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Abstract

The concept of “model” is today considered as a promising technology in domains such as
data and software engineering. In the field of model engineering, models are now viewed as
firts-class entities. This new approach makes it possible toenvision the integration of models
into engineering processes. Such an integration will however require a set of dedicated tools
enabling to perform standard model operations onto handledmodels. We strongly believe that,
in order to achieve usability for large communinities of users, model-based tools have to rely
on a common and well-defined theorical modeling framework.
This report addresses both theorical and implementation issues. We propose the idea that a
common set of principles may be mapped to different implementation contexts. We illustrate
our approach with AMMA, our current proposal for a model-based conceptual architecture.

General Terms: Design, Theory, Standardization

Additional Key Words and Phrases: model, model engineering, mda, omg, definition





1 Introduction

When we consider most areas of computer science, we may observe that there has been an
initial period of development, based on ad-hoc principles,followed by a rapid rise in abstraction
allowing radical improvement of the practices in the field. The move from the first to the second
period was usually triggered by the proposal of a new key abstraction and a corresponding set
of principles. In the database area for example, the pioneering work of E. F. Codd is widely
recognized as one of the great technical innovations of the 20th century. The relational database
organization provided a theoretical framework within which a variety of important problems
could be attacked in a scientific manner. This new abstraction was described in an IBM technical
report of 1969 and became mainstream in the seventies. Similarly in software engineering, K.
Nygaard and O. Dahl proposed in 1965 to unify many notions including data and procedures
into the concept of an object, and the related technology waswidely transferred to industry in
the eighties. Object technology will also probably be seen as another great invention of the
20th century. What seems now to be happening is a similar movement based on the concept of
“model”. Model engineering will change the future practices in domains like data engineering
and software engineering if we are able to prove that it is based on sound principles and that
it is amenable to implementation and wide usage. This dual test of feasibility (conceptual and
operational) was brightly passed by relational technologyin data engineering and by object
technology in software engineering. This paper proposes some initial thinking about the ability
of model engineering to achieve similar success. We have then two questions to answer: 1)
what are the foundations and basic principles of this new proposal and 2) how could these
principles be mapped onto operational systems so that largeuser communities may start using
the technology.

Model engineering applies to several domain areas like distributed real-time embedded sys-
tems, as proved by the growing scientific literature in this application field. This report however
does not target any specific area, but is intended to show the wide spectrum of applicability of
the proposed ideas. Partial proof of feasibility of these ideas is being demonstrated by the Atlas
research group1 contribution to the Eclipse/GMT project2.

In the second section of this report, we present a possible foundation for model engineer-
ing. We then proceed to demonstrate how some of these principles may be mapped onto an
operational system. AMMA (ATLAS Model Management Architecture), which is our current
proposal for such a conceptual architecture, will be described in the third section. We choose,
as a target platform, one of the currently most popular programming frameworks, the Eclipse
system3, extended by some basic facilities for handling models (EMF) [3]. The mapping from
basic principles to this implementation object-based platform is captured by what we call a
conceptual model engineering architecture. We show, in thefourth section, how AMMA may
be mapped onto the Eclipse/EMF framework. We discuss advantages, limitations and possible
extensions of our approach in the conclusion.

1ATL home page: http://www.sciences.univ-nantes.fr/lina/atl/
2Eclipse/GMT home page: http://eclipse.org/gmt/
3Eclipse home page: http://www.eclipse.org/
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2 Definitions and concerns

The aim of this section is to introduce the basic principles model engineering is based on. To
this end, we first provide a description of the different artifacts composing the model-driven
architecture, and the way they are related. We then identifysome of the issues model-based
platforms will have to address.

2.1 Principles and definitions

Models are now commonly used to provide representation of real-world situations. In the scope
of a modeling architecture, the term system is used to refer to a real-world situation. A model
is then said torepresenta system. Figure 1 provides an example of a relational model that
defines a possible representation for a set of books in a library. In this example, the system is
associated with the represented books while the model corresponds to the Book table structure.
This structure is defined in terms of tables, columns, and columns types, which correspond to
our relationalmodel elements. On the right side of Figure1, we have a relational representation
of part of the world (a library). Other different representations of this same library are possible,
e.g. an event-based representation capturing book creation, lending, returning, destruction, etc.

repOf

System

Title PagesNbBookId AuthorId
… …… …
… …… …

Relational Model

Book

repOf

System

Title PagesNbBookId AuthorId
… …… …
… …… …

Relational Model

Title PagesNbBookId AuthorId
… …… …
… …… …

Title PagesNbBookId AuthorIdTitleTitle PagesNbPagesNbBookIdBookId AuthorIdAuthorId
… …… …… ……… ……
… …… …… ……… ……

Relational Model

Book

Figure 1: The “representation” relation between a system and a model

Each model is defined in conformance to a metamodel. Metamodels define languages en-
abling to express models. This means that a metamodel describes the various kinds of contained
model elements, and the way they are arranged, related, and constrained. A model is saidto
conformto its metamodel. Thus, our Book relational model conforms tothe relational meta-
model (cf. Figure2). Representation and conformance relations are central to model engineer-
ing [4].

As models, metamodels are also composed of elements. Metamodel elements provide a
typing scheme for models elements. This typing is expressedby themetarelation between a
model element and itsmetaelement(from the metamodel). We also say that a model element is
typedby its metaelement. A model conforms to a metamodel if and only if each model element
has its metaelement defined within the metamodel. Figure3 explicits some of the meta relations
between Book model elements and relational metamodel elements: the Book element is typed
by the Table metaelement, BookId and Title are typed by the Column metaelement, and String
is typed by the Type metaelement.

The relational metamodel provides a specific way to define data-centered models. However,
many other metamodels may be similarly specified (UML metamodel, Petri nets metamodel,

../../../Imgs/Eps/RepOf-Example.eps
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Figure 2: The “conformance” relation between a model and itsmetamodel
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Table
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Figure 3: The “meta” relation between model and metamodel elements
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Figure 4: “meta” relations between M2 and M3 levels

etc.), providing thus different complementary ways to define models. The growing number of
metamodels has emphasized the need for an integration framework for all available metamod-
els. The answer was to provide a new item, the metametamodel,dedicated to the definition of
metamodels. In the same way models are defined in conformancewith their metamodel, meta-
models are defined by means of the metametamodel language. A metamodel is said to conform
to the metametamodel. As an example, we can consider the MOF (Meta-Object Facility), which
is the OMG proposal for metamodels definition [13]. The relational metamodel conforms to the
MOF metametamodel.

As models and metamodels, the metametamodel is also composed of elements. A meta-
model conforms to the metametamodel if and only if each of itselements has its metaelement
defined in the metametamodel. Some meta relations between relational metamodel elements
and MOF elements are explicited in Figure4. Thus, the Table, Column and Type elements
are typed by the MOF Class element, whereas relational links elements are associated with the
MOF Association element.

The MOF metametamodel is self-defined. In other words, it is defined in conformance
with its own language. It is said to conform to itself. This implies that MOF elements have their

MOF Metametamodel

ClassAssociation

source

destination

metametameta

MOF Metametamodel

ClassAssociation

source

destination ClassClassAssociationAssociation

source

destination

metametameta

Figure 5: Self definition of the M3 level
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…

… …

Figure 6: The 3 layers of the model-driven architecture

metaelement defined in the MOF itself. Therefore, a MOF element can be its own metaelement.
This situation is illustrated in Figure5: the Association and the Class elements are both typed by
the MOF Class element (i.e. the Class element is its own metaelement), whereas link elements
are typed by the MOF Association element.

We have now defined the three different layers composing the model-driven architecture.
Figure6 provides an overview of this architecture. The highest layer is the one of the metameta-
model (it is called M3 for the three M’s of metametamodel). Inthe scope of the OMG archi-
tecture [19], the metametamodel is the MOF. However, other metametamodels are available in
different contexts. For instance, the EBNF provides a convenient metametamodel when dealing
with programming languages. The following layer (M2) is theone of metamodels. At this level,
we find the different metamodels (relational, UML, etc.) that have been defined in conformance
with the metametamodel. The last layer (M1) is the one of models. Each model conforms to a
given metamodel defined at layer M24.

In the model engineering area, artifacts of the model-driven architecture are considered as
first class entities. Suitable tools are hence required in order to handle models and metamod-
els conveniently. We identify, in the next section, a numberof features that should be made
available by operational model-based systems.

4Some also consider a fourth layer, called M0, for terminal instances but this is not our reading of the OMG
architecture [19]. We interpret M0 as being the real world and M1-3 to be the modeled world.

../../../Imgs/Eps/Mda-Example.eps
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2.2 Issues in handling models

In the field of model engineering, users have to deal with entities such as models, metamodels,
model elements, etc. They may be particularly interested inbeing able to handle models and
metamodels as basic elements by means of dedicated loading/saving (from/to persistent stor-
ages) and editing facilities. For instance, a developer maybe interested in programmatically
creating a new model from scratch by adding model elements toit. In the same way, modifica-
tion and deletion operations should also be available on models, thus enabling a user to modify
an existing relational model by removing a column from a table definition.

Working with models also supposes underlying systems to be able to manage a number of
metadata. Beside update logs and authoring information (that may be associated with handled
models), the metadata have to describe existing relationships between artifacts of the model-
driven architecture. As an example, the conformance relation between a model (M1) and its
metamodel (M2) can be explicited in the scope of these metadata. Relations between models
may also be expressed this way. Further discussion on the need for metadata management may
be found in [7].

Co-existing metamodels now make it possible to define different models that represent a
same system. For instance, the library system we represented by a relational model may also
be represented by means of a UML model. The growing number of available metamodels high-
lights the need for tools enabling to establish semantic relations between model elements, and
to transform a model conforming to a metamodel A into a model conforming to a metamodel B.

Finally, an ideal model engineering platform is also supposed to deal with data types. Mod-
els can indeed be specified by means of a number of domain-specific formats (database defin-
ition, Java classes, etc.). These domain-specific formats are associated with various Technical
Spaces (TS) [11]. Bridges between models conforming to different metamodels should be pro-
vided by transformation facilities. In a similar way, an operational platform has to embed tools
providing gateways between the model engineering and otherTSs.

In this section, we have introduced the basic principles of model engineering and identified a
set of desirable features for model-based operational environments. The next section is devoted
to the description of AMMA, our model engineering prototype.

3 AMMA: a model engineering platform

The basic principle of a model engineering platform is to consider models as first class entities.
Using a model-based platform should allow significant benefits. For instance, model and meta-
model repositories may handle efficient and uniform access to these models, metamodels and
their elements in serialized or any other mode. Transactional access, versioning and many other
facilities may also be offered.

In this section, we view AMMA as a model engineering platform, i.e. a framework offering
basic facilities to manipulate models, and onto which a variety of different tools (industrial or
research tools, legacy or advanced tools, etc.) may be plugged. In the next section we’ll take
the slightly different view of considering rather AMMA as a conceptual architecture mapped
onto Eclipse/EMF, i.e. a higher abstract interpretation ofEclipse/EMF basic facilities.
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AMMA, our model engineering platform prototype can be seen as a software bus adapted
to the basic model engineering principles. It may have both local and distributed implementa-
tions. A model engineering platform is primarily intended for tool integration. Several tools
are usually available on such a platform. AMMA is based on four basic blocks (presented in
Figure7) providing a large set of model processing facilities:

• the Atlas Transformation Language (ATL) defines model transformation facilities;

• the Atlas ModelWeaver (AMW) makes it possible to establish links between the elements
of two (or more) different models;

• the Atlas MegaModel Management (AM3) defines the way the metadata is managed in
AMMA (registry on the models, metamodels, tools, etc.);

• the Atlas Technical Projectors (ATP) defines a set of injectors/extractors enabling to im-
port/export models from/to foreign technical spaces (Javaclasses, relational models, etc.).

AMMA

ATL AMWAM3 ATP

AMMAAMMA

ATL AMWAM3 ATP

Figure 7: The AMMA platform

3.1 ATL: The Atlas Transformation Language

A model transformation language is used to define how a set of source models is visited to create
a set of target models [15]. ATL is a model transformation language, having its abstract syntax
defined using a metamodel. This means that every ATL transformation is in fact a model, with
all the properties that are implied by this. Figure8 provides the scheme of the transformation
of a modelMa (conforming toMMa) into a modelMb (conforming toMMb) based on the
Mt transformation (which conforms to the ATL transformation language). Following subsec-
tions present the ATL language, its execution engine, and the ATL development environment
provided within the AMMA platform.

3.1.1 The ATL language

The ATL language is a hybrid of declarative and imperative constructs. The expression language
is based on OCL 2.0 [14]. In declarative ATL, a transformation is composed of rules. Each
rule specifies a set of model element types (coming from the source metamodels), which are
to be matched, along with a Boolean expression, which filters even more the set of matched

../../../Imgs/Eps/Amma.eps
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MOF

ATL

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo
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Transformation

MOFMOF

ATLATL

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

Figure 8: An ATL transformation

elements (e.g. all classes with a name beginning by a “C”). This constitutes the source pattern,
or left-hand side, of the rule. The target pattern, or right-hand side, is composed of a set of
model element types (coming from the target metamodels). Toeach of them is attached a set
of bindings which specifies how the properties of the target element are to be initialized. These
declarative rules are named matched rules.

Imperative constructs in ATL can be specified in several places. An imperative block can
be added to any declarative rule to conveniently initializetarget elements. Procedures, which
are named called rules in contrast with the declarative matched rules, can be placed in the
transformation and be called from any imperative block. Some procedures may bear the flags
entrypoint or endpoint to specify that they should be executed either before or after the declar-
ative rules are. The content of imperative blocks consists of sequences of instructions among
assignments, looping constructs, conditional constructs, etc. By this mean, complex algorithms
can be implemented imperatively.

3.1.2 The ATL engine

The ATL engine has been implemented as a Virtual Machine (VM). The main advantage we
see in this approach is flexibility. As a matter of fact, AMMA is a research platform and,
as such, ATL is constantly evolving. A single low-level implementation makes it possible to
work on high-level transformation language concepts whilebeing rather independent of the
tools being used. For instance, the execution engine was first written to use the Netbeans/MDR
model handler [12], but it now also run on top of Eclipse/EMF [3]. The only parts that had to be
changed are the VM, the ATL compiler, and the related tools being executed on it. Among other
interesting aspects, the use of a stack-based instruction set makes compiling OCL expressions
quite simple.

The ATL VM is a stack machine that uses a simple instruction set, which can be divided in
three subsets. The first one is composed of instructions thatperform model elements handling:
creation, access and assignment of properties, and operations call. The second one contains

../../../Imgs/Eps/Atl-Example.eps
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Figure 9: The ATL IDE

control instructions: goto, if, collection iteration instructions, etc. There is also a set of stack
handling instructions to push, pop, and duplicate operands. The primitive types are imple-
mented by a native library based on the OCL standard library. All operations on primitive types
are handled in the same way they are defined in the OCL specification, that is through operation
calls of this library.

3.1.3 ATL Tools

An Integrated Development Environment (IDE) has been developed on top of Eclipse [10] in
order to ease the transformation writing process (cf. Figure9). ATL Development Tools (ADT)
provide several tools usually present in such an environment [1]. There is a syntax-highlighting
editor synchronized with an outline presenting a view of theabstract syntax of the currently
edited transformation program. Wizards have been developed to create ATL projects for which
a specific builder compiles ATL transformations.

A launch configuration is available to launch transformations in run or debug mode. In the
latter, the execution can be debugged directly in Eclipse. The accompanying documentation
features a simple tutorial that can be used to show all these features. Most of the ATL IDE
components [1] behave the same way as their Java Development Tools (JDT) counterpart in
Eclipse.

3.2 AMW: The Atlas ModelWeaver

With the growing number of available metamodels, being ableto establish relations between
model elements has become a key feature for modeling platforms. The Atlas ModelWeaver aims

../../../Imgs/Png/AtlIde.png
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Figure 10: The model weaving scheme

to assist designers in the definition of semantic links between elements of different models (or
metamodels).

3.2.1 Model Weaving

Model weaving operations are performed between either metamodels (two or more), or models.
They aim to specify the links, and their associated semantics, between elements of source and
target models. Let us consider an example inspired by the work of Bernstein [2, 17]. We have
two address books to merge and we get bothLeftM andRightM models. InRightM, we only
have the classNamewhereas, in the second one, we have the classesFirstNameandLastName.
We need here to establish a complex link, stating that these are related by an expression of
concatenation.

Concerning the set of links to be generated, the following issues have to be considered:

• this set of links cannot be automatically generated because it is often based on human
decisions. The generation can however be partially automated by means of heuristics;

• it should be possible to record this set of links as a whole, in order to use it later in various
contexts;

• it should be possible to use this set of links as an input to automatic or semi-automatic
tools.

As a consequence, we come to the conclusion that a model weaving operation produces a
precise model,WM. Like other models, this should conform to a specific metamodel, WMM.
The produced weaving model relates to the source and target modelsLeftM andRightM, and
thus remains linked to these models in a megamodel registry.Figure 10 describes a simple

../../../Imgs/Eps/Amw-Example.eps
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Figure 11: The AMW IDE

model weaving scheme in which an explicited weaving link (oftypeConcatenation) associates
two source elements (FirstNameandLastName) with an only target element (Name).

Each link element of the produced weaving modelWM has to be typed by an element of a
givenWMM metamodel. There is no unique type of link. Link types shouldprovide weaving
tools with useful information. Even if some links contain textual descriptions, these are valuable
for tools supporting documentation, manual refinements or applying heuristics.

One may assume that there is no standard metamodel for weaving operations since most
developers define their own. However, we suppose that there is a stub weaving metamodel, and
that this stub is extended by specific metamodel extensions.Thus, a given weaving metamodel
may be expressed as an extension of another weaving metamodel. This allows building a general
weaving tool, the Atlas ModelWeaver, able to generically deal with weaving tasks.

3.2.2 AMW tools

The ModelWeaver tool in AMMA reuses part of the infrastructure of the ATL IDE, itself based
on the Eclipse Platform [1]. It aims to provide generic facilities for model weaving tasks. For
this purpose, the ModelWeaver design is based on the notionsof metamodel extensions and
Eclipse plugins.

The implementation of the ModelWeaver was governed by the idea that the GUI of the
model weaving tool should be simple, but also partially generetable. To this end, we designed a
three parts interface (see Figure11). From the left part, one can select any class or associationof
the left metamodel, and, from the right part, one can similarly select any class or association of
the right metamodel. In the central part appear all the main elements of the weaving metamodel.
Selecting a triple thus means creating a weaving link in the resulting weaving model.

Proceeding in this way, we get a generic weaving tool, adaptable to any kind of left, right,
and weaving metamodels. Of course, many design alternatives are being explored in the actual

../../../Imgs/Png/AmwIde.png
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building of this tool. An initial prototype has been built [6] and may give an idea of the user
interface of AMW. As may be inferred from this prototype, a typical weaving session starts
by uploading the weaving metamodel. From this metamodel, part of the tool GUI may be
automatically generated. Then, the left and the right metamodel may be chosen and the weaving
work may proceed.

3.3 AM3: The Atlas MegaModel Management

The Atlas MegaModel Management tool, AM3, is an environmentfor dealing with models
or metamodels, together with tools, services and other global entities, when considered as a
whole. For each platform, we suppose that there is an associated megamodel defining the
metadata associated to this platform. Within the content ofa given platform (local or global),
the megamodel records all available resources. One may alsorefer to these resources as “model
components” [5]. The megamodel can be viewed as a model which elements represent and
refer to models and metamodels. Represented as models, available tools, services, and services
parameters are also managed by the megamodel. There are plenty of events that may change
the megamodel, like the creation or suppression of a model, or a metamodel, etc.

To illustrate our purpose, we can consider an example related to transformations. An ATL
transformation is a model, conforming to a given metamodel.So, if a modelMb has been cre-
ated from a modelMa by using transformationMt, then we can keep this global information
in the megamodel. Supposing the transformation modelMt has a link to its reverse transfor-
mationM

−1

t , the memorized information can be used for reverse engineering (from a modified
modelMb) or for consistency checks. Being stored in a repository, a given transformationMt

will have no meaning if the three links are not provided to thesource and target metamodels
and to the transformation metamodel itself.

Another well-known example of global link is the conformance relation between a model
and its metamodel. This is often considered as an implicit link, but we suggest here that
this could also be explicitly captured in a megamodel with many advantages. One interest-
ing property of this global conformance relation between a model and its metamodel is that
it may be viewed as summarizing a set of relations between model elements and metamodel
elements (previously named ”meta” in this report). One can clearly see here the coexistence
between global model level relations and local element based relations. In some cases, one is
not interested in the local element level relations becausethe global relation provides sufficient
reliable information on what is actually needed.

Moreover, there is a whole set of information that could be regarded as global metadata. For
example, we could associate to a model the information of whohas created it and when and
why and may be what for, etc., who has updated it and the history of updates, etc.

3.4 ATP: The Atlas Technical Projectors

The Atlas Technical Projectors, ATP, define a set of injectors and extractors, which can be
seen as import and export facilities between the model engineering Technical Space and other
TSs (databases, flat files, XML, etc). Indeed, a very large amount of pre-existing data that is not
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XMI compliant (XML Model Interchange is the OMG open standard for model exchanges [16])
would greatly benefit from model transformation. In order tobe processed by a model engi-
neering platform, this data needs injection from its TS to the model engineering TS. The need
for extraction is also quite important: many existing toolsdo not read XMI. A simple example
is the Java compiler. What we need here is code generation, which may be seen as a specific
case of model extraction. Many other TSs require both injectors and extractors: database sys-
tems provide another example in which database schemes haveto be generated from model
definitions.

Besides, even when dealing with model engineering tools, it may be convenient to use sim-
ple textual representations rather than always using a complex ad-hoc tool or meta-tool. We de-
signed the Kernel Metametamodel (KM3) to this end. It is a simple proprietary textual concrete
syntax to type metamodels in. Although there are quite a lot of tools to draw UML diagrams,
and although some of them actually export valid metamodels in XMI, simple additional textual
tools could be useful if they are sufficiently generic. A gateway between XMI and KM3 repre-
sentations has been built by developing injectors and extractors that enable models translations
within the model engineering TS.

4 Implementing AMMA on top of EMF

The AMMA platform has been implemented on top of the Eclipse/EMF framework. We de-
scribe, in this section, the way AMMA tools have been mapped onto EMF facilities.

4.1 Eclipse and EMF

Eclipse is an open-source generic framework for developingapplications. It can be used as a
development tool, can be extended, some parts of it can be integrated into standalone appli-
cations, etc. The flexibility of the framework, the source code availability, and the integration
level already achieved by some tools, such as JDT and CDT for Java and C/C++ development,
make Eclipse very attractive.

The Eclipse Modeling Framework (EMF) is a model engineeringextension for Eclipse [3].
It enriches Eclipse with model handling capabilities. To this end, it implements the basic prin-
ciples described in the second section of this report in the form of a model handling API. EMF
provides support for operations such as XMI serialization and loading, creation and deletion of
model elements, property assignment, and navigation. Basedon these facilities, model engi-
neering platforms can be built on top of EMF, either as Eclipse features, or as separate tools
that only use the EMF API. However, EMF is more than just a single model engineering block:
it is a model engineering platform. It provides advanced features such as customizable Java
code generation for programmatic or editor-based model handling, XML Schema injection and
extraction, etc. EMF can be seen as a convenient platform forJava developers who want to
benefit from model engineering facilities while still usinga generic programming language.
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Figure 12: Architecture of the AMMA platform

4.2 AMMA on top of EMF

The AMMA platform is aimed at more model-centric activities, following the line “models as
first-class entities”. For instance, whereas code generation is a main component of EMF, we
consider it as a specific use of projectors. The architectureof the current EMF-based AMMA
implementation is described in Figure12. The transformation tool of AMMA, ATL, uses the
basic features of EMF to handle both source and target modelsand metamodels, as well as the
transformation model and metamodel. An Integrated Development Environment (IDE) has been
developed for ATL on top of Eclipse. Based on EMF, it makes use of many other features, such
as the code editor and the code debugging frameworks. AMW, the AMMA model weaving tool,
uses more advanced EMF features. Since it is built as a model editor, AMW can benefit from
editing domains facilities for complex model handlings (including undo-redo). It also reuses
some components of the Eclipse default views to display models.

Eclipse is mostly used as an IDE for software development. Assuch, it includes facilities
enabling to navigate the code, to keep track of the files that need rebuilding, etc. The megamodel
tool (AM3) is used as a model-oriented extension of these abilities. As a matter of fact, using
the relations between models (such as the source and target relations between a transformation
model and its source and target metamodels), and between models and tools (such as those
provided by ATP), AM3 makes it possible to easily carry on complex weaving, transformation
and projection tasks.

5 Conclusion

The main contribution of this work is the AMMA conceptual architecture, seen as an inter-
mediary level between model engineering basic principles and executable systems running on
operational platforms. The main advantage of proceeding inthis way is that we may more
clearly evaluate the gap between principles and implementation. From our initial experimen-
tations, we came to the conclusion that building a model engineering platform is much more
demanding than simply providing a RPC-like mechanism for allowing tools to exchange mod-
els in serialized format (e.g. XMI-based), with the corresponding services and protocols (e.g.

../../../Imgs/Eps/Architecture.eps
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Web Service-based). The present state of AMMA with the four functional blocks is only one
step in this direction and still needs many extensions.

There are many variants of model engineering. The most publicized is the OMG MDA, but
we may also mention generative programming [8], model integrated computing [18], software
factories [9], and many others. Our attitude has been to find the set of basic principles common
to all the dominant model engineering approaches and to makethem explicit. Then we are in a
position to clearly separate the principles, standards, and tools levels.

Usually, MDA advocates the separation from platform-dependent and platform-independent
aspects. It would be a pity if MDA tools did not apply these principles to themselves. We have
already experimented with porting the ATL engine from MDR/NetBeans to Eclipse/EMF. It
would be nice if the cost of moving from an execution environment to the next one could be
made low by using model engineering techniques. Having an explicit definition of the principles
and a separate mapping of these principles onto executable platforms helps keeping the moving
cost within reasonable bounds.

One of the contributions of our approach is also to take explicitly into account the notion of
technical space. Instead of building a lot of different ad-hoc conversions tools (modelToText,
textToModel, ontologyToModel, modelToOntology, XMLToText, textToXML, modelToSQL,
SQLToModel, etc.), we have proposed, with the notion of projectors (injectors or extractors),
a general concept that may be used in various situations. These projectors can be selected as
either front-ends or back-ends for classical transformations.

Finally, what also appears in this presentation is the high complementarity between all four
presented functional blocks (ATL, AMW, AM3, and ATP). Thereare plenty of applications that
make use of these four kinds of functionalities at the same time.
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Abstract

The concept of “model” is today considered as a promising technology in domains such as
data and software engineering. In the field of model engineering, models are now viewed as
firts-class entities. This new approach makes it possible toenvision the integration of models
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