Debugging Schema Mappings with Routes-

Laura Chiticariu Wang-Chiew Tan
UC Santa Cruz UC Santa Cruz
laura@cs.ucsc.edu wctan@cs.ucsc.edu
ABSTRACT a language that is based on tgds and egds for specifying (or pro-

A schema mapping is a high-level declarative specification of the 9ramming) schema mappings has several advantages over “lower-

relationship between two schemas; it specifies how data structured/€V€!” 1anguages, such as XSLT scripts or Java programs [14, 19],
under one schema, called the source schema, is to be converted! that it is declarative and it has been widely used in the formal

into data structured under a possibly different schema, called theStUdy of the semantlgs of data exchangg and data integration. In-
target schema. Schema mappings are fundamental components foqe_ed' thﬁ use of a h|gher-lev_el_|declara;]tlve IaTgL;age folr program-
both data exchange and data integration. To date, a language fofiNd Schema mappings is similar to the goal of model manage-

specifying (or programming) schema mappings exists. However, ment [4, 1‘5]' Ofrf1e oLthe”goqu in model mana.gerlnenthi.s rt]o rcleducle
developmental support for programming schema mappings is still Programming effort by allowing a user to manipulate higher-leve

lacking. In particular, a tool fodebuggingschema mappings has abstractions, called mod_els and mappings between models. In this
not yet been developed. In this paper, we propose to build a debug-case’ models and mappings between models are schemas and map-

ger for understanding and exploring schema mappings. We presemOings between schemas. A recent example of a data exchange

a primary feature of our debugger, calledites that describes the zystlem Fhatl allows atL)Jserdto programda scdhe.mallmapping using a
relationship between source and target data with the schema mapdeclarative language based on tgds and egds is Clio [11]. However,

ping. We present two algorithms for computing all routes or one d€velopmental support for programming schema mappings in this

route for selected target data. Both algorithms execute in polyno- language is stil '?‘C"‘“g- In particu_lar, to the best of our knowledge,
mial time in the size of the input. In computing all routes, our a tool fordebuggingschema mappings has not yet been developed.

algorithm produces a concise representation that factors commonft 1S for_the same motivation as_developing a debugger for a pro-
steps in the routes. Furthermore, everinimal route for the se- gramming language that we wish to develop a debugger for the
lected data can, essentially, be found in this representation. Ourlangu?]ge of schema mappings. . f f deb

second algorithm is able to produce one route fast, if there is one, In this paper, we present a primary feature of our debugger,

and alternative routes as needed. We demonstrate the feasibility OTcaIIed_routes that aclilows_?) usr?r to lex'plori_an%understand a sch%ma
our route algorithms through a set of experimental results on both MaPPINg. Routes describe the relationships between source and tar-
synthetic and real datasets get data with the schema mapping. A user is able to select target

(or source) data and our algorithms are able to compute all routes
or one route for the selected data. Our algorithms are based on the
1. INTRODUCTION formalism of tgds and egds for specifying schema mappings and
A schema mapping is a high-level declarative specification of the we have implemented these algorithms on top of Clio, with Clio’s
relationship between two schemas; it specifies how data structuredianguage for programming schema mappings. We emphasize that
under one schema, called the source schema, is to be converted inteven though our implementation is built around Clio’s language for
data structured under a possibly different schema, called the targetschema mappings, it is not specific to the execution engine of Clio.
schema. Schema mappings are fundamental components for bothn fact, our implementation requirem changes to the underlying
data exchange and data integration [12, 13]. A widely used for- execution engine of Clio. Hence, we believe that the algorithms
malism for specifying relational-to-relational schema mappings is we have developed in this paper can be easily adapted for other
that oftuple generating dependencies (tgdspequality generat- data exchange systems based on a similar formalism. Our debugger
ing dependencies (egdsfln the terminology of data integration, can also be used to understand the specification of a data integra-
tgds are equivalent tglobal-and-local-as-vievassertions.) Using tion system: In this case, we materialize (test) data under the target
“ Supported in part by NSF CAREER Award 11S-0347065 and NSF Schema (often called thgiobal scheman the terminology of data
grant 11S-0430994. |ntegrat|on) for the purpose of depugglng the schema mapping.
Itis also worth mentioning that in Clio, schema mappings are of-
ten not programmed directly by the user but, rather, they are gener-
Permission to copy without fee all or part of this material mged provided ated from the result of matching the source and target schemas (i.e.,
that the copies are not made or distributed for direct commieadimntage, schema matching). However, it is often the case that the generated
the VLDB copyright notice and the title of the publicatiortits date appear, schema mapping needs to be further refined before it accurately re-
and notice is given that copying is by permission of the VerygeaData flects the user’s intention. Hence, even though schema mappings
Base Endowment. To copy otherwise, or to republish, to posteoers are not usually programmed directly in Clio, there is still a need for

ngl’igﬁg'f;\”glﬁe to lists, requires a fee and/or speciatfssion from the a debugger that would allow the user to understand the generated

VLDB ‘06, September 12-15, 2006, Seoul, Korea. schema mapping.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

79

MANHATTAN CREDIT EFARGO FINANCE SOURCE INSTANCE |
Cards: m, Accounts: Cards
cardNo e accNo cardNo limit ssn__name maidenName salary location
limit o limit s4: 6689 15K 434 J.Long Smith 50K Seattle
ssn e accHolder *———
name . SupplementaryCards EBAccounts
f e \Clients: my Ms accNo ssn_name _address bankNo ssn name income address
1 salary $e SSN S,:6689 234 A.Long California s3: 1001 234 A.Long 30K California
location . % e Name S4: 4341 153 C.Don 900K New York
* maidenName i
SupplementaryCards: e income SOLUTION J %dmmn CustSSN
accNo . »e address Accounts s 2252 2K 234
ssn . m, accNo limit _accHolder 55: 5539 20K 153
name . t: 6689 15K 434 6
address . N, 2K 234
t3: 2252 2K 234
Source-to-target dependencies, % t;: 5539 40K 153
m,: Cards(cn,l,s,n,m,sal,loc) —
FARGO BANK JA (Accounts(cn,l,s) A Clients(s,m,m,sal,A)) Clients
FBAccounts: ssn__name maidenName income _address
bankNo m,: SupplementaryCards(an,s,n,a) — ts: 434 Smith Smith 50K A
ssn 3M 3 Clients(s,n,M,l,a) ts: 234 A.long M, I California
name t;z 153 A.long M, 30K California
income m,: FBAccounts(bn,s,n,i,a) A CreditCards(cn,cl,cs) — tg: 234 A.long M, 30K California
£ address 3M (Accounts(cn,cl,cs) A Clients(cs,n,M,i,a)) ty: 153 C.Don M, 900K New York
2 tip: 234 C.Don Mg 900K New York
Credgﬁards: Target dependencies, 2;
caraNo m,: Accounts(a,l,s) — 3N 3M 31 3A Clients(s,N,M,I,A ; . f :
creditLimit m;‘: c,iems(sﬁ,m,i),a) S anaL ACCOUmS(N(’L’S)) Figure 2: A source instancel and a solution J for I.
CustSSN mg: Accounts(a,l,s) A Accounts(a’,l',s) — | =1

data exchange system Clio [11, 18].

Schema MappingThe specification of a data exchange is given by
aschema mapping1 = (S, T, X.:, X¢) [12], whereS is a source
schemaT is a target schema,; is a set ofsource-to-target de-

Contributions We propose to build a debugger for understanding Pendencies (s-t dependenciesl, is a set oftarget dependen-
and exploring schema mappings. A description of some of the fea- €1€S In the rel_atlqnal-t_o-_relatlonal data exchar_lge framework_[8],
tures in this prototype debugger can be found in [2]. In this paper, s-t dependencies is a finite setsf tuple gengratlng de.pendenufes.
we make the following contributions. (tgds) and the set_ of ta_rg_et dependencies is _the union _of a finite

« We propose the concept ofautethat we use to drive a user's set oftarget tgdswith a finite set oftarget equality generating de-
understanding of a schema mapping. A route describes the rela-Pendencies (egdsp s-t tgdhas the formvx ¢(x) — Jyy(x,y),
tionship between source and target data with the schema mappingVheré#(x) is a conjunction of atomic formulas ovBrandy (x, y)
Our concept of a route is not tied to any procedural semantics asso-'S & conjunction of atomic formulas ové. A target tgdhas a sim-
ciated with the transformation of data from the source to the target ilar form, except thap(x) is a conjunction of atomic formulas over
according to the schema mapping. T.A t.argeF egds of thg formvx ¢(x) — x1 = x2, wherep(x) is

« We describe an algorithm for constructing a concise represen- & conjunction of atomic formulas ovéF, andz; andz- are vari-
tation of all routes for the selected target data with the following 2PI€s that occur ix. _ _
properties: (1) It runs in polynomial time in the size of the input. __F19ure 1 shows a schema mappifg, whereS consists of rela-
(2) Our representation factors common steps in the routes. (3) Ev-1on schemagCards, SupplementaryCards, FBAccounts, and
eryminimalroute can, essentially, be found in this polynomial-size CreditCards in Manhattan Credit and Fargo Bank. The target
representation, even though there may be exponentially many min_schema_ consists of the relatlor_l scherAasounts and_Cllents in
imal routes. Fargo Finance. The s&l,; consists of three s-t tgds, illustrated as

« We also describe an algorithm that computes one route fast for 77*1: 2 andms (shown in the box). Onlyns is not depicted as
selected target data if there is one, and produces another route a&"TOWs in the figure. The st, consists of two target tgds., and
needed. This algorithm executes in polynomial time in the size of s and a target ege (also shown in the box). For conciseness,
the input. we have omitted the_ universal q_uantlflqrs of the dependencies. In

« The route algorithms we present can be easily adapted to work this example scenario, the goal is to migrate every cardholder and
for selected source (not target) data as well. Our implementation SUPPlementary card holder of Manhattan Credit as a client of Fargo
handles both relational/XML to relational/XML data exchange al- Finance. Also, every credit card holder of Fargo Bank is a client
though we shall only describe our algorithms for the relational-to- ©f Fargo Finance. Intuitivelyn, andm. migrate data from Man-
relational case in this paper. hattan Credit to l_:argo Finance, whites mlgrr_:ltes data from Fargo

« Our experiments report on the feasibility of our algorithms. In Bank to Fargo Finance. For example; projects every tuple (or
particular, they show that computing one route can execute much fact) from theCards relation into two tuples, imccounts and
faster than computing all routes. Hence, even though we can com-Clients relations respectively. The target tgds, andms state
pute all routes, the ability to compute one route fast and exploit that an account witlccHolder value s exists inAccounts if and

the “debugging-time” of the user to generate alternative routes, as Only if a client withssn values exists inClients. Furthermore, the
needed. is valuable target egdmng states that there can only be one credit limit for an

account holder. Although not part of the schema mapping, there is
a constraint, depicted g§ in Figure 1, that states that for every
2. BACKGROUND supplementary card, there must be a sponsoring card iGdhes

We introduce various concepts from the data exchange frame-relation whosecardNo equalsaccNo. There is also a constraint
work [8] that we will use in this paper and we briefly describe the f> from CreditCards to FBAccounts that states that every credit

Figure 1: A relational-to-relational schema mapping.

80

card holder of Fargo Bank must have a bank account. routes; mi.b t1,ts, Alice discovers thatnaidenName of Cards
Solutions and homomorphismsFigure 2 illustrates a source in- has been incorrectly mapped name of Clients. She therefore

stancel, as well as asolutionJ for I under M of Figure 1. We correctsm; to the following tgdm; which (1) adds the missing
say that/ is asolutionfor I underM if J is afinite target instance value correspondence betwdenation of Cards andaddress of
such that(I, J) satisfiesX,; U ;. In other words(I, J) satisfies Clients and (2) retrieves theame of Clients from thename of
the schema mappingyt. The solution/ may contairdabeled nulls Cards:

In Figure 2,N1, M1, ..., Ms, I, and A, are labeled nulls. Distinct

/.
labeled nulls are used to denote possibly different unknown values 1" Cardgcen, , s,m,m, sal, loc) —

in the target instance. Accountsen, L, s) A Clients(s, [n], m, sal, | loc)
Let K and K’ be two instances. We say thiatis ahomomor- In this scenario, our debugger has helped Alice discover an incom-

phism fromK to K', denoted as : K — K, if h maps the plete, as well as an incorrect association between source and target
constants and labeled nulls &f to the constants and labeled nulls schema elements. Ideally, we would also like to be able to simul-

of K" such thath(c) = ¢ for every constant and for every tuple taneously demonstrate how the modificatiomef to m; affects
(or fact) R(t) of K, we have thaR(h(t)) is a tuple ofK". We also tuples inJ. This is one of our future work.
say thath is ahomomorphism from a formula(x) to an instance
K, denoted a% : ¢(x) — K, if h maps the variables af to
constants or labeled nulls iR such that for every relational atom
R(y) that occurs inp(x), we have thaR(h(y)) is a tuple ink.

In general, there are many possible solutionsifanderM. A
universal solutionJ for I under M has the property that it is a
solution and it is the most general in that there is a homomorphism

from J to every solution forf underM. It was shown in [8] that pose Alice could not find anything peculiar with this explanation.

the resuilt okchasingl with X U %3¢ is a universal solution. She now requests to view all routes fqr Our debugger reports
lio Clioi r ta exchan tem devel t IBM o
Clio Clio is a prototype data exchange system developed & only one other route that uses the first tuplé=BAccounts (s3)

Almaden Research Center [11, 18]. The schema mapping language ;
of Clio is a nested relatioanﬂ exteision of tgds and 2zd3tha?als% and the tupless thro_ughmg. S_mce thgssn values of these two
handles XML data. In Clio, a user gets to make associations be- source tu.plles are d|fferent, Alice reahzgs thai has missed the
tween source and target schema elements by specifying value corl®" cc_)ndltlon onssn in the source relations. She corrects the s-t
respondences, or Clio may suggest possible value corresposdence tgd to:

Value correspondences are illustrated as arrows as in Figure 1. Cliom/: FBAccountgbn, [cs],n,4,a) A CreditCardécn, cl, cs) —

then interprets these value correspondences into s-t (nested) tgds. 3M (Accountgcn, cl, cs) A Clients(cs, n, M, i, a))

From these s-t tgds, executables such as XSLT scripts are gener-
ated. Given a source instantea solutionJ is created by applying
the generated script adh We note that Clio does not compute a tar-

Scenario 2: Incomplete associations between source schema el-
ementsWhen browsing throughf, Alice discovered that A. Long
(tuplet) who has an income 0K has a credit limit 040K (tu-

ple ¢t4). Knowing that it is very unlikely for an account holder to
have a credit limit that is higher than her income, Alice prohes
Our debugger explains that was created due to the tuple in
FBAccounts and thesg tuple of CreditCards throughms. Sup-

Alice may also decide to enforcgsn as a key of the relation
Clients, which can be expressed as egds. Here, our debugger has

get instance based on the chase procedure [8] that has been definelaelpgg.'é‘“cel (cjilscovzr a mlismg jomn co(r;dltlgn, aasd V\ée” af] realize
for data exchange. Also, the current Clio implementation does not an additional dependency that may need to be added to the target.

handle target egds, although the general framework does not im-Scenario 3: Incomplete associations between relationss Al-

pose this restriction. ice browses through the target instance further, she sees that the
. . accNo of the account holde234 is unspecified /; of tuple ¢2).
2.1 Example debugging scenarios As it is not likely that there is no account number for an account

Next we illustrate some usage scenarios with our debugger. We holder, Alice probesV; of t2. Our debugger shows that was
assume that Alice, a banking specialist, is interested to deéldug created through the target tges with the tuplets. (Note that with
of Figure 1. We expect that in most cases, Alice would debg this explanation, the existentially-quantified variablef ms is as-
by providing her own (small) test data for the source. In this case, sumed to map to the val®K of ¢,.) Furthermore, our debugger

she uses the source instardcand solutionJ shown in Figure 2. shows thats was created through the tgd. with the source tu-
Scenario 1: Incomplete and incorrect associations between ple so. With this information, Alice discovers thabs is in fact
source and target schema element&/hen Alice browses through ~ MiSSing an association with the source relatards. In_deed, ev-

J, she discovers that theldress value of the tuples in Clients ery supplementary card holder must have a sponsoring card holder

contains a null4;. Knowing that neither Fargo Bank nor Man- in Cards and they share the same credit limit. So Alice corrects
hattan Credit would allow any of its customers to open an account 72 Py adding the association betweBapplementaryCards and

without providing an address, she probesOur debugger shows a Cards, as indicated by the constraiiit. Furthermore, the target
route from the source that is a witness fgiin the target, depicted ~ NOW includes amccounts relation that is used to hold the account

number and ssn of the supplementary card holder, as well as the
credit limit of the sponsoring card holder. The new tgd, with
the changes highlighted, is now specified as follows:

as si st t1,t5. The route consists of the source tuplein
Cards, the tgdm;, as well as an assignmeibf variables ofm:
{ cn — 6689, 1 — 15K, s — 434, n — J. Long,m — Smith,
sal — 50K, loc — Seattle,A — A;}. Under this assignment, m/: | Cards¢n,l, s1,n1,m, sal, loc) ‘/\
the right-hand-side (RHS) ofi; is t1 andts. Hence,m; asserts SupplementaryCardan, s, na, a) —
the presence af; with s; andh. With this route, Alice discovers . IM3I(Clients(ss, n2, M, I, a) A ’ Accountsn, [, s2) D

that the address of J. Long (i.e., the value “Seattle”) was not copied

over by the tgd. Indeed, Figure 1 shows that there is no value cor- In this scenario, our debugger has helped Alice discover an in-
respondence between any schema eleme@aods andaddress complete tgd that misses out on some associations between rela-
of Clients. Suppose Alice also noticed thatig, thename value tions in the source schema, as well as between relations in the target
is the same as ithaidenName value (i.e., Smith). With the same schema. Alice may also choose to remove thertgdcompletely

81

Algorithm ComputeAllRoutes 4 (1,J,Js) findHom(Z,J ,t,0)

Input: A source instancé, a solutionJ for I underM and a set of tuples In the following, letK denotel if o is a s-t tgd, and< denotes/ if o is a
Js C J. target tgd.
Output: A route forest forJs. Input: A source instancé, a solutionJ for I underM, atuplet € J of the
Global data structures: form R(a), and a tgdb in X5 U ¢ of the formVx ¢(x) — Ty (x,y).
e A set of ACTIVETUPLES that contains tuples for which the aigom Output: An assignment such that(¢(x)) C K, h(y(x,y)) C J and
has attempted to find all routes. Initially, this set is empty. t € h(y(x,y)).
FindAlIRoutes(Js) 1. LetR(z) be arelational atom af(x, y). If no such relational atom
For every tuple in J; can be found, return failure. Otherwise, lgtbe a mapping that as-
If tis notin ACTIVETUPLES, then signs theith variable ofz to theith value ofa in R(a). If v; assigns
1. Addt¢to ACTIVETUPLES. a variablez to two different values under this mapping scheme, re-
2. For every s-t tgar and assignmenk such thath is a possible as- peat step 1 with a different relational ataf(z) of 1(x,y). If no
signment returned bindHom(Z,J t,0) other relational atoni(z) of ¥(x, y) can be found, return failure.
(a) Add (o, h) as a branch under 2. Letws be an assignment of variablesdn(¢(x)) to values inK so
3. For every target tgd and assignment such thath is a possible thatva (v1(¢(x))) C K.
assignment returned dindHom(I,J t,0) 3. Letws be an assignment of variablesin(vi (1 (x,y))) to values
(@) Add (o, h) as a branch under in J so thatvz (v2 (v1 (¥ (x,y)))) C J.
(b) FindAlIRoutes(LHS(h(0))). 4. Returnuvy U va Uws.

Return the constructed route forest ffy.

Figure 4: The findHom procedure.
Figure 3: An algorithm for computing all routes.

the relationshipss —2 ts —2 t,. In particular, it shows that,

if she thinks it is incorrect, i.e., only primary card holders of Man- andts satisfythe tgdms, andts andt. satisfythe tgdms. More

hattan Credit are automatically customers of Fargo Finance. specifically, a route is a sequencesattisfaction stepswhich we
Several remarks are in order now. First, debugging a schemadefine next.

mapping is not solely a matter of identifying the target schema el- DEFINITION 3.1. (Satisfaction step)et s be a tgdvx ¢(x) —

ements that are left unmapped or that are mapped incorrectly from Jyd(x,y). Let K and K, be instances such that containsk

the source. Indeed, as scenarios 2 gnd 3 illustrate, the problemsandK satisfiess. Let h be a homomorphism from(x) A ¢/(x, y)
may also be due to missing associations between source schem

= ; b K suchthakisalsoa homomorphism frog(x) to K. We say
elements, or missing relations. Second, observe that routes l&hato can be satisfied of; with homomorphisnk and solution
always computed in its entirety even though only part of a route K, or simply o can be satisfied o, with homomorphisi, if
may demonstrate problems with the schema mapping (see for eX'K’is understood from the context. Thesult of satisfyingr on Iy(l
a;]mple, chnarip 3). .Thirg., akl]s iIIustrated(ijn Scenario 2, observeI thatWith homomorphisnh is K, whereks = K1 U h(u(x, y)) and
there are situations in which a computed route may not reveal any _ L . : ’
problems with the schema mapping. In scenario 2, Alice needs the (W, y).) - {R(h(z)‘j)‘,LR(z) Is & relation atom iny (x. y) }. We
knowledge of the second route for to discover the problem in ~ denote this step a7 — K.
the s-t tgdms. Certainly, one may argue that if the second route m
for > would have been computed before the first one, Alice would ~ EXAMPLE 3.2. In the example described earlier with —
have been able to debugs without the knowledge of additional ¢ > ¢,, the first satisfaction stepigs2}, 0) ™25 ({s2}, {te}),
routes fort;. It is conceivable, however, that is a tuple con- whereh1={ an — 6689, s — 234, n — A.Long,a — California,
taining sensitive information and in this situation, the knowledge A ~ M, I — I,}. The result of satisfyingn. on the instance
of all routes fortz would be crucial for the purpose of identifying ({s2},) with homomorphismh; and solution.J of Figure 2 is
tgds that export sensitive information. It is also worth mentioning ({s2}, {ts}). [}
that in our debugging scenarios, we have only illustrated the use of
routes for understanding the schema mapping through anomalous We note that the instancds and K, in Definition 3.1 are in-

tuples. We believe that routes for correct tuples are also useful for stgnces over the scher(®, T) in our context, not r)ecessarlly satls-
understanding the schema mapping in general fying the source or target constraints. We describe next a few tech-

In the next section, we describe the algorithms behind comput- nical_differences between a satis_faction_step, a Chas.e? step [8], and a
ing all routes or one route for selected target data for relational- solution-aware chase step [9]. First, unlike the definition of a chase

. . . step or solution-aware chase step for a tgdp — ,
to-relational schema mappings. We have extended our algorlthmswhgreh is defined only forx, the hgmomorphis(ﬁ ina Zé:i(sf?c-
to handle selected source data, as well as the schema m"’Ippmgﬂion step is defined for variébles in bathandy. In other words
language of [18, 11] to handle relational/XML-to-relational/ XML (x) A 1(x,y) is completely defined undéfylSecond Wherar,
schema mappings. We report experimental results for the XML is satisfied 7o}r,1K with homomorphisih, it m.ay be tha,ta is al-
case, but we limit our discussion in this paper to algorithms for ! '

selected target data with relational-to-relational schema mappings.ready satls/fled otk with some other homomorphisitt Whe_re
h(z) = h'(z), for everyz € x. For example, suppose is

S(z) — FyT(w,y), T = {S(a)}, andJ = {T(a,b), T(a,)},
3. ROUTE ALGORITHMS Let hy = {z — a,y — b} and lethe = {z — a,y — c}.

In this section, we formalize the notion ofreute and describe Clearly,hi(x) = ha(z) and(I,) 2hy (I,{T(a,b)}) 2l (L,J)

algorithms, as well as properties of our algorithms for computing is a route for.J. After the first step of the route, the tgds already

all routes or one route for a selected set of target tuples. A route satisfied with(1, {T'(a, b)}), and thereforezy cannot be applied on
illustrates the relationship between source and target data with the(Z, {T'(a,b)}) during a chase or a solution-aware chase. In con-
schema mapping. As an example, consider again the routg for trast, we allows to be used again, together with a different homo-
described in Scenario 3 of Section 2.1. The routetfoshows morphism (e.g.h2), to witness the existence of some other tuple

82

%o

-

01
J(N5,52)

S.(®)

Figure 5: A route tree for 77 (a).

(e.q.,T(a,c)) notin(I,{T(a,b)}). Third, there is no correspond-
ing definition for egds. This is becausdifalready satisfies an egd
o, then K; must also satisfy since it is contained i. Hence
there is no need to consider “egd satisfaction steps” in routes.

DEFINITION 3.3. (Route)Let M =(S, T, X, ;) be aschema
mapping, I be a source instance anfl be a solution ofl un-
der M. LetJs C J. A route for Js with M, I and J (in
short, a route for J;) is a finite non-empty sequence of satisfac-
tion steps(Z,0) ™25 (I,.J1) ... (I, Jn_1) (I,J,), where
@J; CJ1<i<n, (b)ymil<i<mn,areamonds U,
and (c)Js C J,. We say thathe set of tuples produced by this
routeis J,.

Mn,hn
—

ExampLE 3.4. Referring to Example 3.2 and the source in-
stancel and solutionJ of Figure 2,(I,0) ™28 (I, {ts}) is a
route forts. The following is also a route fots: (I, 0) m2h

—
(I, {ts}) ™52 (I, {te,t2}), wherehy = {s — 234, n — A.Long,
m +— Mi,i — I,a — California N — Ni, L — 2K}. Note
that the target instance produced by the second route o2, ts }

possibles andh such thath is a possible assignment returned by
findHom(Z, J, t, o). Conceptually, this corresponds to all possible
(o, h) pairs under the tuple in the route forest. In other words,
our algorithm explores all possibilities of witnessing We first
examinefindHom with an example an€@omputeAllRoutes next.
Suppose we invokéndHom(I, J, t1, m1), wherel, J, t; and
m; are from Figure 1 and Figure 2. By “matching”with the atom
Accounts¢n, I, s) of mq, step 1 offindHom definesv; as{cn —
6689,1 — 15K, s — 434}. Whenw, is applied to the left-hand-
side (LHS) ofmi, we obtain the partially instantiated relational
atom Cards(6689, 15K, 434, m, sal, loc). Hence, the assign-
mentuv (step 2) is{n — J. Long m — Smith, sal — 50K, loc —
Seattlg. With v; Uvs, the LHS ofm, corresponds to the tuple in
theCards relation, and the RHS of.; is the conjunction of the tu-
ples Accounts(6689,15K,434) and Clients(434,Smith,Smith, 80K,
Hence, step 3 dindHom returnsvs as{A — A, }. The algorithm
then returns; Uvs Uws (step 4). In general, there are many possi-
ble assignments far;, v2 andvs for a tgdo. The algorithm looks
for one combination of, v2 andwvs that works. In our implemen-
tation (Section 3.3), we push the evaluation ferand vs to the
database. Hence; andvs can be derived efficiently in general.

ExAmMPLE 3.5. Let M be a schema mapping whe¥g,; and
¥ consists of the following tgds.

Sst: Si(z) — Ti(x) o1
SQ(:IZ) — TQ(:IZ) g2
Et : Tz(m) — Tg(aj) g3
Ts5(x) — Tu(x) o4
T4(x) A T1(x) — T5(1‘) o5
Ti(z) NTs(z) — T7(z) 06
T{,(Qj) — Tg(:l?) o7
T5(33) — Tg(]}) g8

Let the source instanckconsists of two tuples; (a) and Sz (a)

and a solutiory/ for I underM consists of tupleg’ (a), ..., T7(a).
Suppose we wish to compute all routes &1(a). That is, we in-
voke ComputeAllRoutesy((Z, J, {T%(a)}). The route forest (in

this case, a tree) that is constructed by this algorithm is shown in
Figure 5. (Please disregard the dotted branches for this example.)
The order at which the branches are added to the forest and the
steps involved irComputeAllRoutes are labeled as a pair beside
the branches in the tree. For examgl&¥,2, S3) for the branch with

o4 denotes that this is the second branch added in the construction
and it is added by step 3 @omputeAllRoutes. In this example,

h is always{z — a} and so, we have omittgdfrom the figure.

and the last satisfaction step is redundant, in the sense that the first | the process of constructing a route tree Tota), step 2 of

satisfaction step is sufficient as a route fer

3.1 Computing all routes

We show next an algorithm for computing all routes for a given
set of tuples/s; C J, where.J is any solution for a source instance
I under the schema mapping!(. Note that our algorithm works
for any solution and so, we are not limited to the solutions that
are generated by Clio. Our algorithm constructeate forestin
polynomial time in the size of, J and Js, that concisely repre-

ComputeAllRoutes fails to add any branches t67(a). How-
ever, step 3 adds thes branch toT7(a) and continues the con-
struction of the tree wittFindAlIRoutes({74(a), Ts(a)}). Find-

ing a route for7y(a) leads to the tuple/3(a). There are two
branchesgz andos, for T5(a). In this computation, the; branch
was explored befores and eventually, thez branch will cause
FindAlIRoutes({T4(a),T1(a)}) to be invoked. However, since
T4(a) belongs to ACTIVETUPLES at this point, the branches for
T4 (a) are not explored at this node. Similarly, there are no branches
under the tuplds (a) under thess branch becaus®s(a) is an ac-

specifically, we show that evempinimal route for a set of target

tuples is, essentially, represented in this route forest. Intuitively,
aminimal route for a set of target tuples is a route where none of

are added only whetis first encountered during the construction
of the forest. U

Obviously, the resulting forest that is constructed is not unique.

its satisfaction steps can be removed and the result still forms aFor instance, ifls(a) was selected to be explored befdfg(a)

route for the set of target tuples. The algorithm for computing all
routes is shown in Figure 3. It makes use direiHom procedure
shown in Figure 4. Intuitively, for every tupteencountered during

in FindAlIRoutes({74(a),Ts(a)}), the constructed tree will be
different from Figure 5. It is also easy to see tiaimputeAll-
Routes terminates since for each tuptethere are only finitely

the construction of the route forest, our algorithm considers every many branches to add undein steps 2 and 3. Furthermore, due

&3

NaivePrintz(Js)
We denote by F the route forest returned by
ComputeAllRoutes o((1,J,Js), where I is a source instance/ is a
solution for/ underM andJs C J.
Input: A set of tuples/s where every tuple iV occurs inF'. We assume
that ANCESTORS is a global stack which is initially empty.
Output: A set of all routes fotJ,.
For every tuplg in J;
1. Pusht into ANCESTORS. Goto anyin F'.
2. LetL; denote the set of alb(, k) branches undersuch that is a
s-ttgd.
3. Let Ly denote the set of alb(, k) branches undersuch that is a
target tgd and every tuple in LH&(c)) does not occur in ANCES-
TORS.
4. LetLz = 0.
5. Forevery(o,h)in Lo
(a) LetL’ denoteNaivePrintz(LHS(h(0))).
(b) Append(o, k) to every elementirl’.
() Ls =L UL

6. LetL(t) beL; U Ls.

7. Pop ANCESTORS.

ReturnL(¢1) X ... X L(t), whereJs = {t1, ..., . }.

Figure 6: An algorithm for printing all routes.

to ACTIVETUPLES, the branches of an active tuple are only ex-
plored at one place in the forest. HenGamputeAllRoutes runs

in polynomial time in the size of, J and.Js since there can only
be polynomially many branches under each tuple.

PROPOSITION 3.6. Let M be a schema mapping. Létbe a
source instance/ be a solution fod underM andJs; C J. Then,
ComputeAllRoutes r((1,J,Js) executes in polynomial time in the
size ofl, J and J;.

From the tree in Figure 5, it is easy to see that a roftg,for
T7(a) is:
Ryl 25 1Ty 25 1,15, Ty =5 1,15, T3, Ty =5 I, T1, ...
T LT Ts =5 LT, T =5 1Ty, Ty
For conciseness, we have writtéh instead of7T;(a) above. If
there is another s-t tgdy : S3(z) — T5(z) and supposé also
contains the source tupt (a), then there would be another branch

under the tuplé;(a) undero;. (See the leftmost dotted branch in
Figure 5.) This would mean there is another routeffpfa):

7T4

Ro: I 2% 1,15 70 1,15, T3 2% I,T5, T3, Ty
28 1, T, T, Ta, Te =% 1,Ts, Ts,Ta, Te, Tr

Observe that in this route, we have bypasge:) since we can
now witnessTs(a) directly with the s-t tgdb.

Completeness of the route forest in representing all routesVe
show next that the route forest generateddmmputeAllRoutes

is complete in the sense that every minimal route forcan, es-
sentially, be found in this route forest. More specifically, we show
that every minimal route foy, is represented by one of the routes
we naively generate from this forest. Our procedure for naively
generating routes fa¥, is shown in Figure 6. It finds the set of
all routes for every tuple in J, and takes a cartesian product of

routecy, — o3 — o4 — o1 — o5 — og for Tg(a). For con-
ciseness, we have listed only the tgds involved. Hence the route
produced foff% (a) is
R3ZE>£>J4 o9 03 04 O] O’5£}G’6

Obviously, this route contains some redundant satisfaction steps.
A minimal route for77(a) is in fact R, where none of its sat-
isfaction steps are redundant. In other words, it does not contain
redundant satisfaction steps. Althoufh is not a minimal route,
it has the same set of satisfaction steps as the rButeTo com-
pare routes based on the satisfaction steps they use, rather than the
order in which the satisfaction steps are used, we introduce an in-
teresting concept called trstratified interpretationof routes. To
stratify a route, we make use of the concept ofiduek of a tuple
in a route. Intuitively, every tuple is associated with a unique rank
in a route. Source tuples have rank 0 and a tupias rankk in a
route if for some satisfaction step in the route that involvesnd
h, (1) t occurs in RHSk (o)), (2) the maximum rank of tuples in
LHS(h(0)) is k — 1, and (3)¢ is not of a lower rank. Thetratified
interpretationof a routeR, denoted as strai), partitions the pairs
(o, h) in R into blocks. We say thafo, h) of a route belongs to
rank 1 if LHS((o)) consists of only source tuples and it belongs
to rankk if the maximum rank of tuples in LH&(o)) isk—1. The
rank of a routeis the number of blocks in the stratified interpreta-
tion of the route. For exampld&?; and R3 have the same stratified
interpretation shown below and they both have rank 6.

Rank1| 2 3 4 5 6

06

01,02 g3 g4 05 o8

We say that two route® and R’ have the same stratified inter-
pretations, denoted as str&)(= strat@®’), if for every block of rank
¢ in strat(R), every(o, h) in this block can be found in the corre-
spondingith block of stratz’) and vice versa. We show that for any
Js C J, the forestF’ that is constructed bgomputeAllRoutes (7,
J, Js) contains all routes, in the sense that every minimal route for
Js has the same stratified interpretation as one of the routes pro-
duced byNaivePrintz(.Js). Note that when we say two routés
andR’ are equivalent if they have the same stratified interpretation,
this is in fact the same as saying tfaand R’ have the same set of
satisfaction steps. The stratified interpretation of routes, however,
comes naturally in the proof of our completeness result. Further-
more, stratified routes are also more easily understandable, when
compared to a sequence of satisfaction steps. We plan to include
the ability to display stratified routes in our visual interface [2].

THEOREM 3.7. Let M be a schema mapping. LEbe a source
instance andJ be a solution forl under M. LetJs C J and let
F denote the route forest @omputeAllRoutes y((1,J,Js). If R
is a minimal route forJs, then there exists a routg’ in the result
of NaivePrintz(J;) with the property that straff) = strat(R’).

Observe that there could be exponentially many routes/for
but our route forest is a compact, polynomial-size representation
of all routes. Our experimental results in Section 4 indicate that it
may be expensive to construct the route forest in general. Hence, a
natural question is whether we can can produce one route fast and
leverage the “debugging-time” of the user to produce other routes

these sets of routes in the last step. Observe that in step 1, we alas needed.

low the search for routes to start from any occurrence iof F'.
Even though there may be many occurrencesiofF’, we assume
that every other occurrence ohas a link to the first in F' where
the branches of are explored. For exampl&y(a) under theos
branch has a reference Ta(a) under thess branch. NaivePrint
on 77 (a) will produce a routers — o3 — o4 for Ty(a) and a

84

3.2 Computing one route

In debugging, we believe it is also useful to have the alternate
feature where we can derive and display one route fast and display
other routes, as needed. Our experimental results in Section 4 jus-
tify that in most cases, it is much faster to compute one route than

Algorithm ComputeOneRoute a4 (1,J,Js)

Input: A source instancé, a solutionJ for I underM and a set of tuples
Js C J.

Output: A route for Js.

Global data structures:

e A set of ACTIVETUPLES that contains tuples for which the aigom
has attempted to find a route. Initially, this set is empty.

e A set UNPROVEN that contains unproven triples, initially égp

e Every tuple has a status proven or unproven.

e A sequence of pair& used to contain the route, initially empty.

FindRoute(Js)
For every tuplée in J;
If ¢t is notin ACTIVETUPLES, then
1. Add¢to ACTIVETUPLES.
2. If findHom(Z, J, ¢, o) returnsh for some s-t tgdr, then
(a) Append(o,h)to G.
(b) Infer({t}).
(c) Continue with the next iteration of For-Loop.
3. If findHom(Z, J, ¢, o) returnsh for some target tgd-, then
(a) If LHS(h(0)) consists of only proven tuples, then
(i) Append(o, h) to G.
(ii) Infer({¢}).
Else
(iii) Add (¢, o, h) to UNPROVEN.
(iv) FindRoute(LHS(h(0))).
(v) If (¢, 0, h) is UNPROVEN, continue with step 3.
ReturnG.

Figure 7: An algorithm for computing a route.

Infer(.S)
Repeat untilS =
1. Mark all tuples inS' as proven.
2. LetS =0.
3. For every triplgt’, o/, h’)) in UNPROVEN
(a) If LHS(R' (o)) consists of only proven tuples, then
()Add t' to S.
(i) Remove(t’, o', h’)) from UNPROVEN.
(iii) Append (o, h) to G.

Figure 8: The Infer procedure used byComputeOneRoute.

compute all routes. We believe that in general however, it is valu-

able to incorporate both features for a debugger. In some cases, th%onclude thatl’s
user may be satisfied with one route, which is faster to compute branchesrs and
than computing all routes. It is also useful, however, to be able to that T

determine all routes whenever desired.

We describe next our algorith@omputeOneRoute which com-
putes a route for a given set of tuplds C J, whereJ is any
solution for I under the schema mappingl. The algorithm for

computing one route is shown in Figure 7. It uses two procedures

Infer in Figure 8 andindHom, in Figure 4, which was described
earlier. We examine the algorith@omputeOneRoute in some
detail with an example next and make a comparison @itim-
puteAllRoutes after this.

ExampPLE 3.8. LetM, I andJ be the schema mapping, source

ConsequentlyFindRoute({T4(a), Ts(a)}) is invoked. Similarly,
for Ty (a), findHom succeeds witlrs. For 75 (a), findHom suc-
ceeds withos. In the branch wittrs, FindRoute({7x(a), T1(a)})

is invoked. Sincély(a) occurs in ACTIVETUPLES, the for-loop
for FindRoute for T4 (a) is not executed. InsteaBindRoute con-
tinues with the tuplél’ (a) and succeeds with a s-t tgd. Since
findHom does not succeed with other tgds’By{a), the algorithm
returns to73(a). It happens that, so far, the computation resem-
bles ComputeAllRoutes. Continuing fromT3(a), the algorithm
succeeds in witnessiriG; (a) with o3 andos. At o2, the set UN-
PROVEN is{c¢,04,07,05,03}, andG is the sequencer], o2].
Whenlnfer({7T>(a)}) is invoked (see step 2(b)), the algorithm will
deduce thafis(a), T4(a), T5(a) andTs(a) are proven, in this or-
der, andZ is now [o1, 02, 03, 04, 05, 7). After this, the algorithm
returns to the branchs and attempts to find a route @k (a) next.

It succeeds withvs becausels(a) is already proven and it will
infer thatT~(a) is proven withinfer({Ts(a)}) (see step 3(a-ii) of
ComputeOneRoute). The algorithm successfully terminates and
returns[71,02,03,04,05,07,08,06]. O

Comparisons between compute all routes and one routa Com-
puteOneRoute, the algorithm searches for one successful branch
under a tuplé to find a route fort. In ComputeAllRoutes, how-

ever, all branches are searched, regardless of whether a route fo
t has already been found. To make a better contrast, suppgse
contains another s-t tggh : S3(z) — 75(z) and additionally, we
have the source tupl§s(a). Then, for the tuplels(a) that sits
under the branch~ in Figure 5, only the branchg will be consid-
ered. This is because the algorithm considers s-t tgds before target
tgds (step 2 o€omputeOneRoute). Since a route fofs(a) can

be found with the s-t tgdrg, the branch withss will not be ex-
plored.

The second difference is that the result returned by the algorithm
ComputeOneRoute is a sequence dfo, k) pairs that represents
the route that is found fods, even though a route forest is con-
structed during the computation. Thege k) pairs are collected
during the construction of the forest@omputeOneRoute.

The third difference is that itComputeOneRoute, we now
have arninfer procedure to infer proven tuples as we construct the
forest. This procedure is needed for the correctness of the algo-
rithm. To see this, consider Example 3.8 again. Now consider
the execution o€omputeOneRoute for 7~ (a) without Infer. At
the o2 branch, no inference will be made. Although we can still
(a) andTy(a) are proven as we return along the
o4 respectively, observe that we cannot conclude
(a) is proven. Hence, withouinfer, the status offs(a)
is unknown at the point whens is used and becausg; (a) is
in ACTIVETUPLES, the branches und@g(a) are not explored.
The algorithm therefore terminates with a partial routefeta),
which is incorrect. One might argue that we should remove the AC-
TIVETUPLES restriction so as to allow the branches urifigiu)
to be explored again. In this case, since bbtla) and7i (a) are
proven by the time we explore the branchesIgfa) underos,
we conclude thafs(a) is proven and so the algorithm terminates
with a route forT~ (a). However, without the ACTIVETUPLES re-
striction, there might be many unnecessary explorations. To see

and target instances given in Example 3.5. Suppose a route forthis, suppose the schema mapping of Example 3.8 has an addi-

T7(a) is sought. WithComputeOneRoute (1, J, {T7(a)}), we

obtain the same route tree of Figure 5. (Please disregard the dottednstance/ consists ofn additional tuples/s(b1), ...,
branches.) The computation that occurs during the construction,

however, is different. With the tuplé7(a), ComputeOneRoute
fails to find a s-t tgd in step 2 fdf~ (a). Hence, it proceeds to Step
3 and succeeds in finding homomorphisms Witfla) andog. (As
before, we have omittedas it is alwayz — a} in this example.)

85

tional target tgdo1o : T5(z) A Ts(y) — T3(z) and the target
Ts(bn). Ob-
serve that/ is a solution forl under M with thesen additional
tuples. Wherl3(a) is encountered during the construction of a
route forT»(a), it may happen that thes branch is explored last.
(Refer toT5(a) of Figure 5.) Hence, the branches®f(a) are re-

peatedly explored along the branches (o109, k1), ..., (10, hn),

1join

S Mguppkeyls O MeustkeyCs S Mpartkey £» N ™nationkey 2
2 joins

S >aguppkeyl orderkey©: S Msuppkey’S Mpartkey P

C >pationkey?V >nationkey

3 joins

S >aguppkeyl Mpartkeysuppkey?S >partkey £

O >eystkeyC >nationkey!Y >nationkey

whereh; = {x — a,y — b;}. The repeated exploration of the
branches ofs(a) in this case is unnecessary. We also remark that
the ACTIVETUPLES restriction makes the running time analysis
simpler. As inComputeAllRoutes, since every(c, h) pairs for a
tuple t occurs at most once in the route forest, there are at most
polynomially many branches in the forest constructeddmm-
puteOneRoute. In ComputeOneRoute, however, one also has

to reason about the running timelofer.

Figure 9: Joins used in tgds in the relational and flat-hierarchy

PROPOSITION 3.9. LetM = (S, T, ¥4, ;). LetI be asource X .
synthetic scenarios.

instance,J be a solution for/ under M and J; C J. Then,
ComputeOneRoute v (1, J,Js) executes in polynomial time in the

size ofl, J and J;. our implementation ofComputeOneRoute is scalable for rela-
tional instances. For XML instances, however, all the assignments
are fetched at once, since the result produced by the Saxon engine
is stored in memory.

Our implementation o€omputeOneRoute is an optimization

We note that our running time analysis is based on the size of
1, J andJ,. The default behavior of our debugger, however, uses
the solutionJ that is generated by Clio on a given source instance
I under a schema mapping!. Therefore, a natural question is of the algorithm in Figure 7. If théindHom step for tuplet is

whether the polynomial time results of Proposition 3.6 and Theo- successful with some tgd in steps 2 or 3 of the algorithm, we

rem 3.9 hold when analyzed against the size of the source instance
1. It is easy to show that iff is polynomial in the size of, then conclude thaall the target tuples produced by(and not onlyt)

. . U . . are proven. Hence, we may avoid performing redunfiadtHom
our route algorithms run in polynomial time in the sizelofSince P y P g

Clio generates a solutiohthat is polynomial in the size df under steps with the rest of the tuples.
a relational-to-relational schema mapping [8], our route algorithms 3.4 Some other features of our debugger

run in polynomial time in the size of |n_th|s setting as W'_a”'_ We briefly mention here some other features of our debugger. We

Next, we Sh(.’W that our algorithm is complete for finding one refer the interested reader to [2] for a more detailed description on
rqute. If there is a route faf,, thenComputeOneRoute on J, these features. Besides computing one or all routes for selected tar-
will produce a route fod. get tuple, our system is also capable of computing one or all routes
for selected source tuples. We have also extended our algorithms
for computing one route to generate alternative routes at the user’s
request. Our system is also equipped with “standard” debugging
features such as breakpoints on tgds, single-stepping the computa-
tion of routes and a “watch” window for visualizing how the target
3.3 Some imp|ementation details instance changes, as well as the assignments for variables used in a
tgd at each step.

THEOREM 3.10. Let M be a schema mapping,be a source
instance and/ be a solution forl under M. For everyJ,; C J, if
there is a route fotJ;, thenComputeOneRoute o (7, J, Js) will
produce a route fotJs.

Although we have only described how one can compute routes
for a set of tuples with relational-to-relational schema mappings,
we have extended and implemented our route algorithms to hand|e4- EXPERIMENTAL EVALUATION
schema mappings where the source or target schemas may be hier- We have experimentally evaluated our debugger on both real and
archical. Our implementation uses the nested relational model assynthetic datasets to assess its efficiency in computing one or all
our underlying representation and the mapping language of Clio [18,routes, under the effect of various parameters. We present eur ex
26] to represent schema mappings. The system is implemented inperimental results with both route algorithms. All our experiments
Java 1.5. Currently, we store relational instances using DB2 UDB were executed on a Pentium 4, 2.8GHz Windows machine with
Personal Edition release 8.1.10, while XML instances are stored as2GB RAM. The DB2 buffer pool was set to 256MB. Each experi-
XML documents. We use DB2’s query engine and Saxon-SB 8.6 ment was repeated three times and we report execution times aver-
XSLT transformation engine to run SQL and respectively, XSLT aged over the second and third runs.
queries over relational and respectively, XML instances.

In thefindHom procedure (Figure 4), the required assignments .
v1, vz andwvg for a given tuplet are obtained as follows. First, 4.1 The synthetlc datasets
we obtainv; by matchingt against the RHS of the tgd. Sec- We designed three synthetic scenarios, catlddtional, flat-
ond, we run the LHS of as a selection query (as indicateddqy hierarchy and deep-hierarchy. The first two scenarios are de-
against the instanc& to obtain all the assignments that agree signed with the goal of measuring the influence of various param-
with v;. (Here, K is the source or target instance, depending on eters, when the source and target schemas are relational and re-

whethero is a s-t or target tgd.) For each sugh we obtain possi- spectively, hierarchical. The parameters are: the size of source
ble assignments; that agree withvs by running the RHS of as (and target) instances, the number of tuples selected by a user and
an appropriate (based on) selection query on the target instance. the size and complexity of the schema mappings. The third sce-
Note that all possible assignments«@f and vs could in fact be nario is designed to measure the influence of the depth of the se-

obtained by running a single selection query (the join of the LHS lected elements of an XML document on the performance of our
and RHS ofo) against the source and target instances. While this algorithms, where both the source and target schemas are deeply
may be more efficient for relational schema mappings, it was a de- nested. In what follows, we describe the construction of each sce-
sign choice to run two separate queries, in order to handle generalnario and present our experimental results on both route algorithms.
situations in which for example, the source instance is relational, In summary, we have observed tiamputeOneRoute can be ef-
while the target is XML. We fetch the assignments one at a time, ficiently executed, whil&€omputeAllRoutes may perform orders

as needed, from the result of the selection queries. For this reasonpf magnitude slower compared @omputeOneRoute.

86

(a) Varying the size of source and target instances (b) Varying the M/T factor from 1 to 6
TGDs with 1 join, Routes with M/T=3 TGDs with 3 joins, || = 100MB, |J| = 600MB

N
o

g —~
83 5
@ 30 | ;"’:
8 251 2 ﬁ
% 20 - °
@ 151 5
210 2 e
£ A o
S % S . . e £ I
O plufommmri 0t T 0 0 o 0 e e e 8 -
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 0 - S e e T
#tuples 1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20
~ I:10MB; J:60MB = I:50MB; J:300MB #tuples
- [:100MB; J:600MB —1:500MB; J:3GB ‘*M/T:1 = M/T=2 + M/T=3 = M/T=4 + M/T=5 - M/T=6
(c) Varying the complexity of TGDs (0 to 3 joins) (d) ComputeOneRoute vs. ComputeAllRoutes
Routes with M/T=3, |I| = 100MB, |J| = 600MB TGDs with 1 join, Routes with M/T=3

I = 100MB, |J] = 600MB

20 1000 S —
3 181 JEE—————
&2 16 4 g W09
2 144 & gl
>
2 12 g
2 10 X — s 1
o 84 — . . S o1l
'g_ 6 PR e e g -
£ 4 o X 001
8 24
o = U 0001 b+ v
123 456 7 8 9 101112 13 14 15 16 17 18 19 20 1234567 8291011121314151617181920
tuples #tuples
\+n0joins -= 1 join =+ 2 joins +3joins\ \+computeOneRoute +coumputeAIIRoutes\

Figure 10: (a-c) Performance evaluation ofComputeOneRoute and (d) comparison in performance betweerComputeOneRoute
and ComputeAllRoutes in the relational synthetic scenarios.

Relational scenarioWe designed four schema mappingéo, ..., each tgd infindHom and we have varied the complexity of each
M3 for our experiments. The subscripts denote the number of side of the tgds in each schema mapping.

joins, which we shall explain shortly, used in the tgds of the schema In Figure 10(a), we study the influence that the size of the in-
mapping. In each schema mapping, the source schema conforms tgut (i.e., the size of source and target instances, as well as the
the TPC Benchmark H (TPCH) Standard Specification Revision number of tuples for which a route needs to be computed) has
2.1.0 [21] and consists of eight relatioBsistomer (C), Lineitem on the performance o€omputeOneRoute for a fixed schema

(L), Nation (N), Orders (O), Part (P), Partsupp (PS),Region (R) mapping. The sizes df, J) are (10MB,60MB), (50MB,300MB),
andSupplier (S). The target schema consists of six “copies” of the (100MB,500MB), (500MB,3GB) respectively. The number of se-
source schema: for each relatid in the source schema, there lected tuples is varied between 1 and 20. To keep the comparison
are six relationdk;, ¢ € [1, 6], identical toRy in the target schema. meaningful, all tuples were selected at random from the same group
Hence, the target schema can be viewed as having six groups ofof target relations so that the number of satisfaction steps in a route
relations, where each group is a “copy” of the source schema. In of each selected tuple (called M/T factor) is kept constant. For ex-
the first schema mappiniylo, the s-t tgds populate relations in the ample, M/T= 2 for tuples of relations in group 2, since these tuples

first group by copying everg, to the corresponding relatiaR; in are witnessed with one s-t tgd and one target tgd. Figure 10(a) il-
the target. The target tgds are such that every reldtioim theith lustrates the time required to compute one route for tuples in group
group,i € [2,6], is copied from the corresponding relatiéf_ . 3 in the schema mapping with 1 join tgd84:). As expected, the

Finally, no target egds appear in our target dependencies, since egdsunning time increases as the number of selected tuples increases,
do not influence the performance of our algorithms. The second since morefindHom steps need to be taken, hence more queries

schema mapping; is similar except that every tgd in this schema are executed. The execution time also increases with the size of the
mapping has 1 join on both sides corresponding to the 1 join casesource and target instances. Routes for 10 and 20 tuples are com-
illustrated in Figure 9. For example, one such s-t “copying” tgd in puted in under 4, and respectively, under 8 seconds on the datasets

My is So(sk,...) A Lo(..., sk, ...) — Si(sk,...) A L1(..., sk, ...), with 10MB, 50MB and 100MB source instances. However, the per-
where the variablek corresponds to the supplier key attribuigag- formance degrades to a larger extent on the dataset where the source
pkey shown in Figure 9. We have omitted the rest of the variables and target instances are of size 500MB and respectively, 3GB. This
for conciseness. The schema mappings and M3 are similar is not unexpected, since the queries, with joins involved, are now

except that the tgds have 2 and respectively, 3 joins on both sidesexecuted on larger instances. We believe, however, that a user is
as shown in Figure 9. We note that using only such “copying” tgds unlikely to select as many as 20 tuples in the first place. We expect
in these four schema mappings does not bias our empirical evalu-a user to be interested in a smaller number of tuples at any time,
ation; our debugger separately operates with the LHS and RHS of cases in which our system would still perform well.

87

In Figure 10(b), we analyze the influence of the M/T factor on Varying the depth of selected elements from 1 to 5
the performance ac€omputeOneRoute, by computing routes for [1I=700KB, ||=700KB
target tuples in different groups. We performed six runs, each time
selecting up to 20 tuples from the same group (i.e., the M/T factor
varies between 1 and 6). The source instance is fixed at 100MB
in the schema mapping with 3 joins tgd&1;). As expected, the
running time increases with a higher M/T factor, since more inter-
mediary tuples are discovered (and consequently, more invocations
of findHom are made) along the route to source tuples, hence more
queries are executed. For example, it takes 1.8, and respectively,

g
=2}

=
N
.

Compute one route (sec)
o =]
S [oe]
L

2.9 seconds to find a route for a tuple with an M/T factor of 3 and o=

respectively, 6. 123456789 11111111112
In Figure 10(c), we analyze the influence of the complexity of # selected elements

schema mappings on the performance of the system. This time, [+~ Depth 1 = Depth 2 + Depth 3 ~ Depth 4 -« Depth 5

we vary the schema mapping with 0 to 3 joins tgds and we fix the))

M/T factor to3 and the size of the source instancd 69MB. The Figure 11: Performance evaluation ofComputeOneRoute in

running time ofComputeOneRoute increases with the number the deep hierarchy scenario.
of joins in the tgds. This is, again, not unexpected, since the per-
formance of executing queries degrades with the number of joins.

Still, the system performs well, taking up to 4.5 seconds to compute PiNg where the source and target schemas are identical and have
routes for a set of 7 target tuples, in all four schema mappings. the nestindRegion/Nation/Customer/Orders/Lineitem. In other

We have performed a similar suite of experiments v@tm- words, the root consists in a set of regions, each region has na-
puteAllRoutes and observed similar trends (graphs not shown). tions nested underneath and so on. Theetconsists of one s-t
As expected howeveEomputeAllRoutes performs slower com- tgd that copies the source instance into an identical target instance
pared toComputeOneRoute. Figure 10(d) shows a comparison ~&nd there are no target tgds. We tested the performanCemf
between the running times of the two algorithms for the schema puteOneRoute on elements found at different nesting levels in

mapping with 1 join, the source instance of 100MB and tuples with the targetinstance. For example, we pickaestomer and respec-
an M/T factor of 3. (Note the logarithmic scale). For 5 tuples, tively, Lineitem elements for our experiments with levels 3 and 5,

one route is found and printed in 2 seconds, wiitemputeAll- respectively. The results are shown in Figure 11. The execution
Routes requires about 100 seconds to construct the route forrest. ime decreasesvith the depth of the selected element. Intuitively,
The running time shown faEomputeAllRoutes does not include with a deeper selected element, more variables will be instantiated
the time required to print all routes from the route forest (algorithm N the selection queries generatedioylHom. Hence, the resulting

NaivePrint). The performance gap between the two algorithms selection queries will execute faster. We note that for elements of
will be even larger if we require all routes to be printed. depth 1, we report the execution time for at most 5 selected region

Flat-hierarchy scenario We have studied the influence that the facts, since there are only 5 distinct regions in the TPCH instance.

size of source (and target) instances, as well as the number of el-

ements for which a route needs to be computed have on the per-4'2 The real datasets)

formance ofComputeOneRoute for the XML case. We also per- We also evaluated our system using two real dataB&s R and
formed experiments to analyze the influence of the M/T factor, as Mondial) for which we created schema mappings in order to ex-
well as the complexity of the schema mappings. (We have omit- ¢hange bibliographical, and respectively, geographic information.
ted the graphs here, for lack of space.) The source schema consist§0r the DBLP scenario, we obtained two DBLP data sources. As
of a root record having eight sets of records nested underneath,a target schema, we used the first relational schema in the Amal-
each set corresponding to one TPCH relation. Similarly, the tar- 9am integration test suite [16]. In the Mondial scenario, we used
get schema consists of six “copies” of the source schema and thethe relational and ngsted versions of the Mondial schema [17], as
s-t and target tgds are similar to our relational scenario (i.e., they Source, and respectively, target schemas. In both cases, we gen-
are “copying” tgds). Hence, in this scenario we deal only with ele- erated the s-t tgds and we used the foreign key constraints of the
ments nested immediately underneath the root (i.e., the depth is 1).target schemas as target tgds. Some characteristics of the source
For our experiments, the sizes df (/) we use are (500KB,3MB), and target schemas, the number of s-t and target tgds, as well as
(1MB,6MB) and (5MB,30MB) respectively. As expected, the run- the size of source and resulting target instances used in our exper-
ning time of ComputeOneRoute increases with the size of the ~ iments are shown in Table 1. We used our debugger to compute
source and target instances, as well as the number of selected targdPne or all) routes for one to ten randomly selected target tuples in
elements that need to be justified. The system performs very well, Poth scenarios. The time required to find one route was under 3
requiring at most 5 seconds to compute one route for 20 elements,Se€conds in all cases, while computing all routes took much longer.
for all three pairs of source and target instances. We observed that~0r example, a route was computed in under 1 second, Whife-

the performance of the algorithm decreases with the increase of thePuteAllRoutes took about 18 seconds to construct the routes forest
MIT factor, as in the relational case. However, we noticed a more for a set of 10 target elements in the Mondial scenario.

drastic decrease in performance with the increase in the number

of joins in the tgds. This is not unexpected, since the free version 5. RELATED WORK

of Saxon XSLT engine which we use in tfiadHom procedure
does not perform join reordering and simply implements all for-
each clauses as nested loops.

Deep-hierarchy scenarioTo analyze the effect of the depth of se-
lected elements on the performance, we designed a schema ma

A framework for understanding and refining schema mappings
in Clio, where both the source and target schemas are relational, is
proposed in [25]. The main focus of [25] is the selection of a good
source and target instance that is illustrative of the behavior of the
schema mappings. Our debugger differs from [25] in that: (1) Our

88

debugger works for relational or XML schema mappings. (2) We evant tuples in the source instance.) Consequently, the process of
allow any source instance to be used for debugging the schemacomputing a route fot is more complex in our case, since it is
mapping. Since the instances are crafted in [25], routes are prede-no longer sufficient to pose a single query over the source instance
termined. In our case, we do not generate instances and routes aras in [7]. Fourth, we have extended our approach for computing
computed only “on demand”. We allow a user to create and use anyroutes in the context of schema mappings where the source and tar-
source instance that she thinks is representative for debugging, andyet schemas can be nested, while the approach of [7] handles only
this is similar to creating test cases for testing the correctness of arelational views defined over relational sources. Lastly, [7] handles
program during a software development cycle. The work of [25] aggregates and negation. The language of schema mappings we
is thus complementary to our debugger. It would be desirable to consider cannot express aggregates or negation.
incorporate the functionality of [25] into our debugger and investi- The approach of [7] i$azyin the sense that the SQL query that
gate what are representative instances for debugging in general. describes the transformation is not re-engineered and provenance
Commercial systems such as Altova’'s MapForce [14] and Sty- is computed by (subsequently) examining the query, and the source
lus Studio [19] ship with integrated debugging facilities for data and target databases. In contrast, several systems such as Explain
exchange. These systems rely directly on “lower-level” languages [3], DBNotes [5], the MXQL system of [23], and recently Mon-
such as XSLT or XQuery for specifying the exchange. Hence, their drian [10], adopt thé@ookkeepin@r eagerapproach for computing
built-in debugging tools are simply XSLT or XQuery debuggers. provenance. In these systems, the transformation is re-engineered
Our debugger, however, debugs at the level of schema mappings. to keep extra information from the execution. Consequently, prove-
The problem of computing a route is similar in spirit to the prob- nance can often be answered by examining only the target database
lem of computing th@rovenanc€or lineagg of data. Our route al- and the extra information. Explain is an explanative module for
gorithms also bear resemblance to top-down resolution techniquesthe CORAL deductive database system. Explain records additional
used in deductive databases. In the next two sections, we comparenformation during the execution of a rule-based program and uses

our work with related work in these areas in more detail. this information for explaining how a certain conclusion is reached,
. as well as identifying consequences of a certain fact produced by
5.1 Computing the provenance of data the program. DBNotes has functionalities similar to Explain, where

Cui et al. [7] studied the pr0b|em of computing the provenance such additional information is a Special form afinotationsthat
of relational data in a view in the context of data warehousing. The can be propagated through a special query language. Mondrian ex-
provenance of a tuple in a view is described as the tuples in the tends DBNotes to allow annotations on sets of values.
base tables that witness the existence of that tuple. Whenever the In[23], the authors propose a concept of provenance at the level
provenance of a view tupleis sought, the approach of [7]is to Of schema mappings for data exchange. The underlying data ex-
generate a query to retrieve all combinations of base tuples thatchange transformation engine is reengineered so that additional in-
together with the view definition justify the existence tof This formation about which source schema elements and mappings con-
type of provenance is also callethy-provenance [6]. tributed to the creation of a target data is propagated along and

There are several differences between our work and the approactstored with the target data. In particular, it modifies the way queries
of [7]. First, observe that part of the input to our route algorithms are generated in Clio in order to capture additional information dur-
is (I, J), whereJ is asolutionfor I under the schema mapping. ing the exchange. This information can later be queried using a
Since.J is any solution, there may exist tuples.irwith no routes. special query language called MXQL. Our debugger is similar to
In contrast, in the context of [7], the equivalent.biis the output ~ [23] in that it operates over relational or XML schema mappings.
of an SQL query executed ovér Consequently, the provenance However, our approach is different from [23] in two aspects. First,
of every tuple inJ always exists. The second difference lies in the our debugger can be used “as is” on data exchange systems based
representation of provenance. Our route algorithms operate with ©n similar formalisms for schema mappings. It does not require
schema mappings, and not with SQL queries as in [7]. In our case, changes to the underlying engine. Second, wea#nmatically
a tuple inJ may relate to several other intermediate tupled in ~ compute routes for any source or target data selected by a user
and J through possibly different tgds. Our route captures these and these routes contain information about schema-level, as well as
“intermediate relationships” between tuples. In contrast, the prove- data-level provenance. In contrast, the approach of [23] reqaires
nance of a tuple as defined in [7] is the set of source tuples, that User to be familiar with MXQL to query about schema-level prove-
will witnesst according to the SQL query. (We will exemplify this ~ hance, while data-level provenance is not considered.
point after we describe the next difference.) The third difference ~ We emphasize that it is our design choice not to adopt the eager
is that the language of schema mappings allows one to define re-approach for computing routes, since this approach may involve
cursive computations. In contrast, recursive views are not handledre-engineering the underlying system. We want our debugger to
in [7]. Even if recursive views were handled in [7], the descrip- readily work on top of Clio or (future) data exchange systems or
tion of provenance only with source tuples can be unsatisfactory asdata integration systems that are based on a similar formalism for
the following example illustrates. Consider a schema mappiig ~ schema mappings. It is worth commenting that there is existing
whereX,, consists of one s-ttgd; : S(z,y) — T(z,y) andX, research on both the lazy [6, 7] and eager [5, 10] approaches to
consists of a target tgeh : T'(z,y) A T(y, z) — T(z, z) that de- computing provenance when the transformation is described as an
fines the transitive closure of the binary relatibn Let the source ~ SQL query. However, when the transformation is described as a
instancel = {s; : S(1,2),s2 : S(2,3)} and the target instance ~ Schema mapping, only the eager approach for computing prove-
J = {t1 : T(1,2),ts : T(2,3),t5 : T(1,3)} which is a solu- nance has been studied [23]. Our work fills in the missing gap of
tion for I underM. Clearly, the two source tuples witneigswith using a lazy approach for computing the provenance of data when
M, but this is not as informative as showing a roste-—- 1, the transformation is specified by a schema mapping.
S0 25 o, t1, 12 2, ¢4 that describes all the intermediate re- . .
Iationships.{ In p;rticular, the fact that is a consequence @f 5.2 Approaches in deductive databases
andt. with o4 is captured in the route. (For simplicity, we have Our route algorithms bear resemblance to top-down approaches
omitted the homomorphisms in each step and showed only the rel-such as the SLD resolution technique [1] for evaluating datalog. In

89

Total | Atomic | Nest. Inst. | [Xst 2006.

Schemas elems| elems | depth size | /%] [3] T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and
S: | DBLP;(XML) 65 57 1 | 640KB D. Sri t Explaini tion in deducti

DBLP, (XML) 50 v 71 850KB | 10/14 . Srivastava. Explaining program execution in deductive
T: | Amalgam (Rel) 117 100 T 1T.IMB systems. IDOOD, pages 101-119, 1993.
S: | Mondial (Rel) 157 129 1 VB [4] P. A. Bernstein. Applying model management to classical
T: | Mondiak(XML) 144 112 4| 1.2MB | 13/25 meta data problems. BIDR, pages 209-220, 2003.

[5] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An

Table 1. Real datasets and schema mappings characteristics. Annotation Management System for Relational Databases.

In VLDB, pages 900-911, 2004.

. .) [6] P. Buneman, S. Khanna, and W. Tan. Why and Where: A
fact, sophisticated variants of SLD resolution such as query/sub- Characterization of Data Provenancel@DT, pages

query (QSQ) [24], rule/goal graphs [22] or OLDT [20] are even 316-330, 2001.
more closely related to our work. These approaches use memo-
ization to avoid redundant computations and infinite loops. In our
route algorithms, we also avoid redundant computations and infi-
nite loops by not exploring any branches under repeated tuples. Ex-
plored branches are never discarded and they are memoized. How-
ever, a major difference between our route algorithms and these
top-down approaches is that we make use of the target instance, . .
which is available to us. In contrast, the result of a datalog program [9] A- Fuxman, P. G. Kolaitis, R. J. Miller, and W. Tan. Peer data
is not available during resolution. A consequence of this difference exchange. IPODS pages 160-171, 2005. ,

is that we may able to detect if a tuple has no routes early in the [10] F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian:

[7] Y. Cui, J. Widom, and J. Wiener. Tracing the Lineage of
View Data in a Warehousing Environmef@ODS
25(2):179-227, 2000.

[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query AnswerihngS
336(1):89-124, 2005.

computation. The top-down techniques, in contrast, will continue Annotating and querying databases through colors and

to perform resolution down to the source tuples before deciding blocks. InICDE, page 82, 2006.

whether a tuple belongs to the output of a datalog program exe-[11] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and M. Roth.

cuted against a source instance. Clio grows up: from research prototype to industrial tool. In
Another difference is that our approach is more scalable in gen- SIGMOD pages 805-810, 2005.

eral. We are able to exploit the database engine, since we push thd12] P. G. Kolaitis. Schema mappings, data exchange, and

computation to the database by using queries in #adklom step. metadata management.RODS pages 61-75, 2005.

In contrast, top-down resolution techniques have to perform nested[13] M. Lenzerini. Data Integration: A Theoretical Perspective. In
loop joins in memory, since they expand one subgoal at a time and PODS pages 233-246, 2002.
need to perform sideways information passing to propagate the new[14] Altova MapForce. http://www.altova.com.

assignments to the unexplored subgoals. [15] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm.
Supporting executable mappings in model management. In

6. CONCLUSION AND FUTURE WORK SIGMOD, pages 167—178, 2005.

We have presented two route algorithms for computing all routes [16] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and
or one route for selected target data. The former returns a compact, V. Lee. The Amalgam schema and data integration test suite.
polynomial-size representation of all minimal routes, even though www.cs.toronto.edu/ miller/amalgam, 2001.
there may be exponentially many minimal routes for the selected [17] The Mondial database.
data. The latter avoids the computation of all routes in general by http:/iwww.dbis.informatik.uni-goettingen.de/Mondial/.
producing one route fast, if there is one, and alternative routes as[18] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Heamdez, and
needed. We are currently developing a visual interface for our de- R. Fagin. Translating Web Data. \f\LDB, pages 598-609,
bugger and we refer the interested reader to [2] for more details. An 2002.

interesting future extension for our debugger is to adapt the changeg19] Stylus Studio. http://www.stylusstudio.com.

made to the target instance dynamically along with the changes to[20] H. Tamaki and T. Sato. Old resolution with tabulation. In
the schema mapping made by the user. Our concept of a route cur- ICLP, pages 84-98, 1986.

rently does not reflect how an egd is used in an exchange. We would[21] TPC Transaction Processing Performance Council.

like to explore definitions and algorithms for computing routes that http://tpc.org.

take i_nt_o account egds. cher qu_es_tions includ_e whethe_r there is[22] J. Uliman. Implementation of logical query languages for
an efficient way of generating all minimal routes in a concise man- databases. IFODS pages 289-321, 1985.

ner, optimization opportunities i‘ti'r)dHom, as well as a systematic [23] Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing
study on how our debugger provides developmental support to de- and querying data transformations.J@DE, pages 8192
signers of schema mappings. 2005 ’ ’ '
Acknowledgements.We thank Mauricio Herandez, Howard Ho, [24] L. Vieille. Recursive axioms in deductive databases: The

Haifeng Jiang, and Lucian Popa for helpful discussions. We also query/subquery approach. EDS pages 179-193, 1986.

thank Phil Bernstein for numerous helpful suggestions. [25] L. Yan, R. Miller, L. Haas, and R. Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. In
7. REFERENCES SIGMOD, pages 485-496, 2001.
[1] S. Abiteboul, R. Hull, and V. VianuFoundations of [26] C. Yu and L. Popa. Constraint-based xml query rewriting for
DatabasesAddison Wesley Publishing Co, 1995. data integration. '8IGMOD, pages 371-382, 2004.

[2] B. Alexe, L. Chiticariu, and W. Tan. SPIDER: a Schema
mapPIng DEbuggeR. MLDB Demonstration (To appear)

90

