
Software Evolution
through Dynamic Adaptation of Its OO Design

Walter Cazzola1,�, Ahmed Ghoneim2, and Gunter Saake2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Institute für Technische und Betriebliche Informationssysteme,

Otto-von-Guericke-Universität Magdeburg, Germany
{ghoneim,saake}@iti.cs.uni-magdeburg.de

Abstract. In this paper we present a proposal for safely evolving a software sys-
tem against run-time changes. This proposal is based on a reflective architecture
which provides objects with the ability of dynamically changing their behavior
by using their design information. The meta-level system of the proposed archi-
tecture supervises the evolution of the software system to be adapted that runs
as the base-level system of the reflective architecture. The meta-level system is
composed of cooperating components; these components carry out the evolution
against sudden and unexpected environmental changes on a reification of the de-
sign information (e.g., object models, scenarios and statecharts) of the system to
be adapted. The evolution takes place in two steps: first a meta-object, called evo-
lutionary meta-object, plans a possible evolution against the detected event then
another meta-object, called consistency checker meta-object validates the feasi-
bility of the proposed plan before really evolving the system. Meta-objects use
the system design information to govern the evolution of the base-level system.
Moreover, we show our architecture at work on a case study.

Keywords: Software Evolution, Reflection, Consistency Validation, Dynamic
Reconfiguration, UML, XMI.

1 Introduction

In advanced object-oriented information systems related to engineering applications,
classes and, therefore, their instances are subjected to frequent adaptations during their
life cycle. This applies to the structure of class definitions and the behavior of their
objects. In the last decade, several object-oriented systems were designed to address the
problem of adapting object structure and behavior to meet new application requirements
(see for example [9, 14]).

Nowadays a topical issue in the software engineering research area consists of pro-
ducing software systems able to adapt themselves to environmental changes by adding
new and/or modifying existing functionalities. Computational reflection [4,15] provides
one of the most used mechanisms for getting software adaptability.

� Walter Cazzola’s work has been partially supported by Italian MIUR (FIRB “Web-Minds”
project N. RBNE01WEJT 005).

M.D. Ryan et al. (Eds.): Objects, Agents, and Features, LNCS 2975, pp. 67–80, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

68 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

A software system with a long life span, must be able to dynamically adapt itself
to face unexpected changes in its environment avoiding a long out-of-service period for
maintenance. The evolution of the design of a software system is determined by the evo-
lution of the behavior of its components and of the interactions among them. Several
design elements govern such aspects: class/object diagrams statecharts and sequence
diagrams. Run-time system evolution also involves such aspects, therefore, design in-
formation should be used to concert run-time evolution as well. Design information
provide the right mechanism to grant the consistency of the evolved system against the
system requirements.

A reflective architecture represents the perfect structure that allows running systems
to adapt themselves to unexpected external events, i.e., to consistently evolve. In [6] we
described a reflective architecture for system evolution at run-time. In such a frame-
work, the system running in the base-level is the one prone to be adapted, whereas
software evolution is the nonfunctional feature realized by the meta-level system. Evo-
lution takes place exploiting design information concerning the running systems.

To correctly evolve1 the base-level system, the meta-level system must face many
problems. The most important are: (1) to determine which events cause the need for
evolving the base-level system (2) how to react on events and the related evolutionary
actions (3) how to validate the consistency and the stability of the evolved system and
eventually how to undo the evolution, (4) to determine which information allows system
evolution and/or is involved in the evolution.

In [5], we introduced a pattern language modeling the general behavior of the meta-
level components and their interactions during the evolutionary process.

The rest of the paper is organized as follows: section 2 provides a brief overview of
the tools we have adopted in our work; section 3 describes our reflective architecture
(the evolutionary mechanism) and the evolutionary engine related with the architecture
and its rules; section 4 describes the application of our reflective approach to software
evolution by an example. Finally, in sections 5 and 6 we survey some related work,
draw our conclusions and present some future work.

2 Background

2.1 Computational Reflection

Computational reflection or reflection for short is the ability of a system to watch its own
computation and possibly change the way it performs. Observation and modification
imply an “underlay” that will be observed and modified. Since the system reasons about
itself, the “underlay” modifies itself, i.e. the system has a self-representation [15].

A reflective architecture logically models a system in two layers, called base-level
and meta-level2. The base-level realizes the functional aspect of the system, whereas

1 By the sentence correctly evolve a system we mean the fact that evolution takes place only
when the system remains consistent and stable after evolution.

2 In the sequel, for simplicity, we refer to the “part of the system working in the base-level or in
the meta-level” respectively as base-level and meta-level.

Software Evolution through Dynamic Adaptation of Its OO Design 69

the meta-level realizes the nonfunctional aspect of the system. Functional and nonfunc-
tional aspects discriminate among features, respectively, essential or not for commit-
ting with the given system requirements. Security, fault tolerance, and evolution are
examples of nonfunctional requirements3. The meta-level is causally connected to the
base-level, i.e., the meta-level has some data structures, generally called reification, rep-
resenting every characteristic (structure, behavior, interaction, and so on) of the base-
level. The base-level is continuously kept consistent with its reification, i.e., each action
performed in the base-level is reified by the reification and vice versa each change per-
formed by the meta-level on the base-level reification is reflected on the base-level.
More about the reflective terminology can be learned from [4, 15].

Reflection is a technique that allows a system for maintaining information about
itself (meta-information) and using this information to change (adapt) its behavior. This
is realized through the casual connection between the base- (the monitored system) and
the meta-level (the monitoring system).

2.2 Design Information

Our approach to evolution uses design information as a knowledge base for getting
system evolution. Design information consists of data related to the design of the system
we want to evolve. UML is the adopted formalism for representing design information.

The unified modeling language (UML) [3,11] has been widely accepted as the stan-
dard object-oriented modeling language for modeling various aspects of software sys-
tems. UML is an extensible language, it provides mechanisms (stereotypes, and con-
straints) that allow introducing new elements for specific domains if necessary, such as
web applications, database applications, business modeling, software development pro-
cesses, and so on. A stereotype provides an extensibility mechanism for creating new
kinds of model elements derived from existing ones, whereas constraints can be used
to refine the behavior of each model element.

The design information we consider are related to two categories: system structure
and behavior. Structural design information is an explicit description of the structure
of the base-level objects. This includes the number of attributes and their data type. Be-
havioral design information describes the computations and the communications car-
ried out by the base-level objects. It includes objects behavior, collaboration between
objects, and the state of the objects. Structure and behavior of the system are modeled
by class diagrams, sequence diagrams and state diagrams.

3 Software Evolution through Reflection

The main goal of our approach consists of evolving a software system to face environ-
mental and requirement changes and validate the consistency of such an evolution. This
goal is achieved by:

3 The borderline between what is a functional feature and what is a nonfunctional feature is
quite confused because it is tightly coupled to the problem requirements. For example, in a
traffic control system the security aspect can be considered nonfunctional whereas security is
a functional aspect of an auditing system.

70 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

��

��

reflect

reify reify

System
Base−Level

Categories
Reification

Consistency Checker
Meta−ObjectMeta−Object

Evolutionary

MOP

MOP

Meta−Level

Base−Level

engineengine

Evolutionary
Rules

Validation
Rules

Fig. 1. Reflective architecture designed for the evolution of software systems.

– adopting a reflective architecture which dynamically drives the evolution of the
software system through its design information when an event occurs; this has been
made possible by moving design information from design- to run-time.

– using two sets of rules which respectively describes how evolution takes place and
when the system is consistent; these rules are used by the decisional components
of the reflective architecture but not by the system that must be evolved;

– replanning the design information of the system and reflecting the changes on the
running system.

In the rest of this section we give a brief overview of the reflective architecture and its
components, we show how these components work and the manipulation of the design
information.

3.1 The Reflective Architecture

To render a system self-adapting4, we encapsulate it in a two-layers reflective architec-
ture as shown in Fig. 1. The base-level is the system that we want to render self-adapting
whereas the meta-level is a second software system which reifies the base-level design
information and plans its evolution when particular events occur. Reflective properties
as transparency [20,21] and separation of concerns [13] provide the meta-level with the
mechanism for carrying out the evolution of the base-level code and behavior without
having previously foreseen such an adaptation for the system.

4 By the sentence to render a system self-adapting we mean that such a system is able to change
its behavior and structure in accordance with external events by itself.

Software Evolution through Dynamic Adaptation of Its OO Design 71

At the moment, we just take in consideration two kinds of software adaptation:
structural and behavioral evolution. This limitation is due to the fact that, at the mo-
ment, we only reify the following design information related to the base-level:

– object and class diagrams, which describes classes, objects and their relations; this
model represents the structural part of the system;

– sequence diagrams, which trace system operations between objects (inter-object
connection) for each use case at a time; and

– statecharts, which represent the evolution of the state of each object (intra-object
connection) in the system.

The approach can be easily extended to observe and manipulate all the other diagrams
provided by UML such as use case, activity diagrams.

The meta-level is responsible of dynamically adapting the base-level and it is com-
posed of some special meta-objects, called evolutionary meta-objects. There are two
types of evolutionary meta-objects: the evolutionary and the consistency checker meta-
objects. Their goals consists of consistently evolving the base-level system. The for-
mer is directly responsible for planning the evolution of the base-level through adding,
changing or removing objects, methods, and relations. The latter is directly responsible
for checking the consistency of the planned evolution and of really carrying out the
evolution through the causal connection relation.

The base-level system and its design information is reified in reification categories in
the meta-level (see section 3.3 for more details). Classic reflection takes care of reifying
the state and every other dynamic aspect of the base-level system, whereas the design
information provides a reification of the design aspects of the base-level system such as
its architecture and the collaborations among its components. The reification categories
content is the main difference of our architecture with respect to standard reflective ar-
chitectures. Usually, reifications represent the base-level system behavior and structure
not its design information. Reification categories can be considered as representatives
of the base-level system design information in the meta-level. Both evolutionary and
consistency checker meta-objects directly work on such representatives and not on the
real system, this allows a safe approach to evolution postponing every change after
validation checks. As described in [5] when an external events occur, the evolutionary
meta-object proposes an evolution as a reaction to the consistency checker meta-object
which validates the proposal and schedules the adaptation of the base-level system if
the proposal is accepted.

3.2 Decisional Engines and Evolutionary Rule Sets

Adaptation and validation are respectively driven by a set of rules which define how
to adapt the system in accordance with the detected event and the meaning of system
consistency.

To give more flexibility to the approach, these rules are not hardwired in the cor-
responding meta-object rather they are passed to a sub-component of the meta-objects
themselves, respectively called evolutionary and validation engines, which interpret
them. Therefore, each meta-object has two main components: (i) the core which in-
teracts with the rest of the system (e.g., detecting external events/adaptation propos-
als, or manipulating the reification categories/applying the adaptation on the base-level

72 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

system) and implementing the meta-object’s basic behavior, and (ii) the engine which
interprets the rules driving the meta-object’s decisions.

In this paper, for sake of simplicity, we express both evolutionary and validation
rules by using the formalism for event-condition-action (ECA) [1, 8] rules. Rules are
usually written in the following form:

on event if conditions do actions

where event represents the event which should ignite the evolution of the base-level
system, conditions, and actions, respectively, represent the conditions the engine must
validate when the event occurs and the actions the engine must carry out for adapting
the system against the occurred event. Both events and conditions involve the base-level
reification (see section 3.3 for details on reifications). The engines (both evolutionary
and consistency checker) interpreting these rules are simply state machines indexed on
events and conditions.

Both rules and engines working on them are tightly bound but completely unbound
from the rest of the reflective architecture. Therefore, to adapt our approach to use rules
specified with a different formalism is quite simple; we have just to substitute the engine
with one able to interpret the chosen formalism. Of course, the engines must be able to
interact with the rest of the architecture as described in the following algorithm. More
complex and powerful approaches are under development.
In general, adaptation takes place as follows:

– the meta-level reifies the base-level design information and the system itself into
reification categories;

– the evolutionary meta-object waits for an event that needs the adaptation of the
base-level system; when such an event occurs it starts to plan evolution:
• through the design information of the base-level system, it detects which base-

level components might be involved in the evolution; then
• it informs its engine about the occurred event and components involved in the

evolution;
• the evolutionary engine decides which evolutionary rule (or which group of

evolutionary rules) is better to apply; then
• it designs the evolutionary plan by applying the chosen evolutionary rule (or

group of rules);
– the evolutionary meta-object passes the evolutionary plan to the consistency checker

meta-object which must validate the proposed evolutionary plan before rendering
the adaptation effective:
• the consistency checker meta-object demands the validation phase to the vali-

dation engine;
• the validation engine validates the proposed evolutionary plan by using its val-

idation rules and the base-level system design information.
– if the proposed evolutionary plan is considered sound the consistency checker meta-

object schedules the base-level system adaptation in accordance with such an evo-
lutionary plan; otherwise the consistency checker meta-object returns an error mes-
sage to the evolutionary meta-objects restarting the adaptation phase.

Software Evolution through Dynamic Adaptation of Its OO Design 73

The evolutionary plan proposed by the evolutionary meta-object is a manipulation
of the design information of the base-level system. The causal connection is responsible
of modifying the model of the base-level system accordance with the proposed evolu-
tion. The adopted mechanism for transposing design information in the real system is
based on the UML virtual machine [17].

The most important side-effect of this approach is represented by the fact that adap-
tation can take place also on nonstoppable systems because it does not require that the
base-level system stops during adaptation, but it only needs to define when it is safe to
carry out the adaptation.

3.3 Reification and Reflection by Using Design Information

We have talked about reifying and reflecting on design information of the base-level
system whereas such design information simply feed the meta-level system during sys-
tem bootstrap and drive its meta-computations during the evolution of the base-level
system.

When an event occurs, the design information related to the base-level entities, that
can be involved by the event, are used by the evolutionary and the consistency checker
meta-objects for driving the evolution of such base-level entities (as described in the
previous algorithm).

Design information identifies which entities are involved by the event (object/class
and state diagrams), their behavior (sequence diagrams) and how the event can be prop-
agated in the base-level system (collaboration diagrams). Therefore introspection and
intercession on large systems become simpler than using standard reflective approaches
because the design information provide a sort of index on the base-level entities and
their interactions.

Moreover design information is the right complement to the base-level system reifi-
cation built by the standard causal connection. Meta-objects consult and manipulate the
design information in order to get information that otherwise are not easily accessible
from the running system, e.g., the collaboration among objects. Design information is
also used as a testbed for manipulation because they give a easily accessible overview
of global features as inter-objects collaborations.

UML specifications provide graphical data that usually exist at design-time and are
difficult to manage at run-time. Whereas, our meta-objects require such a specifications
at run-time for driving the evolution. We chose to overcome this problem by encoding
the design information in XML, in particular with the XMI standard [16]. XMI provides
a translation of UML diagrams in a text-based form more suitable for run-time manipu-
lation.

The XMI standard gives a guideline for translating each UML diagram in XML.
Each diagram is assimilated to a graph whose nodes are the diagram’s components
(e.g., classes, states and so on), and arcs represents the relation among the compo-
nents. The graph is decorated with XML tag describing the properties of the corre-
sponding UML component. In our architecture, we use the XMI code generated by Po-
seidon4UML [2]. Poseidon4UML provides us with a tool for drawing UML diagrams
and for generating the corresponding XMI code. Figure 2 shows a simple class diagram,

74 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

Yellow

Red Green

+turn−off()
+tick()
+turn−on()

−color=Yellow

Traffic Light

 <UML:StateMachine.context>
 <UML:Class xmi.idref=’a4’/>
 </UML:StateMachine.context>
 <UML:SimpleState xmi.id=’a20’ name=’Green’>
 <UML:StateVertex.outgoing><UML:Transition xmi.idref=’a15’/>
 <UML:StateVertex.incoming><UML:Transition xmi.idref=’a19’/>
 </UML:SimpleState>
 <UML:StateMachine.transitions>
 <UML:Transition xmi.id=’a15’ name=’tick’>
 <UML:Transition.effect><UML:CallAction xmi.id = ’a42’ name = ’tick()’>
 <UML:Transition.trigger><UML:CallEvent xmi.id = ’a45’ name = ’t mins’>
 <UML:Transition.source><UML:SimpleState xmi.idref=’a20’/>
 <UML:Transition.target><UML:SimpleState xmi.idref=’a10’/>
 </UML:Transition>

<UML:StateMachine xmi.id=’a6’ name=’Traffic LightStateMachine’>

<UML:Class xmi.id=’a4’ name=’Traffic Light’>
 <UML:StateMachine xmi.id=’a6’ name=’Traffic LightStateMachine’>

<UML:Attribute xmi.id=’a34’ name=’color’>
 <UML:Attribute.initialValue>

 <UML:Expression xmi.id=’a35’ body=’Yellow’/>
 </UML:Attribute.initialValue>

...

 </UML:Attribute>
 <UML:Operation xmi.idtag=’a46’ name=’tick’>
 </UML:Operation>
 </UML:Class>

/turn−on()

/turn−off()
after t mins/tick()

after t mins/tick()

after t mins/tick()

Class Diagram

Class Diagram

StateChart

StateChart

Fig. 2. Poseidon4UML’s XMI translation of a simply class diagram and the related statechart.

a possible statechart for that and the corresponding XMI code (shortened for the sake of
space) generated by Poseidon4UML.

At system bootstrap, the meta-level reifies the design information of the base-level,
that is, the meta-level loads into the reification categories (each categories is devoted to
an aspect of the base-level) the XMI representation of design information of the base-
level. In this way we render accessible UML data-model to the meta-objects.

The XMI schemas are tightly linked with the base-level components. The evolu-
tionary meta-object modifies these schemas introducing some specific XMI elements,
providing the consistency checker with the necessary pieces of information for validat-
ing the evolutionary plan and for effectively modifying the base-level. Some of these
elements are:

– XMI.difference is the element used to describe differences from the initial model;
– XMI.delete represents a deletion from the base model;
– XMI.add represents an addition to the base model; and
– XMI.replace represents a replacement of a model construct with another model

construct in the initial model.

As described in [12], we can create new UML models from XMI schemas, therefore
the evolutionary plan, which is a group of modified XMI schemas, can be reverted into
UML diagrams. Basically, this reciprocity between UML diagrams and XMI schemas
allows us maintaining the causal connection between base- and meta-level.

Software Evolution through Dynamic Adaptation of Its OO Design 75

Fig. 3. XMI reification data and UML UTCS flow density.

4 Urban Traffic Control System: A Case Study

When designing urban traffic control systems (UTCS), the software engineer will face
many issues such as distribution, complexity of configuration, and reactivity to the en-
vironment evolution. Moreover, modern cities have to face a lot of unexpected hard
to plan problems such as traffic lights disruptions, car crashes, traffic jams and so on.
In [18] these issues and many others are illustrated.

The evolution of complex urban agglomerates have posed significant challenges to
city planners in terms of optimizing traffic flows in a normally congested traffic net-
work. Simulation and analysis of such systems require modeling the behavioral, struc-
tural and physical characteristics of the road system. This model includes mobile en-
tities (e.g., cars, pedestrians, vehicular flow, and so on) and fixed entities (e.g., roads,
railways, level crossing, traffic lights and so on).

Of course, the UTCS, due to its complexity, cannot be considered as a whole case
study. In this section, we describe our approach to evolution involving just three com-
ponents of the UTCS: road, traffic light and traffic. Figure 3 shows how this fragment
of the UTCS is integrated with our reflective approach to evolution, and how the UTCS
design information is managed by using the XMI encoding.

In this example we consider as unexpected events only car accidents. Therefore,
we will show some evolutionary and validation rules that, used in conjunction with our
approach, force the UTCS evolution for dealing with problems due to car accidents,
e.g., traffic jams.

76 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

4.1 Evolutionary and Validation Rules against Car Accidents

For UTCS to deal with traffic jams must monitor vehicular flow density5, and the status
of every involved entity (both fixed and mobile). The evolutionary meta-object detects
when the vehicular flow augments in a specific street and plans to adapt the current
traffic schedule (i.e., the UTCS behavior) to face the problem.

Evolutionary Rules

ER1 (car accident management): when there is a notification of a car accident in a
specific road and the traffic in that road is stuck then such a street must be closed and
the traffic flow hijacked towards the adjacent streets.

on (a car accident in street Ri has been detected)
if (flow density of Ri is too elevate)
do closes Ri and reschedules the traffic lights so that cars avoid to
pass through Ri.

Obviously, the traffic lights rescheduling implies a change in the statechart of the traf-
fic lights, whereas closing the road means to add a new traffic light in the system. The
evolutionary meta-object will render effective these considerations manipulating the
corresponding XMI schemas and forming the evolutionary plan to pass to the consis-
tency checker meta-object.

ER2 (traffic jam management): the density of the vehicular flow is constantly monitored
road by road thanks to automatic cameras installed at the entrance of each road. These
cameras take a snapshot of the traffic entering in the road every few seconds (delta
that can be changed to have a more timely reaction), consecutive snaps are compared
to establish if the vehicular flow has overcome a given tolerance threshold, if so the
temporization of the traffic lights in the corresponding area are modified to allow a
more fluid circulation in the road.

on (comparing two consecutive snapshots)
if (the traffic flow has increased overcoming the tolerance threshold)
do control the traffic lights and modify their temporization.

As for ER1, changing the traffic light temporization implies a modification of the stat-
echart associate to the involved traffic light.

Validation Rules

VR1 (traffic flows in a closed road): when the evolutionary meta-object proposes an
evolutionary plan in which traffic is inhibited to a certain road, the consistency checker
must verify that there is not any road whose traffic flows in the inhibited road.

5 UTCS is supported by CCD-Cameras and movement sensors installed in every important
nexus [18]. CCD-cameras take a photo every second and by comparing these photos, we can
estimate the traffic flowing density. Sensors will notify anomaly events that cannot be detected
by CCD-cameras like traffic light disruptions or damages to the road structure.

Software Evolution through Dynamic Adaptation of Its OO Design 77

on (traffic has been inhibited to road Ri)
if (there is a road R j whose traffic still flows into Ri)
do inconsistency has been detected, reject the plan.

The checking for consistency implies a complete scan of the object models and state-
charts of the roads whose traffic usually flows in the closed road.

Note that we have decided of rejecting the evolutionary plan but another strategy
should consider to fix the evolutionary plan against the detected problems instead of
rejecting it.

VR2 (closing a road): another important aspect that must be validated before rendering
effective the planned evolution is to determine when it is safe to schedule the changes.
In our example this mean to wait that all cars are halted at the entrance of the road to
close before changing the direction of the vehicular flow.

on (evolutionary plan has been authorized) ∧ (road Ri must be closed)
if (no car is entering in Ri)
do turns red the traffic lights in Ri and applies the evolutionary plan.

This rule monitors the traffic light statecharts and intervenes on that when it is feasible
before applying the evolutionary plan.

The rules showed in this section do not pretend to cover every aspect of the evo-
lution but they want only to give a glance at the possibilities offered by our approach.
Moreover the rules are expressed by using the natural language because the scope of
this paper consists of describing our approach to evolution and we prefer to avoid com-
plicated formalisms that would have obscured the simplicity of the mechanism.

5 Related Work

Several other researchers have proposed a mechanism for dynamic evolution by using
a reflective architecture and design information. The system we consider in this short
overview are UML virtual machine [17], The K-Component Architecture [10], Archi-
tectural Reflection [7] and design enforcement [19].

In [17] has been presented the architecture for a UML virtual machine. The virtual
machine has a logical architecture that is based on the UML four-level modeling archi-
tecture and a physical architecture that realizes the logical architecture as an object-
oriented framework.

Dowling and Cahill [10] have proposed a meta-model framework named K-compo-
nents, that realizes a dynamic, self-adaptive architecture. It reifies the features of the
system architecture, e.g., configuration graph, components and connectors. This model
presents a mechanism for integrating the adaptation code in the system, and a way to
deal with system integrity and consistency during dynamic reconfiguration.

Cazzola et al. [7] have presented a novel approach to reflection called architectural
reflection which allows dynamic adaptation of a system through its design information.
This has been possible moving the system software architecture from design-time to
run-time. Software architecture manipulation allows adaptation in-the-large of the sys-

78 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

tem, i.e., we can add and remove components but we cannot add functionalities to a
component.

In [19] has been presented a method for design enforcement, based on a combination
of reflection and state machine diagrams. Combining concepts of concurrent object-
oriented design, finite state diagrams, and reflection leads to increase the reliability of
the systems, by insuring that objects work in accordance with their design.

6 Conclusions and Future Work

The main topic of our work concerns with software adaptability. In this paper we have
presented: i) a reflective architecture for dynamically and safely evolving a software
system; and ii) the decisional engines and their rules which govern such an evolution.
Finally, we have shown on a case study how to instruct our reflective architecture to
adapt itself to unexpected events and how the evolution takes effect.

Our approach to software evolution has the following benefits:

– evolution is not tailored to a specific software system but depends on its design
information;

– evolution is managed as a nonfunctional features, therefore, can be added to every
kind of software system without modifying it; and

– evolution strategy is not hardcoded in the system but it can be dynamically changed
by substituting the evolutionary and validation rules.

Unfortunately there are also some drawbacks: (i) we need a mechanism for convert-
ing UML diagrams in the corresponding XMI schemas (problem partially overcome by
using Poseidon4UML [2]); (ii) decomposing the evolution process in evolution and
consistency validation could be inadequate for evolving systems with tight time con-
straints.

In future work, we plan to overcome the cited drawbacks and to implement a pro-
totype of the described architecture by using OpenJava for supporting the causal
connection among meta-level representation and the base-level system and a scripting
language such as Ruby or Python for specifying and interpreting the rules.

References

1. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-condition-action lan-
guage for XML. In Proceedings of the 11th International World Wide Web Conference,
WWW2002, pages 486–495, Honolulu, Hawaii, USA, May 2002. ACM Press.

2. Marko Boger, Thorsten Sturm, and Erich Schildhauer. Poseidon for UML Users Guide. Gen-
tleware AG, Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany, 2000.

3. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, Reading, Massachusetts, third edition,
February 1999.

4. Walter Cazzola. Evaluation of Object-Oriented Reflective Models. In Proceedings of ECOOP
Workshop on Reflective Object-Oriented Programming and Systems (EWROOPS’98), in 12th
European Conference on Object-Oriented Programming (ECOOP’98), Brussels, Belgium, on
20th-24th July 1998. Extended Abstract also published on ECOOP’98 Workshop Readers, S.
Demeyer and J. Bosch editors, LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

Software Evolution through Dynamic Adaptation of Its OO Design 79

5. Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Framework Pat-
terns for the Evolution of Nonstoppable Software Systems. In Pavel Hruby and Kristian Elof
Søresen, editors, Proceedings of the 1st Nordic Conference on Pattern Languages of Pro-
grams (VikingPLoP’02), pages 35–54, Højstrupgård, Helsingør, Denmark, on 20th-22nd of
September 2002. Microsoft Business Solutions.

6. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Reflective Analysis and Design for
Adapting Object Run-time Behavior. In Zohra Bellahsène, Dilip Patel, and Colette Rolland,
editors, Proceedings of the 8th International Conference on Object-Oriented Information
Systems (OOIS’02), Lecture Notes in Computer Science 2425, pages 242–254, Montpellier,
France, on 2nd-5th of September 2002. Springer-Verlag. ISBN: 3-540-44087-9.

7. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Rule-Based Strategic
Reflection: Observing and Modifying Behaviour at the Architectural Level. In Proceedings
of 14th IEEE International Conference on Automated Software Engineering (ASE’99), pages
263–266, Cocoa Beach, Florida, USA, on 12th-15th October 1999.

8. Stefan Conrad and Can Türker. Prototyping Object Specifications Using Active Database
Systems. In A. Emre Harmancı, Erol Gelenbe, and Bulent Örencik, editors, Proceedings of
the 10th International Symposium on Computer and Information Sciences (ISCIS X), Volume
I, pages 217–224, Kuşadası, Turkey, October 1995.

9. Jim Dowling and Vinny Cahill. Building a Dynamically Reconfigurable Minimum CORBA
Platform with Components, Connectors and Language-Level Support. In Proceedings of the
IFIP/ACM Middleware 2000 Workshop on Reflective Middleware, New York, NY, USA,
April 2000. Springer-Verlag.

10. Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-Model for Self-
Adaptive Software. In Akinori Yonezawa and Satoshi Matsuoka, editors, Proceedings of 3rd
International Conference on Metalevel Architectures and Separation of Crosscutting Con-
cerns (Reflection’2001), LNCS 2192, pages 81–88, Kyoto, Japan, September 2001. Springer-
Verlag.

11. Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard Object Modeling
Language. Addison-Wesley, Reading, Massachusetts, 1997.

12. Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A. Mastering XMI: Java Program-
ming with XMI, XML, and UML. John Willy & Sons, Inc., April 2002.

13. Walter Hürsch and Cristina Videira Lopes. Separation of Concerns. Technical Report NU-
CCS-95-03, Northeastern University, Boston, February 1995.

14. Jeff Kramer and Jeff Magee. Analysing Dynamic Change in Distributed Software Architec-
tures. IEEE Proceedings Software, 145(5):146–154, October 1998.

15. Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Mey-
rowitz, editor, Proceedings of the 2nd Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 of Sigplan Notices, pages 147–156,
Orlando, Florida, USA, October 1987. ACM.

16. OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and
Metadata Specifications available at http://www.omg.org, January 2002.

17. Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. The Architecture of
a UML Virtual Machine. In Linda Northrop and John Vlissides, editors, Proceedings of the
2001 Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’01), pages 327–341, Tampa Bay, Florida, USA, October 2001. ACM Press.

18. Andrea Savigni, Filippo Cunsolo, Daniela Micucci, and Francesco Tisato. ESCORT: To-
wards Integration in Intersection Control. In Proceedings of Rome Jubilee 2000 Conference
(Workshop on the International Foundation for Production Research (IFPR) on Manage-
ment of Industrial Logistic Systems – 8th Meeting of the Euro Working Group Transportation
- EWGT), Roma, Italy, September 2000.

80 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake

19. Shaul Simhi, Vered Gafni, and Amiram Yehudai. Combining Reflection and Finite State
Diagrams for Design Enforcement. 2(4):269–281, 1997.

20. Robert J. Stroud. Transparency and Reflection in Distributed Systems. ACM Operating Sys-
tem Review, 22:99–103, April 1992.

21. Robert J. Stroud and Zhixue Wu. Using Metaobject Protocols to Satisfy Non-Functional Re-
quirements. In Chris Zimmerman, editor, Advances in Object-Oriented Metalevel Architec-
tures and Reflection, chapter 3, pages 31–52. CRC Press, Inc., 2000 Corporate Blvd.,N.W.,
Boca Raton, Florida 33431, 1996.

	1 Introduction
	2 Background
	2.1 Computational Reflection
	2.2 Design Information

	3 Software Evolution through Reflection
	3.1 The Reflective Architecture
	3.2 Decisional Engines and Evolutionary Rule Sets
	3.3 Reification and Reflection by Using Design Information

	4 Urban Traffic Control System: A Case Study
	4.1 Evolutionary and Validation Rules against Car Accidents

	5 Related Work
	6 Conclusions and Future Work
	References

