
Semi-automatic Model Integration using Matching 
Transformations and Weaving Models

Marcos Didonet Del Fabro Patrick Valduriez 
ATLAS Group, INRIA & LINA 

University of Nantes 
+33 (0)2 51 12 58 08 

marcos.didonet-del-fabro@univ-nantes.fr, patrick.valduriez@inria.fr 
 

ABSTRACT 
Model transformations are at the heart of model driven 
engineering (MDE) and can be used in many different application 
scenarios. For instance, model transformations are used to 
integrate very large models. As a consequence, they are becoming 
more and more complex. However, these transformations are still 
developed manually. Several code patterns are implemented 
repetitively, increasing the probability of programming errors and 
reducing code reusability. There is not yet a complete solution 
that automates the development of model transformations. In this 
paper we propose a novel approach that uses matching 
transformations and weaving models to semi-automate the 
development of transformations. Matching transformations are a 
special kind of transformations that implement heuristics and 
algorithms to create weaving models. Weaving models are models 
that capture different kinds of relationships between models. Our 
solution enables to rapidly implement and to customize these 
heuristics. We combine different heuristics, and we propose a new 
metamodel-based heuristic that exploits metamodel data to 
automatically produce weaving models. The weaving models are 
derived into model integration transformations. 

Categories and Subject Descriptors 
D.2.11 [Software architectures]: Domain-specific architectures. 
D.2.12 [Interoperability]: Data mapping. 

General Terms 
Algorithms, Standardization, Languages 

Keywords 
Model engineering, matching transformations, model weaving. 
1. INTRODUCTION 
Model transformations are a central component in model driven 
engineering practices. There are many model transformation 
languages emerging from industrial and academic efforts 
[3][12][14][15]. As a consequence, there are an increasing 
number of model transformations that are being developed for 

different applications scenarios. For instance, there are 
transformations to provide tool interoperability, to translate from 
textual to graphical representations, or to merge models. 
However, the development of transformations involves many 
repetitive tasks. Consider for example a generic model integration 
scenario that transforms one source model into one target model. 
The transformation development consists of creating rules that 
transform a set of elements of the source model into a set of 
elements of the target model. The properties of these elements are 
transformed using a set of transformation expressions. Most part 
of these expressions consists of 1-to-1 relationships or other 
common patterns, such as nesting or concatenation of elements. 
These transformations are often created manually. To the best of 
our knowledge, there is not a MDE approach that provides 
enough generic mechanisms to semi-automate the development of 
transformations. A semi-automatic process based on well-defined 
patterns brings many advantages: it accelerates the development 
time of transformations; it diminishes the errors that may occur in 
manual coding; it increases the quality of transformational code. 
The discovery of transformation patterns to integrate models is 
closely related to schema and to ontology matching approaches 
(see the survey at [22]). These approaches aim at discovering 
semantic relationships between elements of different schemas or 
ontologies. These relationships are used for different purposes, 
such as ontology alignment [9][19] or data translation [6]. 
However, these approaches have some drawbacks. Most part of 
solutions cannot be applied to models conforming to different 
metamodels. Metamodels are models that describe the structure of 
models. The distance between the conceptual basis (models) and 
the implementation (heuristics) is too important. This makes 
difficult to decompose and to customize different heuristics. 
There is no support for different kinds of relationships between 
models. Hence, native constructs of transformation languages are 
not supported, such as rule inheritance or nested relationships. 
In this paper, we present a novel solution to semi-automate the 
development of model transformations. We propose the execution 
of matching transformations. Matching transformations are 
transformations that select a set of elements from a set of input 
models and that produce links between these elements. These 
links are captured by a weaving model, as we proposed in [7]. 
The weaving model conforms to extensions of a weaving 
metamodel. We define links that act as specifications for model 
integration transformations. Model integration transformations are 
used in standard model integration applications. 
Matching transformations enable to rapidly implement new or to 
adapt heuristics to create weaving models. In addition, we 
propose a new metamodel-based heuristic that exploits the 
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internal features of the set of input metamodels to produce 
weaving models. This heuristic is executed together with a link 
rewriting method that analyzes the weaving metamodel 
extensions to produce frequently used transformation patterns. 
The main contributions of this paper are the following. We 
propose a solution to semi-automate the development of model 
transformations. We innovate by using matching transformations 
to allow an easy development of different matching heuristics or 
algorithms. We propose a metamodel-based heuristic that exploits 
the information from the set of input metamodels and from the 
weaving metamodel. These matching transformations 
automatically create weaving models. The weaving models are 
derived into model integration transformations. 
This paper is organized as follows. Section 2 is the motivating 
example. Section 3 presents the general architecture. Section 4 
presents weaving metamodel extensions that capture different 
kinds of relationships between models. Section 5 describes the 
matching transformations in more details. Section 6 presents how 
to derive a weaving model into executable model integration 
transformations. Section 7 presents a general discussion. Section 8 
presents the related work. Section 9 concludes. 

2. MOTIVATING EXAMPLE 
We motivate the necessity to automatically create model 
transformations using two simple metamodels MM1 and MM2. 
Both metamodels are illustrated in Figure 1. They describe the 
teachers and the students of different educational institutions. 
These metamodels have similar attributes and references, but they 
are organized differently. Metamodel MM1 contains an abstract 
class Person, with attributes name, SSN (Social Security Number), 
street, city and zip_code. The class Teacher inherits from Person, 
and it has the affiliation of the teacher. MM1 has two types of 
students: undergraduate students (Undergraduate) and master 
students (Master). Only master students have an advisor. 
Metamodel MM2 does not support inheritance. MM2 contains a 
class Professor and only one class Student. The presence of an 
advisor indicates if the student is undergraduate or master. The 
address of the professors and the students is factored out on the 
class Address. 

name : String
SSN : String
street : String
city : String
zip_code : String
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Figure 1. Two simple metamodels 
In Figure 2 we show a model transformation used to transform 
models conforming to MM1 (i.e., source model) into models 
conforming to MM2 (i.e., target model). The transformation is 
written in ATL (a complete description of the language is 
available in [15]). We choose ATL because it provides a simple 
syntax adapted for model transformations. 

This transformation has 3 rules; each rule matches one element of 
the source model and creates elements in the target model. The 
transformation developer must know that Teacher is transformed 
into Professor and that Master and Undergraduate are 
transformed into Student. After that, all the attributes and 
references of each class must be translated as well (name, SSN, 
address, advisor, street, code, etc.). 
rule CreateProfessor {

from source : MM1!Teacher
to target : MM2!Professor (

name <- source.name,
SSN <- source.SSN,
address <- address ),

address : MM2!Address (
street <- source.street,
city <- source.city,
code <- source.zip_code )

}

rule CreateStudent1 {
from source : MM1!Undergraduate
to target : MM2!Student (

-- copy bindings from CreateProfessor
)

}
rule CreateStudent2 {

from source : MM1!Master
to target : MM2!Student (

advisor <- source.advisor
-- copy bindings from CreateProfessor

)
}  

Figure 2. Transformation definition 
This transformation has basically two kinds of expressions: 
transformations between self contained elements (i.e., classes), 
and the setup of their properties (i.e., attributes and references). 
Thus, in the three rules, the transformation has a source class and 
a set of target classes. The rule CreateProfessor assigns the 
attributes of Teacher to Professor. These attributes are inherited 
from Person. The attributes from both classes have similar 
properties, such as name and type. These attributes are 
transformed in the containing class, or in a newly created class 
(Address). The same set of expressions must be rewritten in 
CreateStudent1 and in CreateStudent2 rules, because 
Undergraduate and Master inherit from Student, that inherits 
from Person. The transformation developer has two choices: to 
copy and paste the code, or to apply rule inheritance predicates. 
These expressions are common patterns in transformations that 
involve similar metamodels, for example in model integration or 
in model evolution scenarios. These transformations can be very 
large depending on the source and target metamodels. The 
automatic discovery of these transformation patterns can increase 
the development speed of model transformations. The 
intervention of qualified transformation developers is left 
essentially to more complex expressions that do not occur 
frequently and that cannot be created automatically. 
In order to automate the development of transformations, it is 
necessary to discover the different kinds of relationships (links) 
between metamodel (or model) elements. These links must be 
saved in another model. This model can be validated or modified 
by the transformation developer. 
Heuristics similar to ontology and schema matching can be used 
to discover these links. However, model transformations can be 
executed over several different source and target metamodels, 
with different attributes, relations, properties, etc. The patterns 
applied vary from case to case. Consequently, it is also important 
to have efficient ways to implement new heuristics and to adapt 
existing heuristics. 
As final step, these links must be translated into the correct 
transformation expressions, for instance links between attributes 
of abstract classes must be translated into bindings (a binding is 
denoted by the “ ” symbol) in the inherited classes. 
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3. GENERAL ARCHITECTURE 
This section presents an overview of the architecture to semi-
automate the production of model transformations. The 
architecture is illustrated in Figure 3. It is formed by three main 
components: the weaving engine, the transformation engine and 
the matching management component. 

Weaving 
engine Create weaving

Calculate 
similarities

Select best 
results

Transformation 
generation

Matching management
    (ordering, injection, 
      extraction)

Matching 
transformations

Transformation 
engine

 
Figure 3. General architecture 

3.1 Weaving Engine 
The weaving engine supports the specification of the different 
transformation patterns. The weaving engine is the only 
component that enables manual user input. It provides interfaces 
to create/update weaving metamodels and weaving models. 
The pattern definitions are encoded as typed links in a weaving 
metamodel. For instance, the link between the SSN-SSN attributes 
are typed as an AttributeEqual link, indicating the equality 
between two attributes (we describe these links further in this 
paper). The weaving models capture the different kinds of links 
defined in the weaving metamodel (a formal definition of 
weaving models and metamodels can be found at [7]). 
The weaving engine exchanges the weaving models and 
metamodels with the transformation engine through the matching 
management component. 

3.2 Transformation Engine 
The transformation engine executes different kinds of model 
transformations. The process is divided in two phases: the 
matching phase, and the transformation generation phase. We 
explain them below. 

3.2.1 Matching 
The matching phase discovers the relationships between a set of 
input models and creates a weaving model. The whole process is 
encapsulated in a model management operation called Match [4]. 
The Match operation takes two models Ma and Mb as input and 
produces a weaving model Mw as output. Ma and Mb conform to 
MMa and MMb; Mw conforms to MMw. 

Mw : MMw = Match (Ma : MMa, Mb : MMb). 

The Match operation is semi-automatic, i.e., it is an interactive 
process that alternates between the automatic execution of 
matching transformations and the manual refinement of weaving 
models in the weaving engine. Matching transformations are 
transformations that execute different heuristics to produce a 
weaving model. 

There are three kinds of matching transformations. The first kind 
creates a weaving model with links between the elements of the 
input models. However, it is not possible to create a weaving 
model with only correct links between the model elements in a 
single transformation. For instance, we create links between 
name-name attributes or even name-SSN. These links are refined 
by other matching transformations. The second kind of matching 
transformations calculates the similarity distance between every 
linked element. These transformations execute different matching 
heuristics (we explain them in the subsequent sections). In this 
case, the name-name link has a higher similarity value than name-
SSN link. The third kind of matching transformation selects the 
links with best similarity values to produce a more accurate model 
with only a subset of links. For instance, we select only the name-
name links. After the execution of these transformations, the 
weaving model can be manually modified in the weaving engine. 

3.2.2 Transformation Generation 
The transformation generation is the last phase in the production 
of model transformations. We implement higher-order 
transformations (HOT’s) to interpret the different kinds of links 
captured by a weaving model. These HOT’s generate the output 
model transformations. In other words, the weaving models are 
transformed into transformation models. The transformation 
model can be extracted into a textual language, for instance ATL 
or XSLT. 

3.3 Matching Management 
The matching management component (illustrated by the “bus” in 
Figure 3) controls the interactions between the transformation and 
the weaving engines. This component establishes the order in 
which the matching transformations are executed, and it 
synchronizes these transformations with the weaving engine. This 
way it is possible to manually update weaving models during the 
match process. The matching management component also 
provides facilities to inject models into a compatible format and 
to extract models into different formalisms. 

4. WEAVING METAMODEL 
The weaving metamodel specifies the different kinds of links that 
are generated by the matching transformations. Each kind of link 
corresponds to one transformation pattern. For instance, one of 
the most common patterns of declarative transformation rules is to 
match one class in a source model and to create a new class in a 
target model. 
The weaving metamodels are created as extensions of a core 
weaving metamodel, as proposed in [7]. We illustrate an excerpt 
of this metamodel in Figure 4. The metamodel is written in KM3 
[13]. KM3 is a simple textual language to define metamodels. 

abstract class WLink extends WElement{ 
  reference child[*] container : WLink oppositeOf parent; 
  reference parent : WLink oppositeOf child; 
  reference end[1-*] container: WLinkEnd oppositeOf link; 
}  
abstract class WLinkEnd extends WElement{ 
  reference link : WLink oppositeOf end;  
  reference element : WElementRef; 
}   

Figure 4. Excerpt of the core weaving metamodel 

The WLink and WLinkEnd classes are the weaving elements that 
are extended more often, because these elements define the link 
types (WLink) and the linked elements (WLinkEnd). A WLink can 
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have child links to represent nested relationships, and it refers to 
one or multiple linked elements through the reference end. 

4.1 Matching Metamodel Extensions 
We show in Figure 5 an extension of this core weaving 
metamodel. The class Element is a concrete extension of 
WLinkEnd. It enables referring to any kind of (meta)model 
element. The class Equivalent contains two references to save the 
source and target elements. The class Equivalent has a similarity 
value that is calculated in the matching transformations. This 
value is a numeric value that measures the semantic proximity of 
the linked elements. The other classes capture five different 
transformation patterns: 

• Generic equality: the class Equal indicates that the linked 
elements represent the same information. 

• Element binding: the class <Type>Binding captures binding 
patterns between two model elements. The <Type> tag must be 
replaced by the element type, for example AttributeBinding or 
ReferenceBinding. 

• Attribute to references: the class AttributeToRef captures links 
between attributes in the source model and references in the 
target model. The targetAttribute contains an attribute of the 
element referred by the target reference. 

• Element matching: the class ElementMatch denotes the from/to 
link between a source and a target element. 

• Element inheritance: the class ElementInheritance relates 
elements that inherit from others. The reference super points to 
the parent element of a given element. 

class Element extends WLinkEnd { }  
class Equivalent extends WLink { 
  attribute similarity : Double; 
  reference source container : Element; 
  reference target container : Element;  
} 
class Equal extends Equivalent { } 
class <Type>Binding extends Equivalent { } 
class ElementMatch extends Equivalent { } 
class AttributeToRef extends Equivalent { 
  reference targetAttribute container : Element  
} 
class ElementInheritance extends Equivalent { 
  reference super container : WLink;  
} 

Figure 5. Matching extensions 

5. MATCHING TRANSFORMATIONS 
In this section we present the different kinds of matching 
transformations in details. We define one generic model 
management operation for each matching transformation. 

5.1 Creating Weaving Models 
Transformations that create weaving models are the first kind of 
matching transformations that are executed. The model 
management operation that creates weaving models is called 
CreateWeaving. The operation takes two models Ma and Mb as 
input and transforms them into a weaving model Mw. Ma conforms 
to MMa, Mb conforms to MMb and Mw conforms to MMw. 

Mw : MMw = CreateWeaving (Ma : MMa, Mb : MMb). 

This operation matches a set of elements of a given type of Ma 
with a set of elements of a given type of Mb. It creates a restricted 
Cartesian-product Ma × Mb. The operation creates a link between 
every pair of elements. 

Figure 6 illustrates how the operation is implemented using a 
generic transformation rule. MMa and MMb denote the input 
metamodels. MMw denotes the output weaving metamodel. This 
rule matches all elements of type <TypeA> with elements of type 
<TypeB> and produces an equivalence link between a source and 
target element. 

rule CreateLink { 
  from aSource : MMa!<TypeA>, aTarget : MMb!<TypeB> 
  to alink : MMw!Equivalent ( 
    source <- aSource , 
    target <- aTarget  
  ) 
} 

Figure 6. Creation of equivalence links 
The operation can also be modified to update weaving models (to 
create or to remove other links). In this case it has a weaving 
model as extra input parameter. 
Mw : MMw = CreateWeaving (Ma : MMa, Mb : MMb, Mw’ : MMw). 

The use of matching transformations enables to change the types 
of the source or the target elements. This allows matching 
elements from different metamodels, for instance a KM3 Class 
with a SQL Table. 

5.2 Calculating Element Similarity 
The second kind of matching transformation calculates a 
similarity value between the elements referred by the source and 
target references, for every link of a weaving model. This 
similarity value is used to evaluate the semantic proximity 
between the linked elements. A link with a high similarity value 
indicates that there is a good probability that the source element 
must be translated into the target element. 
We define a model management operation called 
AssignSimilarity. The operation takes a weaving model Mw’ and a 
weight as input, and it produces a weaving model Mw as output. 
The input and the output models conform to the same weaving 
metamodel MMw. The output weaving model has the new 
similarity values. However, there are many different methods to 
calculate similarities values. The tag <method> indicates the 
method that is implemented. 
Mw : MMw = AssignSimilarity<method> (Mw’: MMw, weight: int). 

The weight parameter is used to restrict the similarity values 
between [0-weight]. This parameter enables to adjust the impact 
of a given similarity method. For instance, a similarity method 
that compares element names may have weight 0.8, and a 
similarity method that compares types may have weight 0.2. This 
means that the elements are considered more similar if they have 
the same name than the same type. 
This operation executes update transformations, i.e., it does not 
create new links. Different matching transformations can be 
executed to obtain a more accurate similarity value. We 
implement element-to-element and structural methods. We 
explain them below. 

5.2.1 Element-to-element Similarities 
Element-to-element similarities are calculated taking the source 
and target elements of an Equivalent link and comparing the 
element names (or identifiers) in different ways. We implement 
different methods: 

• String similarity: the names of the model elements are 
considered strings. The names are compared using string 
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comparison methods such as Levenshtein distance, n-grams and 
edit distance [5]. 

• Dictionary of synonyms: the names are compared using a 
dictionary of synonyms (we use WordNet [11]). This dictionary 
provides a tree of synonyms. The similarity between two terms 
(element names) is calculated according to the distance between 
these terms in the synonym tree. This way it is possible, for 
example, to increase the similarity value between elements such 
as Teacher and Professor, which does not yield good results if 
using string comparison methods. 

However, some of these methods are already implemented and 
available in public APIs. We thus extend the ATL transformation 
engine to be able to call methods from external APIs. The 
transformation engine provides wrapper methods that can be 
applied to every model element, this way we are capable to use 
APIs such as the SimMetrics API [21] and the JWNL API [16].  

5.2.2 Structural Similarity 
Structural similarities are calculated using the internal properties 
of the model elements, e.g., types, cardinality, and the 
relationships between model elements, e.g., containment or 
inheritance trees. These data are encoded in the metamodels. 
We implement a structural method called metamodel-based 
similarity. The metamodel-based similarity method is executed 
after an element-to-element method to improve the accuracy of 
these methods. The metamodel-based method calculates the 
similarity using the internal properties and the relationships 
between model elements. 

5.2.2.1 Internal Properties 
Model elements have a set of properties, such as type, cardinality, 
order, length, etc. Consider two model elements a ∈ Ma and b ∈ 
Mb; Ma and Mb are different models, but conform to the same 
metamodel. A matching transformation compares the properties 
of a with the properties of b. If a given property has the same 
value, it adds 1(one) to a temporary similarity value. This 
temporary value is multiplied by the weight parameter and added 
to the initial similarity value. However, this generic comparison is 
valid only if Ma and Mb conform to the same metamodel. When 
the metamodels are different, the operation is adapted for every 
different property. 
Consider two different metamodels, KM3 and SQL-DDL (the 
complete metamodels can be found at [1]). We consider two 
elements from these metamodels, Attribute from KM3 and 
Column from SQL-DDL. An Attribute has properties such as type, 
lower, upper, isOrdered, or isUnique. A Column has the 
following properties: default, type, keys, canBeNull. These 
properties cannot be directly compared if using a generic 
heuristic, because their values are not compatible and there is no 
name equivalence. For example, the transformation must take into 
account that canBeNull is a Boolean. The same information is 
captured analyzing the value of lower property.. We illustrate the 
transformation rule for this case in Figure 7.  
This rule calculates the similarity between KM3 and SQL-DDL 
elements. It selects an Equal link that satisfies the following 
condition: the source reference points to an Attribute of a KM3 
model, and the target reference points to a Column of the SQL-
DDL model. The helper requiredSim compares the required 

property with the CanBeNull property, and returns one (1) if they 
satisfy the equality criteria. 

rule UpdateStructuralSim { 
   from mmw : MMw!Equal mmw.source.isTypeOf(KM3!Attribute) 

and mmw.target.isTypeOf(SQLDDL!Column)) 
   to alink : MMw!Equal ( 
       similarity <- ( mmw.similarity +  
           mmw.source.requiredSim(mmw.target) ) * weight  
      ) 
}  
 helper context KM3!Attribute def: requiredSim 
   (column : SQLDDL!Column) : Real =   
   if (self.lower = 0 and column.canBeNull) or  
     (self.lower = 0 and column.canBeNull) 
     then 1 
     else 0 
   endif;  

Figure 7. Structural similarity rule 

5.2.2.2 Element Relationships 
There are different kinds of relationships between elements of the 
same metamodel, for instance containment or inheritance 
relationships. Structural methods that exploit the element 
relationships rely on the following assumption: if two model 
elements are similar, the neighbors of these elements are likely to 
be similar as well. For example, if two attributes from two models 
have a high similarity value, the containing classes of these 
attributes have a good probability to be similar. 
We create a heuristic inspired in the Similarity Flooding (SF) 
algorithm [18]. We implement a matching transformation that 
propagates the similarities values between related elements using 
the containment and the inheritance trees. 

• Containment tree: it captures the containment relationships of a 
model. Consider for example a class with references and 
attributes. The nodes of the tree contain classes, attributes and 
references. They are all linked by containment edges. 

• Inheritance tree: it captures the generalization relationships 
between the elements. 

These methods can be executed in the same AssignSimilarity 
operation. However, it is also possible to have separate operations 
that are applied to specific models. For example, the inheritance 
tree is not relevant when creating a weaving model between SQL-
DDL models that do not have native inheritance relationships. 
These structures can be used to propagate the similarity between 
elements of different metamodels. Consider again the SQL-DDL 
and KM3 metamodels. The containment trees from both 
metamodels are different. However, the containment relationship 
between a Table and a Column is equivalent to the relationship 
between a Class and an Attribute. The matching transformations 
enable to build a containment tree of these two metamodels. 

5.3 Selecting Best Links 
The third kind of matching transformations selects only the links 
that satisfy a set of conditions. The selected links are included in 
the final weaving model. These matching transformations are 
generalized by the operation Select<method>.  
Mw : MMw = Select<condition> (Mw’ : MMw). 
The operation takes a weaving model Mw’ as input and produce 
another weaving model Mw as output. Both weaving models 
conform to the same weaving metamodel MMw. The condition tag 
denotes the selection criteria. Links are selected using two 
methods: link filtering and link rewriting. These methods are 
explained below. 
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5.3.1 Link Filtering 
Link filtering methods selects only the links with the highest 
similarity values for every source element. This is because in 
model integration transformations it is necessary to translate all 
the elements of the source model (or as most as possible) into the 
target model. Thus, we want to obtain a link between every 
element of the source metamodel with the elements of the target 
metamodel. However, due to semantic differences, the target 
metamodel cannot always represent all the information from the 
sources. 
We illustrate a matching transformation rule in Figure 8. This rule 
is executed for all the source elements. It loops over all the 
equivalence links (and inherited links) of a given source element 
and it selects the link that has the highest similarity value. 
The using part declares variables to store an auxiliary similarity 
value and the selected link. The allInstances() method returns all 
the instances of links conforming to the Equivalent class. The for 
block selects the links that have the source reference equals to the 
aSource parameter. Then the similarity values are compared with 
a current similarity value. The maximum value and the 
corresponding link are stored in the auxiliary variables. 

rule getMaxLink (aSource : MMa!ModelElement) { 
  using { 
    newLink : MMw!Equivalent = null; 
    maxSim : Real = 0; 
  } do {  
      for(e in MMw!Equivalent.allInstaces()-> 
      select (e.source = aSource )) { 
        if (e.similarity > maxSim) { 
         maxSim <- e.similarity; 
           newLink <- e;  
        } 
      } 
    return newLink;  
} 

Figure 8. Link filtering method 

The output weaving model contains one link for each element of 
the source model. This rule selects all the elements from the 
source model, but the same target element may be selected several 
times. The last adjustments are done by link rewriting methods. 

5.3.2 Link Rewriting 
Link rewriting methods analyze the relationships between links of 
a filtered weaving model. These relationships are used to 
transform simple links (e.g., Equivalent, Equal) into complex kind 
of links that capture different transformation patterns. Common 
patterns are nesting, inheritance, data conversions, concatenation, 
splitting, etc. For instance, if more than one source element is 
linked with the same target element through Equal links, this link 
can be rewritten as a Concatenation link. The most common form 
of link rewriting is the nesting between elements with 
containment relationships, for example classes and attributes, or 
tables and columns.  
Consider a weaving model that links two KM3 metamodels, MMa 
and MMb. After the execution of a link filtering transformation, it 
contains a set of ElementMatch and AttributeBinding links. The 
class ElementMatch contains links between classes, and 
AttributeBinding contains links between attributes. However, they 
are children of the root element. Now consider classes A ∈ MMa 
and B ∈ MMb, attributes a ∈ A, b ∈ B, links ElementMatch (A, B) 
and AttributeBinding (a, b). Since a is an attribute of A and b is an 
attribute of B, the AttributeBinding link is rewritten as a link child 
of ElementMatch. Note that the rewriting is not based on the 
similarity values. 

We illustrate the rewriting of nested links in Figure 9. This rule 
matches AttributeBinding and ElementMatch links at the same 
time and it checks if the owner of the attribute is the current 
element. If the result is true, it executes the rule and assigns the 
class_link element to the attr_link.parent reference. 

rule NestedRewriting { 
  from attr_link : MMw!AttributeBinding,  
       class_link : MMw!ElemenentMatch ( 
      attr_link.source.owner = class_link.source and 
      attr_link.target.owner = class_link.target ) 
  to link : MMw!AttributeBinding ( 
    parent <- class_link  
  ) 
} 

Figure 9. Rewriting of attribute-binding links 

6. TRANSFORMATION GENERATION 
The transformation generation is the last phase in the production 
of model transformations. This phase translates the weaving 
model produced by the matching transformations into a 
transformation model. We implement higher-order 
transformations (HOT’s) to translate the extensions of WLink’s 
into transformation rules and bindings. A higher-order 
transformation is a transformation, such that the input and/or the 
output models are transformation models. 
We describe below the input links (from Section 4.1) and the 
corresponding output transformation expressions (these 
expressions are described based on the ATL metamodel [15]). 
These HOT’s are extensions of the pattern described at [8]. We 
illustrate them using the motivating example. 

• Equal: these links are not translated into transformations. They 
are always rewritten by a link rewriting method. 

• ElementMatch: the source reference is translated into an input 
pattern. An input pattern is the element after the from keyword. 
The target reference is translated into the first output pattern 
after the to keyword. For example, the transformation of class 
Teacher into class Professor. 

• <Type>Binding: the source reference is translated into the 
source of a binding (i.e., the right expression after the “ ” 
separator). The target reference is the target of a binding. For 
example, the binding between SSN attributes or advisor 
references. 

• AttributeToRef: these links are translated into two bindings and 
one output pattern. The target reference is translated as the 
target expression of the first binding. The source of this binding 
is the new output pattern. This output pattern has the type of the 
target reference. This output pattern contains the second 
binding. The source of the second binding is the source 
reference, and the target is the targetAttribute reference. For 
example, the transformation of the city, street and zip_code into 
the Address class. 

• ElementInheritance: the source and target references are 
translated in the same way of an ElementMatch link, i.e., a new 
transformation rule is created. If the element of the output 
pattern of another rule (i.e., generated from an 
ElementMatch.target reference) is referred by super, all the 
bindings of this referred rule are copied to the current rule. For 
example, the copy of SSN and name bindings into all the 
transformation rules of the motivating example. 
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7. DISCUSSION 
The matching transformations are executed with two variations of 
the motivation example. In the first example, MM1 and MM2 
conform to KM3. In the second example, MM1 conforms to KM3 
and MM2 conforms to SQL-DDL. The weaving models are 
translated into model transformations. The goal is to verify if the 
transformations are generated correctly, and to verify if the 
matching transformations can be easily adapted in both examples. 
The motivating example has different transformation patterns, 
such as class inheritance, nesting of elements, or classes with 
different names. MM1 contains 17 elements and MM2 contains 
18. The creation of links between every model element without 
any type restriction yields a weaving model with 950 elements: 
306 links, plus one right and one left element for each link, i.e., 
3x306, plus additional control elements. It is important to reduce 
the number of initial links as early as possible in the process, to be 
able to scale up the approach to match larger models. 
The weaving model with the type-restricted Cartesian product 
contains 273 elements, with 78 links. The name similarity method 
enables to match elements such as SSN-SSN, name-name, or 
zip_code-code. The dictionary of synonyms increases the 
similarity of elements such as Professor and Teacher, Master and 
Student. The containment tree enables to propagate the similarity 
of the attributes of Master and Student. 
We execute the propagation of similarities two times. The 
propagation of the similarities more than two times increases the 
similarity between the classes (e.g., Teacher and Professor), but 
the values are not significantly different in our example. Several 
propagation steps may be more useful in the case of model 
comparison, where more accurate values are necessary. 
The creation of links and the computation of similarities can be 
applied for more generic examples, not only to generate 
integration transformations. On the other side, the link filtering 
and rewriting methods are more specific to the type of the output.  
Consequently, link selection methods are very important to obtain 
the final integration transformations. For example, the similarity 
between the abstract class Person and class Professor is high. 
This would produce a rule that transforms Person into Professor. 
The filtering method does not select links with abstract classes. 
Then, the link rewriting method copies the bindings of the 
attributes of the class Person to the rules that transform the 
inherited classes, i.e., Master, Teacher, Undergraduate. 
The only link that is not generated correctly is Undergraduate-
Student. This is because none of the initial similarity methods can 
find high similarity values. The values are not propagated, 
because the inheritance relationships exist only in the source 
model. We thus use the weaving engine to modify the weaving 
model. After applying all the transformations and using the 
weaving engine, the weaving model is reduced to 78 elements, 
with 12 links. 
Finally, the weaving model is used as input to higher-order 
transformations. We created a HOT with 250 lines. It is relatively 
complex compared to the generated transformation, with only 
four ATL rules. However, this HOT and the matching heuristics 
are implemented to be used many times in different applications. 
In the second example, we evaluate if the matching 
transformations can create weavings between models conforming 

to different metamodels. The base algorithms of the matching 
transformations are the same, leading to similar results. However, 
we adjust the implementation of the containment tree, as well as 
the metamodel-based heuristics. For example, we compare data 
types such as String (in KM3) and char (in SQL-DDL). Thus, the 
generic matching heuristics can be rapidly modified to match 
models conforming to different metamodels. The weaving models 
generated in both examples are equivalent. 
To summarize, the use of matching transformations and weaving 
models enables to semi-automate the production of model 
transformations in an efficient manner. Matching transformations 
enables to rapidly implement different heuristics that produce a 
weaving model. These heuristics can be adapted to different 
metamodels. The weaving model captures different 
transformation patterns specified in a weaving metamodel. The 
weaving model is translated into a model transformation 
language. 

8. RELATED WORK 
To the best of our knowledge, our solution is the only complete 
model driven approach that automates the production of model 
transformations. However, there has been extensive work on how 
to find relationships between schemas and ontologies. These 
approaches have different goals, such as data and schema 
integration [2] [6] [17], ontology merging and alignment [10] [19] 
[20], or ontology integration [9]. Amongst these several 
approaches, COMA++ [2] and the API of Euzenat [10] are the 
solutions most similar to ours. 
COMA++ implements a set of heuristics, using for instance 
element-to-element methods or incremental matching. COMA++ 
provides an interactive user interface to combine these heuristics. 
Matching transformations provide a more suitable mechanism for 
adaptation, because the declarative nature of the transformations 
allows abstracting implementation details, such as the creation of 
new elements and the match of several elements. 
The work of Euzenat factors out schema matching features and 
proposes a generic API. The API provides interface methods used 
to implement different matching heuristics and to combine 
different matching results. The main drawback of this API is that 
the new matching methods must be implemented almost from 
scratch. The API does not provide interfaces for each different 
matching phase. We implement these operations using model 
transformations. This enables to create customized heuristics to 
match different metamodels. However, we do not provide 
operations to evaluate different matching results. 
The solution from [9] proposes machine learning techniques to 
select amongst a set of heuristics, and not to create heuristics as in 
most part of solutions. We believe this is a complementary 
approach. The machine learning techniques could be enhanced to 
support our matching transformations as input. 
iMAP [6] is one of the few approaches that creates complex links. 
However, the links are all created in the beginning of a matching 
(equivalent to our CreateWeaving operation). We create complex 
mappings after filtering a weaving model. Our link rewriting 
method creates a smaller number of complex links that are 
targeted to produce model transformations. 
Similarity Flooding (SF) [18] is a generic structural heuristic that 
propagates the similarity of a pair of nodes through their 
neighbors. However, as the author say in [18], it is not adapted to 
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match models conforming to different metamodels. This 
algorithm is the basis of our metamodel-based matching 
transformations. We improve this heuristic to support the 
matching of different metamodels, with two different ways to 
propagate the similarities through the neighbors’ elements. 

9. CONCLUSIONS 
In this paper, we have presented a solution to automate the 
production of model transformations. We have proposed to use 
matching transformations that create weaving models. These 
transformations execute different matching heuristics. The 
weaving models capture common transformation patterns between 
model elements. The weaving model is translated into executable 
model integration transformations. 
We have shown that matching transformations are a practical 
solution to implement new or to adapt matching heuristics. The 
use of declarative transformation languages enabled to abstract 
implementation details on how to apply these heuristics. The 
separation of the whole matching process into different kinds of 
matching transformations allowed combining different methods in 
a straightforward way. 
The matching transformations enabled the creation of weaving 
models between models conforming to different metamodels, and 
also the creation of links only between a restricted set of 
elements. We proposed a new metamodel-based matching 
transformation that takes advantage of every property of a given 
metamodel. We have presented a new link rewriting operation 
that analyzes the relationships between the links of a weaving 
model. These links are transformed into complex kind of links. 
This operation is particularly important to capture complex 
transformation patterns. 
We developed a weaving metamodel that captures common 
transformation patterns. The weaving models conforming to this 
metamodel were translated into transformations using higher-
order transformations. We were able to produce the 
transformation model that performs the data translation from a 
source into a target model. 
The use of several matching transformations can cause 
performance problems when generating transformations between 
large models. Thus, the optimization of these operations is 
becoming important and is a subject for future work. For instance, 
after choosing a set of operations to create a weaving model, these 
operations could be merged by a transformation engine to be 
executed in a single rule. 
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