
World Wide Web 3 (2000) 95–109 95

SERFing the web: The Re-Web approach for web re-structuring ∗

Li Chen, Kajal T. Claypool and Elke A. Rundensteiner
Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA

E-mail: {lichen,kajal,rundenst}@cs.wpi.edu

In our emerging digital paper-less society, massive amount of information is being maintained in on-line repositories and diverse web
site representations of this information must be served over the Internet to different user groups. E-commerce and digital libraries are two
representative sample applications with such needs. In this paper we present a database-centric approach called Re-Web that addresses
this need for flexible web site generation, re-structuring, and maintenance. Re-Web is based on two key ideas. First, we exploit the web
site structure by associating web semantics (XML equivalents) with the modeling constructs of the ODMG object model to aid the web
site generation process. By capturing the logical structure of web views within the OODB system, we can efficiently maintain the web
views using standard database techniques. Secondly, to ease the process of specification and construction of multiple customized web
view sites, we also propose the notion of generic web view transformations that are encapsulated into re-usable templates. Thus desired
new web view sites can be generated simply by applying the corresponding transformations on the underlying database to produce web
view classes and then by applying the web semantics on the newly built view classes. The Re-Web system has been implemented using
PSE by Object Design Inc. as object repository, ODMG as object model, OQL as transformation language, SERF as OODB evolution
facility and IBM XML parser and LotusXSL processor to aid the web site generation. A case study using Re-Web is also presented to
illustrate the working of the system. To the best of our knowledge, Re-Web is the first web site management system focusing on the
issue of re-usable view generation templates at the content and not at the presentation style level of abstraction.

1. Introduction

In recent years, there has been a large proliferation of
information on the web. Most of this information currently
exists in the form of HTML (hyper-text mark-up language)
pages. These HTML pages publish information that per-
haps previously was represented as simple files, as a data-
base or even as a paper trail. The advent of the web with its
ease of authoring information and its wide accessibility has
raised the expectations of users. Today users change the
look and feel of a web page frequently, add more informa-
tion to their web pages to make them richer, or re-structure
the way the information is organized. For individual users
and small organizations, this task while tedious may per-
haps be manageable. For a large organization, however,
the web administrators who have to deal with maintaining
possibly huge numbers of pages and re-structuring them as
per their users’ needs are faced with a mammoth task.

While some emphasis may be placed on how the docu-
ments look, a substantial amount of work is devoted to the
structural organization of the information in the web pages.
That is, there is an inherent implicit structure in HTML doc-
uments. We exploit this structure with the help of database

∗ This work was supported in part by several grants from NSF, namely,
the NSF NYI grant #IRI 94-57609, the NSF CISE Instrumentation grant
#IRIS 97-29878, and the NSF grant #IIS 97-32897. Dr. Rundensteiner
would like to thank our industrial sponsors, in particular, IBM for the
IBM partnership award. Li Chen would also like to thank IBM for the
IBM corporate fellowship. Special thanks also goes to the PSE Team
specifically, Gordon Landis, Sam Haradhvala, Pat O’Brien and Breman
Thuraising at Object Design Inc. for not only software contributions but
also for providing us with a customized patch of the PSE Pro2.0 system
that exposed schema-related APIs needed to develop our tool.

technology to bring to the users, especially web adminis-
trators, a tool, Re-Web [Claypool et al. 1998c], that allows
for easy web-site generation and re-structuring. Previous
approaches for web site management have invented either
specialized web query languages [Atzeni et al. 1997], web
page scheme languages [Fernandez et al. 1997b], or web
hyper-graph data models [Arocena and Mendelzon 1998].
In Re-Web, instead we embrace existing object-oriented
database (OODB) technology [Cattell et al. 1997], in par-
ticular, the ODMG standard, and show it to be a sufficient
basis for effective web site re-structuring.

Web page generation. In Re-Web we define the notion of
web semantics, i.e., a mapping of database constructs to the
web, which allows us to design the organizational structure
of the information for the web pages at the OODB level.
We propose using the XML [Bray et al. 1998] format as
a middle layer presentation, i.e., between the object model
and the final web constructs in HTML. XML is an emerging
standard for web data exchange providing an explicit struc-
ture for documents. Hence it facilitates the data mapping
to and from a database easier and provides easier maintain-
ability. In addition, XML distinguishes between the content
and the actual presentation, a model that fits in with using a
database as the back-end for storing the actual content (the
data). Thus, as commonly done in other approaches [Cruz
and Lucas 1997], the addition of visual presentation styles
to be applied to the web site structure specifying, for exam-
ple, font sizes or list indent bullets can be done in a stage
separate from the web site generation process.

Web-Site re-structuring. Given our capability to generate
web pages from an object model, we now can offer the ease

 Baltzer Science Publishers BV



96 L. Chen et al. / The Re-Web approach for web restructuring

of web re-structuring simply by applying SERF [Claypool
et al. 1998a]. SERF is a transformation framework built on
top of ODMG compliant OODB systems that enables re-
structuring of existing classes or the building of new view
classes in OODB systems. New re-structured web pages
can then be generated from such re-structured data schemas
or views simply by the application of the web semantics as
indicated above.

SERF transformations combine together schema evolu-
tion primitives along with object transformations and OQL
queries to express arbitrarily complex re-structurings. We
have found that there is a set of re-structuring transforma-
tions that are applied frequently to web sites such as com-
bining of two types of pages into one or flattening a com-
plex linked page. In general, it would be very useful to cap-
ture such transformations in a generic fashion such that web
designers do not have to re-write them over and over again.
We thus utilize the notion of transformation templates first
introduced in SERF [Claypool et al. 1998a] to bring to the
user a library of common re-usable re-structurings. Us-
ing such a library of transformation templates, the job of
re-structuring the web is reduced to simply applying a re-
structuring template on the appropriate class(es) and then
generating the web pages from the re-structured class(es)
with the click of one button. In this paper, we demonstrate
with the help of several examples that a transformation li-
brary of these generic web view transformations can be a
valuable resource for simplifying the web generation and
restructuring process. To the best of our knowledge, Re-
Web is the first web site management project focusing on
the issue of re-usable view generation templates [Claypool
et al. 1998a, b].

In this paper, we also demonstrate via a case study that
OODB systems are indeed suitable and in fact sufficient for
supporting a wide variety of diverse web site views over the
same underlying data simply by capturing web semantics
with the object model constructs.

Implementation. We have implemented a fully function-
ing Re-Web [Claypool et al. 1998c; Rundensteiner et al.
2000] prototype that is compliant with the ODMG standard
for the DBMS back-end and with XML for the web seman-
tics front-end. It is build using the ODMG object model,
applies the OQL query language as the database transfor-
mation language, works with an ODMG-compliant system
repository, and assumes Java’s binding of ODL. Our Re-
Web approach thus is general and could easily be ported
from our platform (which is the PSE system by Object De-
sign Inc. [O’Brien 1997]) to other ODMG-compliant plat-
forms. Mapping from ODMG into XML allows the web
application front-end be aware of the content as well as the
structure of the information and thus allows us to exploit ex-
isting technologies such as presentation formatting by just
plugging in powerful style construction tools, for example,
LotusXSL [IBM Alphaworks 1998]. Our Re-Web proto-
type was demonstrated at SIGMOD 2000 [Rundensteiner
et al. 2000]. Experiences we gain from our on-going de-

velopment effort of building the Re-Web prototype thus
may directly benefit others that want to incorporate the Re-
Web approach into their system [Chen and Rundensteiner
2000].

Contributions. To summarize, the contributions of the Re-
Web project include:

(1) the identification of a novel approach for powerful web-
site generation and restructuring based solely on stan-
dard database technology,

(2) design of web semantics with the ODMG database con-
structs both at the schema and at the data level,

(3) the notion of re-usable transformation templates for
powerful web site re-structuring, offering a wide ar-
ray of advantages to both end-users and developers as
detailed above,

(4) the development of a library of web schema transforma-
tions that represents a potentially valuable resource for
both novice and expert web-site designers (parallelling
the concept of HTML style files),

(5) the design and implementation of a fully functional Re-
Web system using an ODMG-compliant database as
well as XML/XSL technology [Clark 1998; Microsoft
Inc. 1998; Thompson 1998] as a proof of concept of
the approach.

Overview. The rest of the paper is organized as follows.
Section 2 describes our overall approach while sections 3
and 4 present the web semantics model for generating
web pages from the ODMG model constructs and the re-
structuring at the database level, respectively. The system
architecture and module design are described in section 5
and we discuss the case studies in section 6. Section 7
covers work related to ours, while section 8 concludes this
paper.

2. The Re-Web approach

The Re-Web approach is a database centric approach.
In our approach we map the ODMG object model to the
XML model to automatically generate web pages based on
the actual data that is present in the database. Within the
database itself, we use SERF [Claypool et al. 1998a] to
allow us to do complex re-structuring of the object schema
as well as to create new view schemas which in turn can
be mapped to the new re-structured web pages. While ours
is not the only database centric approach, it is the first to
offer such a high degree of flexibility and power in terms
of the re-structuring.

For example, the web site management project Ara-
neus [Atzeni et al. 1998], allows the web administrator to
describe the web site schema via defining views based on
the underlying relational database. However, by utilizing



L. Chen et al. / The Re-Web approach for web restructuring 97

relational database technology as its back-end data reposi-
tory, the hierarchical structure of the web site needs to be
molded into the flat structure supported by the relational
model. In addition, they had to develop a special purpose
language, Penelope, to translate from the relational tables
to the desired web structure. Being based on the relational
model, the process of generating web pages may generally
involve many join operations on the flat data. The rela-
tional model chosen for the intermediate repository is thus
not a natural model for capturing the hierarchical web site
schemas requiring an additional step to overcome the model
impedance mismatch.

Similarly, another web site management tool Strudel [Fer-
nandez et al. 1997a, b], provides flexible construction of
multiple views over the data residing in a graph-based
repository. However, the graph repository in the Strudel
system serves only as a storage medium. The database
does not include any direct re-structuring capabilities; and
while users are able to define view schemas, there is no no-
tion of being able to define views over views. That is, re-
structuring an existing view, a feature supported by SERF
where we simply treat view classes as base classes, is not
possible. Moreover, there is no notion of re-usability, in
terms of re-using the queries that define the desired view
of the web page, as offered by SERF transformation tem-
plates.

Our Re-Web system, on the other hand, is a layer defined
on top of an OODB system, which serves not just as a back-
end data storage, but is also capable of providing complex
transformations for re-structuring schemas.

2.1. Web page generation and re-structuring

The goal of the Re-Web system is to provide an auto-
matic web site management tool suite. We provide three
tiers of web semantics representations (see figure 1). The

Figure 1. Three tiers of web page generation architecture.

web site tier is the HTML representation, i.e., the web
pages themselves, which include some visual metaphors
and styles. Ideally the users navigate through the whole
web site via its HTML pages in a unique and consistent
fashion. The ODMG data model is at the OODB tier, the
equivalent loss-less representation of the HTML web pages.
At this level the database services such as re-structuring
can be utilized and exploited to provide the same for the
web pages themselves. A re-structuring desired for the
web-site is translated to an equivalent transformation tem-
plate at the database level which then is responsible for
the re-structuring of the schema and the associated objects.
The new view schema, the result of the re-structuring, rep-
resents the basis for automatically producing the desired
re-structured web site. In an effort to make this possible,
we use XML in the middle tier to capture the web con-
text (semantics) and allow the inter-changeability between
the very structured object model and the not so structured
HTML document model.

The goal of a view transformation in the context of Re-
Web is to re-structure a given set of types in order to cre-
ate a view schema modeling the desired schema of a web
site. A SERF tool-set within the Re-Web system provides
the means of doing view transformations by combining a
query language with a standard set of view and schema
evolution primitives to produce other more complex view
transformations. We will detail the procedure of how SERF
accomplishes the view schema transformations in section 4
and then walk through a case study in section 6.

Advantages of the Re-Web approach. The Re-Web system
offers significant advantages to its users both in terms of
ease of use as well as in terms of enriched capabilities.
Re-Web brings to its users:

• OODB-based web generation: Web semantics allow a
user to interchange between the XML representation and
the ODMG object model. Data in the OODB can be
automatically translated to web pages using Re-Web.

• Advanced restructuring facilities: Using SERF [Clay-
pool et al. 1998a], web administrators can manipulate
and re-structure base classes stored in the OODB and
thus easily generate the desired structure of web pages.

• Support for multiple web views: Given that web pages
are generated from the data in the OODB, we can also
utilize the power of the underlying database to define
multiple views over the same data. Thus, a web admin-
istrator can easily provide diversely different web page
structures over the same data.

• Ease of update propagation: While not explicitly ad-
dressed in this paper, one of the significant advantages
of the Re-Web approach is the exploitation of DBMS
technology, such as query optimization or view mainte-
nance under updates. The views defined for obtaining
the desired web pages are defined in the database. The
OODB system is aware of these and hence the propa-
gation of updates to the different web pages is reduced



98 L. Chen et al. / The Re-Web approach for web restructuring

to the problem of updating a view [Gluche et al. 1997;
Keller 1982; Scholl et al. 1991] and then re-generating
the web pages.

• Re-usable transformation templates: SERF allows the
storage of transformations in their generalized form
(templates) in a template library. For a common set
of re-structuring transformations, the web administrators
can re-use previously written transformation templates
and apply them to the appropriate classes.

• Flexible specification of transformation templates: If a
desired transformation is not found in an existing tem-
plate library, Re-Web via SERF allows the users to spec-
ify their own transformation templates using OQL and
the schema evolution primitives. These newly defined
transformation templates can be added to the template
library for later re-use.

3. Mappings between web semantics representations

In section 2 we have presented the three-tiered architec-
ture, i.e., the ODMG object model [Cattell et al. 1997], the
XML model [Bray et al. 1998] and the HTML represen-
tation of the web pages. Here we provide in table 1 the
details for a bottom-up vertical mapping from the ODMG
object model to the HTML representation of each element.
For the purpose of the Re-Web framework we limit our
discussion of the ODMG Object Model to Java’s binding
of the object model and define the web semantics for the
same as our tool is built on top of the Java-based OODB,
PSE [O’Brien 1997]. The web semantics presented here can
be easily extended to accommodate other ODMG modeling
constructs as needed.

• Types. The basic category for an ODMG compliant
database is types (also referred to as classes). A type
definition gives the structure and the behavior specifica-
tion for its instances, it may be rather complex to have
hierarchically nested subtypes and attributes. It is cor-
respondingly mapped to a Data Type Definition (DTD)
in the XML context. DTD provides a standarized means
for declaratively specifying the types of an XML docu-
ment, such as what elements an element can contain, the
way they can be composed and the typings and default
values of their attributes, etc. The XML DTD in turn
provides the web-page-structure for a set of HTML
pages, underneath which their implicit structures share

the organizational similarity reflected by the web-page-
structure.

• Object. The two basic modeling primitives for an
ODMG compliant database are objects and literals (or
immutable objects), both of which are categorized by
their types. An object in the OODB system is mapped
to an XML document compliant with its DTD. In the
Re-Web prototype system, we assign a system identi-
fier (i.e., Uniform Resource Identifier URI) for each
generated XML file, thus it functions correspondingly
like a unique object identifier (OID) of an object in
the database. By combining an XML document with a
stylesheet template and passing them through a transfor-
mation engine, we can obtain a browsable HTML web
page with a URL as its identifier.

• Literal. Generally, a literal in ODMG is classified by
its structural complexity into one of these three types:
atomic, struct or collection. In XML, it corresponds
to the text information that represented as AttValue,
CDATA or PCDATA. An atomic literal in the data-
base can be mapped either to an AttValue in XML if it
paired with an attribute, or to a CDATA if it is enclosed
by an element. PCDATA can be used in the XML-tier
as the correspondences of struct or collection literals at
the database level. These text constructs in XML are
represented as the fixed web items that a HTML web
page is composed of.

• Extent of Type. The extent of a type in the ODMG ob-
ject model reflects the collection of objects that share the
same structure, which correspondingly map to a set of
XML documents that conform to the same DTD. In the
third-tier, i.e., HTML, this corresponds to a collection
of web pages that have the same web-page-structure.
Thus the number of objects in the extent of a type is
equal to the number of web pages that are generated.

• Relationship. There commonly exists a certain relation-
ship between types in an ODMG compliant database.
This relationship corresponds in the XML-tier to the el-
ement IDREF definition. Though an IDREF in a DTD
does not explicitly declare its referring element type,
whether the reference is meaningful can be checked for
a particular XML document when its IDREF is instan-
tiated. In a HTML web page, the IDREF is mapped to
a HTML link via which the navigation to another web
page is achieved.

Table 1
Mapping between ODMG, XML and web semantics.

ODMG primitives XML constructs Web semantics

Type DTD Web-page-structure
Object XML document Web page
OID URI URL
Literal AttValue/CDATA/PCDATA Web-item
Extent of a type XML documents of a DTD Web pages of a web-page-structure
Relationship IDREF HTML link
Schema Set of DTDs Web-site-structure



L. Chen et al. / The Re-Web approach for web restructuring 99

• Schema. An ODMG schema is composed of a set
of object and literal type definitions and a class hierar-
chy. A database schema hence can be represented in
the XML-tier as a DTD hierarchy, i.e., a set of DTDs
with element references. It then can be used to model
a web site by defining its structure, called its web-site-
structure. Given an ODMG schema corresponds to a
set of type definitions, a DTD hierarchy corresponds to
a set of XML document type definitions and a web-site-
structure for a given web site corresponds to a set of
web-page-structures.

Using the above web semantics mapping, a set of hier-
archically inter-linked web pages can be finally generated
from a database associated with an ODMG schema. How-
ever, not all concepts of ODMG have a one to one map-

ping. For example, the inheritance defined in ODMG has
no parallel in the XML and HTML tiers. Also, there is
no obvious correspondence in DTD with respect to the be-
havior specification of a type definition in the ODMG data
model.

We now show this mapping from a data model via the
XML constructs to the web site and the HTML pages by
the example shown in figure 2.

Assume we have an original schema modeling a de-
partment, which consists of two types of classes: Course
and Professor. We thus first map each of the classes (for
example, the Course class) in the database schema into
one XML DTD (Course DTD) and further an implicit web-
page-structure for web pages of this type. We observe from
figure 2 that there are object instances obj4, obj5 of type

Figure 2. The web object representations in three tiers.



100 L. Chen et al. / The Re-Web approach for web restructuring

Course and obj1, obj2 of type Professor. For each database
object (for example, the obj4), we represent its content as
well as the associated type information in the middle-tier
using XML data and the enclosing tag, respectively. It is
noteworthy that there exists a bi-directional relationship be-
tween the Course class and the Professor. Course class has
a collection property taughtBy that refers to the Professor
class, while the latter offers courses that must be instances
of the Course class. This referential constraints are re-
flected by the inter-linked data objects of two types in the
database, the id-referred XML documents in the XML-tier
and in the HTML-tier the traversable html links between
web pages. For example, a Course object obj4 is taughtBy
both of the professors, obj1 and obj2. The XML docu-
ment representative of obj4 thus has an element taughtBy
with an IDREF referring to two other XML documents of
Professor type. Correspondingly, the Advanced Databases
Course page has a list of two URLs pointing to the respec-
tive Professor pages.

4. Re-structuring the web: The Re-Web
transformation

The mapping from the ODMG object model to web ob-
jects as described in section 3 allows the automatic genera-
tion of web pages from the database by translating the data-
base semantics of types and objects to the web semantics of
web site schemas and web-pages, respectively. However,
this allows us to only produce exactly one view schema and
defines one structure for the web pages. In order to support
multiple web site schemas as well as web pages, we define
view schemas over the base classes in the database. This
set of diverse view schemas once generated can then be
mapped to XML and ultimately down to HTML to produce
diverse web sites over the same data. In this section, we
now show how we can flexibly re-structure the underlying
database to support and generate the desired set of web site
schemas and web pages.

A web site may simply need to be adjusted requiring
the corresponding schema to be slightly modified perhaps
by the addition of an attribute or the deletion of one. We
propose the use of schema evolution primitives for in-place
manipulation of the schema. Table 2 presents the set of

schema evolution primitives that we have defined for the
ODMG object model as part of our work.

In summary, a view transformation in our framework
lets the user combine an object transformation language
with a standard set of schema evolution primitives and view
primitives to produce arbitrarily complex transformations.
Moreover, these transformations are generalized and stored
in a standard library for later re-use. Transformations in
this general form are called templates in the framework
and the library, the template library. The Re-Web frame-
work through this powerful re-structuring mechanism suc-
ceeds in giving the user the flexibility to define web-site
structures of their choice, the extensibility of defining new
complex structures through new view transformations, and
the re-usability of these structures through the notion of
view transformation templates.

4.1. Re-Web view transformation

The goal of a view transformation in the context of Re-
Web is to re-structure a given set of types in order to create
a view schema modeling the desired schema of a web site.

Figure 3 is an alternative view schema and web site
view for the example schema given in figure 2. In figure 2,
the structure of the web site reflects the structure of the
given database schema. However, this web site schema
may not meet the user’s requirements and the user may
instead desire a web view of the same data as depicted
in figure 3. The generation of the web view depicted in
figure 3 from the database schema given in figure 2 first
necessitates a re-structuring of the underlying database to
correctly reflect the schema of the web site. We use a Re-
Web view transformation to obtain the required structure of
classes in a re-usable manner.

We illustrate the steps involved in a view transforma-
tion using this example. The example transformation we
work with is convert-to-literal given in figure 4 that is
defined as the replacement of a collection of referenced
types with a collection of structures with the same defini-
tion. For example, to get from the schema in figure 2 to
the schema in figure 3, the convert-to-literal transforma-
tion needs to be applied to the attribute taughtBy de-
fined for the class Course. This converts the collection
of objects of type Professor to a collection of literals
of Struct-Professor structure type. Figure 4 shows

Table 2
Taxonomy of schema evolution primitives.

Term Description

add-class(c, C) Adds new class c to C in the schema S
delete-class(c) Deletes class c from C in the schema S if C(t) = ∅
change-class-name(c, x) Changes the class name from c to x
add-ISA-edge(cx , cy) Adds an inheritance edge from cx to cy
delete-ISA-edge(cx , cy) Deletes the inheritance edge from cx to cy
add-attribute(cx , ax, t, d) Add attribute ax of type t and default value d to class cx
delete-attribute(cx , ax) Deletes the attribute ax from the class cx
change-attribute-name(cx , ax, ay) Changes the name of the attribute ax in the class cx to ay
change-attribute-domain(cx , ax , dx, dy) Changes the domain of the attribute ax from dx to dy in the class cx



L. Chen et al. / The Re-Web approach for web restructuring 101

Figure 3. The database schema and the matching web page generated from them.

Figure 4. Convert-to-literal transformation.

the convert-to-literal view transformation expressed in our
framework using view creation and definition, OQL state-
ments, schema modification primitives, and system-defined
update methods. In this example, the object.set() methods
are the system-provided methods.

• Step B: define the views. In OQL, named queries are
treated as a view mechanism. Thus, OQL can be used to
define a view based on classes that exist in the database.
This view definition gives not only the definition of a
view but also allows the selection of the extent of the
view from the database. Step B of figure 4 shows the
definition of a view over the Course base class that
structurally maintains all the properties of the base class
Course but defines the extent of the view to only have
the Computer Science courses.

Figure 5. Convert-to-literal template.

• Step C: create the views. View support by OODB sys-
tems is often offered in terms of some view primitives
to create view classes and named view structures with
a query language providing the definition. Step C in
figure 4 shows the primitive for creating the view class
CourseView from the base class Course using the
definition ViewDef.

• Step D: change the schema. We require that all struc-
tural changes, i.e., changes to the base schema as well
as the view schema, are exclusively made through the
schema evolution primitives. This helps us guarantee
the schema consistency after a transformation [Claypool
et al. 1998b].



102 L. Chen et al. / The Re-Web approach for web restructuring

• Step E: query the objects. As a preliminary to
performing object transformations, we need to obtain
the handle for objects involved in the transformation
process. This may be objects from which we copy ob-
ject values (e.g., Professor objects in Step E) or ob-
jects that are modified (e.g., CourseView objects in
Step F).

• Step F: change the objects. Although not an essential
for all view transformation (for example, delete-attribute
does not require this), the next step to any view transfor-
mation logically is the transformation of the objects to
conform to the new view schema. Through Step E, we
already have a handle to the affected object set. Step F
in figure 4 shows how a query language like OQL and
system-defined update methods, like obj.set(. . . ), can be
used to perform object transformations.

In general, a view transformation in our Re-Web frame-
work uses a query language to query over the schema repos-
itory, i.e., the metadata and the application objects, as in
Steps A and E. The transformation also uses the query lan-
guage for views, i.e., to define new views, and due to lack of
full view support in OQL to invoke operations to store these
views in the database as shown in Step B and Step C. The
schema evolution primitives for in-place structural changes
and the system-defined functions for updating the objects
can also be invoked from OQL, as in Steps D and F.

4.2. Re-Web view transformation templates

A Re-Web transformation as given in figure 4 allows
a user to flexibly define view transformations. However,
they are not re-usable across different schemas, for example
the given transformation works for only the Professor
and the Course class. For this reason, Re-Web adopts
from SERF [Claypool et al. 1998a] the notion of templates.
A template is an arbitrarily complex transformation that has
been generalized via the use of meta-data and has a name
and a set of parameters.

Thus, the key step for converting a transformation to
a template is to generalize it such that it no longer per-
tains to a specific set of classes. We do this in two steps.
First we introduce the notion of parameters. Using these
parameters as variables, we re-write the transformation to
obtain necessary information from the Schema Repository
as well as to apply schema changes based on the input pa-
rameters. For example, in figure 4 we are aware that the
class Professor is being converted to a structure (see
Step C). However, to make this transformation general, we
now simply pass in as a parameter the attribute taughtBy
and use the Schema Repository to discover the actual class
that needs to be converted to a structure. This is shown as
Step A in the template given in figure 5.

By parameterizing the variables involved in a transfor-
mation such as the input and the output classes, e.g., the
Course and Professor classes in our example, and
their properties, e.g., the taughtBy attribute in our ex-
ample, and assigning a name to the transformation e.g.,

convert-to-literal in our example, a transformation becomes
a generalized re-usable transformation. This template is
applicable to any application schema that meets its require-
ments. For example, the convert-to-literal template requires
a relationship to exist between two classes. Thus, this tem-
plate is applicable to any two classes in any given schema
as long as they have a relationship between them. That is,
it is not tied to one specific application schema, figure 5
shows the generalized convert-to-literal transformation of
figure 4 as a template. Vice versa, the convert-to-literal
template shown in figure 5 can be instantiated with the vari-
ables Course and taughtBy and results in the Re-Web
transformation depicted in figure 4. A Re-Web template is
thus a named sequence of OQL statements extended with
parameterization that can be translated down to pure OQL
statements during the process of instantiation.

Templates themselves can be nested and embedded
within each other and can be used to write more power-
ful transformations. For example, in figure 7 we show
an example of a recursive template that applies an in-
place variation of the basic convert-to-literal template,
inline template given in figure 6, iteratively to an at-
tribute that needs to be flattened. Here we assume that
a class inliningClassName needs to be flattened
nestLevel levels down to encapsulate all the attributes
for all the classes that initiate at the attrToFlatten attribute
in the inliningClassName. Attributes that are complex, i.e,
whose domain is a class and thus belongs to metaclass are
flattenable. The nested-convert-to-literal template (see fig-
ure 7) first invokes the inline template to immediately flatten
the class that is referred to by the attrToFlatten. It
then finds all the complex attributes that are now present

Figure 6. The inline template.



L. Chen et al. / The Re-Web approach for web restructuring 103

Figure 7. Nested inline template by re-using basic inline template.

in the new inliningClassName. The process is re-
peated by a recursive call to the nested-convert-to-literal
template until either there are no more complex attributes
or the desired nestedLevel is reached.

In summary, the templates provide users not only with
the advantages achieved by our transformations, i.e, a user
can specify their own semantics for transformations, but
also allows re-usability of these transformations by parame-
terizing them. As demonstrated by the example in figure 7,
templates can be re-used and embedded within templates
and can be applied to any application schema for the gen-
eration of a wide variety of web structures.

5. Re-Web framework

The Re-Web tool suite targets users such as web site
administrators who are faced with the heavy workload of
web site generation, restructuring and maintenance. This
tool greatly facilitates the automatic web site generation in
the sense that a variety of home pages with preferred styles
can be generated all at once to reflect the corresponding
object instances in the underlying database. It also em-
powers users with the flexibility of restructuring their web
site schema by applying SERF transformation templates di-
rectly within the database system.

5.1. System architecture

Figure 8 gives the general architecture of the Re-Web
framework. As further detailed below, the Re-Web frame-
work mainly includes four subsystems: the underlying
OODB system, the SERF schema restructuring system, the
WebGen web view generation system and the GUI sys-
tem. The bottom part is the OODB system consisting of
the components that we expect any underlying OODB sys-
tem to provide. This includes technology to allow uniform
manipulating of both data as well as metadata. The middle
layer contains the SERF system to provide the schema re-
structuring service and the WebGen system for automatic
web site generation. The top part of the figure represents
the Graphical User Interface (GUI) allowing users to access
other three subsystems, i.e., to edit the schema templates
and the stylesheets, and to view the schemas that are stored

Figure 8. Architecture of the Re-Web framework.

Figure 9. Interaction of the different modules in the Re-Web framework.

in the Schema Repository. The left side of the architec-
ture picture shows that front-end users can use browsers to
navigate the web views in HTML pages generated by our
system.

Figure 9 shows how the system modules interact with
each other. To construct or restructure a web site schema,
the first step is to check whether it already exists in the
Schema Repository. If such a schema structure is available,
there is no need to utilize SERF for schema transformation,
otherwise a desired one can be obtained by applying SERF
transformation templates. The next step is to invoke the
WebGen tool for automatic web page generation. An XML
representation of the desired web schema is dumped out



104 L. Chen et al. / The Re-Web approach for web restructuring

and an appropriate stylesheet is picked to generate the cor-
responding web pages.

5.1.1. OODB system modules assumed by the Re-Web
framework
The system components of an OODB that the Re-Web

framework depends upon include:

• Schema Repository and Object Repository. The
Schema Repository module stores and manages meta-
data which defines the schema of a database. It is also
used by the OODB at runtime to guide its access to
the database [Cattell et al. 1997]. OQL can query over
the Schema Repository to gather system information for
use in the transformations. The object instances of an
application schema are stored in the Object Repository,
which in our prototype is PSE – the persistent storage
engine available from Object Design Inc.

• Schema Evolution Manager. The Schema Evolution
Manager provides an interface for the execution of a
set of schema evolution primitives. It interacts with the
schema repository which contains information on each
class and its placement in the class hierarchy. It also
updates the PSE data dictionary so as to keep it in sync
with our Schema Repository. For our implementation,
we have assumed that all additions, deletions and modi-
fications to the schema happen through the interface that
we have provided. The Schema Evolution Manager is
also responsible for the migration of objects from the
existing (old) class definition to the changed class def-
inition, thus keeping them updated and consistent with
the schema change.

• OQL Query Engine. Re-Web requires the OODB sys-
tem to provide a query language capable of expressing a
large set of view definitions and of transforming objects
of one type to another type. For our system, we choose
OQL. Beyond selection, OQL provides some support for
creating, deleting and modifying objects. OQL is also
capable of invoking view primitive and schema evolu-
tion primitives. OQL does all of the above through the
invocation of system-defined update methods.
Although PSE provides a mechanism for querying col-
lection objects, it is very basic (does not have joins) and
does not meet all of our criteria for SERF transforma-
tion support. Thus as part of the implementation effort,
we have implemented an OQL interface for PSE using
Fegaras’s object algebra approach [Fegaras 1997]. The
key functionality of the OQL Query Engine is to parse
and map a given OQL statement to the right PSE system
functions in order to get the required result.

5.2. SERF system

Build upon an OODB system having the assumed com-
ponents, the SERF system provides all of the functionality
for storing, retrieving and executing templates.

• Schema Template Processor. The Schema Template
Processor provides the functionality for the execution
of a template. The template processing begins with the
user supplying the input parameters, then it will do a
type-check to ensure the template interface signature.
If it matches, then a bind-check follows to check the
existence of these actual parameters in the schema on
which they are being applied by accessing the Schema
Repository. The SERF template is instantiated by re-
placing each variable with its bound parameter after
all the checks are completed successfully. The instan-
tiated SERF template now corresponds to pure OQL
statements, i.e., we call it an OQL transformation. The
OQL Query Engine provides an interface for the syntax-
checking, the parsing and the execution of the OQL
transformation.

• Schema Template Library. The SERF templates for
a particular domain or specific purpose can be col-
lected in a SERF Template Library. The SERF system
can install multiple template libraries. A SERF tem-
plate can be stored and retrieved via a complete path
of libraryName.templateName. A customized
template can be dynamically generated and put into the
library. A template object contains the name, descrip-
tion, a set of input parameters, a list of keywords and
the oql source for its SERF template.

5.3. WebGen system

The WebGen system, built over the SERF system, is re-
sponsible for generating the customized web site composed
of pages that are reflecting correspondingly the data objects
stored in the backend OODB system. In detail, the WebGen
system includes the following modules:

• XML Dumper. For the mapping of web semantics
through three tiers: OODB, XML and Web Site (see
table 1), the XML Dumper completes the first stage of
the mapping from database data model to its XML rep-
resentation. By translating a schema and its associated
object instances in an OODB system into a set of DTDs
with their valid XML files, the web site structure is cap-
tured and ready for the generation of actual web pages
by applying a visual metaphor for presentation purpose.
The XML Dumper then conducts the mapping procedure
while walking through all the classes of the schema hi-
erarchy and their object collections in the Schema and
Object Repository, respectively. For each class, the XML
Dumper translates the classname into the RootElement
of an XML DTD, and maps the flat properties into leaf
elements, nesting properties into hierarchical elements,
and the references out to other classes (relationships)
into XLinks. This way an XML DTD is produced.
The same mapping rule can be applied on the object
instances of the schema to generate a set of XML data
files that conform to the DTD. The set of XML DTDs
explicitly captures the web schema.



L. Chen et al. / The Re-Web approach for web restructuring 105

• Web View Manager. After a database schema and its
associated data objects have been represented in XML
files by the XML Dumper, we can then choose from a
diverse stylesheet library an appropriate stylesheet, parse
it and apply the resultant stylesheet DOM tree to those
XML DOM trees to achieve the desired effect for the
web pages. In our WebGen system, the Web View Man-
ager is an LotusXSL [IBM Alphaworks 1998] processor,
which basically is a query/match engine. It transforms a
source tree of nodes, according to instructions and tem-
plates specified by a stylesheet tree, into a result tree,
which in our case is the browsable HTML page.

• XSL Stylesheet Library. XML, as the middle layer rep-
resentation for a web view, facilitates the interchange-
ability between the data within the databases and the
data presented on the Internet. More importantly, it
separates the content from its presentation so to enable
different authoring, editing, browsing and viewing tools
and allows for the packaging of “document types” that
can be shared and reused. In the WebGen system, we
select the XML Stylesheet Language (XSL) to spec-
ify the association of a presentation style with XML
information. XSL consists of a location mechanism
(context, selector, pattern, query) capable of address-
ing portions of the XML structure and an action spec-
ification performed on the located content. The XSL
stylesheets can be classified into libraries according to
the presentation requirements as well as the knowledge
about the DTD of the XML data on which it is ap-
plied.

5.4. Re-Web graphical user interface

The GUI generally provides a web administrator with
access to the other subsystems, such as editing the schema
templates and the stylesheets. It also allows users to browse
the results and to view the schemas that are stored in the
Schema Repository.

• Template Editor. To construct a schema modeling a
desired web site structure, the web administrator can
either choose a suitable view template from the template
library, use the Template Editor (see figure 10) to write
a re-usable and generalized template, or simply write
an OQL query transformation. The Schema Template
Processor then instantiates and executes a given view
template using the parameters supplied by the user.

• Schema Viewer. The Schema Viewer (see figure 11)
provides the capability to review the composition of
classes and their relationships within a schema, to eval-
uate its appropriateness for the desired web view and to
adjust or re-structure it accordingly.

• Layout Editor. While web site structures represent the
content of web pages and the links between them, we
also want to have a Layout Editor to allow the augmen-
tation of the stylesheet library. The goal here is to make

Figure 10. The Template Editor.

Figure 11. The Schema Viewer.

stylesheets reused and applicable to data for multiple
output formats.

6. Case study

In this section, we will walk through an example to il-
lustrate the working of our Re-Web system. All displayed
web pages have been generated automatically by our Re-
Web system.

First, assume the web administrator designs the web site
structure of a university’s computer science department.
The index Home page provides three categories of infor-
mation: Faculties, Courses and ClassRooms, each of which
has a link referring to its respective list. The FacultyList
index page, under the Faculty sub-directory relative to the
Home page, lists all the faculties of this department. Each
faculty has a link to a separate page named by the name
of the faculty (for example, Elke could be the name for
her homepage), the personal information, as well as a link
to each course she teaches. Vice versa, each Course page



106 L. Chen et al. / The Re-Web approach for web restructuring

Figure 12. The ODMG data model and corresponding XML files for the original web site.

Figure 13. The generated example home pages of original web site.

(that the department provides) has Faculty links to all the
instructors who are offering the course. With this design
of homepages within the department’s web site, the web
administrator basically captures this web semantics by de-
signing the original OODB schema as depicted in figure 12.
The desired web pages can be generated accordingly (see
the lower part of figure 12).

In figure 12, we assume there are objects that popu-
late the database already. Assume there is a Course object
with the courseNum “CS561”, two faculties are offering
this course, one of them is Elke A. Rundensteiner, whose
personal information is included in a Faculty object. The
course offered by her is held in Fuller Lab 320 every Thurs-
day night from 5:30 to 8:20 pm. The classroom location
information is encapsulated in a ClassRoom object. Thus
there exists a bi-directional link between the Faculty ob-
ject and the Course object, modeling a (zero to multiple)
relationship. Also there is a one-way relationship from
the Course object to the ClassRoom object. Each of these
three objects has an associated type in the OODB and the
relationships among them follow the OODB schema de-
sign.

In the underlying database, all objects of each class are
maintained in the class extent and all classes are registered
by the schema dictionary. Thus by scanning the schema
dictionary, a set of XML files are generated by the Re-

Web system. Each of them corresponds to one object from
the OODB. We show some of the generated XML files
in figure 12. They are CS561.xml under the new created
subdirectory of Course, Elke.xml under the subdirectory of
Faculty and CS561Loc.xml under the subdirectory of Class-
Room. The XLinks within the XML files capture the rela-
tionships between the objects and simulate the navigation
mechanism.

Lastly, based on these XML files, the corresponding
home pages are then generated using the LotusXSL proces-
sor [IBM Alphaworks 1998] provided by IBM (see fig-
ure 13). On the top of each page, there is a navigation bar
indicating the categories of home pages. Each category has
an index page that contains the list of pages that falls into
this category. For example, by clicking on the Faculty bar,
a Faculty List index page is requested containing all links
to the faculty members.

However, this web site schema may not meet the user’s
requirements and the user may instead desire a web view
of the same data but with information in a more com-
pact format. For example, by checking a faculty’s home
page, the user would like to be able to know about not
only the personal information of this faculty, but also all
the courses she is teaching as well as the location of that
course within the same page. Thus the web site needs to
be re-structured. The supporting database schema should



L. Chen et al. / The Re-Web approach for web restructuring 107

Figure 14. The ODMG data model and corresponding XML files for
desired web site.

Figure 15. The generated example home pages of desired web site.

be as depicted in the left part of figure 14. After per-
forming the desired view transformation using the chain
nesting transformation depicted in figure 7 with the help
of the SERF subsystem, the underlying database is re-
structured to correctly reflect the desired structure of the
web site.

Again, using the WebGen subsystem, the restructured
database schema and its transformed objects are dumped
out and represented in XML format (as shown at the right
part of figure 14). The screendump of a resulting example
homepage is shown in figure 15. The previous home page
for the faculty named “Elke” has been transformed and
now directly embeds all the information collected along
the chain from itself to its Course links and from there to
their respective Classroom links.

The power of Re-Web lies in its capabilities to do com-
plex transformations, i.e., those defined in the template li-
brary or user-defined transformations. The example pre-
sented above is one example that shows the ease with which
web pages can be re-structured using Re-Web. The above
example however, requires that a link or a relationship be-

Figure 16. The merge-union template: the structure of the new class is
given by a union of the properties of the two source classes.

tween the two web pages (or classes) must exist for its
successful execution. However, a user may wish to com-
bine information from two disjoint web pages (no link) and
present it in one web page.

Figure 16 shows a template which can combine two dis-
joint classes and produces a view that represents a union
of the two classes. Figure 17 shows a template which can
combine two disjoint classes and produces a view that rep-
resents a difference of the properties of the two classes.
This view can now be generated by WebGen to produce
a composite web page between two otherwise disjoint web
pages. In [Claypool et al. 1998b] we provide a detailed case
study of several templates to to show the variety of possi-
bilities for re-structuring web information using Re-Web.



108 L. Chen et al. / The Re-Web approach for web restructuring

Figure 17. The merge-difference template: the structure of the new class
is given by the difference of the properties of the two source classes.

7. Related work

Numerous approaches have been proposed in the liter-
ature that try to model semi-structured data such as web
pages. They typically invent either some modeling lan-
guage from scratch or they design some extensions spe-
cific to web constructs such as URL, links, ordered lists,
etc., to existing languages to enable querying of the web.
WebOQL [Arocena and Mendelzon 1998] is one such ex-
ample with its data model being based on an extended OEM
model, namely, hypertrees, with abstractions for references,
collections, nesting and ordering to model web structures.
WebOQL focuses on schema-free data modeling, thus sup-
porting to capture web site structures and the restructuring
of sites while querying the web. Our work instead focuses
on flexible and re-usable mechanisms for web site construc-
tion and management by exploiting a database-centric ap-
proach. In particular, we generalize standard schema trans-
formations and map the underlying restructured schema and
data to the alternative web site structure and home pages,
instead of generating web pages on the fly using queries
over the web.

Our Re-Web approach has been inspired by web site re-
structuring systems like Araneus [Atzeni et al. 1997] and
Strudel [Fernandez et al. 1997b]. Similar to them, we also
exploit the knowledge of a web site’s structure for defin-
ing alternative views over its content. Araneus’s approach
is highly-typed: pages in the web site must be classified
and formally described before they can be manipulated.
Although the Araneus Data Model (ADM) describes page
schemes in a manner similar to ours, they utilize relational
database technology as back-end data repository. The rela-
tional model chosen for the intermediate repository is not
the most natural model for capturing the complexity of the
web page structures being modeled and thus requires a step
of indirection for data flows in both directions, i.e., from
and to the web. In Re-Web, we thus advocate the use of ob-
ject data models and particular the ODMG object model as
intermediate modeling paradigm. Hence, the hyper-graph
structure of a web site can be modeled by simply associat-
ing web semantics with the standard ODMG object model.

To summarize, we now give a comparison between our
Re-Web approach with other systems from the perspectives
as in table 3.

Table 3
A comparison between related systems.

Strudel WebOQL Araneus Re-Web

Data source Semi-structured data Semi-structured data Data in RDB Data in OODB
Data model OEM Extended OEM Relational model ODMG Model
Query Graph traversal Graph traversal Projection & OQL

selection & join
Restructure Query & restructure Query & restructure Page schema define SERF template

& render page language
Render page Apply HTML No separate render Apply style sheet Dump DB to XML

template phase & apply XSL



L. Chen et al. / The Re-Web approach for web restructuring 109

8. Conclusions

In this paper we have presented a database-centric ap-
proach, called Re-Web, for flexible web site generation,
restructuring and maintenance. A large class of web views
can be supported using this Re-Web approach. The DBMS
in Re-Web, having full knowledge of the layout structure
of web views defined over the database, can thus bring
standard database techniques to bear for efficiently main-
taining web views. The specification of complex, possibly
deeply nested OQL queries needed to specify some trans-
formations to map from one view schema to another one is
however not trivial. To address this issue and thus ease the
process of web site specification and construction, we now
propose the notion of generic web view transformations
that can be encapsulated into re-usable templates. Gener-
ality and re-usability of templates is achieved due to the
use of named, typed transformations and the query-based
access to the system dictionary, allowing the transformation
to both inquire as well as manipulate classes at the schema
level at run time.

Our approach is firmly grounded on standard OO mod-
eling and particular the ODMG object model, allowing us
on the one hand to both take full advantage of mature data-
base techniques that are likely to be cost-efficient as well
as to share new techniques we design to be immediately
transferable to other systems that are based on ODMG. We
demonstrate in this paper that these generic web view trans-
formations, if collected in a template transformation library,
have the potential to represent valuable resource for simpli-
fying the web generation and restructuring process. To the
best of our knowledge, Re-Web is the first web site man-
agement project focusing on the issue of re-usable view
generation templates.

References

Arocena, G. and A. Mendelzon (1998), “WebOQL: Restructuring Doc-
uments, Databases, and Webs,” In IEEE Int. Conf. on Data Eng.,
pp. 24–33.

Atzeni, P., G. Mecca, and P. Merialdo (1997), “To Weave the Web,” In
Int. Conference on Very Large Data Bases, pp. 206–215.

Atzeni, P., G. Mecca, and P. Merialdo (1998), “Design and Maintenance
of Data Intensive Web Sites,” In Proceedings of the 6th International

Conference on Extending Database Technology (EDBT’98), Valencia,
Spain, pp. 436–450.

Bray, T., J. Paoli, and C.M. Sperberg-McQueen (1998), “Extensible
Markup Language (XML) 1.0,” http://www.w3.org/TR/REC-xml.

Cattell, R.G.G. et al. (1997), The Object Database Standard: ODMG 2.0,
Morgan Kaufmann, San Mateo, CA.

Chen, L. and E.A. Rundensteiner (2000), “Aggregate Path Index for In-
cremetnal Web View Maintenance,” In The 2nd Int. Workshop on Ad-
vanced Issues of E-Commerce and Web-based Information Systems,
San Jose, to appear.

Clark, J. (1998), “Jade from James Clark,” http://www.jclark.com/jade/.
Claypool, K.T., J. Jin, and E.A. Rundensteiner (1998a), “SERF: Schema

Evolution through an Extensible, Re-usable and Flexible Framework,”
In Int. Conf. on Information and Knowledge Management, pp. 314–
321.

Claypool, K.T., J. Jin, and E.A. Rundensteiner (1998b), “SERF:Schema
Evolution through an Extensible, Re-usable and Flexible Framework,”
Technical Report WPI-CS-TR-98-9, Worcester Polytechnic Institute.

Claypool, K.T., E.A. Rundensteiner, L. Chen, and B. Kothari (1998c),
“Re-usable ODMG-based Templates for Web View Generation and
Restructuring,” In WIDM’98.

Cruz, I.F. and W.T. Lucas (1997), “Delaunay: a Visual Framework for
Multimedia Presentation,” In IEEE Symposium on Visual Languages
(VL ’97).

Fegaras, L. (1997), “Optimizing Large OODB Queries,” In Int. Conference
on Deductive and Object-Oriented Databases, pp. 421–422.

Fernandez, M., D. Florescu, J. Kang, A. Levy, and D. Suciu (1997a),
“System Demonstration – Strudel: A Web-site Management System,”
In ACM SIGMOD Conference on Management of Data, pp. 549–552.

Fernandez, M., D. Florescu, A. Levy, and D. Suciu (1997b), “A Query
Language for a Web-Site Management System,” SIGMOD 26, 3, 4–11.

Gluche, D., T. Grust, C. Mainberger, and M. Scholl (1997), “Incremen-
tal Updates for Materialized OQL Views,” In Proceedings of the 5th
DOOD Conference, pp. 52–66.

IBM Alphaworks (1998), “An Experimental Implementation of the Con-
struction Rules section of the XSL,”
http://www.alphaworks.ibm.com/tech/LotusXSL.

Keller, A. (1982), “Updates to Relational Database Through Views In-
volving Joins,” In Scheuermann.

Microsoft Inc. (1998), “XSL support in IE4,”
http://www.microsoft.com/xml/xsl/.

O’Brien, P. (1997), “Making Java Objects Persistent,” Java Report 1, 1,
49–60.

Rundensteiner, E., K. Claypool, and L. Chen (2000), “SERFing the Web:
A Comprehensive Approach for Web Site Management,” In Demo
Session Proceedings of SIGMOD’00.

Scholl, M.H., C. Laasch, and M. Tresch (1991), “Updatable Views in
Object-oriented Databases,” In Proceedings of the 2nd DOOD Con-
ference, pp. 189–207.

Thompson, H. (1998), “XSLJ from Henry Thompson,”
http://www.ltg.ed.ac.uk/∼ht/xslj.html.


