Optimizing Performance of Schema Evolution
Sequences *

Kajal T. Claypool, Chandrakant Natarajan, and Elke A. Rundensteiner

Worcester Polytechnic Institute, 100 Intitute Road,
Worcester, MA, USA
{kajal, chandu, rundenst}@cs.wpi.edu
http://davis.wpi.edu/dsrg

Abstract. More than ever before schema transformation is a prevalent
problem that needs to be addressed to accomplish for example the mi-
gration of legacy systems to the newer OODB systems, the generation of
structured web pages from data in database systems, or the integration of
systems with different native data models. Such schema transformations
are typically composed of a sequence of schema evolution operations. The
execution of such sequences can be very time-intensive, possibly requi-
ring many hours or even days and thus effectively making the database
unavailable for unacceptable time spans. While researchers have looked
at the deferred execution approach for schema evolution in an effort to
improve availability of the system, to the best of our knowledge ours is
the first effort to provide a direct optimization strategy for a sequence of
changes. In this paper, we propose heuristics for the iterative elimination
and cancellation of schema evolution primitives as well as for the merging
of database modifications of primitives such that they can be performed
in one efficient transformation pass over the database. In addition we
show the correctness of our optimization approach, thus guaranteeing
that the initial input and the optimized output schema evolution se-
quence produce the same final schema and data state. We provide proof
of the algorithm’s optimality by establishing the confluence property of
our problem search space, i.e., we show that the iterative application
of our heuristics always terminates and converges to a unique minimal
sequence. Moreover, we have conducted experimental studies that de-
monstrate the performance gains achieved by our proposed optimization
technique over previous solutions.

Keywords: Schema Evolution, Object-Oriented Databases, Optimiza-
tion.

* This work was supported in part by the NSF NYI grant #IRI 94-57609. We would
also like to thank our industrial sponsors, in particular, IBM for the IBM partnership
award and Informix for software contribution. Kajal T. Claypool would like to thank
GE for the GE Corporate Fellowship. Special thanks also goes to the PSE Team
specifically, Gordon Landis, Sam Haradhvala, Pat O’Brien and Breman Thuraising
at Object Design Inc. for not only software contributions but also for providing us
with a customized patch of the PSE Pro2.0 system that exposed schema-related
APIs needed to develop our tool.

K.R. Dittrich et al. (Eds.): Objects and Databases 2000, LNCS 1944, pp. 114-[[27] 2001.
(© Springer-Verlag Berlin Heidelberg 2001

Optimizing Performance of Schema Evolution Sequences 115

1 Introduction

Not only is it difficult to pre-determine the database schema for many com-
plex applications during the first pass, but worst yet application requirements
typically change over time. For example [17] documents the extent of schema
evolution during the development and the initial use of a health management
system at several hospitals. There was an increase of 139% in the number of re-
lations and an increase of 274% in the number of attributes, and every relation
in the schema was changed at least once during the nineteen-month period of
the study. In another study [13], significant changes (about 59% of attributes
on the average) were reported for seven applications which ranged from project
tracking, real estate inventory and accounting to government administration of
the skill trades and apprenticeship programs. These studies reveal that schema
changes are an inevitable task not only during the development of a project but
also once a project has become operational. For this reason, most object-oriented
database systems (OODB) today support some form of schema evolution [I8//3]
T4110].

The state of the art in OODB evolution is to offer seamless change manage-
ment by providing transparency between the database schema and the applica-
tion source files representing the schema. Systems such as ObjectStore [14] allow
users to directly edit the application source leaving the OODB system to handle
the propagation of this sequence of changes to the database schema. Other sy-
stems such as Itasca [I0] provide a graphical user interface (GUI) that allows
the users to specify a set of their schema changes graphically while the system
again is responsible for propagating the schema changes to the database. Other
systems such as Oz [18I2], TESS [12] and SERF [5] all deal with more advanced
schema changes, such as merging of two classes, which are often composed of a
sequence of schema evolution primitives. All of these systems deal with applying
not a single schema change but a sequence of schema changes to the underlying
database.

Unfortunately, schema evolution remains a very expensive process both in
terms of system resource consumption as well as database unavailability [9].
Even a single simple schema evolution primitive (such as add-attribute to a
class) applied to a small database of 20,000 objects (approx. 4MB of data) has
been reported to already take about 7.4 minutes [7]. With the current database
technology for the specification of schema changes as a sequence of changes the
performance of the system is further compromised, with evolution costs for large
databases possibly escalating to hours, perhaps even days for entire sequences.

In previous work, researchers have looked at improving system availability
during schema evolution by proposing execution strategies such as deferred exe-
cution [I89]. No work, however, has been undertaken to actually optimize or
reduce the sequence of operations that are being applied to a given schema.
Kahler et al. [II] have looked at pre-execution optimization for reducing the
number of update messages that are sent to maintain replicated sites in the con-
text of distributed databases. In their approach, the messages are simple data
updates on tuples. He sorts the number of messages by their tuple-identifier, and

116 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

then condenses (with merge or remove) the change history of the tuple into one
update operation.

We now present a similar approach (merge, cancel, eliminate) for optimizing
a sequence of schema evolution operations. Our optimization strategy, called
CHOP, exploits two principles of schema evolution execution within one inte-
grated solution:

— Minimize the number of schema evolution operations in a sequence by for
example canceling or eliminating schema evolution operations. For example,
adding an attribute and then deleting the same attribute is an obvious case
of cancellation where neither operation needs to be executed.

— Merge the execution of all schema evolution changes that operate on one
extent to amortize the cost of schema evolution over several schema changes.
For example, consider a sequence that adds two or more attributes to the
same class. Object updates for these done simultaneously can potentially
half the cost of executing these sequentially.

To the best of our knowledge ours is the first effort to provide an optimiza-
tion strategy for a sequence of changes prior to execution a la Kahler [11]. Our
approach is orthogonal to the existing execution strategies for schema evolu-
tion, i.e., it can in fact be applied to both immediate and the deferred execution
strategies [9].

To summarize, in this paper, we present a general strategy for the reduction
of a given sequence of schema evolution operations prior to its actual execution.
Our work is based on a taxonomy of schema evolution operations we developed
for the ODMG object model but it can easily be applied to any other object
model. We present here an analysis of the schema evolution operations and of the
schema to characterize the conditions under which operations in a sequence can
be optimized. Based on this analysis we present the merge, cancel and eliminate
optimization functions and the conditions under which they can be applied. We
have also been able to show both formally and experimentally that the order in
which these functions are applied is not relevant for the final optimized sequence,
i.e., they will all produce the same unique final sequence. As a conclusion to our
work we also present a summary of our experimental results.

Outlook. The rest of the paper is organized as follows. Section [F presents
the taxonomy of schema evolution primitives on which we base our analysis.
Section M gives a formalization of the schema evolution operation properties.
Section [presents the actual optimization functions while Section [@] describes
how these are combined to form the overall CHOP strategy. Section [7] presents
our experimental evaluation. We conclude in Section [§

2 Related Work

Current commercial OODBs such as Itasca [10], GemStone [3], ObjectStore [14],
and O [18] all provide some schema evolution - be it a set of schema evolution

Optimizing Performance of Schema Evolution Sequences 117

primitives or some mechanism for global changes. Some work in schema evo-
lution has focused on the areas of optimization and database availability, in
particular on deciding when and how to modify the database to address con-
cerns such as efficiency and availability. In [9§], a deferred execution strategy is
proposed for the Oy database system that maintains a history of schema evolu-
tion operations for a class and migrates objects only when actually accessed by
the user. This allows not only for high database availability but also amortizes
the cost of the object transformations with that of a query lookup. However, no
optimizations are applied to this sequence of schema evolution operation(s) and
the performance of this deferred mechanism deteriorates as the set of queried
objects grows larger. Our approach, while primarily optimizing the immediate
update mode, also complements the deferred mechanism by offering time savings
as the queried set of objects and the number of schema evolution operations to
be applied on it grows larger.

Similar work has also been done in database log recovery mechanisms. In
[I1], Kahler et. al use hashing to compute the net effect of changes in a log
by eliminating and/or collapsing redundant log enteries due to insert-remove
pairs, replace-remove pairs, etc. We use a similar approach (cancel and eliminate
optimizations) for removing redundancy from a sequence of schema evolution
sequences. The focus of work is however, beyond simply condensing all changes
into one change. In this work, we have shown that if one or more optimizations
are applied, giving precedence to one over the other is immaterial as they all lead
to the same minimal optimized sequence of operations. Segev et al. have applied
similar pre-execution optimizations for updating distributed materialized views
since data sequences of updates must be shipped from the base tables to the
view [16].

3 Background - Taxonomy of Schema Evolution
Primitives

The CHOP approach is based on the Object Model as presented in the ODMG
Standard [4]. The ODMG object model encompasses the most commonly used
object models and standardizes their features into one object model, thus in-
creasing the portability and applicability of our prototype. Here we present a
taxonomy of schema evolution primitives (Table[T]) that we have defined for the
ODMG model based on the other data models as Os or Itasca [I8[3I410]. The
taxonomy given in Table [is a complete set of schema evolution primitives
such that it subsumes every possible type of schema change [1]. The taxonomy
is the essential [T9] set of schema evolution primitives, i.e., each primitive up-
dates the schema and the objects in a unique way that cannot be achieved by a
simple composition of the other primitives.

118 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

Table 1. The Taxonomy of Schema Evolution Primitives.

’ Term

[Description

|Capacity Effects|

add-class(c, C)
delete-class(c)

rename-class(cz, ¢y)
add-ISA-edge(cg, cy)

delete-ISA-edge(c, cy)
add-attribute(cy, ay)
delete-attribute(c,, a,)

rename-attribute(ay, by, ¢;)

Add new class ¢ to C in schema
S (AC)

Delete class ¢ from C in schema
S if subclasses(C) = 0 (DC)
Rename class ¢, to ¢, (CCN)
Add an inheritance edge from ¢,
to ¢y (AE)

Delete the inheritance edge from
¢z to ¢y (DE)

Add attribute a, to class ¢,
(AA)

Delete the attribute a, from the
class ¢, (DA)

Rename the attribute a, to b, in
the class ¢, (CAN)

augmenting
reducing

preserving
augmenting

reducing
augmenting
reducing

preserving

4 Foundations of Schema Evolution Sequence Analysis

To establish a foundation for our optimization principles we have developed a
formal characterization of the schema evolution operations, their impact on the
schema, as well as their interactions within a sequence. Due to space constraints
we only summarize these characterizations here. For more details please see [6].

Table] defines the various relationships that can exist in general between
schema evolution operations. Table [3] applies these to the schema evolution ope-

ration presented in Table

Table 2. Cl

assification of Operation Properties.

Operation Relation |Description

same-operation-as |opl is same-operation-as op2 if they both have the same
operation name irrespective of the particular parameters
they are being applied to.
inverse-operation-of|opl is inverse-operation-of op2 if the effects of one ope-
ration opl could be canceled (reversed) by the effects of the
other operation op2.
super-operation-of |opl is super-operation-of op2 if the functionality of op1
superimposes the functionality of op2, i.e., opl achieves as
part of its functionality also the effects of op2

Optimizing Performance of Schema Evolution Sequences 119

Table 3. Classification of Operation Properties for the Schema Evolution Taxonomy
in Table[T] (with same = same-operation-as, inverse = inverse-operation-of and
super = super-operation-of).

AC() IDC() |[CCN() AA() IDA() [CAN()|AE() |DE()
AC() |[same |inverse|- super |- - - -
DC() |inverse|same |super super |super |super [|super [super
CCN()|- - same/inverse |- - - - -
AA() |- - - same |inverse|- - -
DA() |- - - inverse|same |[super |- -
CAN()|- - - - - same |- -
AE() |- - - - - - same |inverse
DE() |- - - - - - inverse|same

However, for optimization it is not sufficient to categorize the schema evo-
lution operations based on just their functionality. It is important to also know
the parameters, i.e., the context in which these operations are applied. Table
presents the schema element relationships.

Table 4. Classification of Schema Element Relations.

Schema Relation|Description

definedIn gives the scope for all schema elements (from ODMG).

extendedBy gives the inheritance relationship of schema elements of the
type Class (from ODMG).

same-as gives the identity of a class or a property based on unique
name in given scope (CHOP extension).

aliasedTo gives the derivation of a schema element from another ele-
ment through a series of name modifications (CHOP exten-
sion).

While the operation properties (Table[2) and the context properties (Table H)
provide necessary criteria for when an optimization function can be applied, they
are not always sufficient in the context of a sequence. Here we briefly summarize
the relationships of operations in a sequence.

— Schema-Invariant Order Property. When operation op1 is sameAs op2,
we identify the schema-invariant-order property as:

— For two capacity-augmenting and capacity-reducing operations,
opl is in schema-invariant-order with op2 if the order of their pa-
rameters is the same.

— For capacity-preserving operations, opl is in schema-invariant-
order with op2 if the order of their parameters is reversed.

120 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

— Object-Invariant-Order Property - opl is object-invariant-order
with op2, if opl is capacity-augmenting and op2 is capacity-reducing
and in the sequence of evolution operations the capacity-augmenting ope-
ration appears prior to the capacity-reducing operation. There is no spe-
cific object-invariant-order for the capacity-preserving operations.

— Dependency Property - The schema elements used as parameters by the
two operations opl and op2 being considered for optimization must not be
referred to by any other operation which is placed between the two operations
in the sequence.

5 The CHOP Optimization Functions

The integral component of the CHOP optimization algorithm are the optimiza-
tion functions that can be applied to pairs of schema evolution operations within
the context of their resident schema evolution operation sequence. In this sec-
tion we present the general description of an optimization function and three
instantiations of the optimization functions (merge, cancel, eliminate), that we
have formulated for the optimization of the primitive set of schema evolution
operations given in Section Bl

5.1 An Optimization Function

The crux of the CHOP optimization algorithm is an optimization function which
takes as input two schema evolution operations and produces as output zero or
one schema evolution operation, thereby reducing the sequence of the schema
evolution operations. Formally, we define an optimization function as follows:

Definition 1. Given a schema evolution operation sequence X, opl, op2 ...
opn with opl before op2 (i.e., if the index position i of opl is less than the index
position j of op2 in X, index(opl) = i < j = index(op2)), an optimization fun-
ction F's; produces as output an operation op3 which s placed in the sequence X
at the index position i of the first operation, opl. The operation at index posi-
tion j is set to a no-op. The operations opl, op2 and op3 can be either schema
evolution primitives as described in Table[d or complex evolution operations as

defined in Section[5.2

A major requirement for the CHOP optimization is to reduce the number of
schema evolution operations in a sequence such that the final schema produced
by this optimized sequence is consistent and is the same as the one that would
have been produced by the unoptimized sequence for the same input schema.
Thus, an optimization function must not in any way change the nature of the
schema evolution operations or the order in which they are executed. Towards
that goal, any optimization function must observe several properties characteri-
zed below.

Optimizing Performance of Schema Evolution Sequences 121

Invariant-Preserving-Output Operations. Schema evolution operations
guarantee the consistency of the schema and the database by preserving the
invariants defined for the underlying object model [1]. An important property of
the optimization function therefore is for its output (any of its output operati-
ons) to also preserve the schema consistency by preserving the invariants defined
for the object model.

Schema-State Equivalent. Above all an optimization function must guaran-
tee correctness, i.e., the schema produced by output of the optimization function
(optimized sequence) must be the same as the schema produced by the unopti-
mized sequence when applied to the same input schema. This property can in
fact be proven formally. In [6] we provide a formal set of definitions and proofs
for this.

Relative-Order Preserving. As discussed in SectionH] the order in which the
schema evolution operations appear with respect to one another in a sequence is
relevant to the application of an optimization function. This relative order of
an operation op1 in a sequence is defined by its index, index (op1), with respect
to the index of the other operations, e.g., index(op2), in the sequence. For
example, if index(opl) < index(op2), then opl is before op2 in the sequence,
denoted by opl < op2. Operations executed out-of-order can cause unexpected
variance in the final output schema. For example, consider two operations in a
sequence with the order as given here: < DA(C,a), AA(C,a) >. When executed
in the order given the attribute a is first deleted from the class C and then re-
added. However, all of the information stored in the attribute a is lost. Now,
switching the order of execution of the two operations leads to a very different
schema.

Thus, it is essential for an optimized sequence to preserve the relative-order
of the input sequence.
Using the above stated properties, we now refine the definition of an optimization
function as follows:

Definition 2 (Optimization Function.). Any optimization function in
CHOP defined as in Definition [l must be invariant-preserving,
schema-state-equivalence preserving and relative-order preserving.

For the CHOP approach, we define three such optimization functions, Merge,
Eliminate and Cancel.

5.2 The Merge Optimization Function

The time taken for performing a schema evolution operation is largely determi-
ned by the page fetch and page flush times [7]. In our proposed CHOP approach
we amortize the page fetch and flush costs over several operations by collecting

122 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

all transformations on the same set of objects and performing them simulta-
neously!.

A collection of schema evolution operations for the same class which affect the
same set of objects, i.e., it is possible to perform all the object transformations for
these operations during the same page fetch and flush cycle, is called a complex
operation denoted by < opy, opy >, withk > 2. For two complex ope-
rations, opl = < op;.... op; > and op2 = < Opy,.... Op, >, the operation
pairs (op;,op,,) and (op,, op;) are termed complex-representative pairs.

Definition 3. Merge is an optimization function (Definition[d) that takes as
input a pair of schema evolution operations, either primitive or complex, opl
and op2, and produces as output a complex operation op3 = < opl, op2 >. If
one or both of the input operations are a complex operation, e.g., opl = <op;,
op; > and op2 = <op,,, Op, >, then a relative order within the complex opera-
tions ops is maintained such that the output operation op3 = <op;, OpPj, OPm ,
opn >. The input operations opl and op2 must satisfy:

— Context Property

— If opl and op2 are related by the same-operation-as property, then
their context parameters must be definedIn in same scope.

— If opl and op2 are related by the super-operation-of property, then
for the sub-operation the definedIn scope of the context must be the
sameAs the context of the super-operation.

— If opl and op2 are related by the inverse-operation-of property, then
the context of opl must be sameAs the context of op2 and definedIn
same scope.

— Dependency Property must hold.

When one or both of the input operations opl and op2 are complex, then
all the merge conditions given above must be satisfied by at least one pair of
operations in the complex operation. This is the complex-representative pair.

For example, given an operation that adds a name attribute to a class called
Employee and a subsequent operation that adds a age attribute to the same
class Employee, we can merge the two operations they are related by the same-
operation-as property and their context parameters are definedIn the same
scope, i.e., Employee for both operations is in the same schema and the attributes
name and age are being added to the same class Employee. Lastly, the depen-
dency property holds as there are no operations between the index positions of
the two operations.

A complex operation is thus a sub-sequence of schema evolution operations
and other optimization functions (cancel and eliminate) can be applied on the
primitive schema evolution operations inside of a complex operation. However,
the merge optimization function itself cannot be applied inside of a complex
operation as this can lead to infinite recursion.

! This merge of operations relies on the underlying OODB system to be able to sepa-

rate the schema evolution operation into a schema change at the Schema Repository
level and into object transformations at the database level.

Optimizing Performance of Schema Evolution Sequences 123

5.3 The Eliminate Optimization Function

In some cases a further optimization beyond merge may be possible. For exam-
ple, while it is possible to merge DA(Employee, name) and DC(Employee) the
execution of DC(Employee) makes the prior execution of DA(Employee, name)
redundant. Hence, some operations may be optimized beyond a merge by being
completely eliminated by other operations, thus reducing the transformation
cost by one operation.

Definition 4. Eliminate is an optimization function as defined in Definition [2
that takes as input a pair of schema evolution primitives opl and op2 and pro-
duces as output op3, such that op3 = opl if opl = super-operation-of (op2)
or op3 = op2 if op2 = super-operation-of (opl). The input operations opl
and op2 must satisfy:

— Operation Property such that either opl = super-operation-of (op2)
or op2 = super-operation-of (opl),

— Context Property such that the definedIn scope of the sub-operation is
sameAs the context parameter of the super-operation, and

— Dependency Property must hold.

5.4 The Cancel Optimization Function

In some scenarios further optimization beyond a merge and eliminate may be
possible. Some schema, evolution operations are inverses of each other, for ex-
ample, AA(Employee, age) adds an attribute and DA(Employee, age) removes
that attribute. A cancel optimization thus takes as input two schema evolution
operations and produces as output a no-op operation, i.e., an empty operation
that does nothing.

Definition 5. Cancel is an optimization function as in Definition[d which ta-
kes as input a pair of schema evolution primitives opl and op2 and produces
as output op3, where op3 = no-op, an empty operation, assuming the input
operations opl and op2 satisfy:

— Operation Property such that opl and op2 are related by the inverse-
operation-of property,

— Context Property such that opl and op2 are definedIn the same scope
and opl is sameAs op2,

— Schema-Invariant-Order Property for capacity-reducing operations
must hold, and

— Object-Invariant-Order Property must hold, and

— Dependency Property must hold.

124 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

6 CHOP Optimization Strategy

The CHOP optimization algorithm iteratively applies the three classes of opti-
mization functions merge, eliminate and cancel introduced in Section [until
the algorithm terminates and a minimal solution is found.

However, before we can address the issue of minimality it is necessary to
examine two issues: (1) if one or more functions are applicable, is choosing the
right function essential? and (2) when there are more than one pair of operations
that can be optimized, is choosing the right pair essential?

Choosing the Right Optimization Function. We note that the conditions
under which the merge optimization function can be applied is a superset of
the conditions under which an eliminate or a cancel can be applied, while
the conditions under which a cancel and an eliminate can be applied are
mutually exclusive. Thus, often a merge can be applied to a pair of operations
where either an eliminate or a cancel can be also applied. However, as these
optimizations offer different degrees of reduction for a pair of schema evolution
operations (with merge offering the least and cancel the most), choosing the
optimization function that offers the most reduction is very desirable.

We can however formally show that doing a merge where a cancel or an
eliminate is also applicable does not prevent the application of a cancel or an
eliminate during the next iterative application of these functions. A formaliza-
tion of this property and its proof can be found in [6].

Operation Dependencies and Optimization Functions. An important cri-
teria for the successful application of any of the three optimization functions is
that the Dependency Property as given in Section [4 must hold. That is, there
must be no reference to the schema elements used as parameters in the two
operations op; and ops being considered for optimization by any other ope-
ration which is placed between the two operations in the sequence. However, the
order in which the pairs of operations are selected can have an effect on this
dependency.

Consider a sequence of three operations opy, opo and ops. Consider
that the pairs (op1, op2) and (op2, ops) can be immediately optimized while a
successful optimization of the pair (op;1,0ps) requires removing the dependency
operation ops. In this case, there are two possibilities for applying the optimiza-
tion functions on the pairs of operations. We could either apply the respective
optimization functions on the pair (op1, ops) and then on the pair (opa, ops) 2
and not be concerned about the optimization possibility between op;and ops.
Or we could first apply the optimization function on the pair (ops, ops), reduce
the dependency opsand then optimize the pair (opi, ops). However, as before
our goal is to achieve the mazrimum optimization possible.

2 Note that in some cases opamay not exist any more and hence optimizing (op2, ops3)
may no longer be possible.

Optimizing Performance of Schema Evolution Sequences 125

We can formally show that the order of selection for pairs of schema evolution
operations in a sequence for the application of one of the three optimization
functions does not prevent the achievement of mazimum optimization [6].

Confluence. While the main goal for the optimization is to achieve maximum
optimization possible in an effort to reduce schema evolution costs, we also want
to keep the overhead of optimizing to a minimal. However, there are multiple
permutations and combinations of the optimization functions and the pairs of
schema evolution operations that can potentially achieve the maximum optimiza-
tion. Enumerating all the possible choices prior to selecting one for execution
results in an exponential search space. This overhead from enumerating these
choices alone would cancel any potential savings achieved by the optimization.

However, based on the function properties in [6], we can show that all possible
combinations of optimization functions for a given sequence converge to one
unique minimal, thereby eliminating the need to enumerate all the possible
choices. The following states the theorem of confluence. We have formally and
experimentally proven this result [6].

Theorem 1. [Confluence Theorem]: Given an input schema evolution se-
quence, X, all applicable combinations of optimization functions f; produce
minimal resultant sequences X; that are all exactly the same.

7 Experimental Validation

We have conducted several experiments to not only evaluate the potential per-
formance gains of the CHOP optimizer. Our experimental system, CHOP, was
implemented as a pre-processing layer over the Persistent Storage Engine (PSE
Pro2.0). All experiments were conducted on a Pentium II, 400MHz, 128Mb RAM
running WindowsNT and Linux. We used a payroll schema (refer [6]). The
schema was populated with 5000 objects per class in general or are otherwise
indicated for each individual experiment. Due to lack of availability of a bench-
mark of typical sequences of schema evolution operations, the input sequences
themselves were randomly generated sequences.

The applicability of CHOP is influenced by two criteria, the performance of
the optimized vs the unoptimized sequence of schema evolution operations, and
the degree of optimization achievable on average by the optimization functions
of CHOP. Due to space limitations we only present a brief summary of our
experimental observations. The details can be found in [6].

— The SE processing time for a sequence is directly proportional to the number
of objects in the schema. Hence, for larger databases we can potentially have
larger savings.

— The optimizer algorithm overhead is negligible when compared to the overall
cost of performing the schema evolution operations themselves. Thus our
optimization as a pre-processor offers a win-win solution for any system
handling sequences of schema changes (Figure [II).

126 K.T. Claypool, C. Natarajan, and E.A. Rundensteiner

0000
Numbar of dasses = 8; SE input lengih = 8) M -
ACulpUt Largth =8 A {numbser of classas < 8: SE input length = B)
* Output Length = 6 e 15 Number of "
@Ouipul Langth = 4 | N Soquances - 50 —
20000 B Oulpul Lengih = 2 i d
= h = .
= W Oulpul Length = 0 W § 1
E » E 10
[= = it g E]
' I — E
el Z 5 5 7
L L L
8000 0000 2 2
Numiger of Otjects |
1 2 3 B

4 5 B T
Output Soquence Length

Fig. 1. Best and Worst Case Sequence
Times w/o Algorithm Overhead for
Input Sequences of Length 8 on the
Sample Schema.

Fig. 2. Distribution: Number of Clas-
ses = Sequence Length

— The degree of optimization increases with the increase in the number of
class-related operations in the sequence. Hence, depending on the type of
sequence, major improvements are possible (Figure [2]).

— A random application of the optimization functions on the same sequence
resulted in the same final sequence of schema evolution operations.

— We have experimentally tested that on a small-sized database of 20,000 ob-
jects per class, even the removal of a single schema evolution operation on
a class already results in a time saving of at least 7000 ms. This time sa-
vings is directly proportional to the number of attributes and the extent size
of a class thus offering huge savings for today’s larger and larger database
applications.

8 Conclusions

In this paper, we have presented the first optimization strategy for schema evo-
lution sequences. CHOP minimizes a given schema evolution sequence through
the iterative elimination and cancellation of schema evolution primitives on the
one hand and the merging of the database modifications of primitives on the
other hand. Important results of this work are the proof of correctness of the
CHOP optimization, a proof for the termination of the iterative application of
these functions, and their convergence to a unique and minimal sequence. A ver-
sion of this system along with the SERF system has been implemented and was
presented as a demo at SIGMOD’99 [15]. We have performed experiments on
a prototype system that clearly demonstrate the performance gains achievable
by this optimization strategy. For random sequences an average optimization of
about 68.2% was achieved.

Acknowledgments. The authors would like to thank students at the Database
Systems Research Group at WPI for their interactions and feedback on this
research.

Optimizing Performance of Schema Evolution Sequences 127

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. SIGMOD, pages 311-322,
1987.

P. Bréche. Advanced Primitives for Changing Schemas of Object Databases. In
Conference on Advanced Information Systems Engineering, pages 476-495, 1996.
R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,
and M. Williams. The GemStone Data Management System. In Object-Oriented
Concepts, Databases and Applications, pages 283-308. ACM Press, 1989.

Cattell, R.G.G and et al. The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, Inc., 1997.

K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution through
an Extensible, Re-usable and Flexible Framework. In Int. Conf. on Information
and Knowledge Management, pages 314-321, November 1998.

K.T. Claypool, C. Natarajan, and E.A. Rundensteiner. Optimizing the Perfor-
mance of Schema Evolution Sequences. Technical Report WPI-CS-TR-99-06, Wor-
cester Polytechnic Institute, February 1999.

C. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, S. Zaniolo, C. Ceri, and R. Zi-
cari. Advanced Database Systems. Morgan Kaufmann, 1997.

F. Ferrandina, T. Meyer, and R. Zicari. Correctness of Lazy Database Updates
for an Object Database System. In Proc. of the 6th Int’l Workshop on Persistent
Object Systems, 1994.

F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates
for an Object Database System. In Proc. of the 20th Int’l Conf. on Very Large
Databases, pages 261-272, 1994.

Itasca Systems Inc. Itasca Systems Technical Report. Technical Report TM-92-
001, OODBMS Feature Checklist. Rev 1.1, Itasca Systems, Inc., December 1993.
Bo Kéhler and Oddvar Risnes. Extending logging for database snapshot refresh.
In Peter M. Stocker, William Kent, and Peter Hammersley, editors, VLDB’87,
Proceedings of 13th International Conference on Very Large Data Bases, September
1-4, 1987, Brighton, England, pages 389-398. Morgan Kaufmann, 1987.

B.S. Lerner. A Model for Compound Type Changes Encountered in Schema Evo-
lution. Technical Report UM-CS-96-044, University of Massachusetts, Amherst,
Computer Science Department, 1996.

S. Marche. Measuring the Stability of Data Models. European Journal of Infor-
mation Systems, 2(1):37-47, 1993.

Object Design Inc. ObjectStore - User Guide: DML. ObjectStore Release 3.0 for
UNIX Systems. Object Design Inc., December 1993.

E.A. Rundensteiner, K.T. Claypool, M. Li, L. Chen, X. Zhang, C. Natarajan,
J. Jin, S. De Lima, and S. Weiner. SERF: ODMG-Based Generic Re-structuring
Facility. In Demo Session Proceedings of SIGMOD’99, pages 568-570, 1999.

A. Segev and J. Park. Updating Distributed Materialized Views. IEEE Transac-
tions on Knowledge and Data Engineering, 1:173—184, 1989.

D. Sjoberg. Quantifying Schema Evolution. Information and Software Technology,
35(1):35-54, January 1993.

Oz Technology. Os Reference Manual, Version 4.5, Release November 1994. Oq
Technology, Versailles, France, November 1994.

7. Zicari. Primitives for Schema Updates in an Object-Oriented Database System:
A Proposal. In Computer Standards & Interfaces, pages 271-283, 1991.

	Optimizing Performance of Schema Evolution Sequences
	Introduction
	Related Work
	Background - Taxonomy of Schema Evolution Primitives
	Foundations of Schema Evolution Sequence Analysis
	The CHOP Optimization Functions
	An Optimization Function
	The Merge Optimization Function
	The Eliminate Optimization Function
	The Cancel Optimization Function

	CHOP Optimization Strategy
	Experimental Validation
	Conclusions
	References

