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Abstract. Providing support for schema evolution allows existing databases to be adjusted for varying 
roles over time. This paper reflects on existing evolution support schemes and introduces a more 
general and functional mechanism to support schema evolution and instance adaptation for centralized 
and distributed object-oriented database systems. Our evolution support scheme is distinguished from 
previous mechanisms in that it is primarily concerned with preserving existing database objects and 
maintaining compatibility for old applications, while permitting a wider range of evolution operations. 
It achieves this by supporting schema versioning, allowing multiple representations of instances to 
persist simultaneously, and providing for programmer specification of how to adapt existing instances. 
The mechanism is general enough to provide much of the support necessarily for heterogeneous 
schema integration, as well as incorporating much of the features of object migration and replication. 
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I.  In troduct ion  

Object-oriented database systems (OODBS) are considered distributed when they 
are composed of multiple database servers at multiple sites, connected via a 
network. Distribution is motivated by both economics and pragmatics. Econom- 
ically, it allows for a sharing of resources: a collection of networked computers 
sharing the work and the storage load of a large and active database. Prag- 
matically, distribution can improve reliability and accessibility to the database by 
providing continued access to much of the database in spite of isolated hard- 
ware failures. Replication of the data can further improve database availability 
by reducing the likelihood that a particular piece of data would only exist at 
inaccessible sites. 

Distributed object-oriented database systems (DOODBS) are (minimally) com- 
posed of: 

• A collection of network-accessible computing sites, 
• A schema: a set of class definitions, including an inheritance hierarchy. A 

class definition defines a set of typed attributes (the representation) and a set 
of methods (the interface). 

• A database: a set of persistent objects, residing on any of the distributed sites, 
each an instance of a class defined in the schema, and each with a unique 
identity [19]. 



102 CLAMEN 

• A set of application programs, interacting with the objects in the database via 
the interfaces defined in the schema. 

DOODBS can be categorized by the degree of autonomy exhibited or permitted 
each constituent database. They can also be classified with respect to the 
heterogeneity of their data models and their choices with respect to a schema [27]. 

This paper distinguishes between DOODBS with a homogeneous schema and 
those with heterogeneous schemas) Homogeneous DOODBS, although imple- 
mented on multiple database servers, share a common data representation and 
interface. Each database making up a heterogeneous system has its own schema. 
For simplicity, we will assume that the only source of heterogeneity is schemat- 
ic; we will not address the potential differences in data or query models that 
multidatabase systems might possess. 

The primary challenge in the design and implementation of a distributed 
database system is in making its use (by the user or application program) as 
transparent as possible. Ideally, a user should be able to interact with the 
set of distributed databases as if they constituted a single, local one. For 
heterogeneous DOODBS, this means that some mechanism must exist to relate 
the various schemas and their instances. This process, called schema integration, 
has been addressed in the context of distributed relational systems (RDBS). The 
information that relates the heterogeneous schemas to each other can be termed 
the integration schema. A sample set of heterogeneous schemas are presented 
in Figure 1. 

1.1. Schema evolution and distributed object-oriented databases 

Database systems exist to support the long-term persistence of data. It is natural 
to expect that, over time, needs will change and that those changes will necessitate 
a modification to the interface for the persistent data. In an object-oriented 
database system, such a situation would motivate an evolution of the database 
schema. For this reason, support for schema evolution is a required facility in 
any serious OODBS. 

OODBS were motivated by research into the development of applications 
centered around design tasks. The design applications, exemplified by CAD/CAM 
systems, multimedia and office automation facilities, and software engineering 
systems, are characterized by their combined need for database and programming 
language functionality. But these design applications, which use the persistent 
store as a medium for the sharing of complex information, are all the more 
susceptible to schema changes, as the design process is an evolutionary one [16]. 

Many of the tasks in this domain can benefit from the distribution of the 
persistent data repository. With the large quantities of complex information that 
might be involved, distribution promotes the sharing of the expense of maintaining 
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i I 
Title: str ing 

Author (s) : s t r ing 

Dewey No. : str ing 

Publisher : s t r ing 

Entry No. : integer 

LoanedTo : CardHolder  

T i t l e :  s t r ing 

Author(s) : s t r ing 

LC No- : str ing 

Publisher: str ing 

LoanedTo : CardHolder 

(a)  (b) 

Title: string 

Author(s) : s t r ing 

Lib. & Call No. : s t r ing list 

Publisher: string 

LoanedOut : boolean list 

(c) 

Figure I. Two schemas to integrate: Here are two (simplified) schemas representing the local card 
catalogues of two distinct university libraries. Integrating the two base schemas results in a unified 
card catalogue for the campus, for use by the students. The result would see one Library E n t r y  

instance for each Science Library Entry or Humanities Libraxy Entry instance. 

the hardware resources. While communication among users via the database 
is a necessity, much of the work in design applications is localized, composed 
of long-lived, personal (design) transactions. Reliability (in the presence of 
potential communication failure) and efficiency could be gained by maintaining 
a proximate relationship between the data and most likely user. Also, there are 
management benefits to dividing the facility into smaller components. 

Our evolution support scheme is distinguished from previous mechanisms in 
that it is primarily concerned with preserving existing database objects and 
maintaining compatibility for old applications, while permitting a wider range 
of evolution operations; previous schemes tend to support a limited variety of 
evolutions and rarely provide application compatibility support. Compatibility 
is supported by versioning the schema and allowing multiple representations of 
objects to persist simultaneously. The range of supported evolutions is increased 
by allowing the programmer to specify the relationship between the old and new 
object representations. 
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1.2. Guide to the paper 

This paper is structured as follows: Section 2 discusses the issues associated 
with schema evolution and presents some previous approaches to the problem. 
Section 3 presents our new, flexible evolution scheme and explains how it is 
general enough to support much of what is required to support heterogeneous 
schema integration as well. Section 4 relates the scheme to some other DOODBS 
issues such as object migration and replication. Section 5 provides concluding 
arguments and outstanding research issues. 

2. Schema evolution in object-oriented databases 

When the schema changes so does the application/database interface, possible 
leaving incompatible elements on both sides of the abstraction barrier. We will 
focus on the problem of managing those (pre-)existing database objects, what we 
call the instance adaptation problem. In this section, we will examine the limita- 
tions of existing (schema) evolution and (instance) adaptation schemes. Towards 
the end of the section, we will illustrate how the schema evolution problem is 
very similar to the problem of heterogeneous database schema integration. 

2.1. Existing approaches 

Two general instance adaptation strategies have been identified and implemented 
by various OODB systems. The first strategy, conversion, restructures the affected 
instances to conform to the representation of their modified classes. Conversion 
is supported by the ORION [2, 20] and GemStone [8] systems. 

The primary shortcoming of the conversion approach is its lack of support for 
program compatibility. By discarding the former schema, application programs 
that formerly interacted with the database through the changed parts of the 
interface are now obsolete. This is an especially significant problem when 
modification (or even recompilation) of the application program is impossible 
(e.g., commercially distributed software). 

Rather than redefining the schema and converting the instances, the second 
strategy, emulation, is based on a class versioning scheme. Each class evolution 
defines a new version of the class and old class definitions persist indefinitely. 
Instances and applications are associated with a particular version of a class 
and the runtime system is responsible for simulating the semantics of the new 
interface on top of instances of the old, or vice versa. Since the former schema 
is not discarded but retained as an alternate interface, the emulation scheme 
provides program compatibility. Such a facility has been developed for the 
Encore system [29]. 

Encore pays for this additional functionality with a loss in runtime efficiency. 
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Under a conversion scheme, the cost of the evolution is a function of the 
number of affected instances. Once converted, an old instance can be referenced 
at the same cost as a newly created one. However, the cost of emulation 
is paid whenever there is a version conflict between the application and a 
referenced instance. 

We feel however that program compatibility among schema versions is a 
very desirable feature under certain circumstances. It can be of great utility 
in situations where the database is shared by a variety of applications, as in 
computer-aided design or office automation systems, when the database acts as 
a common repository for information, accessed by a variety of applications. As 
these types of applications are also those which benefit from distribution, we see 
that compatibility support in DOODBS is all the more desirable. 

Our scheme supports program compatibility by maintaining multiple versions of 
the database scheme. Old programs can continue to interact with the database (on 
both new instances and old) using the former interface. Rather than emulating 
the evolved semantics all at runtime, efficiency is gained by representing each 
object as an instance of each version of its class. In this manner, our system 
effects a compromise between the functionality of emulation and the efficiency 
of conversion. 

Another failing common to the conversion-based evolution facilities is the 
limitations placed on the variety of schema evolutions that can be performed. 
Most existing systems restrict admissible evolutions to a predefined list of schema 
change operations (e.g., adding/deleting an attribute or method from a class, 
altering a class's inheritance list). The length of this list might vary from system 
to system, but they are all similar in the way they support change: The set of  
changes that can be performed are those which require either a fixed conversion 
of existing instances or no instance conversion at all. Unfortunately, change is 
inherently unpredictable. A desired evolution is sometimes revolutionary and 
under such circumstances, these systems prevent the database programmer from 
performing the desired changes. 

We are interested in supporting evolution in a liberal rather than a conservative 
fashion; rather than the system offering a list of possible evolutions to the 
programmer, the programmer should be able to specify arbitrary evolutions and 
rely on the system for assistance and verification. Change is a natural occurrence 
in any engineering task, and engineering-support systems should help rather than 
hinder when an evolution is required. 

Although Encore's emulation facility restricts the breadth of class evolution 
that can be installed, the restrictions are of a different form. Since instances, 
once created, cannot change their class-version, evolutions that require additional 
storage for each instance cannot be defined. 

In the next section, we present a model for specifying schema evolutions 
and instance adaptation strategies. Our system supports program compatibility, 
accepts a larger variety of evolutions than existing systems, and supports a variety 
of options to make it more efficient than the pure emulation facility of Encore. 
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A number of evolution support systems have been incorporated into existing 
systems or proposed in the literature. Notable representatives are described 
below. 

2.1.1. ORLON. The most ambitious and effective example of a schema evolution 
support facility is that provided by the distributed (homogenous) OODB system 
ORION [2, 20, 21]. ORION provides a taxonomy of schema evolution operations 
(e.g., add a new class; add a new class attribute; rename a class attribute; change 
the implementation of a class method.) It also defines a database model in the 
form of invariants that must be preserved across any valid evolution operation 
and a set of rules that instruct the system how best to maintain those invariants. 
Under this model, a schema designer specifies an evolution in terms of the 
taxonomy and the system verifies the evolution by determining if it is consistent 
with the invariants and then adjusts the schema and database according to the 
appropriate rules. 

ORION can only perform those evolutions for which it has a rule defined. 
The set of rules is fixed. For example, changes to the domain of an attribute 
of a class are restricted to generalizations of that domain. This restriction 
exists because there is no facility in ORION's evolution language for explaining 
how to "truncate" attribute values that are now outside the attribute's domain. 
(Generalizations of the attribute domain are allowed since this evolution does 
not require existing instances to be modified.) 

In ORION, evolutions are performed on a unique schema. Instances are 
converted lazily. There is no compatibility support for old programs and, 
depending on the evolution, information contained in the instances might be lost 
at conversion time. (e.g., deletion of an attribute.) 

The last implementation of ORION, ORION-2[22], supported personal data- 
bases in association with a central public database. Personal subschema could 
be devloped but could not be defined in opposition to the information contained 
in the central (public) schema. When information is moved from a personal to 
the central database, the personal subschema is merged into the central schema. 

2.1.2. Encore. Encore implements emulation via user-defined exception handling 
routines. Whenever there is a version conflict between the program and the 
referenced instance, the routine associated with that method or instance (and 
those pair of versions) is called. The routine is expected to make the method's 
invocation conform to the expectations of the instance or make the return 
value from the method invocation consistent with the expectations of the calling 
program, whichever is appropriate. It is known, however, that certain evolutions 
cannot be modeled adequately under this scheme. The problem stems from 
the fact that each object can only instantiate a single version. If an evolution 
includes the addition (subtraction) of information (e.g., the addition (deletion) of 
an attribute), there is no place for older (newer) instances to store an associated 
value. The best a programmer could do in such a system is associate a default 



SCHEMA EVOLUTION AND INTEGRATION 107 

attribute value for all instances of older (newer) type-versions by installing an 
exception handling routine to return the value when an application attempts to 
reference that attribute from an old (new) instance [29]. 

2.1.3. The common lisp object system. CLOS [17, 30], while not an OODB system, 
provides extended support for class evolution nonetheless. As Common Lisp 
system development is performed in an interactive context, class redefinition 
is a frequent occurrence. Rather than discard all existing instances, CLOS 
converts them according to a policy under the control of the user. The default 
policy is to reinitialize attribute values that no longer correspond to the attribute 
domain, and to delete attribute slots that are no longer represented in the class 
definition. Users can override this policy by defining their own method that is 
called automatically by the system. This method is passed as arguments the old 
and new slot values, so relationships between deleted and added attributes can 
be enforced [30, p.859]. 

2.I.4. Other approaches. Bertino [3] presents a schema evolution language 
which is an OODB adaptation of the view mechanism found in many relational 
database systems. Her primary innovations are the support of inheritance and 
object IDs (OIDs) for view instances, two important characteristics of OODB 
models that are not present in the relational model. View instances with OIDs 
are physically realized in the database, enabling the view mechanism to support 
evolutions that specify the addition of an attribute, as envisioned by Zdonik [34]. 
However, Bertino's scheme focuses on how evolutions affect the schema. It is 
not concerned explicitly with the effects upon the instances nor with compatibility 
issues. 

Zicari proposed [35, 36] a sophisticated evolution facility, providing an advisory 
program to determine at evolution time whether the evolution is consistent with 
interclass and method dependencies. Evolution transactions are introduced to 
allow for compound evolution operations. However, Zicari's lack of concern for 
instance adaptation is evident; by defining the attribute-renaming evolution as 
the atomic composition of the attribute-delete and attribute-add operations, his 
scheme fails at the instance level. 

Monk's CLOSQL [25] implements an class versioning scheme, but employs a 
conversion adaptation strategy. Instances are converted when there is a version 
conflict, but unlike ORION, CLOSQL can convert instances to older versions of 
the class if necessary. 

Lerner's OTGen design [23] addresses the problem of complex evolutions 
requiring major structural conversions of the database (e.g., information moving 
between classes, sharing of data using pointers) using a special-purpose language 
to specify instance conversion procedures. As it was developed in an integrated 
database context, where the entire application set is recompiled whenever the 
schema changes, versioning and compatibility were not considered. However, 
Lerner's language supports a variety of evolutions and associated adaptations 



108 CLAMEN 

that are not addressed in many other papers, most notably evolutions that alter 
the structure of shared component objects. 

Bratsberg [6, 7] has been developing a unified semantic model of evolution 
for object-oriented systems. Similar to our work, compatibility for old clients is 
described in the context of relations, maintaining consistency between views. 

One significant difference between our respective threads of research is our 
concentration on the variety of adaptation strategies and representations for the 
(possibly) multifaceted instances. This is reflected in this paper's discussion of 
the range of possible adaptation strategies, depending on the (expected) access 
patterns of the affected instances. 

2.2. Schema modification versus class versioning 

The schema evolution support provided by such systems as ORION and GemStone 
is restricted to what Kim calls schema modification, that is, the direct modification 
of  a single logical schema [21] When only one database schema exists, it is 
appropriate for the system to convert all existing instances. From a database 
consistency perspective, it must appear that all instances have been converted 
when the evolution operation is applied. 2 In fact, we would claim that it is the 
only sensible approach. 

As has already been stated, however, conversion might render the instances 
inaccessible to applications that had previously referenced them. The adaptation 
strategy converts the instances but does not alter procedural references. Thus, 
application programs written and compiled under the old schema may now be 
obsolete, unable to access either the old, now converted, instances, or the ones 
created under the new schema. 

A reasonable direction of research here would be to provide some automated 
mechanisms to assist with program conversion; it is an active line of research [1, 
13]. In the OODB context, some work has been conducted at providing support 
to alert the programmer about the procedural dependencies of their evolution 
operation [10, 33]. But this is not the only possible solution. Rather than adjust 
programs to conform to the data, it would seem easier to adjust the data to 
conform to the existing programs. Also, it is not always possible to alter, or 
even recompile, programs (e.g., commercially available software). This lack of 
compatibility support is our primary motivation for adopting a class versioning 
design for evolution management and support (Section 3). 

Under a class versioning scheme, multiple interfaces to a class, one per version, 
are defined. When compiled, application programs are associated with a single 
version of each of the classes it refers to; a schema configuration, if you will. 
With the database populated with instances of multiple versions of a class, the 
runtime system must resolve discrepancies between the version expected by the 
application and that of the referenced instance. 

It is worth observing here that schema versioning introduces a notion of 
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schema heterogeneity in the absense of distributed, autonomous databases. This 
characteristic will be elaborated upon later (Section 2.4). 

2.3. Schema evolution in distributed object-oriented databases 

Distribution of a database creates new implementation issues with respect to 
schema evolution support, and increases the importance of others. 

Any OODBS requires the persistent management of the database schema(s). 
In a distributed environment, the common schema (the only schema, in the case 
of homogeneous systems, and the integration schema for heterogeneous systems) 
must remain as available as possible, so maintaining a copy with each database 
server is a reasonable decision. Changes to this schema would require updates to 
be propagated to every server, although these changes could be installed lazily, 
thereby obviating the need for all servers to be accessible at evolution time. a 

The distribution and improved ease of remote access to the database strengthens 
the motivation for backward compatibility support. The larger the community 
sharing the system and schema, the more frequent and less integrated the 
changes, the greater the need to keep evolution dependencies (both applications 
and existing persistent objects) to a minimum. 

2.3.1. Heterogeneous schema evolution. When the distributed collection of databas- 
es represent different schemas, the means and affects of schema evolution are 
altered. The primary difference is the existence of a schema hierarchy. Evolutions 
to the integration schema are distinguished from evolutions to local schemas. 

When a local schema is modified, a change to the integration schema might 
become necessary. But since the role of the integration schema is to present a 
common interface for distributed applications, only the implementation of the 
integration schema, and not its exported interface, would need any modification. 
As each database is considered autonomous, a local evolution should not affect 
the objects in remote databases. 

Evolution of the integration schema could be performed independently of the 
various distributed schemas. However, such evolutions from above might require 
coincident (or previous) evolutions on the associated databases. Such cross- 
administrative evolutions require extensive coordination, much like evolutions in 
the absence of an intrinsic evolution facility. 

2.4. Heterogeneous schema integration 

Let us review the purpose of schema integration in the context of heterogeneous 
DOODBS. A system is composed of a number of distinct databases, each with 
its own schema and its own objects. The integration schema presents a single 
schema to applications for accessing these diverse databases. (Figure 2) 
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("old"~hema~ (schemaA ~ I schemaB 1 I schemaC 1 

~"new" schema~ ~ in::~reati:'m ~ 
(a) (b) 

Figure 2. Evolution and integration: Both provide a mechanism for relating schemas: (a) evolution 
involves a migration from one schema to a new, unpopulated one; (b) integration coalesces a set of 
schemas into one, and is complicated by the fact that instances in the various source schemas may 
need to be merged (virtually or actually) into a single one in the target schema. 

Schema versioning technology could be beneficial in this context. 
Consider the heterogeneous database problem in the absence of distribution: 

imagine all the databases collected into a single database, with one large schema 
that is the disjoint union of the distributed schemas (so naming conflicts are 
avoided) and the integration schema. (Note that the classes that make up the 
integration schema are virtual, and lack instances of their own.) If our OODBS 
supported schema versioning, and supplied class emulation facilities similar to 
that provided by Encore, we could implement integration (i.e., unified access 
across the distributed schemas) by writing routines to emulate the integration 
schema in terms of each of the formerly distributed schema! (See Table 1 for 
example.) 

Integration and evolution are actually two specializations of the same problem: 
that of relating different schemas that model parts of the same domain. Their 
basic distinguishing feature is the currency of the various schemas. Integration 
is the "merging" (either via conversion or emulation) of a set of existing, 
equally current schema and associated objects. Evolution is motivated by the 
desire to move from one schema (and database) to a "new and improved" one. 
Note, however, that evolution need not always be motivated by "progress." We 
can easily contemplate the "devolutions" motivated by backward (application) 
compatibility (e.g., CLOSQL, p.8), or "backing out" of an ambitious, yet ill- 
conceived, upgrade. 

It stands to reason then, that a general mechanism could be developed to 
assist with both these tasks [7]. Such a scheme (first presented in the context of 
evolution) appears in the following section. 

3. Supporting conversion and compatibility 

Section 2.2 described the advantages of a schema versioning approach to evolution. 
Herein, we sketch an implementation for such a scheme. 
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Table 1. Emulating Integration: a rough sketch of how to implement the integration schema from 
Figure 1 using Encore-like emulation routine. The table illustrates how to emulate the attribute 
read calls for the universal Library Entry in terms of the distributed Science Library ~.ntry and 
Itumanities Library Entry schemas. (Collecting multiple book entries is omitted for simplicity.) 

To emulate from Science from Humanities 
Library Entry ... Library Entry Library Entry 

Title Title Title 

Author Author Author 

Lib & Call No. "SCI" + Dewey No. "HUM" + LC No. 

Publisher Publisher Publisher 

LoanedDut LoanedTo ~ N I L  LoanedTo ~ N I L  

3.1. Database model 

As a basis for our discussion, we will employ a simplified object-oriented database 
model. 

All objects found in the database are instances of classes. A class is record type 
of attributes and methods. An attribute is a private, named, typed representation 
of state, which can be accessed only by class methods. Methods are descriptions 
of behaviour and can be public or private to the class. Under these restrictions, 
the set of public methods describe the interface of the class, while the attributes 
model its state. 

Classes are arranged in a type hierarchy (actually a directed, acyclic graph): 
a class's interface must be a generalization of the union of its superclasses 
(supertypes); the specification of each inherited method must be at least as 
general as those of its superclasses. (It should also be stated that methods must 
have semantics consistent with those of their class's supertypes.) Instances of a 
class that is a declared subtype of another class can be referenced as if they were 
instances of the superclass. We do not consider class inheritance in our model. 

Unlike the inheritance mechanisms provided by many object-oriented languages 
and OODB systems, our model's subtyping mechanism does not compromise 
modularity but continues to provide some of the advantages of type hierarchy 
identified by Liskov [24]. The maintenance of class modularity in this regard 
greatly simplifies the evolution and adaptation model described in this paper. 

In addition to the classes, other supported types include primitive types (e.g., 
integer, floating point number, character) and arrays. 

The set of defined classes for each member database comprise the local 
database schema. Each class has an associated unique ID. All objects found in 
the database are instances of classes. Each instance is identified by a unique 
Object ID (OID), and is tagged with its Class ID (CID). 
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new attributes original attributes 

Figure 3. Zdonik's Wrapping Scheme: as in the Encore design, multiple interfaces to the class are 
preserved. Here, extra space is allocated for the attributes added as a result of the evolution, and 
applications can access the instance through either the old or new interfaces. 

For integration purposes, we will assume that there exists a global, integration 
schema, and a global method for identifying specific objects. These features will 
be elaborated upon in the course of this paper. 

3.2. Objects instantiating multiple class-versions 

Under the original Encore schema evolution support design [29], instances never 
change their type-version. Aware of the restrictions this causes (see previ- 
ous section), Zdonik proposed a scheme whereby an existing instance can be 
"wrapped" with extra storage and a new interface, enabling it to be a full-fledged 
instance of a new type-version [34]. While still accessible through its original 
interface/version, the wrapped object can also be manipulated through the new 
interface. Thus, if the class evolution specifies the addition of an attribute, the 
wrapping mechanism could allocate storage for the new slot in existing instances, 
without denying backward compatibility (Figure 3). 

Our scheme is a generalization of this approach, and resembles the view 
abstraction mechanism proposed by JANUS [14], as well as the type conformance 
principle introduced as part of the Emerald data model [4]. Instead of supporting 
a single interface, we can provide multiple interfaces to instances. Much as 
each class has multiple versions, each instance is composed of multiple facets. 
Theoretically, each facet encapsulates the state of the instance for a different 
interface (i.e., version). The representation of these instances is, abstractly, a 
disjoint union of the representation of each of the versions, and it is useful to 
consider the representation as exactly that. As will be explained later, however, 
a wide variety of representations are possible. 

As an example, consider a class U n d e r g r a d u a t e ,  originally including attributes 
Name, P r o g r a m ,  and Class, and a new version of the class with the attributes Name, 
Id Number ,  A d v i s o r ,  and Class Year. (Class is one of {Freshman, Sophomore, 
Junior, Senior}, while Class Year is the year the student is expected to graduate.) 
Degree Pgm is the degree program in which the student is enrolled, and Advisor 
is his academic advisor. While instances of Undergraduate in the database 
will contain all seven distinct attribute slots, any particular application will be 
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Name ~ Name 
• ld Number 

Degree Pgm - 
Advisor 

Class 
Class Year 

> 

shared attribute 

derived attribute 

dependent attribute 

Figure 4. Disjoint union representation of the versioned class Undergraduate. 

restricted to one version and thus only have explicit access to one facet. 
In reasoning about the relationship between any two versions of a class, 4 it is 

useful to divide the attributes into these four groups: 

Shared: when an attribute is common to both versions, 5 
Independent: when an attribute's value cannot be affected by any modifications 
to the attribute values in the other facet. 
Derived: when an attribute's value can be derived directly from the values of 
the attributes in the other facet, 
Dependent: when an attribute's value is affected by changes in the values of 
attributes in the other facet, but cannot be computed solely from those values. 

In our example (Figure 4), the Name attribute is shared by the versions, while fd 
Number is independent. Class and Class Year are both derived attributes since, 
given the current date, it is possible to derive one from the other. Advisor is 
a dependent attribute, since a change in Degree Pg-m might necessitate a change 
in advisor. Likewise, Degree pg-m is a dependent attribute, since a change in 
advisor might imply that the student has switched degree programs. 

Zdonik et al. [29, 34] almost always cite evolutions involving independent or 
derived attributes in their examples. The original Encore emulation scheme is 
adequate for supporting evolutions that introduce shared and derived attributes. 
Zdonik's wrapping proposal addresses the problems associated with independent 
attributes. Our scheme, however, will provide a mechanism for managing class 
evolutions that include the former three categories plus dependent attributes. 

3.3. Specifying an adaptation strategy (with example) 

Given two versions of a schema (simplified here to a versioned class), we 
are required to categorize the attributes (of each class-version) accordingly, 
and associate adaptation information with each of them: for shared attributes, 
identifying its "synonym" in the other version; for derived attributes, a function 
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for determining the attribute value in terms of attribute values in the other facet; 
for dependent attributes, a function in terms of the attributes of both facets. 
Independent attributes require no additional information. 

A relation for a version in terms of the other version can be generated given the 
supplied attribute-wise information. For backward compatibility to be supported, 
dependency relationships must exist in both directions between the two class- 
versions. In such cases, a correctness constraint exists, i.e., the version-wise 
relation from version A to version B must be the inverse of the relation from 
B to A. (Note that determining if the two relations are inverse of each other is 
analoguous to the halting problem in general.) 

Representing the class instances as a disjoint union of the version facets, as 
described earlier, consistency between the facets can be maintained according to 
the following procedure: 

Whenever an attribute value of a facet is modified, those attributes in the 
other facet that depend on it must be updated. For shared attributes, the 
new value is copied; for dependent and derived attributes, the dependency 
functions are applied and the result written into the (attribute) slot in the 
other facet. 

The remainder of this subsection consists of an example: 

Consider the Undergraduate class versions introduced earlier. The 
derivation function for Class Year is 

Class Year= 

c y + 3  

c y + 2  

c y + l  

cy 

if Class = Freshman 

if Class = Sophomore 

if Class = Junior 

Class = Senior 

Where cy is the current year. 
Likewise, the derivation for Class is 

Class = 

Freshman 

Sophomore 

Junior 

Senior 

if Class Year = cy + 3 

if Class Year = cy + 2 

if Class Year = cy + i 

if Class Year = cy 

The Advisor attribute is dependent upon the value of the Degree 
Pgm attribute, but not completely derivable. A reasonable dependency 
function is" 
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Advisor = 
Advisor 

nil 

if Advisor E Program faculty 

otherwise 

Similarly: 

Degree Pgm = { 
Program of Advisor's field 

Existing value of Degree Pgm 

nil 

if singular 

if Advisor 

Program faculty 

otherwise 

The dependency functions for each adaptation "direction" satisfy the 
inverse-relation constraint introduced earlier. 

Consider a multifaceted instance of Undergraduate, represented graphically as 
follows: 

John Smith I 

Comp Sci & Eng 

Sophomore 

John Smith 

123-45-678 

Dr. Mary Jones 

1994 

Imagine that John Smith returns to university after his first summer vacation and 
wishes to change to the undergraduate math program. Also, he had taken some 
summer classes that have given him enough credits to graduate a year early. 
The change to his data record are recorded through an application program 
employing the first version of the Undergraduate class. The system must now 
propagate those modifications to the second facet, using the dependency functions 
from above. 

Since there is not enough information to derive it, the student's advisor will 
have to be filled in later. 

Applying these functions in concert with the desired changes to John Smith's 
record, the multifaceted instance becomes 

John Smith 

Mathematics 

Junior 

John Smith 

123~15-678 

NIL 

1993 
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3.4. Representing multifaceted instances 

In the previous section we described the semantics of our schema versioning 
scheme. In this section we address some of the representation issues. 

We begin with the simple and direct implementation: class evolutions are 
defined by creating a new version of the class; a new facet (corresponding to the 
new version) is associated with each instance of the class and initialized according 
to the programmer-defined adaptation specification. 6 Each application program 
interacts with the instances through a single version (interface) and modifications 
to attribute slots on the primary facet are immediately propagated to the other 
facets, using a mechanism similar to the trigger facility found in many relational 
and AI database systems [12, 31]. 

This simple implementation can be made more efficient. The most obvious 
target for improvement is how new facets are added. The allocation and 
initialization of new facets for existing instances at evolution time can be deferred 
until such time as the facets are actually needed (i.e., by an application). In this 
way, some of the runtime and most of the space costs of supporting multiple 
versions are only spent when absolutely necessary. 

The strategy of deferring the actual maintenance of a dependency constraint 
until its effect is actually required can be applied as well to the propagation of 
information among the facets of an instance. Rather than update the attribute 
values of the other facet(s) each time a facet attribute is modified, one need only 
bring a facet up-to-date when there is an attempt to access it. This scheme can 
be supported by associating a flag with each facet indicating whether the facet is 
up-to-date with respect to the most recently modified facet. The application of 
read methods on facets with an unset flag are preceded by a resynchronization 
operation, which performs any necessary updates and sets the flag. 

This scheme reduces overall runtime expense, since the resynchronization step 
is not performed in concert with every update operation, as was previously the 
case. However, it does increase the potential cost of previously inexpensive read 
operations. 

To this point, we have been very liberal with our allocation of space for instance 
representation. Although the lazy allocation of facets conserves some space in 
the short run, the disjoint union representation model implies that every instance 
of a versioned class will have a complete collection of facets. There are a few 
optimizations that could be performed to reduce space requirements. 

The first space-saving improvement entails having each set of shared attributes 
occupy a single slot in the multifaceted representation. A performance improve- 
ment might also be realized here, since slot sharing reduces the expense and/or 
frequency of update propagations (Figure 5). 

Under certain circumstances, the slot associated with a derived attribute can be 
recovered as well. If an inverse procedure to the derivation function is known to 
the system, then the attribute can be simulated by appropriate reader and writer 
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I John Smith ] 

C(mtp Sci & Eng 123-45-678 

Sophomore Dr. Mar3" Jones 

1994 

Figure 5. Multifaceted instance representation using common slot for shared attributes. 

John Smith ] 

Comp Sci & Eng 123-45-678 

Soptu)more Dr. Mar?," Jones 

John Smith ] 

Comp Sci & Eng 123-45-678 

1994 

(a) (b) 

Figure 6. Multifaceted instance representation minimizing derived attribute allocation. 
Undergraduate class, two minimizations exist. 

For the 

methods. For many evolutions, the inverse procedure appears as the derivation 
function for the related attribute in the other facet. The Class  and Class  Year 
attributes in our example are related in that way (Figure 6). 

From a runtime performance perspective, this space optimization reduces the 
expense of write methods while making read methods more costly. The slot 
allocated for a derived attribute acts as a cache for its derivation function and, 
depending on the frequency of modifications to its dependent attributes in the 
other facet(s), its maintenance might be more time-efficient. 

Note that the emulation scheme of the Encore system is an extreme case on 
the space vs. time spectrum. In the Encore system, however, emulation was 
the only option. In our scheme, the programmer could choose to completely 
emulate a facet in situations where time is less of a concern than space, and 
where all the attributes are derivable from other facets. 

3.5. Subtyping 

We have, to this point, failed to explain how our class evolution and instance 
adaptation scheme copes with our model's subtyping mechanism. We first identify 
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what characteristics of subtyping are problematic with respect to evolution and 
adaptation and then motivate our solution. 

One of the characteristics of a class in our data model is that a class can be 
declared a subtype of one or more other classes. As a subtype, it is required to 
minimally export the interface of each of its supertypes. One possible evolution 
in such a model is a change to the supertype list. Such changes (i.e., addition 
or deletion of a supertype) involve only the addition and/or (optional) deletion 
of sets of methods in the new class version. 

Unfortunately, problems supporting evolutions upon a superclass (i.e., a class 
with other classes that have been declared as subtypes) cannot be dismissed so 
easily. At issue is what to do with subclasses (declared subtypes) when a class 
is altered. 

A subclass (subtype) is distinguished from an application or a class that 
depends on a particular class interface. For a subtype, backward compatibility is 
not altogether useful, since, in order to maintain the subtype relationship, it is 
obliged to evolve its type (interface and semantics) in concert with its supertypes. 

If the new version resulting from an evolution is a superclass of the previous 
class-version, then the set of subclasses remain subtypes. However, if the 
evolution specializes or more drastically changes the class's interface or semantics, 
the subclasses will not be subtypes of the revised class without evolving them 
as well. 

Note, however, that the subclasses remain as subtypes of the old version of 
the class. If we were to not allow the versioning of the subtyping hierarchy, a 
programmer would be obligated to evolve all the subclasses. Alas, it cannot be 
assumed that the database programmer performing the class evolution has the 
will or the means (due to the existence of multiple database programmers) to 
evolve an entire subtree "below" the evolved class. Therefore, allowing versioning 
of the type hierarchy (i.e., allowing classes to be subtypes of class-versions and 
not classes), appears to be the correct approach. 

3.5.1. Distribution. When the database is distributed, one significant represen- 
tation advantage might be the distribution of facets. Facets could be created 
and located at the sites where they were needed, as opposed to where their 
co-facets reside. Whether this could prove beneficial depends upon the relative 
frequency of write over read operations, and the degree of dependency among 
facets. When facet distribution is advantageous, one would want to optimize 
time over space, and directly represent shared and derived attributes. Such an 
approach would also improve fault-tolerance. 

3.6. Customizing an adaptation strategy 

Just as the actual specification of the dependency relationship between facets 
is specified by the programmer, certain other aspects of the adaptation should 
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be accessible to programmer control as well, including: whether compatibility is 
required, whether or not to maintain old facets, and the possibility of multiple 
active instance representations. 

While important in general, program compatibility is not always required (e.g., 
a database with a single application program and a single user). In such situations 
one should be able to employ the minimally expensive strategy and instruct the 
system to convert existing instances fully and discard (or perhaps archive) the 
old information. Furthermore, conversion and compatibility are not mutually 
exclusive. As long as an inverse conversion procedure is known, one could 
convert and emulate the older interface. This might be useful when you want to 
preserve compatibility, but expect that it will be needed infrequently enough that 
you are willing to pay the cost of emulation in those instances. If an application 
tends to reference a distinct subset of the instance collection, one could employ 
a strategy that converts (on access) instances to the version of the application. 7 
The important characteristic of this evolution architecture is that the database 
programmer has access to the control knobs and can tune the evolution strategy 
to improve performance. 

Sometimes, modification of the database or its schema is impossible. Databases 
might be read-only for permission (e.g., remote database exported as a public 
service) or licensing reasons (e.g., reference materials on CD-ROM). In such 
situations, something resembling Zdonik's wrapping scheme must be used, with 
the wrapper actually residing in a separate database. The programmer must 
have a way to specify this situation to the system. 

Often the access patterns are not particular to an entire class, but only to a 
subset of the instances. In such cases, additional efficiency could be achieved 
by employing different representations for differently accessed instances. Such 
functionality would obviously require extensive programmer influence, notably 
the inclusion of a procedure to determine which representation to employ. This 
procedure might be functional (e.g., depending on the state of the object) or 
require the maintenance of its own state (e.g., accounting information). Such 
advanced adaptation schemes will be the subject of a future paper. 

3.7. Multifaceting and heterogeneity 

While we have made no explicit mention of it, our figures have depicted our 
multifaceted persistent instances as contiguously stored objects. Locality among 
facets is advantageous when the propagation of values is. frequent. However, 
deferring the update propagation until the facet is actually referenced can reduce 
the benefits of facet colocality. 

Instead of grouping facets by object, we could instead group them by class- 
version. Partitioning the database in this manner is reminiscent of the heteroge- 
neous database systems introduced at the outset of this paper (Figure 7). 

To support backward application compatibility across schema evolutions, we 
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A 

D 

(a) 

A 

D 
D 

C 

(b) 

Figure 7. Distribution of facets: Facets of the same objects could be distributed across schemas, 
resembling a heterogeneous distributed database. 

have introduced schema heterogeneity. This reemphasizes the similarities be- 
tween the schema evolution problem and the schema integration problem. Toward 
the end of the previous section, we stated that a general mechanism could be used 
to support both the evolution and heterogeneous schema integration processes. 
We intend to show that our "multifaceted" scheme is such a mechanism, but first 
we must discuss an important distinction between evolution and integration. 

3.8. Schema integration revisited: the instance integration problem 

Because evolution implies a migration from one schema to a new one, it can 
assume that the latter has no existing instances. However, the schemas that are 
part of integration procedure typically do have existing instances. 

Why is this a problem? 
Thomas et al. [32], identify four ways in which the objects in the two databases 

being integrated can relate to each other: s 

Replication: when the objects in one database are copies of objects found in 
the other database 
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Vertical Fragmentation: when the objects are instances of a type found in the 
other database 
Horizontal Fragmentation: when they are extensions of objects found in the 
other database 
Data Mapping: when they are functional translations of objects found in the 
other database 

Although developed for distributed RDBS, the four roles hold in the DOODBS 
context, with one caveat: as objects in the object-oriented data model possess an 
identity, objects linked via integration (i.e., objects fulfilling replication, horizontal 
fragmentation, or data mapping roles) much share an identity. The instance 
integration problem (sometimes called object integration or identity integration [5, 
7, 18]) is concerned with collecting and linking together these related objects. 
We will address this issue presently. 

3.9. Supporting schema integration 

We have motivated schema versioning and application compatibility by observing 
that upgrading applications or databases is not always practical or possible. 
The member databases of a heterogeneous DOODBS exemplify our claim; 
different histories, requirements, or administrations have kept these schemas 
(and associated databases) separate in the past. Integration is a cooperative 
venture meant to simplify the development of applications requiring information 
from more than one of these databases. Integration need not mean assimilation; 
the members need not (and often cannot) surrender their autonomy/identity in 
the process. 9 

We can thus view integration (partly) as the simultaneous evolution of multiple 
schemas to a common interface, subject to the constraint that the individual 
components (i.e., schemas and representative instances) remain intact. Such 
a requirement is not an obstacle, since our evolution scheme supports the 
simultaneous existence of multiple schemas, and the simultaneous existence of 
multiple representations, in the form of multifaceted instances. 1° 

At the conclusion of the integration process, our integration schema will 
be populated with such multifaceted instances, the facets remaining in their 
original databases (as illustrated in Figure 7). Only the instance integration 
problem remains. 

For the (parts of the) schemas that are fragmented vertically, like the Library 
Entry class in our library integration example (Figure 1), no grouping is necessary, 
and we can assign unique (universal) identifiers to each object. However, if any 
other form of integration is present, we must assign the corresponding facets a 
common id. 

As we are not able to rely on object identity, we require another way of 
identifying corresponding objects. This task is an active research problem, and 
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we will not present a definitive solution here. One basic approach is to identify 
corresponding objects by some common feature (e.g., ISSN or ISBN identification 
for books, personal name, etc.) [18]. Such common features would typically 
be the shared or derived attributes that exist between the class we are trying 
to integrate. 

However, in any specific database, these common features may not sufficiently 
unique to adequately identify correspondences. Bratsberg [7] considers providing 
for user intervention in such situations. 

4. Multifaceting and other advanced database features 

In the course of our presentation, we have assumed the existence of a number 
of advanced OODBS features, and serendipitously implemented others. 

4.1. Remote object references 

The observation that the facets comprising a multifaceted object could be dis- 
tributed assumes that the DOODBS supports nonlocal references to objects. As 
these potentially distributed facets share an identity and thus a universal identi- 
fier, the intraobject linkage could be implemented using the local database ID 
and the universal ID. However, some sort of facet-level, remote ID mechanism 
would facilitate the maintenance of interfacet constraints. 

The heterogeneous schema integration mechanism described above relied on 
the existence of remote identifiers, so as to unify the distributed instances into 
an integrated object. 

4.2. Object migration 

By object migration, we mean the ability of objects to be moved from one 
database to another [16]. An object is migrated (either automatically or explicitly) 
to improve locality between itself and the objects it is related to (typically 
via reference pointers). Similarly, we might imagine facet migration, whereby 
facets might relocate to sites whence they are referenced. Note, however, 
that if interfacet dependencies require frequent maintenance, the distributed 
fragmentation of an object might not be beneficial. 

The multifaceted approach to heterogeneity provides a mechanism for object 
migration for heterogeneous DOODBS. Moving an object across a schema barrier 
necessitates converting it. With multifaceting, the original structure can be 
retained and updated, as necessary. Thus, when an object migrates, it leaves a 
piece of its "soul" behind. 
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4.3. Replication 

To improve performance and reliability, multiple copies of database stores are 
often maintained. At the simplest level, these replication sites provide benefits 
for read operations only (the write operations requiring updating to the all 
replication sites). 

Although replication is often considered at the granularity of the database-file, 
replication at the object level could, to a large degree, be considered a special 
case of our multifaceted (and fragmented) instance scheme, n The shared slots 
of the instances of two (or more) class-versions are, effectively, replicated among 
the various distributed databases on which they (i.e., the instances) are active. 
Just as replicated databases must propagate side effects to their copies, the effects 
of a side effect to one facet of an object much be propagated (eventually) to its 
"co-facets." Full object replication could be implemented by duplicating schemas 
on other sites, and maintaining duplicate facets there. 

The similarlity to replication extends to lock management as well. Locking an 
object requires locking all of its facets, whereever they may be located, just as 
all the replicated sites of an object must be locked for write operations [16]. 

5. Conclus ions  and future research 

This paper describes a new, highly flexible approach to supporting schema evo- 
lution in object-oriented database systems. While not dependent on distribution, 
its support of arbitrary evolutions and application compatibility makes it attrac- 
tive for use in the same type of application contexts that are appropriate for 
distributed OODBS. Schema versioning and instance multifaceting are the mech- 
anisms by which compatibility are supported. By allowing the schema designer 
the ability to specify the precise relationship between class versions, a wider 
variety of evolutions than previous schemes can be supported. 

The paper also highlighted the similarities between schema evolution and 
heterogeneous schema integration, and described how the aforementioned schema 
evolution support mechanism can also assist with the schema integration task. 

Some minor contributions include the relationship between multifaceting and 
object replication, and the potential for facet migration. 

We have left unresolved a number of issues. Some are addressed in [9], but 
most are topics for additional research. These issues include: 

• Precisely how the programmer specifies the schema evolution and the adaptation 
strategy details: including dependency functions and representation decisions. 
Work has begun on a special-purpose language. One significant benefit of 
having a language is that common adaptations could be maintained in a 
library. The basic evolutions as specified in [2] could thus be provided in the 
form of library routines. 
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• How to support evolutions that involve more changes to more than one class. 
(The simplest of such evolutions is called telescoping [3, 9, 26].) 

• How best to be able to match up integrating instances among heterogeneous 
schemas. 

Notes 

1. Although "schema" is already a plural noun, we will use the relatively popular 
"schemas" to refer to multiple, distinct schema. 

2. Whether the instances are converted eagerly or lazily becomes an implemen- 
tation issue. 

3. A case could be made that since schema evolution is not a frequent occur- 
rence, it would not be unreasonable to require that all constituent database 
servers be functioning at evolution time. However, as we see no major 
increase in implementation complexity associated with the introduction of 
fault-tolerant, distributed schema evolution, we address the issue at this time. 

4. For explanatory purposes, imagine that we are describing a class consisting 
of only two versions, and where the database is populated by instances of 
both. 

5. Common in the semantic sense, i.e., having the same type and meaning. 
6. Independent attributes can be initialized using the default values from the 

regular class definition. 
7. This is the approach taken by Monk's CLOSQL system [4]. See Section 2 

for details. 
8. The reduction from n to two databases is for illustrative purposes only, and 

does not affect our argument. 
9. Similar to the member countries of the European Community. 

10. We observe that four categories introduced by Thomas et al. [32] have 
analogues in our classification of the attributes between facets: replication 
is analogous to shared attributes, data-mapping to derived attributes, and 
horizontal fragmentation to independent attributes. Vertical fragmentation is 
implied by our schema versioning scheme, due to the fact that all instances 
of one class-version are also instances of all other class-versions. Dependent 
attributes, combining characteristics of independent and derived attributes, 
were not identified by the authors, probably because of the simplicity of the 
relational data model. 

11. The size and complexity of some objects in an OODB could make replication 
at object granularity practical. 
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