
Incremental Schema Matching

Philip A. Bernstein
Microsoft Research, USA

Phil.Bernstein@microsoft.com

Sergey Melnik
Microsoft Research, USA

Sergey.Melnik@microsoft.com

John E. Churchill
Microsoft Corp., USA

echurch@microsoft.com

Abstract
The goal of schema matching is to identify corre-
spondences between the elements of two schemas.
Most schema matching systems calculate and dis-
play the entire set of correspondences in a single
shot. Invariably, the result presented to the engi-
neer includes many false positives, especially for
large schemas. The user is often overwhelmed by
all of the edges, annoyed by the false positives,
and frustrated at the inability to see second- and
third-best choices. We demonstrate a tool that cir-
cumvents these problems by doing the matching
interactively. The tool suggests candidate matches
for a selected schema element and allows con-
venient navigation between the candidates. The
ranking of match candidates is based on lexi-
cal similarity, schema structure, element types,
and the history of prior matching actions. The
technical challenges are to make the match al-
gorithm fast enough for incremental matching in
large schemas and to devise a user interface that
avoids overwhelming the user. The tool has been
integrated with a prototype version of Microsoft
BizTalk Mapper, a visual programming tool for
generating XML-to-XML mappings.

1 Introduction

Many data management tasks, such as data translation, data
integration, and data warehousing, are driven by schema
mappings. Schema mappings describe the relationships be-
tween the elements of two schemas, e.g., between XML
types and relational tables. Schema mappings can be spec-
ified directly using data transformation languages such as
SQL, XQuery, and XSLT, or using a visual representation
in a graphical tool.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
to post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

A number of commercial visual programming tools are
available that help an engineer to produce mappings, such
as Altova MapForce [1], BEA WebLogic Workshop [2],
IBM WebSphere [8], Stylus Studio [14], and Microsoft
BizTalk Mapper [5]. For example, BizTalk Mapper al-
lows an engineer to specify a mapping between two XML
schemas using a set of graphical primitives (e.g., links and
functoids, illustrated in the screenshot in Figure 1) that
describe how elements of the source schema should be
mapped to elements of the target schema. Once complete,
the mapping is compiled into an XSLT script that trans-
forms source XML documents into target XML documents.
The script can be used, for example, to translate XML mes-
sages between e-business applications.

Schemas used in enterprise applications often contain
thousands of elements. The engineers who build mappings
for such schemas are skilled IT professionals who usually
possess detailed knowledge of the application domain and
are proficient in specifying complex data transformations.
Nevertheless, mapping development is costly and labor-
intensive, often needing time measured in person-months.

Anecdotal feedback we have received from users sug-
gests that today’s commercial schema mapping tools have
two major shortcomings. First, basic visualization and
navigation tasks, such as finding which schema elements
are linked to each other, are seriously impaired when the
schemas and mappings get large. Advanced visualization
techniques such as the ones in [12] are making their way
into the tools to improve usability in such scenarios.

Second, an engineer needs automated assistance to un-
derstand and discover the semantic relationships between
schema elements. Schema matching is a technique for pro-
viding such assistance by generating candidate correspon-
dences between schema elements from which the engineer
can choose. This problem becomes much harder as the
schemas and mappings become large [11].

Schema matching has drawn significant research atten-
tion. Since the first survey of schema matching was pub-
lished in [10], dozens of new schema matching algorithms
and prototypes have been suggested in the database and
artificial intelligence literature. However, despite years of
intensive research, hardly any of the commercial mapping
tools incorporate schema matching techniques.

A characteristic feature of past approaches to schema



matching is that they attempt to calculate the set of corre-
spondences between all schema elements in a single shot.
Invariably, the result presented to the engineer includes
many false positives, especially for large schemas. This is
partly inherent, because matching algorithms are heuristic.
But it is also partly due to the one-shot approach. For ex-
ample, when deciding whether to match an address record
in the source schema to a ‘shipping address’ or ‘billing ad-
dress’ in the target, the algorithm needs to commit to a par-
ticular choice, possibly misguiding its computation of other
matches. Such false positives require a lot of manual clean-
up. This is aggravated by the absence of user-defined map-
ping annotations, which makes it nearly impossible for the
user to track which match candidates she has validated. As
a result, the engineer feels overwhelmed, tempted to dis-
card all of the schema matcher’s suggestions and start from
scratch. Thus, the single-shot approach to schema match-
ing appears to be a key barrier to user acceptance.

In collaboration with the BizTalk Mapper team, we
have been investigating alternatives to single-shot schema
matching. We developed a tool that supports the mapping
engineer in an interactive, non-intrusive way and mitigates
the negative impact of false positives. The tool suggests
candidate matches for a selected schema element and al-
lows convenient navigation between the candidates.

The ranking of match candidates uses two kinds of
heuristics. First, it leverages known schema-based match-
ing techniques, such as lexical similarity, element types,
and schema structure. Second, it exploits the history of the
user’s prior matching actions to bias the ranking computa-
tion toward the schema regions that are likely to be relevant
to the selected element. For example, if a source element
E’s neighbors have all been mapped to the same region of
the target schema, it is likely that E will map to that region
too. Taking the existing matches and the user action history
into account makes the process of mapping creation inter-
active and personalized. This is a new matching technique
to the best of our knowledge.

The technical challenges are to make the match al-
gorithm fast enough for incremental matching in large
schemas and to devise a user interface that avoids over-
whelming the engineer. To address the former, the match-
ing is done in two phases, first pruning the search space
and then performing a more expensive rank computation.
The user interface challenge is tackled in part by providing
convenient keyboard navigation and highlighting.

The tool has been integrated with a prototype version
of Microsoft BizTalk Mapper, which incorporates some of
the advanced visualization techniques proposed in [12]. It
was demonstrated to customers at the Microsoft Profes-
sional Developers Conference [7] and received strong pos-
itive feedback. A video presentation of the tool and a cus-
tomer blog is available from Channel9 on MSDN [6].

Our broader research agenda is to build a model-
management system that helps engineers develop metadata
applications more effectively using high-level operations
on models and mappings [9]. The schema matching task is

abstracted as the model-management operator Match [3].
The remainder of this paper describes the scope of the

demonstration and highlights some of its technical details.

2 What is Demonstrated

We demonstrate the tool using a real, partially-completed
mapping from a customer in a financial domain. The
schemas represent loan applications, one using a relatively
flat representation and another deeply nested with numer-
ous repeating fragments.

BizTalk Mapper’s user interface is split into three ver-
tical panes. The two schemas are displayed in the left
and right panes. The engineer uses graphical elements in
the middle pane (e.g., lines, cells, functoids, drop down
boxes) to describe how elements of the left schema should
be mapped to elements of the right schema.

The system can be best understood via a usage scenario
(see Figure 1 for a sample screenshot):

1. The user selects an element E of one of the two
schemas by highlighting it (e.g., CoSigner1Monthly-
AutoPayment in the left pane of the figure). The user
then presses a ‘hotkey’, such as SHIFT, to tell the sys-
tem to generate candidate matches. The system in-
vokes the schema-matching algorithm to calculate the
best candidates and displays a small number of them
on the screen as lines from E to the candidate ele-
ments. The best candidate according to the system’s
calculation is highlighted (e.g., the AutomobileMonth-
lyPayment element in the right pane, one of whose an-
cestors is the CoSigner element).

2. The user scrolls through the candidates by using the
up-arrow and down-arrow keys on the keyboard. The
candidates are displayed in rank order of goodness.
The first press of down-arrow moves the selection to
the second-best candidate according to the system’s
calculations (e.g., another AutomobileMonthlyPayment
element, this time in the context of Borrower). The
next press of down-arrow goes to the third best, etc.

3. After the user has selected the candidate C that is the
desired match for E, she presses another key, such as
ENTER, to cause that selection C to become part of
the mapping. That is, the line from E to C becomes
permanent and the lines for matches of E to other can-
didates disappear.

4. The tool now moves to the next element after E. More-
over, if the hotkey key is still pressed, the system im-
mediately calculates the candidate matches for this
new selection, as in (1). Thus the user can match one
element after another rather quickly, with very few
keystrokes and no mouse movement.

Notice that in step (1), the auto-match feature is not in-
trusive. The user presses hotkey to see if the system pro-
duces useful matches. If not, she simply releases the hotkey
and the suggested candidate matches disappear.

In step (1), the system displays only a small number of
matches. In step (2), the user can select those matches one

2



 

Figure 1: Screenshot: best match candidate (right) is an element in the context of CoSigner (as opposed to Borrower)

at a time. If the user has selected the last of the displayed
candidate matches and then presses down-arrow, the sys-
tem displays the next best match and selects it. Thus, the
system does not clutter the screen with too many candidate
matches, yet gives the user the opportunity to see more can-
didates if she wants to.

The combination of steps (3) and (4) enable a user to
walk through all the elements of one schema, matching
each one in turn, without ever having her hands leave the
keyboard to use a pointing device (e.g., mouse or trackpad).
That is, she first uses the pointing device to select the first
element of the schema. After that, she uses her left hand
to press and release hotkey, and her right hand to use the
arrow keys to select the best candidate. If she likes one of
the candidates, then by pressing ENTER she both records
her selection and moves to the next element. If she does not
like any of the candidates, then she releases the hotkey with
her left hand, uses down-arrow to move to the next element
to consider, and then presses hotkey again to see candidate
matches for this next element. And so forth.

In the research literature, if C is calculated to be the best
candidate to match E, and E is calculated to be the best
candidate to match C, then the match is called a ‘stable
marriage,’ because neither element prefers another match
over the one it is currently assigned. Since the match cal-
culation is heuristic, there is still no guarantee that this
stable marriage is the correct match that the user desires.
Still, reversing the match direction can help a user vali-

date candidates. Navigating back and forth between the
source and target schema can also help a user understand
the structure of unfamiliar schemas and tease out their se-
mantics more quickly. The navigation between schemas
is supported as follows. In a variation of the above sce-
nario, after step (2), while still pressing the hotkey, the
user presses the left-arrow or right-arrow key (depending
on which schema contains E), thereby moving the selection
to the currently-selected candidate element C in the other
schema. Since the hotkey is still depressed, the system cal-
culates the best matches (say E1, E2 and E3) of C to ele-
ments of E’s schema. Now, the user can decide whether the
candidate elements (E1, E2, and E3) are better choices than
E to match with C. For example, switching from source
element E = CoSigner1MonthlyAutoPayment to target ele-
ment C = AutomobileMonthlyPayment in Figure 1 produces
the candidates E1 = CoSigner1MonthlyAutoPayment, E2 =
CoSigner2MonthlyAutoPayment, E3 = StudentMonthlyAuto-
Payment, etc.

In the demonstration, we illustrate how the individ-
ual heuristics implemented in the tool help to identify
good candidate matches. We show the robustness of the
lexical matching component; e.g., it finds AmtAvaiForRe-
instatement as a candidate match for ReinstatementAvail-
ableAmount. We illustrate how contextual information en-
coded in element names is leveraged to disambiguate the
context of candidate matches using the nesting structure.
We demonstrate how prior user actions and established

3



 Reuse-based
• Thesaurus
• Validated matches

Content-based
• Values
• Value Patterns
• Machine learning

Schema-based

Constraints
• Types
• Keys

Constraints
• Types
• Keys

• Nesting context
• Neighborhood

Structure
• Nesting context
• Neighborhood

StructureLinguistic 
• Lexical
• Acronyms

Linguistic 
• Lexical
• Acronyms

Action-based
• Recent matches
• Implicit scope

Used
techniques

Currently unused
techniques

 

Figure 2: Schema matching techniques used in the demon-
strated tool

matches bias the subsequent choice of match candidates.

3 Matching and Tuning

Schema matching heuristics can be roughly classified as
shown in Figure 2. In the demonstrated system, we use a
combination of schema-based and action-based techniques.
The schema-based techniques that we exploit are based on
those presented in [4]. For example, the lexical component
tokenizes the element labels based on camel case, detects
abbreviations, etc. Reuse-based and content-based tech-
niques are currently not exploited.

The ranking of match candidates is obtained using a
weighted formula that combines the similarity computed
by the individual techniques, e.g., lexical similarity, struc-
tural similarity, etc. Each matching technique uses several
configuration parameters. To fine-tune these parameters
and the weighted formula, we utilize an approach similar to
that of [13]. We built a tuning component that takes as in-
put a collection of validated mappings and attempts to find
a configuration of weights and parameters that maximizes
the accuracy of the automated matcher for the given map-
ping collection. In the demonstration, we use a parameter
setting fine-tuned for an e-business mapping collection.

The rank computation is performed in two modes, on-
the-fly and cached. The demonstrated matching tool runs
in the on-the-fly mode; using no precomputed state reduces
memory requirements and simplifies testing. It is very fast
even for large schemas due to pruning of candidate matches
prior to ranking. The cached mode is used for tuning the
configuration parameters. Since tuning requires thousands
of matching runs across multiple schemas, the efficiency
gain through caching is noticeable.

Currently, our system supports finding element-to-
element links only and does not take into account the net-
work of functoids in the middle pane of the BizTalk Map-
per. The functoids are used for specifying more com-
plex data restructuring, built-in functions, and custom com-
putation. Discovering complex data transformations is
currently beyond the reach of the state-of-the-art schema
matching techniques.

4 Acknowledgements
We thank John Ballard, Uday Bhaskara, Vincent Celie,
Patric McElroy, Alvaro Miranda, Prasad Sripathi Pan-
ditharadhya, George Robertson, and Andy Wu for their
support and feedback on design issues and implementation.

References
[1] Altova MapForce. http://www.altova.com/products

mapforce.html.
[2] BEA WebLogic Workshop. http://www.bea.com/

framework.jsp?CNT=index.htm
&FP=/content/products/workshop/.

[3] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In Proc. CIDR, 2003.

[4] P. A. Bernstein, S. Melnik, M. Petropoulos, C. Quix.
Industrial-Strength Schema Matching. SIGMOD
Record, 33(4):38–43, 2004.

[5] Microsoft BizTalk Server 2004. BizTalk Map-
per. http://msdn.microsoft.com/library/en-us/intro-
duction/htm/ebiz intro story jgtg.asp, 2004.

[6] J. E. Churchill. BizTalk’s Sexy New XSLT Mapper.
http://channel9.msdn.com/ShowPost.aspx?
PostID=127918.

[7] J. E. Churchill, P. McElroy. Future Directions:
Beyond BizTalk Server 2006. Breakout Session
DAT319, The Microsoft Professional Developers
Conference, Los Angeles, 2005.

[8] C. Lau. Developing XML Web Services with Web-
sphere Studio Application Developer. IBM Systems
Journal, July 2002.

[9] S. Melnik, P. A. Bernstein, A. Halevy, E. Rahm. Sup-
porting Executable Mappings in Model Management.
In Proc. ACM SIGMOD, 2005.

[10] E. Rahm, P. A. Bernstein. A Survey of Approaches
to Automatic Schema Matching. VLDB Journal,
10(4):334–350, 2001.

[11] E. Rahm, H.-H. Do, S. Massmann. Matching Large
XML Schemas. SIGMOD Record, 33(4):26–31,
2004.

[12] G. G. Robertson, M. P. Czerwinski, J. E. Churchill.
Visualization of mappings between schemas. In CHI
’05: Proc. of the SIGCHI conf. on Human factors in
computing systems, pages 431–439, New York, NY,
USA, 2005. ACM Press.

[13] M. Sayyadian, Y. Lee, A. Doan, A. Rosenthal. Tun-
ing Schema Matching Software using Synthetic Sce-
narios. In Proc. VLDB’05.

[14] Stylus Studio. http://www.stylusstudio.com/.

4


