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Abstract

A general technique for merging database schemas is developed that has a number
of advantages over existing techniques, the most important of which is that schemas are
placed in a partial order that has bounded joins. This means that the merging operation,
when it succeeds, is both associative and commutative, i.e., that the merge of schemas
is independent of the order in which they are considered — a property not possessed by
existing methods. The operation is appropriate for the design of interactive programs as it
allows user assertions about relationships between nodes in the schemas to be considered
as elementary schemas. These can be combined with existing schemas using precisely the
same merging operation.

The technique is general and can be applied to a variety of data models. It can also
deal with certain cardinality constraints that arise through the imposition of keys. A
prototype implementation, together with a graphical interface, has been developed.

1 Introduction

The desire to provide user views that combine existing databases, and to combine user views
during the design process of new databases, leads directly to the problem of schema merging
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— a problem that has been present in the database literature for at least ten years and to
which a variety of sophisticated techniques have been applied. At one end of the spectrum,
the user is provided with a set of tools for manipulating two schemas into some form of
consistency [1, 2]; at the other end, algorithms have been developed that take two schemas,
together with some constraints, and create a merged schema [3]. In general, one will want to
use a method that lies somewhere between these two extremes; a number of such variations
have been explored, and are surveyed in [4]. It appears that some user manipulation of the
given schemas is essential — especially to introduce consistent names — but that a merging
algorithm can also be very useful, especially when large schemas are involved.

To the best of our knowledge, the question of what meaning or semantics this merging process
should have has not been explored. Indeed, several of the techniques that have been developed
are heuristics: there is no independent characterization of what result they should produce.
One would like to have some semantic basis for a merge that would characterize it with some
notion of consistency with the associated data. This semantic basis should be related to the
notion of an instance of a schema, and is discussed in [5]. In this paper, we shall develop
a simple and general characterization of database schemas that allows us to give natural
definitions of what a merge is in terms of the informational content of the schemas being
merged. In particular we shall define a merge which takes the union of all the information
stored in a collection of database schemas, and, when possible, forms a schema presenting this
but no additional information. We shall be able to define a binary merging operator that is
both commutative and associative, which means that if two or more schemas are merged, the
result is independent of the order in which the merges are performed. Existing techniques do
not have this property. Worse still, lack of associativity is endemic to the data models against
which the merging process is commonly defined, such as the Entity-Relationship (ER) model.

Using a more general formalism, we will be able to rescue this situation by introducing special,
additional information during the merging process. The additional information describes its
own origin, and can be readily identified to allow subsequent merges to take place. In addition,
our new schema merging technique may be applied to other, existing models, such as the ER-
model, by first translating the schemas of these models into our model, then carrying out the
merge, and finally translating back into the original model. It is possible to show that, if such
an approach is used, then the merging process respects the original model.
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The paper is organized as follows: we shall first describe a general data model that subsumes,
in some sense, data models such as relational, entity-relationship and functional. We then
observe that even in this general model, we cannot expect to have associative merges. We
relax the constraints on our model to produce a still more general formulation of a weak
schema for which the merging process is well behaved, and then show how to convert these
weak schemas back into our original schemas. We also show that certain common forms of
constraints on the schemas, such as key constraints and some cardinality constraints, can be
handled in the same framework. Finally we shall indicate how these methods could be used
equally well to give definitions of alternative merge, and, in particular, describe how we could
form lower merges representing the intersection of the information represented by a collection
of schemas.

2 The Model

We represent a schema as a directed graph, subject to certain restrictions, whose nodes
are taken from a set N of classes, and with two kinds of edges that are used to represent
“attribute of” relationships or “specialization of” relationships between classes. Attribute
edges have labels taken from a set L, so that we represent the attribute-of edges by a relation
E ⊆ N × L × N . If (p, a, q) ∈ E then we write p

a−→ q, with the meaning that any instance
of the class p must have an a-attribute which is a member of the class q. Since in some data
models, like the ER data model, the term “attribute” is used to designate a certain kind of
node in a schema, we shall use the neutral term arrow to refer to these labeled relationships,
and say for p

a−→ q that p has an a-arrow to class q. The specialization edges are represented
by a relation S on classes; we use the notation p =⇒ q and say that p is a specialization of q

when (p, q) ∈ S. This indicates that all the instances of p are also instances of q. Formally,
a schema over N , L is a triple (C, E ,S) where C ⊆ N is a finite set of classes, S is a partial
order (a reflexive transitive and antisymmetric relation on C), and E is a subset of C × L× C
satisfying

1. If p
a−→ q1 and p

a−→ q2 then ∃s ∈ C . s =⇒ q1 and s =⇒ q2 and p
a−→ s.

2. If p =⇒ q and q
a−→ r then p

a−→ r.
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3. If p
a−→ s and s =⇒ r then p

a−→ r.

for all a ∈ L and p, q, r, s ∈ C

The first constraint says that if p has an a-arrow, then there is least class s (under the ordering
S) such that p has an a-arrow to class s. Such a class is said to be the canonical class of
the a-arrow of p. The second constraint says that, if q has an a-arrow to class r and p is a
specialization of q, then p must also have an a-arrow to class r. The third constraint says
that, if p has an a-arrow to class s and s is a specialization of r, then p also has an a-arrow
to class r, so constraints 2 and 3 together mean that arrows are, in some sense, preserved by
specialization. It is worth remarking that we could equally well have defined the arrows as
partial functions from classes to classes, which is how they are expressed in the definition of
a functional schema in [2]. If we write p

a
⇀ q when p has an a-arrow with canonical class q,

we have the equivalent conditions

D1. If p
a
⇀ q1 and p

a
⇀ q2 then q1 = q2

D2. If q
a
⇀ s and p =⇒ q then ∃r ∈ C.r =⇒ s and p

a
⇀ r

Also, given any ⇀ satisfying conditions D1 and D2, if we define the relation −→ by p
a−→ q

iff there exists a s ∈ C such that s =⇒ q and p
a
⇀ s, then −→ will satisfy conditions 1, 2 and

3 above. Conditions D1 and D2 are those given for the arrow in [2] and are also given by
Motro [1] as axioms for functional schemas (the latter uses unlabeled arrows).

For example, the ER diagram shown in figure 1 corresponds to the database schema shown
in figure 2, where single arrows are used to indicate edges in E and double arrows are used
to represent pairs in S (double arrows implied by the transitivity and reflexivity of S are
omitted). In all the subsequent diagrams, edges in E implied by constraint 2 above, will also
be omitted.

Suitable restrictions of such graphs may be used to describe instances of a variety of data
models: relational, entity-relationship and functional. For a relational instance, we stratify
N into two classes NR and NA (relations and attribute domains), disallow specialization
edges, and restrict arrows to run labeled with the name of the attribute from NR to NA (first
normal form), while, for the E-R model, we stratify C into three classes (attribute domains,
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Figure 1: An ER-diagram with “isa” relations

entities and relationships) and again place certain restrictions on the edges. Moreover, it
can be shown that the merging process described in section 4 preserves these restrictions,
so that we can merge schemas from other models by first translating them into our model,
then merging them, and finally translating them back into the original data model (see [5]
for details). By a less constrained process we can describe instances of the functional model
[6, 2, 1]. The graphs are also general enough to represent databases with higher order relations
(that is, relationships between relationships), and complex data structures (such as circular
definitions of entities and relationships), features that are commonly found in object-oriented
data models. Consequently, despite its apparent simplicity, the generality of the model makes
it a good candidate for schema merging. One should note, however, that further adornment
of these graphs is needed to describe instances of sophisticated data models such as those
proposed in [7] and [8], which contain constructors for sets and variants.
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3 Problems with finding merges of schemas

The first problem to be resolved when forming a common merged schema for a number of
distinct databases is to state the correspondences between the classes and correspondences
between the arrow labels of the various databases. This problem is inherently ad hoc in nature,
and depends on the real-world interpretations of the underlying databases. Therefore, the
designer of the system must be called upon to resolve naming conflicts, whether homonyms
or synonyms, by renaming classes and arrows where appropriate. The interpretation that the
merging process places on names is that if two classes in different schemas have the same name,
then they are the same class, regardless of the fact that they may have different arrow edges.
For example, if one schema has a class Dog with arrow edges License#, Owner and Breed,
and another schema has a class Dog with arrow edges Name, Age and Breed, then the merging
process will collapse them into one class with name Dog and arrow edges License#, Owner,
Name, Age, and Breed. It is also possible to constrain the merging process by introducing
specialization relations a1 =⇒ a2 between nodes a1 in schema G1 and a2 in schema G2. We
can treat a1 =⇒ a2 as an atomic schema that is to be merged with G1 and then with G2.
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Because our schema merge is associative and commutative, the result is well-defined; indeed
an arbitrary set of constraints can be added in this fashion.

For the remainder of this section and the following section, we will consider the merge of a
collection of schemas to be a schema that presents all the information of the schemas being
merged, but no additional information (although in Section 6, we will indicate that there may
be other, equally valid interpretations of what the merge should be). Hence what we will
consider to be the merge is the “least upper bound” of the database schemas under some sort
of information ordering.
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Figure 3: Schema merging involving implicit classes

One of the first problems we notice in looking for a suitable definition of merge is that
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the merge of two schemas may contain extra implicit classes in addition to the classes of
the schemas being merged. For example, figure 3 shows two schemas being merged. The
first schema asserts that the class C is a subclass of both the classes A1 and A2. The second
schema asserts that the classes A1 and A2 both have a-arrows, of classes B1 and B2 respectively.
Combining this information, as we must when forming the merge, we conclude that C must
also have an a-arrow, and that this arrow must be of both the class B1 and B2. Consequently,
due to the restrictions in our definition of database schemas in Section 2, the a-arrow from
the class C must point to class which is a specialization of both B1 and B2 and so we must
introduce such a class into our merged schema.

When we consider these “implicit” classes further we find that it is not sufficient merely to
introduce extra classes into a schema with arbitrary names: the implicit classes must be
treated differently from normal classes. Firstly, if we were to give them the same status as
ordinary classes we would find that binary merges are not associative.
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For example consider the three simple schemas shown in figure 4. If we were to first merge
the schemas G1 and G2 we would need to introduce a new implicit class (X?) below D and
E, and then merging with G3 would make us introduce another new class below X? and F,
yielding the first schema shown in figure 5. On the other hand, if we were to merge G1 with
G3 and then merge the result with G2, we would first introduce an implicit class below E and
F, and then introduce another one below this one and D. Clearly what we really want is one
implicit class which is a specialization of all three of D, E and F.

Another problem is that it is possible for one schema to present more information than another
without containing as many implicit classes. Intuitively, for one schema to present all the
information of another (plus additional information) it must have, at least, all the normal
classes of the other. However let us consider the two schemas shown in figure 6. We would
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like to assert that the schema G3 shown in figure 7 is the merge of the two schemas, G1 and
G2, but the schema G4 also presents all the information of G1 and G2, and in addition contains
fewer classes than G3. The point is that G4 asserts that the a-arrow of F has class E, which
may have restrictions on it in addition to those which state that it is a subclass of both C and
D, while G3 only states that the a-arrow of F has both classes C and D.
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4 Merging Database Schemas

In order to avoid the complexities of introducing implicit classes, we will weaken our definition
of database schemas so that implicit classes become unnecessary. We then define an infor-
mation ordering on these weak schemas, such that binary joins do exist and are associative,
and form the weak schema merge. Finally we convert the merged weak schema into a proper
schema by introducing additional implicit classes (we will refer to the schemas satisfying the
conditions in section 2 as proper schemas.)

4.1 Weak Schemas

A weak schema is a schema in which we no longer require that if class p has an a-arrow,
then the a-arrow has a canonical class (condition 1 of proper schemas). Formally, a weak
schema over N , L is a triple (C, E ,S) where C ⊆ N is a set of classes, S is a partial order (a
reflexive transitive and antisymmetric relation on C), and E is a subset of C ×L×C satisfying

W1. If p =⇒ q and q
a−→ r then p

a−→ r.

W2. If p
a−→ s and s =⇒ r then p

a−→ r.

for all a ∈ L and p, q, r, s ∈ C
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The ordering on weak schemas is defined in the obvious way: Given two weak schemas
G1 = (C1, E1,S1) and G2 = (C2, E2,S2), we write G1 v G2 iff

1. C1 ⊆ C2

2. E1 ⊆ E2

3. S1 ⊆ S2

That is, every class in G1 appears in G2, every a-arrow edge in G1 appears in G2, and every
specialization edge in G1 appears in G2.

It is clear that v is a partial ordering on weak schemas; it is also bounded complete, as shown
in the following proposition.

Proposition 4.1 For any weak schemas G1 and G2, if there exists a weak schema G′ such
that G1 v G′ and G2 v G′ then there is a least such weak schema G1 t G2.

Proof: Given weak schemas G1 and G2 as above, define G = (C, E ,S) by

C = C1 ∪ C2

S = (S1 ∪ S2)∗

E = {p a−→ s ∈ (C × L × C) | ∃q, r ∈ C · p =⇒ q ∈ S, r =⇒ s ∈ S,

and q
a−→ r ∈ (E1 ∪ E2)}

(where (S1 ∪ S2)∗ denotes the transitive closure of (S1 ∪ S2), and E adds edges to E1 ∪ E2

necessary for conditions W1 and W2 to hold). It is clear that, if G is a weak schema, then it
is the least weak schema such that G1 v G and G2 v G. Hence it is sufficient to show that,
if there is a weak schema, G′ = (C′, E ′,S ′), such that G1 v G′ and G2 v G′, then G is indeed
a weak schema. The only way that G can fail to be a weak schema is if the relation S fails
to be antisymmetric, so the result follows from the fact that, for any suitable G′ as above, we
must have S ⊆ S ′, and so if S ′ is antisymmetric then so is S.

We say a finite collection of weak schemas, G1, . . . ,Gn, is compatible if the relationship
(S1 ∪ . . . ∪ Sn)∗ is anti-symmetric (where S1, . . . ,Sn are the specialization relations of
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G1, . . . ,Gn respectively). Consequently we have, for any finite compatible collection of proper
schemas, G1, . . . ,Gn, there exists a weak schema merge G =

⊔n
i=1 Gi. Furthermore, since we

define G as the least upper bound of G1, . . . ,Gn, the operation is associative and commutative.
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For example, the schemas G1 and G2 in figure 6 are compatible, and their weak schema merge
is shown in figure 8.

4.2 Building proper schemas from weak schemas

We now must pay the price for our use of weak schemas: we must provide a way of introducing
implicit classes into a weak schema G, in order to form a proper schema G, such that if there
are any proper schemas greater than G then G is such a schema.

First we introduce some new notation. For any p ∈ C and any a ∈ L, we write R(p, a) to
denote the set of classes reachable from p via a-arrows

R(p, a) = {q ∈ C | p a−→ q}

Further, for any set X ⊆ C, we use R(X, a) to denote the set of classes reachable from classes
in X via a-arrows

R(X, a) = {q ∈ C | ∃p ∈ X · p
a−→ q}
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We define the function MinS : P(N ) → P(N ) so that, for any set X ⊆ N , MinS (X) is the
set of minimal elements of X under the ordering S. That is

MinS (X) = {p ∈ X | ∀q ∈ X · if q =⇒ p then q = p}

where P(A) denotes the power set of the set A.

We now proceed to build a proper schema G = (C, E ,S) from G as follows:

1. First we will construct a set, Imp ⊆ P(N ), of sets of classes, corresponding to our
implicit classes. We will construct Imp via a series of auxiliary definitions as follows:

I0 = {{p} | p ∈ C}

In+1 = {R(X, a) | X ∈ In, a ∈ L}

I∞ =
∞⋃

n=1

In

Imp = {MinS (X) | X ∈ I∞ and |MinS (X)| > 1}

Intuitively, Imp is the set of all sets of minimal classes which one can reach by following
a series of arrows from some class in C, with cardinality greater than 1. Note that the
process of forming Imp will halt since there are a finite number of subsets of P(N ).

2. We define C by first taking C and then adding a new class X for every X ∈ Imp. That
is

C = C ∪ {X | X ∈ Imp}

3. We define E so that if p
a−→ q for each q ∈ X then p

a−→ X ∈ E , while if there is a q

such that p
a−→ q then p

a−→ q ∈ E . Formally:

E = {x a−→ q | x ∈ C, a ∈ L, q ∈ R(x, a)}

∪{x a−→ Y | x ∈ C, a ∈ L, Y ∈ Imp, Y ⊆ R(x, a)}

where R(X, a) = R(X, a) for all X ∈ Imp.

4. We define S by first taking S and then adding every X =⇒ Y such that every class in
Y has a specialization in X; every X =⇒ p where p has a specialization in X; and every
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p =⇒ X where p is a specialization of every class in X.

S = S ∪ {X =⇒ Y | X, Y ∈ Imp,∀p ∈ Y · ∃q ∈ X · q =⇒ p ∈ S}

∪{X =⇒ p | X ∈ Imp, p ∈ C,∃q ∈ X · q =⇒ p ∈ S}

∪{p =⇒ X | p ∈ C, X ∈ Imp,∀q ∈ X · p =⇒ q ∈ S}

For example, the effect on the schema shown in figure 8 would be to introduce a single
implicit class, {C,D}, thus forming the schema G3 shown in figure 7 with the class ? replaced
by {C,D}.

It can be shown that for any weak schema G, G is a weak schema and G v G. Furthermore,
G can be shown to respect condition 1 of the definition of a proper schema, and is therefore
also a proper schema.

We would like to be able to show that G is the least proper schema greater than G. However
there are two minor problems with this: first, it is possible to form other similar proper
schemas by using different names for the implicit classes (compare this to alpha-conversion
in the lambda calculus); second, for any two sets X, Y ∈ Imp, if every class in Y has a
specialization in X then our method will include the pair (X,Y ) in S. However it is not
necessarily the case that this specialization relation is required, and it might be safe to omit
it. We could attempt to modify our method so that such pairs are only introduced when
required. Instead we will argue that, since the implicit classes have no additional information
associated with them, it follows that these specialization relations do not introduce any extra
information into the database schema, and so, since they seem natural, it is best to leave
them there. Consequently we feel justified defining the merge of a compatible collection of
database schemas, G1, . . . ,Gn, to be the database schema G, where G =

⊔n
i=1 Gi.

Of course, not every merge of a collection of compatible schemas makes sense. That is, the
new classes introduced may have no correspondence to anything in the real world. To capture
this semantic aspect of our model, we would need to introduce a “consistency relationship”
on N , and require that, for every X ∈ Imp and every p, q ∈ X, the pair (p, q) is in the
consistency relationship. If this condition were violated, the schemas would be inconsistent,
and G would not exist. Note that checking consistency would be very efficient, since it just
requires examining the consistency relationship. However, while the idea is interesting, it is
beyond the scope of this paper. Suffice it to say that if the merge of G1, . . . ,Gn fails, either
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because G1, . . . ,Gn are incompatible, or because they are inconsistent, the merge should not
proceed, and the user must re-assess the assumptions that were made to describe the schemas.

5 Cardinality Constraints and Keys

The model we have used so far concentrates on the semantic relationships between classes
via specialization and arrow edges, but does not further describe arrows as participating in
keys or having associated cardinality constraints. Cardinality constraints in the ER model
are typically indicated on the edges between a relationship and an entity by labeling them
“many” (or “N”, indicating unrestricted upper bounds), or “1” (sometimes indicated by an
arrow pointing into the entity set).1 For example, consider the Advisor relationship between
Faculty and GS in Figure 9, and for the moment interpret this schema as an ER diagram. As
drawn, Advisor is a “many-many” relationship, typically indicated by labeling the faculty

and victim edges “N”: a graduate student may be advised by several faculty members, and
each faculty member can advise several different graduate students. If we decided to restrict
Advisor to indicate that a graduate student can be advised by at most one faculty member,
the faculty edge from Advisor to Faculty would be relabeled “1”.

As it stands, however, our model has no way of distinguishing these different edge semantics.
Using the example of the previous paragraph, labeling the faculty edge in the Advisor

relationship “1” rather than “N” could result in the same graph in our model, i.e. the graph
in Figure 9.2 In this section, we will capture such constraints by introducing “key constraints”
on nodes, and argue that in some sense they are more general than the cardinality constraints
typically found in ER models.

Key constraints, which indicate that certain attributes of an entity form a key for that entity,
are another common form of assertions found in database models. As an example, in the ER

1It is worth noting that there is little agreement on what edge labels to use, and what they mean in ER

digrams, especially for ternary and higher degree relationships. No semantics are given in [9]. Introductory

textbooks on databases avoid the question and merely give examples of binary relationships [10, 11, 12]; [13]

is slightly more honest and says that “the semantics of ternary and higher-order relationship sets can become

quite complex to comprehend.” Varying interpretations can be found in [14, 15, 3].
2Of course, one might eliminate the Advisor node entirely, and draw a single Advisor-edge from GS to

Faculty, but this reasoning does not extend to ternary and higher degree relationships.
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and relational models, for the entity set Person(SS#, Name, Address), we might claim that
there are two keys: {SS#} and {Name, Address}. The intuition behind this statement is that
if two people have the same social security number, or the same name and address, then they
are the same person. Generalizing, one could claim that a set of edges of a relationship form a
key for that relationship. As an example, for the Advisor relationship in which the faculty

edge was labelled with a “1” and the victim edge was labelled with a “N”, we could claim
that the victim edge forms a key. In the terminology of proper schemas, we capture such
key constraints by asserting that {a1, a2, ..., an} form a key for p, where each ai is the label
of some arrow out of p.

In many established data-models it is required that every class has at least one key, so that
the set of all the arrows of a class forms a key if no strict subset of the arrows does. By
relaxing this constraint, so that a class may have no key at all, we can capture models in
which there is a notion of object identity. A superkey of a class is any superset of a key. We
may therefore think of the set of superkeys for a class p, SK(p), as a set of sets of labels of
arrows out of p. SK(p) has the property that it is “upward closed”, i.e. if s ∈ SK(p) and
s′ ⊇ s, then s′ ∈ SK(p).

We now have the constraint on specialization edges that if p =⇒ q then SK(p) ⊇ SK(q), i.e.
all the keys for q are keys (or superkeys) for p. For example, the specialisation Advisor =⇒
Committee in the schema shown in figure 9 asserts that the advisor of a student must also be
a member of the thesis committee for that student.
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Figure 9: “Isa-A” Relation Between Relationships

Since the committee for a student consists of several faculty members, and each faculty
member can be on several thesis committees, the set of keys for Committee is {{faculty,
victim}}. However, since each student has at most one advisor, but that each faculty member
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can be the advisor of several students, the set of keys for Advisor is {{victim}}. This is
equivalent to having cardinality constraints asserting that the relation Advisor is “one-to-
many” while Committee is “many-to-many”. Note that {{victim}, {faculty, victim}} ⊇
{{faculty, victim}}, thus the merged schema satisfies our constraint.

Our task now becomes to derive keys in the merged schema subject to this constraint.

Suppose schema G is the proper schema merge of G1 and G2. Each class p in G appears at
most once in each of G1 and G2, with key assignments SK1(p), SK2(p) respectively (when
defined). We define SK to be a satisfactory assignment of keys to classes if

1. SK1(p) ⊆ SK(p), if p ∈ C1; and

2. SK2(p) ⊆ SK(p), if p ∈ C2; and

3. SK satisfies the condition that SK(p) ⊇ SK(q) whenever p =⇒ q.

It is readily checked that if SK and SK′ are satisfactory assignments, then so is SK ∩ SK′,
defined by (SK ∩ SK′)(p) = SK(p) ∩ SK′(p). Thus there is a unique minimal satisfactory
assignment of keys to classes.

We can see that key constraints are sufficient to capture the kinds of cardinality constraint
most commonly found in the ER literature, namely the restriction of attributes or relations to
being “many-to-many”, “many-to-one” and so on, at least in the case of binary relationships
where their meaning is clear. However they are not capable of representing the participation
constraints, representing total versus partial participation of an entity set in a relationship,
found in some models (see [3]): for example, we cannot use key in our schemas to specify that
each graduate student must have a faculty advisor, but that not every faculty member must
necessarily advise some student. On the other hand, cardinality constraints cannot capture
all key assertions: For example, consider the relationship Transaction in Figure 10. The
statement that Transaction has two keys, one being {loc, at}, the other being {card,
at}, has no correspondence in terms of labeling edges.

Keys can also be used to determine when an object in the extent of a class in an instance of
one schema corresponds to an object in the extent of the same class in an instance of another
schema. For example, if Person is a class in two schemas, G1 and G2, which are being merged,
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Figure 10: A Class with Multiple Keys

and both schemas agree that {SS#} is a key for Person, then an object in the extent of Person
in an instance of G1 corresponds to an object in the extent of Person in an instance of G2 if
they have the same social security number. However, suppose that G1 claims that {SS#} is a
key for Person, and G2 has an SS#-arrow for Person but does not claim that it is a key. Since
{SS#} is a key for Person in the merged schema, an additional constraint has been placed on
the extents of G2: two objects in the extent of Person are the same if they have the same
social security number, no matter whether both are from an instance of G1, both are from
an instance of G2, or one is from an instance of G1 while the other is from an instance of G2.
Furthermore, if G1 claims that {SS#} is a key for Person but G2 does not have an SS#-arrow
for Person, then there is not way to tell when an object from the extent of Person in an
instance of G1 corresponds to an object from the extent of Person in an instance of G2.

6 Lower Merges

In Section 4 we defined the merge of a collection of schemas as their least upper bound under
an information ordering. A consequence of this is that, if we merge a number of schemas,
then any instance of the merged schema can be considered to be an instance of any of the
schemas being merged. In some cases, however, it is desirable to find the greatest lower bound
of a collection of schemas and use that as the merge. In this case any instances of the schemas
being merged would also be instances of the merged schema, and, further, we would expect
to be able to coalesce or take the union of a number of instances of the collection of schemas
and use that as an instance of the merged schema. This kind of merge is likely to arise in,
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for example, the formulation of federated database systems.

We will refer to the merges defined in section 4 as upper merges, and, in this section,
we will discuss the formulation of lower merges, representing the greatest lower bound of
a collection of schemas. It could legitamately be argued that lower merges are of primary
importance and should have been introduced first. However we introduced upper merges
as our primary concept of a merge because they are inherently simpler and more natural to
formulate. There are a number of complications involved in giving a formal definition of lower
merges. For a detailed treatment of the problems involved see [5].

As it stands, taking the lower bound of a collection of schemas using our information ordering
is clearly unsatisfactory: any information on which two schemas disagree on is lost. For
example if one schema has the class Dog with arrows name and age, and another has Dog
with arrows name and breed, then in the lower bound of the two schemas the class Dog will
only have the arrow name. What we want, however, is some way of saying that instances
of the class Dog may have age-arrows and may have breed-arrows, but are not necessarily
required to do so. Worse still, if one schema has the class Guide-Dog and another does not,
then the lower bound of the two schemas will not. The second problem can be dealt with
easily by adding all classes involved in other schemas to each schema in a collection before
proceeding with the construction of the lower merge. The first problem, however, is more
difficult and requires us to extend our definition of (weak) schemas.

We define the semi-lattice of participation constraints, ordered by ≤, to be as shown in
figure 11. We will extend the definition of (weak) schemas by associating a participation
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Figure 11: The semi-lattice of participation constraints

constraint with each arrow of a schema via a mapping K : E → {0, 0/1, 1}. The idea is that,
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if a class p has an a-arrow of class q, then if the arrow has participation constraint 1 then
every instance of class p must have a an a-arrow to an instance of class q; if the arrow has
participation constraint 0/1 then an instance of p may have an a-arrow of class q; and if the
arrow has constraint 0 then an instance of p may not have an a-arrow of class q. We adopt
the convention of not drawing arrows with the participation constraint 0 in our diagram, and,
further, assume that a schema which does not have some arrow p

a−→ q is equivalent to the
same schema but with the arrow p

a−→ q with participation constraint 0.

Now, if one schema has an arrow which is not included in another, then we can assume that
the second schema also has the arrow, but with participation constraint 0, and we can take
the greatest lower bound of the participation constraints (under the ordering ≤) to be the
participation constraint of the arrow in the merged schema.

Hence, with the addition of participation constraints, we can form the weak lower merge of a
collection of schemas in a similar manner to that used to construct the weak upper merges in
section 4. We can also build a proper schema from a weak lower merge using an algorithm
similar to that in section 4, except that that the implicit classes are introduced above, rather
than bellow, the sets of proper schemas that they represent.

It is worth noting that, while upper and lower merges represent two extreme views of what
the merge of a collection of schemas should be, there may well be valid and useful concepts
of merges lying inbetween the two. However the authors believe that, in order for a concept
of a merge to be valid and well defined, it should have a definition in terms of an information
ordering similar to the ones given here.

7 Conclusions

Using a simple but general formalism, we have characterized the weak schema merge of a
collection of schemas as their least upper bound. The merge of these schemas is then defined
by translating the weak schema merge to a proper schema. The translation introduces new
“implicit” classes as required, and identifies their origin in their name. Although not discussed
in detail in this paper, the “real-world” validity of an implicit class can be efficiently checked
by consulting a consistency relationship between the classes from which the implicit class was
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formed.

Despite the simplicity of our mathematical construction, we believe that using an information
ordering is the right way of describing the merge of schemas: it has a well-defined result,
and the merge operation is associative and commutative. Thus user assertions about the
relationships between schemas can be thought of as real assertions rather than “guiding
heuristics” since the merge is independent of the order in which the assertions are stated.
The approach in this paper focused on the upper merge of schemas, which seems to be the
most natural concept of a merge. Other kinds of merge can be defined, including the lower
merge, by varying the information ordering used.

The approach presented in this paper can be generalized to describe the merge in a number
of other data models by representing schemas in other data models as “restricted” instances
of schemas in our general model (i.e. stratifying classes in terms of their meaning in other
models), and finding their proper schema merge. Our merge can be shown to “preserve
strata”, guaranteeing that the result will an instance of the original model; a proof of this
with full details can be found in [5].

To use this approach as a practical schema merging tool, several issues should be addressed.
Firstly, more attention should be paid to how cardinality constraints should be encorporated.
While our preliminary approach has been to use a notion of keys, other ideas include allowing
arrows to be “multivalued functions” as in [2]; [5] shows how this idea can be extended to
our model. Secondly, some form of assistance should be given for “restructuring” schemas
to obtain a better merge. Not only can “naming” conflicts occur (such as homonyms and
synonyms), but “structural” conflicts can occur. For example, an attribute in one schema
may look like an entity in another schema, or a many-one relationship may be a single arrow
in one schema but introduce a relationship node in another schema. In these cases, the merge
will not “resolve” the differences but present both interpretations. To force an integration,
we need some kind of “normal form”. Thirdly, we need to evaluate how many implicit classes
can be introduced in the merge. Although in the examples we have looked at this number
has been small, it may be possible to construct pathological examples in which the number
of implicit classes is very large; however, we do not think these are likely to occur in practice.
Fourthly, we must discuss how to merge instances; for a discussion of the problems involved,
see [16].
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We have found that the simplicity of the method and presence of strong theoretical under-
pinnings have made extensions of the technique very easy to develop. In addition, we have
been able to rapidly prototype the method, together with a graphical interface for creating
and displaying schema graphs.
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