ E3

π : π(E1) ⊆ E2 ↔ E1 ⊆ E2 × D
r

σ : σc(E1) ⊆ E2 ↔ E1 ⊆ E2 ∪ (Dr − σc(D
r))

To each identity in the list, we associate a rewriting rule that takes
a constraint of the form given by the lhs of the identity and pro-
duces an equivalent constraint or set of constraints of the form
given by the rhs of the identity. For example, from the iden-
tity for σ we obtain a rule that matches a constraint of the form
σc(E1) ⊆ E2 and rewrites it into equivalent constraints of the form
E1 ⊆ E2 ∪ (Dr −σc(D

r)). Note that there is at most one rule for
each operator. So to find the rule that matches a particular expres-
sion, we need only look up the rule corresponding to the topmost
operator in the expression.

We do not know of identities covering all of the basic relational
operators. In particular, constraints of the following form seem to
be problematic:

E1 ∩ E2 ⊆ E3, E1 × E2 ⊆ E3, E1 − E2 ⊆ E3,

where in the last constraint,E2 is the expression that contains the
symbolS. For example, one might be tempted to think that the
constraintE1×E2 ⊆ E3 could be rewritten asE1 ⊆ π(E3), E2 ⊆
π(E3). However, the following counterexample shows that this
rewriting is invalid:

EXAMPLE 6 Let R, S be unary relations and letT be a binary re-
lation. Define the instanceA to beRA := {1, 2}, SA := {1, 2},

T A := {11, 22}. ThenA |= {R ⊆ π1(T), S ⊆ π2(T)}, but
A 6|= {R × S ⊆ T}.

In addition to the basic relational operators, left normalize may
be extended to handle user-defined operators by specifying auser-
defined rewriting rule for each such operator.

Left normalize proceeds as follows. LetΣ1 be the set of input
constraints, and letS be the symbol to be eliminated fromΣ1. Left
normalize computes a setΣ′

1 of constraints as follows. SetΓ1 :=
Σ1. We loop as follows, beginning ati = 1. In the ith iteration,
there are two cases:

1. If there is no constraint inΓi that containsS on the lhs in a
complex expression, setΣ′

1 to beΓi with all the constraints
containingS on the lhs collapsed into a single constraint,
which has an intersection of expressions on the right. For
example,S ⊆ E1, S ⊆ E2 becomesS ⊆ E1 ∩ E2. If S

does not appear on the lhs of any expression, we add toΣ′
1

the constraintS ⊆ Dr wherer is the arity ofS. Finally,
return success.

2. Otherwise, choose some constraintξ := E1 ⊆ E2, where
E1 containsS. If there is no rewriting rule for the top-level
operator inE1, setΣ′

1 := Σ1 and return failure. Otherwise,
setΓi+1 to be the set of constraints obtained fromΓi by re-
placingξ with its rewriting, and iterate.

EXAMPLE 7 Suppose the input constraints are given by

R − S ⊆ T, π(S) ⊆ U.

whereS is the symbol to be eliminated. Then left normalization
succeeds and returns the constraints

R ⊆ S ∪ T, S ⊆ U × Dr.

EXAMPLE 8 Suppose the input constraints are given by

R ∩ S ⊆ T, π(S) ⊆ U.

Then left normalization fails, because there is no rule matching the
lhs ofR ∩ S ⊆ T .

EXAMPLE 9 Suppose the input constraints are given by

R ∩ T ⊆ S, U ⊆ π(S).

Since there is no constraint containingS on the left, left normalize
adds the trivial constraintS ⊆ Dr, producing

R ∩ T ⊆ S, U ⊆ π(S), S ⊆ Dr.

3.4.2 Basic Left Compose
Among the constraints produced by left normalize, there is asingle
constraintξ := S ⊆ E1 that hasS on its lhs. In basic left compose,
we removeξ from the set of constraints, and we replace every other
constraint of the formE2 ⊆ M(S), whereM(S) is monotonic in
S, with a constraint of the formE2 ⊆ M(E1). This is easier to
understand with the help of a few examples.

EXAMPLE 10 Consider the constraints from Example 7 after left
normalization:

R ⊆ S ∪ T, S ⊆ U × D
r
.

The expressionS ∪ T is monotone inS. Therefore, we are able to
left compose to obtain

R ⊆ (U × D
r) ∪ T.

Note although the input constraints from Example 7 could just as
well be put in right normal form, right compose would fail, because
the expressionR−S is not monotone inS. Thus left compose does
indeed give us some additional power.

EXAMPLE 11 We continue with the constraints from Example 9:

R ∩ T ⊆ S, U ⊆ π(S), S ⊆ D
r
.

We left compose and obtain

R ∩ T ⊆ D
r
, U ⊆ π(Dr).

Note that the active domain relationD occurs in these constraints.
In the next section, we explain how to eliminate it.

3.4.3 Eliminate Domain Relation
We have seen that left compose may produce a set of constraints
containing the symbolD which represents the active domain rela-
tion. The goal of this step is to eliminateD from the constraints, to
the extent that our knowledge of the operators allows, whichmay
result in entire constraints disappearing in the process aswell. We
use rewriting rules derived from the following identities for the ba-
sic relational operators:

E1 ∪ D
r = D

r
E1 ∩ D

r = E1

E1 − D
r = ∅ πI(D

r) = D
|I|

(We do not know of any identities applicable to cross productor
selection.) In addition, the user may supply rewriting rules for
user-defined operators, which we will make use of if present.The
constraints are rewritten using these rules until no rule applies. At
this point,D may appear alone on the rhs of some constraints. We
simply delete these, since a constraint of this form is satisfied by
any instance. Note that we do not always succeed in eliminatingD

from the constraints. However, this is acceptable, since a constraint
containingD can still be checked.

EXAMPLE 12 We continue with the constraints from Example 11:

R ∩ T ⊆ D
r
, U ⊆ π(Dr).

First, the domain relation rewriting rules are applied, yielding

R ∩ T ⊆ D
r
, U ⊆ D

k
,

wherek is the arity ofπ(Dr). Then, since both of these constraints
have the domain relation alone on the rhs, we are able to simply
delete them.

3.5 Right Compose
Recall from Section 3.1 that right compose proceeds throughfive
main steps. The first step is to check that every expressionE that
appears to the left of a containment constraint is monotonicin S.
The procedure for checking this was described in Section 3.3. The
other four steps are right normalize, basic right compose, right-
denormalize, and eliminate empty relations. In this section, we
describe these steps in more detail and provide some examples.

3.5.1 Right Normalize
Right normalize is dual to left normalize. The goal of right normal-
ize is to put the constraints in a form whereS appears on the rhs of
exactly one constraint, which has the formE1 ⊆ S. We say that
the constraints are then inright normal form. We make use of the
following identities for containment constraints in rightnormaliza-
tion (note that here again the subscripts of the projection operator
π are omitted for readability):

∪ : E1 ⊆ E2 ∪ E3 ↔ E1 − E3 ⊆ E2

↔ E1 − E2 ⊆ E3

∩ : E1 ⊆ E2 ∩ E3 ↔ E1 ⊆ E2, E1 ⊆ E3

× : E1 ⊆ E2 × E3 ↔ π(E1) ⊆ E2, π(E1) ⊆ E2

− : E1 ⊆ E2 − E3 ↔ E1 ⊆ E2, E1 ∩ E3 ⊆ ∅

π : E1 ⊆ π(E2) ↔ f(E1) ⊆ E2

σ : E1 ⊆ σc(E2) ↔ E1 ⊆ E2, E1 ⊆ σc(D
r)

As in left normalize, to each identity in the list, we associate a
rewriting rule that takes a constraint of the form given by the lhs
of the identity and produces an equivalent constraint or setof con-
straints of the form given by the rhs of the identity. For example,
from the identity forσ we obtain a rule that matches constraints of
the formE1 ⊆ σc(E2) and produces the equivalent pair of con-
straintsE1 ⊆ E2 and E1 ⊆ σc(D

r). As with left normalize,
there is at most one rule for each operator. So to find the rule that
matches a particular expression, we need only look up the rule cor-
responding to the topmost operator in the expression. In contrast to
the rules used by left normalize, there is a rule in this list for each of
the six basic relational operators. Therefore right normalize always
succeeds when applied to constraints that use only basic relational
expressions.

Just as with left normalize, user-defined operators can be sup-
ported via user-specified rewriting rules. If there is a user-defined
operator that does not have a rewriting rule, then right normalize
may fail in some cases.

Note that the rewriting rule for the projection operatorπ may in-
troduce Skolem functions. The deskolemize step will later attempt
to eliminate any Skolem functions introduced by this rule. If we
have additional knowledge about key constraints for the base re-
lations, we use this to minimize the list of attributes on which the
Skolem function depends. This increases our chances of success in
deskolemize.

Right normalize proceeds as follows. LetΣ2 be the set of in-
put constraints, and letS be the symbol to be eliminated fromΣ2.
Right normalize computes a setΣ′

2 of constraints as follows. Set
Γ1 := Σ2. We loop as follows, beginning ati = 1. In the ith
iteration, there are two cases:

1. If there is no constraint inΓi that containsS on the rhs in a
complex expression, setΣ′

2 to be the same asΓi but with all
the constraints containingS on the rhs collapsed into a single
constraint containing a union of expressions on the left. For
example,E1 ⊆ S, E2 ⊆ S becomesE1 ∪ E2 ⊆ S. If S

does not appear on the rhs of any expression, we add toΣ′
2

the constraint∅ ⊆ S. Finally, return success.

2. Otherwise, choose some constraintξ := E1 ⊆ E2, where
E2 containsS. If there is no rewriting rule corresponding to
the top-level operator inE2, setΣ′

2 := Σ2 and return failure.
Otherwise, setΓi+1 to be the set of constraints obtained from
Γi by replacingξ with its rewriting, and iterate.

EXAMPLE 13 Consider the constraints given by

S × T ⊆ U, T ⊆ σc(S) × π(R).

Right normalize leaves the first constraint alone and rewrites the
second constraint, producing

S × T ⊆ U, π(T) ⊆ S, π(T) ⊆ σc(D
r), π(T) ⊆ π(R).

Notice that rewriting stopped for the constraintπ(T) ⊆ π(R) im-
mediately after it was produced, becauseS does not appear on its
rhs.

EXAMPLE 14 Consider the constraints given by

R ⊆ π(S × (T ∩ U)), S ⊆ σc(T).

Right normalize rewrites the first constraint and leaves thesecond
constraint alone, producing

π(f(R)) ⊆ S, π(f(R)) ⊆ T ∩ U, S ⊆ σc(T).

Note that a Skolem functionf was introduced in order to handle
the projection operator. After right compose, the deskolemize pro-
cedure will attempt to get rid of the Skolem functionf .

3.5.2 Basic Right Compose
After right normalize, there is a single constraintξ := E1 ⊆ S

which hasS on its rhs. In basic right compose, we removeξ from
the set of constraints, and we replace every other constraint of the
form M(S) ⊆ E2, whereM(S) is monotonic inS, with a con-
straint of the formM(E1) ⊆ E2. This is easier to understand with
the help of a few examples.

EXAMPLE 15 Recall the constraints produced by right normalize
in Example 13:

S × T ⊆ U, π(T) ⊆ S, π(T) ⊆ σc(D
r), π(T) ⊆ π(R).

Given those constraints as input, basic right compose produces

π(T) × T ⊆ U, π(T) ⊆ σc(D
r), π(T) ⊆ π(R).

Since the constraints contain no Skolem functions, in this case we
are done.

EXAMPLE 16 Recall the constraints produced by right normalize
in Example 14:

π(f(R)) ⊆ S, π(f(R)) ⊆ T ∩ U, S ⊆ σc(T).

Given those constraints as input, basic right compose produces

π(f(R)) ⊆ T ∩ U, π(f(R)) ⊆ σc(T).

Note that composition is not yet complete in this case. We will need
to try to complete the process by deskolemizing the constraints to
get rid off . This process is described in the next section.

3.5.3 Right-Denormalize
During right-normalization, we may introduce Skolem functions in
order to handle projection. For example, we transformR ⊆ π1(S)
whereR is unary andS is binary tof1(R) ⊆ S. The subscript 1 in-
dicates thatf depends on position 1 ofR. That is,f1(R) is a binary
expression where to every value inR another value is associated
by f . Thus, after basic right-composition, we may have constraints
with Skolem functions in them. The semantics of such constraints
is that they hold iff there existsomevalues for the Skolem functions
which satisfy the constraints. The objective of the deskolemization
step is to remove such Skolem functions. It is a complex 12-step
procedure based on a similar procedure presented in [8].

Procedure DESKOLEMIZE(Σ)

1. Unnest
2. Check for cycles
3. Check for repeated function symbols
4. Align variables
5. Eliminate restricting atoms
6. Eliminate restricted constraints

7. Check for remaining restricted constraints
8. Check for dependencies
9. Combine dependencies

10. Remove redundant constraints
11. Replace functions with∃-variables
12. Eliminate unnecessary∃-variables

Here we only highlight some aspects specific to this implemen-
tation. First of all, as we already said, we use an algebra-based
representation instead of a logic-based representation. ASkolem
function for us is a relational operator which takes anr-ary expres-
sion and produces an expression of arityr + 1. Our goal at the end
of step 3 is to produce expressions of the form

πσfg . . . σ(R1 × R2 × ... × Rk).

Here

• π selects which positions will be in the final expression,
• the outerσ selects some rows based on values in the Skolem

functions,
• f, g, . . . is a sequence of Skolem functions,
• the innerσ selects some rows independently of the values in

the Skolem functions, and
• (R1 ×R2 × ...×Rk) is a cross product of possibly repeated

base relations.

The goal of step 4 is to make sure that across all constraints,all
these expressions have the same arity for the part after the Skolem
functions. This is achieved by possibly padding with theD sym-
bol. Furthermore, step 4 aligns the Skolem functions in sucha way
that across all constraints the same Skolem functions appear, in the
same sequence. For example, if we have the two expressionsf1(R)
andg1(S) with R, S unary, step 4 rewrites them as

π13g2f1(R × S) andπ24g2f1(R × S).

HereR × S is a binary expression withR in position 1 andS in
position 2 andg2f1(R × S) is an expression of arity 4 withR
in position 1,S in position 2,f in position 3 depending only on
position 1, andg in position 4 depending only on position 2.

The goal of step 5 is to eliminate the outer selectionσ and of
step 6 to eliminate constraints having such an outer selection. The
remaining steps correspond closely to the logic-based approach.

Deskolemization is complex and may fail at several of the steps
above. The following two examples illustrate some cases where
deskolemization fails.

EXAMPLE 17 Consider the following constraints from [5] where
E,F, C, D are binary andσ2 = {F, C}:

E ⊆ F, π1(E) ⊆ π1(C), π2(E) ⊆ π1(C)

π46 σ1=3,2=5(F × C × C) ⊆ D

Right-composition succeeds at eliminatingF to get

π1(E) ⊆ π1(C), π2(E) ⊆ π1(C)

π46 σ1=3,2=5(E × C × C) ⊆ D

Right-normalization forC yields

π13f12(E) ⊆ C, π23g12(E) ⊆ C

π46σ1=3,2=5(E × C × C) ⊆ D

and basic right-composition yields 4 constraints including

π46σ1=3,2=5(E × (π13f12(E)) × (π13f12(E))) ⊆ D

which causes deskolemize to fail at step 3. Therefore, right-
compose fails to eliminateC. As shown in [5] eliminatingC is
impossible by any means.

3.5.4 Eliminate Empty Relation
Right compose may introduce the empty relation symbol∅ into

the constraints during composition in the case whereS does not
appear on the rhs of any constraint. In this step, we attempt to
eliminate the symbol, to the extent that our knowledge of theoper-
ators allows. This is usually possible and often results in constraints
disappearing entirely, as we shall see. For the basic relational op-
erators, we make use of rewriting rules derived from the following
identities for the basic relational operators:

E1 ∪ ∅ = E1 E1 ∩ ∅ = ∅ E1 − ∅ = E1

∅ − E1 = ∅ σc(∅) = ∅ πI(∅) = ∅

In addition we allow the user to supply rewriting rules for user-
defined operators. The constraints are rewritten using these rules
until no rule applies. At this point, some constraints may have the
form ∅ ⊆ E2. These constraints are then simply deleted, since they
are satisfied by any instance. We do not always succeed in eliminat-
ing the empty relation symbol from the constraints. However, this
is acceptable, since a constraint containing∅ can still be checked.

4. EXPERIMENTS
Prior work [5, 8] showed that characterizing the class of mappings
that can be composed is very difficult, even when no outer joins,
unions, or difference operators are present in the mapping con-
straints. In this section we make a first attempt to explore exper-
imentally the boundaries of mappings that can be composed. Ulti-
mately, our goal is to develop a mapping composition benchmark
that can be used to compare competing implementations of map-
ping composition. The experiments that we report on could form a
part of such a benchmark. Due to space limitations we focus onthe
key results; a more detailed discussion is in [2].

All composition problems used in our experiments are available
for online download in a machine-readable format.2 We designed a
plain-text syntax for specifying mapping composition tasks. Map-
ping constraints are encoded according to the index-based algebraic
notation introduced in Section 2. We built a parser that takes as in-
put a textual specification of a composition problem and converts
it into an internal algebraic representation, which is fed to our al-
gorithm. A sample run of the algorithm on mappings that contain
relational operators union, difference, and left outerjoin is shown
in [2].

We used two data sets in our experiments. The first one contains
22 composition problems drawn from the recent literature [5, 7,
8], which illustrate subtle composition issues. The attractiveness
of this data set is that the expected output mappings were verified
manually and documented in the literature, sometimes usingformal
proofs. So, this data set serves as a test suite that can be used for
verifying implementations of composition.

The second data set used in the experiments is synthetic. Using
synthetic mappings appears to be the primary way to study thescal-
ability and effectiveness of mapping composition; this approach
was also followed in [14]. Our study is based on the schema evo-
lution scenarios outlined in the introduction. Specifically, we focus
on schema editing and schema reconciliation tasks, since mapping
adaptation can be viewed as a special case of schema reconciliation
where one of the input mappings is fixed.

In the study based on synthetic mappings, we determine the
success rate of our algorithm in eliminating symbols for vari-
ous composition tasks, measure its execution time, and investigate
the contributions of the main steps of the algorithm on its over-
all performance. To generate synthetic data for our experiments,
2http://research.microsoft.com/db/ModelMgt/composition/

Primitive Description Input relation Output relation(s) Mapping constraint(s)
AR Add relation ∅ R(A,B) ∅
DR Drop relation R(A) ∅ ∅
AA Add attribute R(A) S(A, C) R = πA(S)
DA Drop attribute R(A), C ∈ A S(A − {C}) πA−{C}(R) = S

D Add default R(A) S(A, C) R × {c} = S; R = πA(σC=c(S))
H Horizontal partitioning R(A), C ∈ A S(A), T (A) σC=cS

(R) = S; σC=cT
(R) = T ; R = S ∪ T

V Vertical partitioning R(A,B,C) S(A,B), T (A,C) πA,B(R) = S; πA,C(R) = T ; R = S 1A T

N Normalization R(A,B,C) S(A,B), T (A,C) same as vertical;πA(T) ⊆ πA(S)
Sub Subset R(A) S(A) R ⊆ S

Sup Superset R(A) S(A) R ⊇ S

Figure 1: Schema evolution primitives

we developed a tool which we call aschema evolution simula-
tor. The simulator is driven by a weighted set of schema evolu-
tion primitives, such as adding or dropping attributes and relations,
schema normalization, and vertical partitioning. It produces an
evolved schema and a mapping between the original schema and
the evolved schema.

In the schema editing scenario, we run the simulator to mimic
the schema transformation operations performed by a database de-
signer. The mapping between the original schema and the current
state of the schema is composed with the mapping produced by
each subsequent schema evolution primitive. We record the success
or failure of each composition operation for the applied primitives.

To study schema reconciliation, we use the simulator to produce
a large number of evolved schemas and mappings for a given orig-
inal schema. We then compose the generated mappings pairwise
using our composition tool.

Our key observations from this study are summarized below:

• Our algorithm is very effective in performing composition.
In most settings, it is able to eliminate as much as a half of
the symbols from the intermediate signature, and often all of
them (Figures 2,5–7).

• The algorithm’s median running time is in the subsecond
range for mappings containing hundreds of constraints (Fig-
ures 3–5,7).

• Composition becomes increasingly harder as more schema
evolution primitives are applied to schemas (Figure 7).

• Certain kinds of schema evolution primitives are more likely
to produce complications for composition than others (Fig-
ures 2,3,5).

• Key constraints do not substantially affect the symbol-
eliminating power of the algorithm, yet significantly increase
the running time (Figures 2,3).

• It is beneficial to keep the symbols that could not be elimi-
nated in the mappings as second-order constraints as long as
possible. Subsequent composition operations may eliminate
up to a third of those symbols [2].

• Our algorithm appears to be order-invariant on the studied
data sets, i.e., it eliminates the same fraction of symbols no
matter in what order the symbols are tried (in the loop in
Line 3 of procedure COMPOSEin Section 3.1).

We found that the output constraints produced by our algorithm
are often more verbose than the ones derived manually, so sim-
plification of output mappings is essential. An example of such
simplification is detecting and removing implied constraints. Map-
ping simplification appears to be a problem of independent interest
and is out of scope of this paper. Furthermore, we found that our
technique of representing key constraints using the activedomain

symbol works well in many cases, but fails in others due to de-
Skolemization. Leveraging key constraints in a more directway,
e.g., using specialized rules in the composition algorithm, may in-
crease its coverage.

In the remaining space we present some details of our study. The
experiments were conducted on a 1.5 GHz Pentium M machine.

4.1 Schema Evolution Simulator
Figure 1 lists the schema evolution primitives implementedin our
simulator. Each primitive takes zero or one relation as input and
produces zero or more new relations and constraints. The produced
constraints link the output relations to the input relations or rep-
resent key or inclusion constraints on the output relations. In the
figure, we use the named perspective on the relational algebra to
simplify the exposition. Attribute lists are shown in bold (e.g.,A),
keys are underlined, and lower case symbols denote constants. The
shown list of primitives covers a large fraction of those used in the
schema evolution and data integration literature.

The first four primitivesAR, DR, AA, andDA add or delete rela-
tions and attributes. PrimitiveAR creates a new relation. The arity
of the new relation is chosen at random between some minimal and
maximal relation arity (2 and 10, in our study). If keys are enabled,
the created relation may have a key whose size is chosen between
some minimal and maximal value (1 and 3, in our study). Primitive
AA adds a new attributeC to the relationR, i.e., produces a new
relationS that containsC and all existing attributesA of R. The
mapping constraintR = πA(S) states thatR can be reconstructed
as a projection onS. PrimitiveDA is complementary toAA.

PrimitivesD, H, V, andN have forward and backward variants.
The forward variant, labeled with subscript ‘f’, contains only the
constraints that define the output relations in terms of the input re-
lations. The backward variant (‘b’) contains only the constraints
that define the inputs in terms of the outputs (all forward andback-
ward variants are listed on the x-axis in Figure 2).

The forward and backward variants reflect distinct evolution sce-
narios, as we explain in more detail in [2]. For example, primitive
D adds an attributeC with a default valuec. The forward variant
Df outputs the mapping constraintR×{c} = S, whileDb outputs
R = πA(σC=c(S)). Thus,Df states thatS is determined byR
and that the newly added attributeC containsc-values only. Db

produces a weaker constraint that allows attributeS.C to contain
other values beyondc.

PrimitiveH performs a lossless horizontal partitioning of the in-
put relationR. The vertical partitioning primitivesV, Vf , Vb are
the only ones that require the input relationR to have a key. The
attribute set ofR is partitioned across output relationsS andT .
PrimitiveN captures the schema normalization rule from database
textbooks. The constantsc, cT , andcS used in the primitivesD and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DR AA DA Df Db D Hf Hb H Vf Vb V Nf Nb N SUB SUP

F
ra

ct
io

n
 o

f
sy

m
b

o
ls

 e
lim

in
at

ed
no keys keys no unfolding no right compose

Figure 2: Eliminated symbols per primitive

H and their variants are drawn from a fixed-size pool of constants
(in our study, of size 10).

All evolution primitives discussed above produce equalitycon-
straints. Some schema integration and data exchange scenarios in
the literature assume the so-called open-world semantics for map-
ping constraints. To accommodate these scenarios in our exper-
iments, we added two further primitives,Sub and Sup. Com-
position of mapping constraints produced bySub and Sup with
those of other primitives yields inclusion constraints that generalize
global-local-as-view (GLAV) settings. For example, applying the
DA primitive produces the constraintπA−{C}(R) = S. Applying
the Sub primitive thereafter may produce the constraintS ⊆ T .
Composing the two yields the constraintπA−{C}(R) ⊆ T .

Event Vectors.In each run, the schema evolution simulator ap-
plies a sequence ofedits. Each edit consists of executing a particu-
lar schema evolution primitive followed by mapping composition.
An event vectorspecifies the proportions of primitives of a certain
kind appearing in an edit sequence.

We are not aware of studies that investigated the frequency of
schema evolution primitives used in real-world evolution scenar-
ios. Thus, we assume that all primitives are applied with thesame
frequency, with the exception of adding attributes (AA is twice as
frequent) and dropping relations (DR is five times less frequent). In
[2], we specify three other event vectors and discuss their impact.

4.2 Study on Synthetic Mappings
The output mapping produced by the composition algorithm may
be exponentially larger than the input mappings. To controlthe
exponential blowup, the algorithm aborts whenever the output-to-
input size ratio exceeds a certain factor (100, in our study). The size
of mappings is measured as the total number of operators across all
constraints. In our experiments, the algorithm fails to eliminate
only about 1% of symbols due to such blowup.

Schema Editing Scenarios.Figure 2 shows the success rate
of our algorithm in composing the mappings of an edit sequence.
Four configurations are examined (‘no keys’, ‘keys’, ‘no unfold-
ing’, ‘no right compose’). The data for each configuration was ob-
tained as follows: in each run, 100 edits are applied to a randomly
generated schema of a default size 30. The mappings produced
in each edit are composed. The proportions of primitives in the
edit sequence correspond to the Default event vector. The numbers
shown for each configuration are averaged across 100 runs. That
is, 10,000 composition tasks are executed for each configuration.

In the ‘no keys’ and ‘keys’ configurations all features of theal-
gorithm are exploited; in the latter the relations may contain keys.
In the ‘no unfolding’ configuration, the View Unfolding module of

0

1

2

3

4

5

6

7

8

9

10

DR AA DA Df Db D Hf Hb H Vf Vb V Nf Nb N SUB SUP

T
im

e
p

er
 e

d
it

 (
m

s)

no keys keys no unfolding no right compose

Figure 3: Execution time for each primitive

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100
Run number

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Figure 4: Sorted execution time across 100 runs for ‘no keys’

the algorithm is disabled. Similarly, for ‘no right compose’. Ver-
tical partitioning is not applicable if no keys are present,therefore
the respective bars remain empty in all configurations but ‘keys’.

The figure shows that the symbols introduced by some primitives
are easier to eliminate than others.Hf , Vf , andNf are the ‘hardest’
primitives. Adding keys to schemas does not significantly affect
the symbol-eliminating power of the algorithm. Turning offview
unfolding or right compose weakens the algorithm substantially.

The execution times for this experiment are in Figure 3. Dis-
abling view unfolding or adding keys increases the running time
significantly. When a keyed relation is eliminated, its key con-
straints need to be propagated to all expressions that reference it.
So, mappings produced in the ‘keys’ setting contain on average
218 constraints with 4,300 relational operators, as opposed to 95
constraints with 800 operators for ‘no keys’. The median execution
time per run (for all 100 edits) is around 0.2 sec for ‘no keys’and
‘no right compose’, 2.8 sec for ‘keys’, 2.1 sec for ‘no unfolding’
— a tenfold increase (not shown in the figure). The reason for re-
porting the median time instead of the average time is exemplified
in Figure 4: most runs have close running times except for a few
outliers that skew the average. This graph is characteristic across
all experiments.

Figure 5 illustrates the impact of inclusion constraints (vs. equal-
ity constraints) on a few selected schema evolution primitives and
the overall running time. Each edit sequence correspondingto
valuex on thex-axis is constructed by using the event vector ob-
tained as a copy of the Default vector in which the proportionof
Sub andSup primitives is set tox. On average, the composition
tasks become more difficult (the total fraction of symbols elim-
inated in all edits decreases) since the effectiveness of view un-
folding drops. However, the algorithm fails faster as it detects the
symbols that cannot be isolated on either the left or right side of
constraints, and so the overall running time decreases.

Schema Reconciliation Scenarios.Figure 6 depicts a
schema reconciliation scenario. Each task consists of composing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Proportion
of inclusion

edits

S
ym

b
o

ls
 e

lim
in

at
ed

 /
ti

m
e

(s
ec

) total

Df

DA

Nf

Hf

time

Figure 5: Increasing proportion of inclusion primitives

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100 Schema size

F
ra

ct
io

n
 o

f
sy

m
b

o
ls

 e
lim

in
at

ed complete

no view
unfolding

no right
compose

Figure 6: Varying schema size

two mappings produced by the simulator for two sequences of 100
edits each. To obtain first-order input mappings, only thoseedit
sequences produced by the simulator were considered in which all
symbols were eliminated successfully.

The data points shown in the figure were obtained by averaging
over 500 composition tasks. Increasing the size of the intermediate
schema (which contains the symbols to be eliminated) simplifies
the composition problem. This is an expected result since the sim-
ulator applies the edits to randomly chosen relations, so a larger
intermediate schema makes it less likely that the constraints in the
two input mappings interact, i.e., mention the same symbols. For
this same reason, increasing the number of edits makes the com-
position problem harder; the fraction of eliminated symbols drops
while the running time increases (see Figure 7).

Disabling view unfolding or right compose has a similar effect
on the composition performance as in the schema editing scenarios:
as shown in Figure 6, 10-20% fewer symbols get eliminated. In
addition, the execution time for disabling view unfolding increases
by about an order of magnitude (not shown in the figure). Disabling

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 30 50 70 90 110 130 150 170 190 210 Number of edits

fraction of
symbols
eliminated

execution
time (sec)

Figure 7: Varying number of edits

left compose (not shown) does not have a noticeable impact onthe
symbol-eliminating power of the algorithm for the settingsused
in the study, mostly because the simulator does not introduce any
relational operators beyondσ, π,∪, 1,×.

5. CONCLUSIONS
This paper presented a new algorithm for composition of relational
algebraic mappings that extends significantly the algorithms in [5,
8]. It has many new features: it makes a best effort to eliminate
as many symbols as possible; it can handle unknown or partially
known operators, including ones that are not monotonic in all of
their arguments; it introduces the left-compose transformation; and
it is highly extensible. We demonstrated its value by an exper-
imental study of its effectiveness on a large set of synthetically-
generated mappings.

6. REFERENCES
[1] P. A. Bernstein. Applying Model Management to Classical

Meta-Data Problems. InCIDR, 2003.
[2] P. A. Bernstein, T. J. Green, S. Melnik, A. Nash.

Implementing Mapping Composition (Extended Technical
Report). Available at http://research.microsoft.com/db/
ModelMgt/composition/TR.pdf.

[3] P. A. Bernstein, A. Y. Halevy, R. Pottinger. A Vision of
Management of Complex Models.SIGMOD Record,
29(4):55–63, 2000.

[4] P. Buneman, S. B. Davidson, A. Kosky. Theoretical Aspects
of Schema Merging. InProc. EDBT, 1992.

[5] R. Fagin, P. G. Kolaitis, L. Popa, W. C. Tan. Composing
Schema Mappings: Second-Order Dependencies to the
Rescue. InProc. PODS, 2004 (to appear in TODS).

[6] J. Madhavan, A. Y. Halevy. Composing Mappings Among
Data Sources. InProc. VLDB, 2003.

[7] S. Melnik, P. A. Bernstein, A. Halevy, E. Rahm. Supporting
Executable Mappings in Model Management. InProc. ACM
SIGMOD, 2005.

[8] A. Nash, P. A. Bernstein, S. Melnik. Composition of
Mappings Given by Embedded Dependencies. InProc.
PODS, 2005.

[9] R. Pottinger, P. A. Bernstein. Merging Models Based on
Given Correspondences. InProc. VLDB, 2003.

[10] M. Stonebraker. Implementation of Integrity Constraints and
Views by Query Modification. InProc. ACM SIGMOD,
1975.

[11] I. Tatarinov, A. Y. Halevy. Efficient Query Reformulation in
Peer-Data Management Systems. InProc. ACM SIGMOD,
2004.

[12] N. Taylor, Z. Ives. Reconciling Changes while Tolerating
Disagreement in Collaborative Data Sharing. InProc. ACM
SIGMOD, 2006.

[13] M. Yannakakis, C. H. Papadimitriou. Algebraic
Dependencies.J. Comput. Syst. Sci., 25(1):2–41, 1982.

[14] C. Yu, L. Popa. Semantic Adaptation of Schema Mappings
when Schemas Evolve. InProc. VLDB, 2005.

