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Abstract

The concept of “model” is today considered as a promisingrelogy in domains such as
data and software engineering. In the field of model engingemodels are now viewed as
firts-class entities. This new approach makes it possib&ntision the integration of models
into engineering processes. Such an integration will hewesquire a set of dedicated tools
enabling to perform standard model operations onto harmdtzdels. We strongly believe that,
in order to achieve usability for large communinities of igsenodel-based tools have to rely
on a common and well-defined theorical modeling framework.

This report addresses both theorical and implementatgues We propose the idea that a
common set of principles may be mapped to different impleaten contexts. We illustrate
our approach with AMMA, our current proposal for a modeldzhsonceptual architecture.

General Terms: Design, Theory, Standardization
Additional Key Words and Phrases: model, model engineenmda, omg, definition






1 Introduction

When we consider most areas of computer science, we may ebg&tthere has been an
initial period of development, based on ad-hoc principieiéowed by a rapid rise in abstraction
allowing radical improvement of the practices in the fielthieTnove from the first to the second
period was usually triggered by the proposal of a new keyratisbn and a corresponding set
of principles. In the database area for example, the piamgevork of E. F. Codd is widely
recognized as one of the great technical innovations of@tie @&ntury. The relational database
organization provided a theoretical framework within whe variety of important problems
could be attacked in a scientific manner. This new abstraetas described in an IBM technical
report of 1969 and became mainstream in the seventies. &lynih software engineering, K.
Nygaard and O. Dahl proposed in 1965 to unify many notionkidiog data and procedures
into the concept of an object, and the related technologywidsly transferred to industry in
the eighties. Object technology will also probably be seemrmother great invention of the
20th century. What seems now to be happening is a similar mewebased on the concept of
“model”. Model engineering will change the future praciége domains like data engineering
and software engineering if we are able to prove that it i€das sound principles and that
it is amenable to implementation and wide usage. This dgalotefeasibility (conceptual and
operational) was brightly passed by relational technolwggata engineering and by object
technology in software engineering. This paper proposesoitial thinking about the ability
of model engineering to achieve similar success. We have tihe questions to answer: 1)
what are the foundations and basic principles of this newgsal and 2) how could these
principles be mapped onto operational systems so that lesglecommunities may start using
the technology.

Model engineering applies to several domain areas likeloliged real-time embedded sys-
tems, as proved by the growing scientific literature in tipiglecation field. This report however
does not target any specific area, but is intended to show ithee spectrum of applicability of
the proposed ideas. Partial proof of feasibility of thessaglis being demonstrated by the Atlas
research groupcontribution to the Eclipse/GMT project

In the second section of this report, we present a possibled&ation for model engineer-
ing. We then proceed to demonstrate how some of these pesapay be mapped onto an
operational system. AMMA (ATLAS Model Management Archiié®), which is our current
proposal for such a conceptual architecture, will be dbsdrin the third section. We choose,
as a target platform, one of the currently most popular @nagmning frameworks, the Eclipse
systend, extended by some basic facilities for handling models (EMFE The mapping from
basic principles to this implementation object-basedf@tat is captured by what we call a
conceptual model engineering architecture. We show, irfidhgh section, how AMMA may
be mapped onto the Eclipse/EMF framework. We discuss adgast limitations and possible
extensions of our approach in the conclusion.

IATL home page: http://www.sciences.univ-nantes. fr/lia
2Eclipse/GMT home page: http://eclipse.org/gmt/
3Eclipse home page: http://www.eclipse.org/



2 Definitions and concerns

The aim of this section is to introduce the basic principlexlal engineering is based on. To
this end, we first provide a description of the differentfagis composing the model-driven
architecture, and the way they are related. We then idestifyie of the issues model-based
platforms will have to address.

2.1 Principles and definitions

Models are now commonly used to provide representationabfwerld situations. In the scope
of a modeling architecture, the term system is used to refarreal-world situation. A model
is then said taepresenta system. Figure 1 provides an example of a relational mddel t
defines a possible representation for a set of books in ayibha this example, the system is
associated with the represented books while the modelsymrels to the Book table structure.
This structure is defined in terms of tables, columns, andronk types, which correspond to
our relationaimodel elementgOn the right side of Figurg, we have a relational representation
of part of the world (a library). Other different represdiutas of this same library are possible,
e.g. an event-based representation capturing book cne&itding, returning, destruction, etc.

Relational Model

repOf Bookld Title PagesNb | Authorld

Book

Figure 1. The “representation” relation between a systetheamodel

Each model is defined in conformance to a metamodel. Metasdeéine languages en-
abling to express models. This means that a metamodel des¢hie various kinds of contained
model elements, and the way they are arranged, related,carstrgined. A model is saitb
conformto its metamodel. Thus, our Book relational model conformghéeorelational meta-
model (cf. Figure?). Representation and conformance relations are centrabtiehengineer-
ing [4].

As models, metamodels are also composed of elements. Mé&ralements provide a
typing scheme for models elements. This typing is exprebgdtie metarelation between a
model element and itmetaelemenifrom the metamodel). We also say that a model element is
typedby its metaelement. A model conforms to a metamodel if ang ibelach model element
has its metaelement defined within the metamodel. Figeselicits some of the meta relations
between Book model elements and relational metamodel elsmtiie Book element is typed
by the Table metaelement, Bookld and Title are typed by ther@Golmetaelement, and String
is typed by the Type metaelement.

The relational metamodel provides a specific way to define-dahtered models. However,
many other metamodels may be similarly specified (UML me@@hoPetri nets metamodel,


../../../Imgs/Eps/RepOf-Example.eps

Relational Metamodel
Table Column Type
- sui o —owng % - sui
name: String name: String name: String
{ordered}
+keyOf] 1.* +key/\ *
N
conformsTo
Relational Model
Bookld Title PagesNb | Authorld
String String Int String
Book

Figure 2: The “conformance” relation betwee

n a model anthasamodel

Relational Metamodel

Table Column Type
name: String name: String name: String
_’ A

\

/% meta relations

| CBook D

Bookld Title PagesNb

FAuthorld

Gring | Cstring) It

CString)—

Relational Model

Figure 3: The “meta” relation between model and metamodghehts



../../../Imgs/Eps/ConformsTo1-Example.eps
../../../Imgs/Eps/Meta1-Example.eps

MOF Metametamodel

source
Association | y.cination Class

Table Column Type

\ +col

name: String: - name: String
+ owner

{ordered}

tvge|
S
>

name: String

keyAN

Relational Metamodel

Figure 4: “meta” relations between M2 and M3 levels

etc.), providing thus different complementary ways to defimodels. The growing number of
metamodels has emphasized the need for an integrationviraraéor all available metamod-
els. The answer was to provide a new item, the metametamibettiated to the definition of
metamodels. In the same way models are defined in confornvatitéheir metamodel, meta-
models are defined by means of the metametamodel languagetaltodel is said to conform
to the metametamodel. As an example, we can consider the M@a{Object Facility), which
is the OMG proposal for metamodels definitidi8]. The relational metamodel conforms to the
MOF metametamodel.

As models and metamodels, the metametamodel is also cothpbstements. A meta-
model conforms to the metametamodel if and only if each aélgsnents has its metaelement
defined in the metametamodel. Some meta relations betwédional metamodel elements
and MOF elements are explicited in Figute Thus, the Table, Column and Type elements
are typed by the MOF Class element, whereas relational lilgksents are associated with the
MOF Association element.

The MOF metametamodel is self-defined. In other words, iteBned in conformance
with its own language. It is said to conform to itself. Thigales that MOF elements have their

metm—m meta

y < source \ NV

Association )degt_inaﬁcn ( Class >/

MOF Metametamodel

Figure 5: Self definition of the M3 level
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Figure 6: The 3 layers of the model-driven architecture

metaelement defined in the MOF itself. Therefore, a MOF efdgro@n be its own metaelement.
This situation is illustrated in Figu® the Association and the Class elements are both typed by
the MOF Class element (i.e. the Class element is its own meteelg, whereas link elements
are typed by the MOF Association element.

We have now defined the three different layers composing tha@ehdriven architecture.
Figure6 provides an overview of this architecture. The highestrigs/the one of the metameta-
model (it is called M3 for the three M’s of metametamodel).the scope of the OMG archi-
tecture [L9], the metametamodel is the MOF. However, other metametals@ae available in
different contexts. For instance, the EBNF provides a coevemetametamodel when dealing
with programming languages. The following layer (M2) is tme of metamodels. At this level,
we find the different metamodels (relational, UML, etc.)tthave been defined in conformance
with the metametamodel. The last layer (M1) is the one of f®odeach model conforms to a
given metamodel defined at layer K12

In the model engineering area, artifacts of the model-draechitecture are considered as
first class entities. Suitable tools are hence requiredderoto handle models and metamod-
els conveniently. We identify, in the next section, a humblefeatures that should be made
available by operational model-based systems.

4Some also consider a fourth layer, called MO, for terminatances but this is not our reading of the OMG
architecture 19]. We interpret MO as being the real world and M1-3 to be the ehed world.
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2.2 Issues in handling models

In the field of model engineering, users have to deal withtiestsuch as models, metamodels,
model elements, etc. They may be particularly interestdaking able to handle models and
metamodels as basic elements by means of dedicated losalimgy (from/to persistent stor-
ages) and editing facilities. For instance, a developer beinterested in programmatically
creating a new model from scratch by adding model elemeritstothe same way, modifica-
tion and deletion operations should also be available onetspthus enabling a user to modify
an existing relational model by removing a column from adatgfinition.

Working with models also supposes underlying systems tdleeta manage a number of
metadata. Beside update logs and authoring information rftgt be associated with handled
models), the metadata have to describe existing relatipndietween artifacts of the model-
driven architecture. As an example, the conformance cgldietween a model (M1) and its
metamodel (M2) can be explicited in the scope of these megtadRelations between models
may also be expressed this way. Further discussion on tltefoemetadata management may
be found in [].

Co-existing metamodels now make it possible to define diffeneodels that represent a
same system. For instance, the library system we reprekbyta relational model may also
be represented by means of a UML model. The growing numberadbdle metamodels high-
lights the need for tools enabling to establish semantatimis between model elements, and
to transform a model conforming to a metamodel A into a modefarming to a metamodel B.

Finally, an ideal model engineering platform is also suggd® deal with data types. Mod-
els can indeed be specified by means of a number of domaiifisgemmats (database defin-
ition, Java classes, etc.). These domain-specific formatassociated with various Technical
Spaces (TS)11]. Bridges between models conforming to different metam®dkbuld be pro-
vided by transformation facilities. In a similar way, an og@nal platform has to embed tools
providing gateways between the model engineering and dtBsr

In this section, we have introduced the basic principlesad@hengineering and identified a
set of desirable features for model-based operationat@mvients. The next section is devoted
to the description of AMMA, our model engineering prototype

3 AMMA: a model engineering platform

The basic principle of a model engineering platform is tosidar models as first class entities.
Using a model-based platform should allow significant béseffior instance, model and meta-
model repositories may handle efficient and uniform acoeskdse models, metamodels and
their elements in serialized or any other mode. Transa&lti@mcress, versioning and many other
facilities may also be offered.

In this section, we view AMMA as a model engineering platform. a framework offering
basic facilities to manipulate models, and onto which aetgrof different tools (industrial or
research tools, legacy or advanced tools, etc.) may be @tlgm the next section we’ll take
the slightly different view of considering rather AMMA as anceptual architecture mapped
onto Eclipse/EMF, i.e. a higher abstract interpretatio&dfpse/EMF basic facilities.
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AMMA, our model engineering platform prototype can be segm a@oftware bus adapted
to the basic model engineering principles. It may have bothlland distributed implementa-
tions. A model engineering platform is primarily intendext fool integration. Several tools
are usually available on such a platform. AMMA is based orr tmasic blocks (presented in
Figure7) providing a large set of model processing facilities:

* the Atlas Transformation Language (ATL) defines modeldfanmation facilities;

* the Atlas ModelWeaver (AMW) makes it possible to establiskd between the elements
of two (or more) different models;

* the Atlas MegaModel Management (AM3) defines the way theadwdh is managed in
AMMA (registry on the models, metamodels, tools, etc.);

* the Atlas Technical Projectors (ATP) defines a set of imjextextractors enabling to im-
port/export models from/to foreign technical spaces (dtasses, relational models, etc.).

AMMA

ATL AM3 AMW ATP

Figure 7: The AMMA platform

3.1 ATL: The Atlas Transformation Language

A model transformation language is used to define how a selwte models is visited to create
a set of target model4.§]. ATL is a model transformation language, having its aluttsgntax
defined using a metamodel. This means that every ATL tramsfoon is in fact a model, with
all the properties that are implied by this. Fig@@rovides the scheme of the transformation
of a modelM, (conforming toM M,) into a modelM, (conforming toM M,) based on the
M, transformation (which conforms to the ATL transformati@amduage). Following subsec-
tions present the ATL language, its execution engine, aadAffiL development environment
provided within the AMMA platform.

3.1.1 The ATL language

The ATL language is a hybrid of declarative and imperativestaicts. The expression language
is based on OCL 2.01{]. In declarative ATL, a transformation is composed of rul&sach

rule specifies a set of model element types (coming from theceometamodels), which are
to be matched, along with a Boolean expression, which filtees enore the set of matched
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Figure 8: An ATL transformation

elements (e.g. all classes with a name beginning by a “C”)» €anstitutes the source pattern,
or left-hand side, of the rule. The target pattern, or rigand side, is composed of a set of
model element types (coming from the target metamodelskeabh of them is attached a set
of bindings which specifies how the properties of the targgnhent are to be initialized. These
declarative rules are named matched rules.

Imperative constructs in ATL can be specified in severalggadAn imperative block can
be added to any declarative rule to conveniently initiaterget elements. Procedures, which
are named called rules in contrast with the declarative Ineataules, can be placed in the
transformation and be called from any imperative block. 8@rocedures may bear the flags
entrypoint or endpoint to specify that they should be exet@ither before or after the declar-
ative rules are. The content of imperative blocks consisgequences of instructions among
assignments, looping constructs, conditional constyetts By this mean, complex algorithms
can be implemented imperatively.

3.1.2 The ATL engine

The ATL engine has been implemented as a Virtual Machine (VIig main advantage we
see in this approach is flexibility. As a matter of fact, AMMA & research platform and,
as such, ATL is constantly evolving. A single low-level irapientation makes it possible to
work on high-level transformation language concepts whaeg rather independent of the
tools being used. For instance, the execution engine was\fitsen to use the Netbeans/MDR
model handler12], but it now also run on top of Eclipse/EMB][ The only parts that had to be
changed are the VM, the ATL compiler, and the related toolsgexecuted on it. Among other
interesting aspects, the use of a stack-based instruaiomakes compiling OCL expressions
quite simple.
The ATL VM is a stack machine that uses a simple instructidnvgleich can be divided in

three subsets. The first one is composed of instructiong#rédrm model elements handling:
creation, access and assignment of properties, and apesatall. The second one contains
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Figure 9: The ATL IDE

control instructions: goto, if, collection iteration ingttions, etc. There is also a set of stack
handling instructions to push, pop, and duplicate operanidse primitive types are imple-
mented by a native library based on the OCL standard librahyppRerations on primitive types
are handled in the same way they are defined in the OCL speigficttiat is through operation
calls of this library.

3.1.3 ATL Tools

An Integrated Development Environment (IDE) has been dgezl on top of Eclipsell]] in
order to ease the transformation writing process (cf. E§urATL Development Tools (ADT)
provide several tools usually present in such an enviromirignThere is a syntax-highlighting
editor synchronized with an outline presenting a view of dbstract syntax of the currently
edited transformation program. Wizards have been devaltipereate ATL projects for which
a specific builder compiles ATL transformations.

A launch configuration is available to launch transformadion run or debug mode. In the
latter, the execution can be debugged directly in Eclipsee dccompanying documentation
features a simple tutorial that can be used to show all thesifes. Most of the ATL IDE
components J] behave the same way as their Java Development Tools (JDiRjtegart in
Eclipse.

3.2 AMW: The Atlas ModelWeaver

With the growing number of available metamodels, being #&blestablish relations between
model elements has become a key feature for modeling phastofhe Atlas ModelWeaver aims
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to assist designers in the definition of semantic links betwalements of different models (or
metamodels).

3.2.1 Model Weaving

Model weaving operations are performed between eithermadals (two or more), or models.
They aim to specify the links, and their associated semgritietween elements of source and
target models. Let us consider an example inspired by th& afdBernstein 2, 17]. We have
two address books to merge and we get datftM and RightM models. InRightM, we only
have the clasBlamewhereas, in the second one, we have the cladEsstiNameandLastName
We need here to establish a complex link, stating that theseedated by an expression of
concatenation.

Concerning the set of links to be generated, the followingasshave to be considered:

* this set of links cannot be automatically generated bexéus often based on human
decisions. The generation can however be partially autedriag means of heuristics;

* it should be possible to record this set of links as a whalerder to use it later in various
contexts;

* it should be possible to use this set of links as an input toraatic or semi-automatic
tools.

As a consequence, we come to the conclusion that a model mgeaperation produces a
precise model\WWM. Like other models, this should conform to a specific metaashd/MM.
The produced weaving model relates to the source and targgelsieftM andRightM, and
thus remains linked to these models in a megamodel regigiigure 10 describes a simple
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model weaving scheme in which an explicited weaving linkiypie Concatenatiopassociates
two source elementgifstNameandLastNamgwith an only target elemeniName.

Each link element of the produced weaving mod# has to be typed by an element of a
given WMM metamodel. There is no unique type of link. Link types shqurlovide weaving
tools with useful information. Even if some links containtieal descriptions, these are valuable
for tools supporting documentation, manual refinementgplyang heuristics.

One may assume that there is no standard metamodel for wgeaparations since most
developers define their own. However, we suppose that teerstub weaving metamodel, and
that this stub is extended by specific metamodel extensidmss, a given weaving metamodel
may be expressed as an extension of another weaving methmbaeallows building a general
weaving tool, the Atlas ModelWeaver, able to genericallgldeth weaving tasks.

3.2.2 AMW tools

The ModelWeaver tool in AMMA reuses part of the infrastruetof the ATL IDE, itself based
on the Eclipse Platforml]. It aims to provide generic facilities for model weavingka. For
this purpose, the ModelWeaver design is based on the notibneetamodel extensions and
Eclipse plugins.

The implementation of the ModelWeaver was governed by tea ithat the GUI of the
model weaving tool should be simple, but also partially getable. To this end, we designed a
three parts interface (see Figur®. From the left part, one can select any class or association
the left metamodel, and, from the right part, one can sifyilselect any class or association of
the right metamodel. In the central part appear all the maments of the weaving metamodel.
Selecting a triple thus means creating a weaving link in ésellting weaving model.

Proceeding in this way, we get a generic weaving tool, adégta any kind of left, right,
and weaving metamodels. Of course, many design altersaieebeing explored in the actual
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building of this tool. An initial prototype has been bui@][and may give an idea of the user
interface of AMW. As may be inferred from this prototype, ital weaving session starts
by uploading the weaving metamodel. From this metamodet, gfathe tool GUI may be
automatically generated. Then, the left and the right metlehmay be chosen and the weaving
work may proceed.

3.3 AMS: The Atlas MegaModel Management

The Atlas MegaModel Management tool, AM3, is an environmientdealing with models
or metamodels, together with tools, services and otheraglebtities, when considered as a
whole. For each platform, we suppose that there is an asedamegamodel defining the
metadata associated to this platform. Within the contet gien platform (local or global),
the megamodel records all available resources. One mayedsdo these resources as “model
components”$]. The megamodel can be viewed as a model which elementssexprand
refer to models and metamodels. Represented as modelsjdeddols, services, and services
parameters are also managed by the megamodel. There atg @gi@vents that may change
the megamodel, like the creation or suppression of a modalneetamodel, etc.

To illustrate our purpose, we can consider an example cetateransformations. An ATL
transformation is a model, conforming to a given metamo8el.if a modelM/, has been cre-
ated from a modelM, by using transformatiod/;, then we can keep this global information
in the megamodel. Supposing the transformation mddehas a link to its reverse transfor-
mation /!, the memorized information can be used for reverse engimeérom a modified
model M,) or for consistency checks. Being stored in a repositoryyargtransformatior/;
will have no meaning if the three links are not provided to $berce and target metamodels
and to the transformation metamodel itself.

Another well-known example of global link is the conformanelation between a model
and its metamodel. This is often considered as an impliok, lbut we suggest here that
this could also be explicitly captured in a megamodel withhynadvantages. One interest-
ing property of this global conformance relation betweenaleh and its metamodel is that
it may be viewed as summarizing a set of relations betweerehr@ldments and metamodel
elements (previously named "meta” in this report). One daarty see here the coexistence
between global model level relations and local elementdasiations. In some cases, one is
not interested in the local element level relations bec#useglobal relation provides sufficient
reliable information on what is actually needed.

Moreover, there is a whole set of information that could lgarded as global metadata. For
example, we could associate to a model the information of hdscreated it and when and
why and may be what for, etc., who has updated it and the kisfarpdates, etc.

3.4 ATP: The Atlas Technical Projectors

The Atlas Technical Projectors, ATP, define a set of injectand extractors, which can be
seen as import and export facilities between the model eeging Technical Space and other
TSs (databases, flat files, XML, etc). Indeed, a very largelsnaf pre-existing data that is not
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XMI compliant (XML Model Interchange is the OMG open stardifor model exchange4 §])
would greatly benefit from model transformation. In ordeb®processed by a model engi-
neering platform, this data needs injection from its TS ®@rtodel engineering TS. The need
for extraction is also quite important: many existing todésnot read XMI. A simple example
is the Java compiler. What we need here is code generatiochwiiy be seen as a specific
case of model extraction. Many other TSs require both injscand extractors: database sys-
tems provide another example in which database schemestddnee generated from model
definitions.

Besides, even when dealing with model engineering toolsait be convenient to use sim-
ple textual representations rather than always using a lesrapd-hoc tool or meta-tool. We de-
signed the Kernel Metametamodel (KM3) to this end. It is g@@proprietary textual concrete
syntax to type metamodels in. Although there are quite aflbdas to draw UML diagrams,
and although some of them actually export valid metamode¥dMI, simple additional textual
tools could be useful if they are sufficiently generic. A geg between XMI and KM3 repre-
sentations has been built by developing injectors and eéxtraithat enable models translations
within the model engineering TS.

4 Implementing AMMA on top of EMF

The AMMA platform has been implemented on top of the Ecligdé¥ framework. We de-
scribe, in this section, the way AMMA tools have been mapp&d &MF facilities.

4.1 Eclipse and EMF

Eclipse is an open-source generic framework for developpygications. It can be used as a
development tool, can be extended, some parts of it can bgrated into standalone appli-
cations, etc. The flexibility of the framework, the sourcele@vailability, and the integration

level already achieved by some tools, such as JDT and CDT varalad C/C++ development,

make Eclipse very attractive.

The Eclipse Modeling Framework (EMF) is a model engineeéexignsion for Eclipsed].
It enriches Eclipse with model handling capabilities. Tis #nd, it implements the basic prin-
ciples described in the second section of this report indhm fof a model handling API. EMF
provides support for operations such as XMl serializatiot lwading, creation and deletion of
model elements, property assignment, and navigation. Baise¢dese facilities, model engi-
neering platforms can be built on top of EMF, either as Eelifsatures, or as separate tools
that only use the EMF API. However, EMF is more than just alsimgodel engineering block:
it is a model engineering platform. It provides advanceduess such as customizable Java
code generation for programmatic or editor-based modadlray) XML Schema injection and
extraction, etc. EMF can be seen as a convenient platforndaieat developers who want to
benefit from model engineering facilities while still usiagyeneric programming language.
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ATL IDE

AM3 | AMW

ATL engine | ATP

EMF

Eclipse

Figure 12: Architecture of the AMMA platform

4.2 AMMA on top of EMF

The AMMA platform is aimed at more model-centric activitiésllowing the line “models as
first-class entities”. For instance, whereas code gemeratia main component of EMF, we
consider it as a specific use of projectors. The architeaifitke current EMF-based AMMA
implementation is described in Figut2. The transformation tool of AMMA, ATL, uses the
basic features of EMF to handle both source and target madelsnetamodels, as well as the
transformation model and metamodel. An Integrated Devety Environment (IDE) has been
developed for ATL on top of Eclipse. Based on EMF, it makes dseany other features, such
as the code editor and the code debugging frameworks. AMMAKMMA model weaving tool,
uses more advanced EMF features. Since it is built as a mdder,eAMW can benefit from
editing domains facilities for complex model handlingsc{uding undo-redo). It also reuses
some components of the Eclipse default views to display tsode

Eclipse is mostly used as an IDE for software developmentsuksd, it includes facilities
enabling to navigate the code, to keep track of the files tbad mebuilding, etc. The megamodel
tool (AM3) is used as a model-oriented extension of thesktiabi As a matter of fact, using
the relations between models (such as the source and talgebms between a transformation
model and its source and target metamodels), and betweealsnaad tools (such as those
provided by ATP), AM3 makes it possible to easily carry on ptem weaving, transformation
and projection tasks.

5 Conclusion

The main contribution of this work is the AMMA conceptual hitecture, seen as an inter-
mediary level between model engineering basic principtesexecutable systems running on
operational platforms. The main advantage of proceedinfpigiway is that we may more
clearly evaluate the gap between principles and implentientaFrom our initial experimen-
tations, we came to the conclusion that building a modelregging platform is much more
demanding than simply providing a RPC-like mechanism fomatfig tools to exchange mod-
els in serialized format (e.g. XMI-based), with the cor@sging services and protocols (e.g.
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Web Service-based). The present state of AMMA with the fauncfional blocks is only one
step in this direction and still needs many extensions.

There are many variants of model engineering. The mostgaet is the OMG MDA, but
we may also mention generative programmifilfj model integrated computind.§], software
factories P], and many others. Our attitude has been to find the set of pasiciples common
to all the dominant model engineering approaches and to thake explicit. Then we are in a
position to clearly separate the principles, standard$amis levels.

Usually, MDA advocates the separation from platform-dejeer and platform-independent
aspects. It would be a pity if MDA tools did not apply thesenpiples to themselves. We have
already experimented with porting the ATL engine from MDRiBkans to Eclipse/EMF. It
would be nice if the cost of moving from an execution envireminto the next one could be
made low by using model engineering techniques. Having phogdefinition of the principles
and a separate mapping of these principles onto executibierms helps keeping the moving
cost within reasonable bounds.

One of the contributions of our approach is also to take ekliinto account the notion of
technical space. Instead of building a lot of different ad-lsonversions tools (modelToText,
textToModel, ontologyToModel, modelToOntology, XMLTodte textToXML, modelToSQL,
SQLToModel, etc.), we have proposed, with the notion of getgrs (injectors or extractors),
a general concept that may be used in various situationsseTjectors can be selected as
either front-ends or back-ends for classical transforomasti

Finally, what also appears in this presentation is the haghpdementarity between all four
presented functional blocks (ATL, AMW, AM3, and ATP). Thexne plenty of applications that
make use of these four kinds of functionalities at the same.ti

Acknowledgements

We thank all members of the ATLAS team that are contributm¢his work, and particularly
Patrick Valduriez, Freddy Allilaire, Marcos Didonet delldfa. We also thank all students
that have been involved in the implementation of the variglosks of the AMMA platform.
The design of the ATL tool has been done in collaboration wht TNI-Software company.
The design of the AMW tool has be done in cooperation with tbdifsance group and TNI-
Software. Some of the ideas presented in this report havedmeloped within the context of
the Modelware projeét

References

[1] F. Allilaire and T. Idrissi. ADT: Eclipse Develoment Ttsofor ATL. In Proceedings of the
Second European Workshop on Model Driven Architecture (lBAN), Canterbury, UK,
September 2004.

SModelware (IST European project 511731) home page: hitww.modelware-ist.org/



20

[2] P. A. Bernstein, A. Y. Levy, and R. A. Pottinger. A Vision fdanagement of Complex
Systems. Technical report MSR-TR-2000-53, Microsoft Rese&edmond, USA, 2000.

[3] F. Budinsky, D. Steinnberg, E. Merks, R. Ellersick, and TGiose. Eclipse Modeling
Framework Addison Wesley, 2004.

[4] J. Bézivin. In search of Basic Principles of Model Engineerinfjlovatica/Upgrade
5(2):21-24, April 2004.

[5] J. Bézivin, S. Gerard, P. A. Muller, and L. Rioux. MDA Components: Challenged an
Opportunities. InMMetamodelling for MDA, First International Workshpyork, UK, No-
vember 2003.

[6] J. Bézivin, F. Jouault, and P. Valduriez. First ExperimenthwveitModelWeaver. IriPro-
ceedings of OOPSLA & GPCE Worksh@pctober 2004.

[7] J. Bézivin, F. Jouault, and P. Valduriez. On the need for Megatsodn Proceedings of
OOPSLA & GPCE, Workshop on best MDSD practjdémcouver, Canada, 2004.

[8] K. Czarnecki and U. Eiseneckegenerative Programming: Methods, Tools and Applica-
tions Addison Wesley, June 2000.

[9] J. Greenfield, K. Short, S. Cook, and Kent Software FactoriesWiley, 2004.

[10] W. J. Heuvel. Matching and Adapation: Core TechniquesMB®A-(ADM)-driven Inte-
gration of new Buisness. IRroceedings of Model-Driven Evolution of Legacy Systems
(MELS’04) Monterey, Canada, September 2004.

[11] I. Kurtev, J. Bezivin, and M. Aksit. Technical Spaces: an Initial Appré&isa Proceedings
of CooplS, DOA'2002 Federetad Conferences, Industrial traé2.

[12] M. Matula. NetBeans Metadata Repository. http://mdbaans.org/, March 2003.

[13] OMG/MOF. Meta Object Facility (MOF) Specification, OMBocument AD/1997-08-
14. http://www.omg.org/, September 1997.

[14] OMG/OCL. UML 2.0 OCL Specification, OMG Document PTC/2003-14.
http://www.omg.org/, October 2003.

[15] OMG/RFP/IQVT. MOF 2.0 Query/Views/Transformations RFPMG Document
AD/2002-04-10. http://www.omg.org/, 2002.

[16] OMG/XMI. XML Model Interchange (XMI), OMG Document AM98-10-05.
http://www.omg.org/, October 1998.

[17] R. A. Pottinger and P. A. Bernstein. Merging Models Basedsoren Correspondences.
In Proceedings of the 29th VLDB ConferenBerlin, Germany, 2003.



21

[18] D. Schmidt. Model driven Middleware for Component-bddaistributed Systems. In
Proceedings of EDOC’2004, Invited talMonterey, Canada, September 2004.

[19] R. Soley and the OMG staff. Model-Driven Architecture ttpt//www.omg.org/mda/,
November 2000.









LABORATOIRE D'l NFORMATIQUE DE NANTES-ATLANTIQUE

An introduction to the ATLAS Model
Management Architecture

Jean Bezivin, Fredéric Jouault, David Touzet

Abstract

The concept of “model” is today considered as a promisingrietogy in domains such as
data and software engineering. In the field of model engingemodels are now viewed as
firts-class entities. This new approach makes it possibntision the integration of models
into engineering processes. Such an integration will hewesquire a set of dedicated tools
enabling to perform standard model operations onto hardtzdkls. We strongly believe that,
in order to achieve usability for large communinities of ngsenodel-based tools have to rely
on a common and well-defined theorical modeling framework.

This report addresses both theorical and implementatgues We propose the idea that a
common set of principles may be mapped to different impldaten contexts. We illustrate
our approach with AMMA, our current proposal for a modeldxhsonceptual architecture.
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