

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HotSWUp'09 October 25, 2009, Orlando, Florida, USA.
Copyright © 2009 ACM 978-1-60558-723-3/09/10...$5.00.

Online Application Upgrade Using Edition-Based Redefinition

Alan Choi

PL/SQL Database Sever Technology
Oracle

alan.choi@oracle.com

Abstract

This paper describes Edition-Based Redefinition (EBR) in the
Oracle database — a novel technology and methodology to build
database application patches so that installation of these patches
does not require application downtime. It discusses the challenge
of zero-downtime application patch installation and shows how
EBR can meet the challenge. Customer experience shows that
EBR provides online application upgrade in several industries.

Categories and Subject Descriptors H.2.m [Information Sys-
tem]: Database Management – Miscellaneous D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement –
Version control

General Terms: Management, Languages.

Keywords: database, availability, application upgrade, database
application development

1. Introduction

Many database applications have a very high availability (HA)
requirement. Examples include electrical and telecommunication
utility management systems. Those systems must be available all
the time to manage the systems; for electrical utility system, it
includes adjusting production, or energy trading. Another exam-
ple is global customer support system for companies like Oracle.
A support system, with database application as the backend, must
be available to log for each incoming request; calls come 24/7 for
global companies. Manufacturers rely on database applications for
inventory accounting and have large-scale factories running round
the clock. Taking applications offline shuts down assembly lines.
Firms lose millions from production and shipment delays. Data-
base applications have become an integral part of business; there
are business needs from many industries for HA software systems.

HA means not only that the application should run in the event
of unplanned hardware failure, but that it should also be available
during planned changes to the software. Although hardware fail-
ure is relatively rare, many database systems employ replication
technology to avoid or minimize hardware downtime. But data-
base application patches or upgrades occur far more frequently
than hardware failure; some application vendors issue hundreds of
patches per week. Yet there has not been a satisfactory way to
install upgrades without taking downtime. Online application

upgrade is a critical but unsolved part of HA requirement.
When an application patch modifies its database components,

the changes can be classified into two main categories: physical
changes and changing the meaning of the database objects. For
physical changes, Oracle has developed various technologies to
make changes online. However, changing the meaning of database
objects without causing disruption to the running application has
not been addressed. This is the problem that we are looking at:
online application upgrade of database components1.

In Oracle Database 11g Release2, we introduce revolutionary
new capabilities that solve the problem. This paper presents the
new technologies and how they can be used to achieve online
application upgrade.

2. Background

There are two key challenges to the problem. First, the installation
of the patch into the production database must not perturb live
users of the pre-upgrade application. Second, pre-upgrade appli-
cation and post-upgrade application must be available at the same
time: that is, there must be hot rollover.

Database objects can be broadly divided into two categories:
code objects such as stored procedures and data objects such as
tables. While a code object is only relevant to a particular version
of an application, the essence of the data (and therefore data
stored by data objects) usually spans across multiple versions of
the application even though table structure can change. Given
these observations, there are three requirements:

1. A set of code objects must be changed in an isolated envi-
ronment.

2. Common data must be visible and consistent in both envi-
ronments.

3. Non-common data must be transformed and reflected in
the other environment.

If these requirements are achieved, the end user can enjoy hot
rollover without downtime.

It has been an on-going effort to tackle this problem at Oracle.
Various technologies have been developed to minimize the dis-
turbance caused by changing the database component of an appli-
cation.

For physical changes, a number of Data Definition Languages
(DDLs) has been made transparent. For example, online index
creation and rebuild [1] and some ALTER TABLE DDLs have
been made non-blocking so that insert/update/delete (DML) is-

1
 It should be noted that this is not upgrading the Oracle Database from
release 10.2 to 11.2 say.

sued by the running application won’t be blocked [1]. This allows
online database maintenance.

For logical changes, fine grained dependency [2] prevents un-
necessary invalidation of objects if a new signature remains com-
patible with the old one: for example, adding a new column to a
table or adding a new subprogram to a package specification need
not invalidate the dependants. Further, online table redefinition
[3] provides a mechanism to make table structure modifications
without significantly affecting the availability of the table.

These technologies improved the availability during modifica-
tion of a single object. Although they laid the foundation of our
work, none of them addressed the need to modify a set of objects
in concert, the norm for patch installation.

There are two notable approaches to online application up-
grade: Schema Clone and log-based replication. Schema Clone
will split data objects into one schema and stored procedures into
another. During patch installation, the whole stored procedure
schema will be cloned into a new schema and changes will be
made in the new schema. However, this scheme has several draw-
backs. First, the complete clone is time consuming and takes
space because every object cloned will be recompiled and stored
separately. Second, this scheme requires all objects to be stored in
a single schema. Schema separation and security is lost.

The second approach is log-based replication. Golden Gate
software has successfully used log-based replication to perform
online application upgrade for Seibel [4]. This approach requires
a replica database. All the changes will be made in the replicated
database, which is completely isolated from the production one.
Therefore, unlike Schema Clone, it does not have the single-
schema restriction. Data changes in the production are captured
by mining the transaction (redo) log and then propagated to the
replica and vice versa for hot rollover deployments. The hetero-
geneous nature allows this approach not only to upgrade database
application, but it can also be used to minimize downtime during
database upgrade [5]. However, the flexibility comes with a cost.
First, requiring a replica means doubling resources. The second
drawback is the lack of transactional synchronization between
production and replica because synchronization happens only
after commit. Therefore, complex conflict resolution schemes are
required during hot rollover.

In Oracle 11.2, we introduce Edition-Based Redefinition
(EBR) to solve the zero downtime application upgrade problem.
With EBR, we achieve the goal using a single database and can
span multiple schemas, eliminating the drawbacks of the two ex-
isting approaches. In the rest of the paper, we first go over the
new technologies briefly, present a sample case study, and then
discuss the technologies in detail.

3. Edition-Based Redefinition

In Oracle 11.2, we bring three new features to help achieve online
application upgrade: the edition, the editioning view, and the
crossedition trigger. With an edition, the same object can occur
many times in one database; each occurrence is in a different edi-
tion. Thus, the edition provides an isolation mechanism: object
changes in one edition will not affect the object in other editions.
Data, which is private to the new edition, is stored in new col-
umns or new tables, an editioning view presents logical projec-
tions (that is, a subset of data) of the underlying table to each
edition: a different projection of a table into each edition to allow
each to see just its own columns. All application code should be

targeting logical schema projected by editioing views, instead of
the underlying table2. The post-upgrade application can make data
changes safely by writing only to the new columns or new tables
not seen by the old edition. Uncommon data between the old and
the new edition is synchronized by a crossedition trigger. When-
ever there are data changes in the old edition’s column, crossedi-
tion triggers will propagate the changes into the new edition’s
column, and vice versa. The following case study will demon-
strate how these three technologies can be used to produce and
install a patch online.

4. Case Study

The HR sample schema, as shipped by Oracle Corp, has a single
column for phone number. For globalization purpose, the new
version of the HR application will have separate country code and
number within the country. A few PL/SQL stored procedures and
views will be updated to support the new business logic related to
country code while most of the remaining ones will remain un-
changed because primary functionalities remain the same: adding,
modifying, and querying personal information. The characteristic
of this patch — some schema changes, some code changes, reus-
ing existing data — is a good representation of a typical patch.
We will show how this upgrade can be done without forcing any
downtime.

4.1 Installing An Upgrade

Before the upgrade begins, the existing application is using the
pre-upgrade edition, as shown in figure 1. It holds the stored pro-
cedure Show_Employees and the editioning view Employees. The
Employees editioning view only selects columns relevant to the
current edition from the Employee_ table, which is visible from
across all editions. In the pre-upgrade version, only ID and Ph are
the relevant columns. When the patch installation begins, the
post-upgrade edition will be created to host the new version of the
editioning view Employees and the new Show_Employees stored
procedure. Because the installation happens in the post-upgrade
edition, it won’t affect the objects in the pre-upgrade edition. The

2
 There is a readying step to use EBR. It must first create an editioning
view for each table, and have all application code referring to the edition-
ing views. Refer to section 5.2 for details.

Oracle confidential – do not copy distribute

ID Ph. …

Employees_

Cntry #

Post_Upgrade

Pre_Upgrade

Show_ EmployeesEmployees

Fwd Xed

Rvrs Xed

Show_ EmployeesEmployees

Figure 0. upgrade installation.

patch will also add two new columns to the table Employees.
Because no object, other than the editioning view, is referring to
the table directly, adding new columns will not invalidate any
object. The pre-upgrade application, therefore, can continue to
operate undisturbed.

FwdXed and RvrsXed are the crossedition triggers for data
synchronization between the pre-upgrade and post-upgrade appli-
cation. When the pre-upgrade application modifies the old phone
number column, FwdXed will reflect the corresponding changes
in the new country code and new phone number columns within
the same transaction. On the other hand, when the post-upgrade
application modifies the country code or the new phone number
columns, RvsXed will propagate the corresponding changes back
to the old phone number column. Both pre-upgrade and post-
upgrade applications can run simultaneously, sharing a consistent
set of data across both editions. End user sessions can enjoy hot
rollover. Once all the end-use sessions have migrated to the post-
upgrade application, the pre-upgrade application can then be re-
tired.

4.2 Rolling Back An Upgrade

If the post-upgrade application has not gone live yet, EBR pro-
vides an easy way to rollback the upgrade. It involves two steps:
dropping the post_upgrade edition and setting any new columns
or tables to unused. Optionally, the unused columns/tables space
can be recovered later. None of the steps affect the availability of
the pre-upgrade application.

5. Edition-Based Redefinition In Depth

We have demonstrated how EBR enabled online patch installa-
tion. We now move forward to discuss EBR in depth.

5.1 Edition

The primary goal for Edition is to provide an isolated environ-
ment so that a set of code objects, such as PL/SQL, views and
trigger, can be changed in concert. However, not all object types
should be private to an edition. Data objects, such as tables, must
be visible and identical across all editions for data sharing pur-
pose. In terms of performance, the creation of an edition must be
very fast but in terms of semantics, it must provide a complete
copy of the pre-upgrade objects. This criterion is critical because
the overhead must be small and the upgrade cost should reflect
the size of the upgrade compared to the overall application size.

With these objectives in mind, we have designed Edition with
these semantics:

1. There are two classes of object types: editionable types and
non-editionable types. An object whose type is editionable can
have its own private occurrence of the same object. An object
whose type is non-editionable is identical and visible across
all editions.

2. When a new edition is created, it will have a complete snap-
shot of all the editionable objects from the latest edition at edi-
tion creation time.

3. Changes to editioned objects are private to the edition in
which the changes happened.

We choose an inheritance model as our implementation, and
this model gives us some nice performance characteristics. Figure
2 and 3 demonstrate how the inheritance model works.

As shown in figure 2, when the post-upgrade edition is cre-
ated, for each object in the pre-upgrade edition, a placeholder
pointing to the corresponding object in the pre-upgrade edition
will be created. An object denoted by such a placeholder is called
an inherited object. Creating inherited objects is an extremely low
cost operation. It does not require compilation nor does it copy
metadata. The low cost allows all inherited objects to be created

Object_4

Object_3

Object_2

Object_1

(Object_4)

Object_3

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(dropped)

(actual)

(inherited)

(inherited)

Object_4

Object_3

Object_2

Object_1

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(inherited)

(inherited)

(inherited)

(inherited)

Object_4

Object_3

Figure 2. Initial state of a new edition.

Oracle confidential – do not copy distribute

Post_Upgrade

Pre_Upgrade

Show_ EmployeesEmployees

Fwd Xed

Rvrs Xed

ID Ph. …

Employees_

Cntry #

Show_ EmployeesEmployees

Figure 1. Rolling back an upgrade.

Figure 3. Inherited, actual, and dropped Object in an Edition.

in a single transaction – in effect, a snapshot of the pre-upgrade
edition.

Figure 3 shows that the patch modifies object_3 and drops ob-
ject_4 in the post-upgrade edition, but leaves object_1 and ob-
ject_2 unchanged. Because object_3 is modified, it becomes
actual and is compiled with all its metadata written to disk. The
cost of this action would be the same as if a brand new object is
created. The drop operation on object_4 simply requires deleting
the placeholder. Because there is no metadata, this drop operation
is even more efficient than dropping an actual object.

Execution of an object always happens inside a PL/SQL block
or a SQL statement which requires compilation. During compila-
tion, the name of the object will be resolved and all its data will
be loaded. For an inherited object, all its metadata comes from the
object that it is pointing to and therefore name resolution per-
forms one level of re-direction. The re-direction cost is negligible,
and it only occurs during compilation. Once the PL/SQL or SQL
is compiled, executing an inherited object is no different from
executing an actual object. Compilation of PL/SQL or SQL in a
live production system is rare. Most of the compilation usually
happens during system cold start; the compiled PL/SQL or SQL
should remain in memory afterwards.

5.2 Editioning View

A table has two responsibilities: storing data and presenting a
schema. The commonality of the data must be shared by both pre-
upgrade and post-upgrade applications. However, the non-
common data and the table schema must be private to each edi-
tion. The editioning view solves this problem. A table is now re-
sponsible for storing all the data for all editions while the
editioning view is responsible for providing the correct subset of
data by projecting a subset of columns from the underlying table.
An editioning view is a special kind of view that may only project
and rename columns. Under EBR, application code should always
refer to editioning views instead of the underlying tables. Edition-
ing views shield the application code from any irrelevant changes
to the underlying table.

To use EBR, an existing application has to cover all tables
with editioning views. Only editioning views and crossedition
triggers should refer to the base tables directly. Given that re-
quirement, the editioning view has these characteristics:

1. Replacing tables with editioning views should be a mechanical
task (that is, little human effort).

2. There should be no further application code changes (because
all operations directed to the table now see the view, the view
must support all these operations).

3. There should be no performance degradation.

A regular view cannot satisfy the second and third objectives
because of some subtle restrictions, although it can satisfy the first
one, by renaming all table X to X’ and then create a view X as
select * from X’. Triggers, for example, can only be created on a
table and can’t be created on a view [1][6]. In terms of perform-
ance, Oracle’s index hint only accepts table names, not views. It is
not uncommon for a highly tuned application to use this hint to
squeeze extra performance. Simply replacing a table with a regu-
lar view would nullify the hint.

Editioning views solve both of these problems: triggers can be
defined on them and hints can refer to them. After replacing tables
with editioning views, application code will require no further
changes.

5.3 Crossedition Trigger

If the upgrade needs to change the structure of a table that stores
transactional data, then the installation of values into the replace-
ment columns must keep pace with these changes in the old col-
umns, and vice versa. A trigger has two key properties that make
it an ideal synchronizer: transactionalilty and low overhead. Being
transactional guarantees that values in the old and new columns
are always in sync: either both are committed or both are aborted.
Conflict is detected at the transaction level, which the application
must have existing mechanisms to manage. We have measured the
trigger overhead by creating an empty per-row trigger (which does
nothing in the trigger body) on all the tables in TPCC benchmark.
The experiment shows that the overall throughput drops 3%,
when compared to a regular TPCC setup, an acceptable price for a
zero-downtime patch installation.

We introduced two kinds of triggers: forward crossedition
trigger and reverse crossedition trigger with special firing rules to
help developers to code these transformation triggers. A forward
crossedition trigger is responsible for bringing old columns values
to the replacement column and will fire in response to DML in the
pre-upgrade edition. A reverse crossedition trigger is responsible
for bringing replacement column values back to the old columns
and will fire in response to DML in the post-upgrade edition.

We also introduced trigger-firing order, essential for a correct
transformation. Consider the case where an application triggers in
the pre-upgrade application modifies a column value during in-
sert. That is the value that should be propagated. Therefore, cross-
edition triggers should fire after all other application triggers have
been fired. Placing crossedition triggers as the last ones to fire
guarantees that the value propagated is the final value of the
DML. Because trigger-firing order could be useful for general
use, we’ve extended this feature for regular triggers.

With a special firing rule and user-defined firing order, crosse-
dition triggers provide an efficient and manageable way to syn-
chronize data between the pre-upgrade and post-upgrade
application.

6. Conclusion

Online application upgrade is not a niche feature for a few com-
panies. From the business perspective, taking critical software
components offline means stopping the entire business flow,
which translates to loss of revenue, loss of customer satisfaction,
or in the most severe case, a violation of contract. The demand is
real and urgent. Achieving it gives business a strong competitive
edge.

We’ve demonstrated our technology, edition-based redefini-
tion, can be used to upgrade the database component of a database
application without causing any disruption to the end-user. Unlike
other HA features, which are used by the DBA at the deployed
site, this technology has to be understood by the developers of the
database application when preparing the application for online
upgrade and when implementing an upgrade script. Only then can
the application be upgraded without losing availability.

At the time of this paper, Oracle 11.2 has just been released for
a month. Therefore, no customers are using it in production.
However, customers who participate in the 11.2 Beta Program
tested it extensively, declared it fit for its purpose, and are intend-
ing to use EBR in production at the earliest opportunity. Our
customers Betfair, which operates a 24/7 global business, and IFS,
which provides applications for round-the-clock global business,
hope to enable online application through EBR. These customers
show the real world demand for online application upgrade and
validate EBR.

References

[1] Oracle Database SQL Language Reference, 11gRelease 2 (11.2)

[2] Oracle Database New Features Guide 11gRelease 1(11.1)

[3] Oracle Database Administrator’s Guide 11gRelease2 1(11.2)

[4] Doug Reid: Upgrading Oracle Siebel CRM with zero downtime: best
practices, March 2009

[5] Database Rolling Upgrade Using Data Guard SQL Apply, Oracle
Database 11g and 10gR2

[6] ISO/IS Database Language SQL – Part 1: SQL/Framework, section
4.6.6.4, July 1999

