
Semi-automatic Model Integration using Matching
Transformations and Weaving Models

Marcos Didonet Del Fabro Patrick Valduriez
ATLAS Group, INRIA & LINA

University of Nantes
+33 (0)2 51 12 58 08

marcos.didonet-del-fabro@univ-nantes.fr, patrick.valduriez@inria.fr

ABSTRACT
Model transformations are at the heart of model driven
engineering (MDE) and can be used in many different application
scenarios. For instance, model transformations are used to
integrate very large models. As a consequence, they are becoming
more and more complex. However, these transformations are still
developed manually. Several code patterns are implemented
repetitively, increasing the probability of programming errors and
reducing code reusability. There is not yet a complete solution
that automates the development of model transformations. In this
paper we propose a novel approach that uses matching
transformations and weaving models to semi-automate the
development of transformations. Matching transformations are a
special kind of transformations that implement heuristics and
algorithms to create weaving models. Weaving models are models
that capture different kinds of relationships between models. Our
solution enables to rapidly implement and to customize these
heuristics. We combine different heuristics, and we propose a new
metamodel-based heuristic that exploits metamodel data to
automatically produce weaving models. The weaving models are
derived into model integration transformations.

Categories and Subject Descriptors
D.2.11 [Software architectures]: Domain-specific architectures.
D.2.12 [Interoperability]: Data mapping.

General Terms
Algorithms, Standardization, Languages

Keywords
Model engineering, matching transformations, model weaving.
1. INTRODUCTION
Model transformations are a central component in model driven
engineering practices. There are many model transformation
languages emerging from industrial and academic efforts
[3][12][14][15]. As a consequence, there are an increasing
number of model transformations that are being developed for

different applications scenarios. For instance, there are
transformations to provide tool interoperability, to translate from
textual to graphical representations, or to merge models.
However, the development of transformations involves many
repetitive tasks. Consider for example a generic model integration
scenario that transforms one source model into one target model.
The transformation development consists of creating rules that
transform a set of elements of the source model into a set of
elements of the target model. The properties of these elements are
transformed using a set of transformation expressions. Most part
of these expressions consists of 1-to-1 relationships or other
common patterns, such as nesting or concatenation of elements.
These transformations are often created manually. To the best of
our knowledge, there is not a MDE approach that provides
enough generic mechanisms to semi-automate the development of
transformations. A semi-automatic process based on well-defined
patterns brings many advantages: it accelerates the development
time of transformations; it diminishes the errors that may occur in
manual coding; it increases the quality of transformational code.
The discovery of transformation patterns to integrate models is
closely related to schema and to ontology matching approaches
(see the survey at [22]). These approaches aim at discovering
semantic relationships between elements of different schemas or
ontologies. These relationships are used for different purposes,
such as ontology alignment [9][19] or data translation [6].
However, these approaches have some drawbacks. Most part of
solutions cannot be applied to models conforming to different
metamodels. Metamodels are models that describe the structure of
models. The distance between the conceptual basis (models) and
the implementation (heuristics) is too important. This makes
difficult to decompose and to customize different heuristics.
There is no support for different kinds of relationships between
models. Hence, native constructs of transformation languages are
not supported, such as rule inheritance or nested relationships.
In this paper, we present a novel solution to semi-automate the
development of model transformations. We propose the execution
of matching transformations. Matching transformations are
transformations that select a set of elements from a set of input
models and that produce links between these elements. These
links are captured by a weaving model, as we proposed in [7].
The weaving model conforms to extensions of a weaving
metamodel. We define links that act as specifications for model
integration transformations. Model integration transformations are
used in standard model integration applications.
Matching transformations enable to rapidly implement new or to
adapt heuristics to create weaving models. In addition, we
propose a new metamodel-based heuristic that exploits the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

963

internal features of the set of input metamodels to produce
weaving models. This heuristic is executed together with a link
rewriting method that analyzes the weaving metamodel
extensions to produce frequently used transformation patterns.
The main contributions of this paper are the following. We
propose a solution to semi-automate the development of model
transformations. We innovate by using matching transformations
to allow an easy development of different matching heuristics or
algorithms. We propose a metamodel-based heuristic that exploits
the information from the set of input metamodels and from the
weaving metamodel. These matching transformations
automatically create weaving models. The weaving models are
derived into model integration transformations.
This paper is organized as follows. Section 2 is the motivating
example. Section 3 presents the general architecture. Section 4
presents weaving metamodel extensions that capture different
kinds of relationships between models. Section 5 describes the
matching transformations in more details. Section 6 presents how
to derive a weaving model into executable model integration
transformations. Section 7 presents a general discussion. Section 8
presents the related work. Section 9 concludes.

2. MOTIVATING EXAMPLE
We motivate the necessity to automatically create model
transformations using two simple metamodels MM1 and MM2.
Both metamodels are illustrated in Figure 1. They describe the
teachers and the students of different educational institutions.
These metamodels have similar attributes and references, but they
are organized differently. Metamodel MM1 contains an abstract
class Person, with attributes name, SSN (Social Security Number),
street, city and zip_code. The class Teacher inherits from Person,
and it has the affiliation of the teacher. MM1 has two types of
students: undergraduate students (Undergraduate) and master
students (Master). Only master students have an advisor.
Metamodel MM2 does not support inheritance. MM2 contains a
class Professor and only one class Student. The presence of an
advisor indicates if the student is undergraduate or master. The
address of the professors and the students is factored out on the
class Address.

name : String
SSN : String
street : String
city : String
zip_code : String

Person

affiliation : String
Teacher

MasterUndergraduate

name : String
SSN : String

Professor

name : String
SSN : String

Student

street : String
city : String
code : String

Address
0..1

1

address

ad
vi

so
r

ad
vi

so
r 0..1

1
address

Metamodel MM1 Metamodel MM2

1

0..1

Student

Figure 1. Two simple metamodels
In Figure 2 we show a model transformation used to transform
models conforming to MM1 (i.e., source model) into models
conforming to MM2 (i.e., target model). The transformation is
written in ATL (a complete description of the language is
available in [15]). We choose ATL because it provides a simple
syntax adapted for model transformations.

This transformation has 3 rules; each rule matches one element of
the source model and creates elements in the target model. The
transformation developer must know that Teacher is transformed
into Professor and that Master and Undergraduate are
transformed into Student. After that, all the attributes and
references of each class must be translated as well (name, SSN,
address, advisor, street, code, etc.).
rule CreateProfessor {

from source : MM1!Teacher
to target : MM2!Professor (

name <- source.name,
SSN <- source.SSN,
address <- address),

address : MM2!Address (
street <- source.street,
city <- source.city,
code <- source.zip_code)

}

rule CreateStudent1 {
from source : MM1!Undergraduate
to target : MM2!Student (

-- copy bindings from CreateProfessor
)

}
rule CreateStudent2 {

from source : MM1!Master
to target : MM2!Student (

advisor <- source.advisor
-- copy bindings from CreateProfessor

)
}

Figure 2. Transformation definition
This transformation has basically two kinds of expressions:
transformations between self contained elements (i.e., classes),
and the setup of their properties (i.e., attributes and references).
Thus, in the three rules, the transformation has a source class and
a set of target classes. The rule CreateProfessor assigns the
attributes of Teacher to Professor. These attributes are inherited
from Person. The attributes from both classes have similar
properties, such as name and type. These attributes are
transformed in the containing class, or in a newly created class
(Address). The same set of expressions must be rewritten in
CreateStudent1 and in CreateStudent2 rules, because
Undergraduate and Master inherit from Student, that inherits
from Person. The transformation developer has two choices: to
copy and paste the code, or to apply rule inheritance predicates.
These expressions are common patterns in transformations that
involve similar metamodels, for example in model integration or
in model evolution scenarios. These transformations can be very
large depending on the source and target metamodels. The
automatic discovery of these transformation patterns can increase
the development speed of model transformations. The
intervention of qualified transformation developers is left
essentially to more complex expressions that do not occur
frequently and that cannot be created automatically.
In order to automate the development of transformations, it is
necessary to discover the different kinds of relationships (links)
between metamodel (or model) elements. These links must be
saved in another model. This model can be validated or modified
by the transformation developer.
Heuristics similar to ontology and schema matching can be used
to discover these links. However, model transformations can be
executed over several different source and target metamodels,
with different attributes, relations, properties, etc. The patterns
applied vary from case to case. Consequently, it is also important
to have efficient ways to implement new heuristics and to adapt
existing heuristics.
As final step, these links must be translated into the correct
transformation expressions, for instance links between attributes
of abstract classes must be translated into bindings (a binding is
denoted by the “ ” symbol) in the inherited classes.

964

3. GENERAL ARCHITECTURE
This section presents an overview of the architecture to semi-
automate the production of model transformations. The
architecture is illustrated in Figure 3. It is formed by three main
components: the weaving engine, the transformation engine and
the matching management component.

Weaving
engine Create weaving

Calculate
similarities

Select best
results

Transformation
generation

Matching management
 (ordering, injection,
 extraction)

Matching
transformations

Transformation
engine

Figure 3. General architecture

3.1 Weaving Engine
The weaving engine supports the specification of the different
transformation patterns. The weaving engine is the only
component that enables manual user input. It provides interfaces
to create/update weaving metamodels and weaving models.
The pattern definitions are encoded as typed links in a weaving
metamodel. For instance, the link between the SSN-SSN attributes
are typed as an AttributeEqual link, indicating the equality
between two attributes (we describe these links further in this
paper). The weaving models capture the different kinds of links
defined in the weaving metamodel (a formal definition of
weaving models and metamodels can be found at [7]).
The weaving engine exchanges the weaving models and
metamodels with the transformation engine through the matching
management component.

3.2 Transformation Engine
The transformation engine executes different kinds of model
transformations. The process is divided in two phases: the
matching phase, and the transformation generation phase. We
explain them below.

3.2.1 Matching
The matching phase discovers the relationships between a set of
input models and creates a weaving model. The whole process is
encapsulated in a model management operation called Match [4].
The Match operation takes two models Ma and Mb as input and
produces a weaving model Mw as output. Ma and Mb conform to
MMa and MMb; Mw conforms to MMw.

Mw : MMw = Match (Ma : MMa, Mb : MMb).

The Match operation is semi-automatic, i.e., it is an interactive
process that alternates between the automatic execution of
matching transformations and the manual refinement of weaving
models in the weaving engine. Matching transformations are
transformations that execute different heuristics to produce a
weaving model.

There are three kinds of matching transformations. The first kind
creates a weaving model with links between the elements of the
input models. However, it is not possible to create a weaving
model with only correct links between the model elements in a
single transformation. For instance, we create links between
name-name attributes or even name-SSN. These links are refined
by other matching transformations. The second kind of matching
transformations calculates the similarity distance between every
linked element. These transformations execute different matching
heuristics (we explain them in the subsequent sections). In this
case, the name-name link has a higher similarity value than name-
SSN link. The third kind of matching transformation selects the
links with best similarity values to produce a more accurate model
with only a subset of links. For instance, we select only the name-
name links. After the execution of these transformations, the
weaving model can be manually modified in the weaving engine.

3.2.2 Transformation Generation
The transformation generation is the last phase in the production
of model transformations. We implement higher-order
transformations (HOT’s) to interpret the different kinds of links
captured by a weaving model. These HOT’s generate the output
model transformations. In other words, the weaving models are
transformed into transformation models. The transformation
model can be extracted into a textual language, for instance ATL
or XSLT.

3.3 Matching Management
The matching management component (illustrated by the “bus” in
Figure 3) controls the interactions between the transformation and
the weaving engines. This component establishes the order in
which the matching transformations are executed, and it
synchronizes these transformations with the weaving engine. This
way it is possible to manually update weaving models during the
match process. The matching management component also
provides facilities to inject models into a compatible format and
to extract models into different formalisms.

4. WEAVING METAMODEL
The weaving metamodel specifies the different kinds of links that
are generated by the matching transformations. Each kind of link
corresponds to one transformation pattern. For instance, one of
the most common patterns of declarative transformation rules is to
match one class in a source model and to create a new class in a
target model.
The weaving metamodels are created as extensions of a core
weaving metamodel, as proposed in [7]. We illustrate an excerpt
of this metamodel in Figure 4. The metamodel is written in KM3
[13]. KM3 is a simple textual language to define metamodels.

abstract class WLink extends WElement{
 reference child[*] container : WLink oppositeOf parent;
 reference parent : WLink oppositeOf child;
 reference end[1-*] container: WLinkEnd oppositeOf link;
}
abstract class WLinkEnd extends WElement{
 reference link : WLink oppositeOf end;
 reference element : WElementRef;
}

Figure 4. Excerpt of the core weaving metamodel

The WLink and WLinkEnd classes are the weaving elements that
are extended more often, because these elements define the link
types (WLink) and the linked elements (WLinkEnd). A WLink can

965

have child links to represent nested relationships, and it refers to
one or multiple linked elements through the reference end.

4.1 Matching Metamodel Extensions
We show in Figure 5 an extension of this core weaving
metamodel. The class Element is a concrete extension of
WLinkEnd. It enables referring to any kind of (meta)model
element. The class Equivalent contains two references to save the
source and target elements. The class Equivalent has a similarity
value that is calculated in the matching transformations. This
value is a numeric value that measures the semantic proximity of
the linked elements. The other classes capture five different
transformation patterns:

• Generic equality: the class Equal indicates that the linked
elements represent the same information.

• Element binding: the class <Type>Binding captures binding
patterns between two model elements. The <Type> tag must be
replaced by the element type, for example AttributeBinding or
ReferenceBinding.

• Attribute to references: the class AttributeToRef captures links
between attributes in the source model and references in the
target model. The targetAttribute contains an attribute of the
element referred by the target reference.

• Element matching: the class ElementMatch denotes the from/to
link between a source and a target element.

• Element inheritance: the class ElementInheritance relates
elements that inherit from others. The reference super points to
the parent element of a given element.

class Element extends WLinkEnd { }
class Equivalent extends WLink {
 attribute similarity : Double;
 reference source container : Element;
 reference target container : Element;
}
class Equal extends Equivalent { }
class <Type>Binding extends Equivalent { }
class ElementMatch extends Equivalent { }
class AttributeToRef extends Equivalent {
 reference targetAttribute container : Element
}
class ElementInheritance extends Equivalent {
 reference super container : WLink;
}

Figure 5. Matching extensions

5. MATCHING TRANSFORMATIONS
In this section we present the different kinds of matching
transformations in details. We define one generic model
management operation for each matching transformation.

5.1 Creating Weaving Models
Transformations that create weaving models are the first kind of
matching transformations that are executed. The model
management operation that creates weaving models is called
CreateWeaving. The operation takes two models Ma and Mb as
input and transforms them into a weaving model Mw. Ma conforms
to MMa, Mb conforms to MMb and Mw conforms to MMw.

Mw : MMw = CreateWeaving (Ma : MMa, Mb : MMb).

This operation matches a set of elements of a given type of Ma
with a set of elements of a given type of Mb. It creates a restricted
Cartesian-product Ma × Mb. The operation creates a link between
every pair of elements.

Figure 6 illustrates how the operation is implemented using a
generic transformation rule. MMa and MMb denote the input
metamodels. MMw denotes the output weaving metamodel. This
rule matches all elements of type <TypeA> with elements of type
<TypeB> and produces an equivalence link between a source and
target element.

rule CreateLink {
 from aSource : MMa!<TypeA>, aTarget : MMb!<TypeB>
 to alink : MMw!Equivalent (
 source <- aSource ,
 target <- aTarget
)
}

Figure 6. Creation of equivalence links
The operation can also be modified to update weaving models (to
create or to remove other links). In this case it has a weaving
model as extra input parameter.
Mw : MMw = CreateWeaving (Ma : MMa, Mb : MMb, Mw’ : MMw).

The use of matching transformations enables to change the types
of the source or the target elements. This allows matching
elements from different metamodels, for instance a KM3 Class
with a SQL Table.

5.2 Calculating Element Similarity
The second kind of matching transformation calculates a
similarity value between the elements referred by the source and
target references, for every link of a weaving model. This
similarity value is used to evaluate the semantic proximity
between the linked elements. A link with a high similarity value
indicates that there is a good probability that the source element
must be translated into the target element.
We define a model management operation called
AssignSimilarity. The operation takes a weaving model Mw’ and a
weight as input, and it produces a weaving model Mw as output.
The input and the output models conform to the same weaving
metamodel MMw. The output weaving model has the new
similarity values. However, there are many different methods to
calculate similarities values. The tag <method> indicates the
method that is implemented.
Mw : MMw = AssignSimilarity<method> (Mw’: MMw, weight: int).

The weight parameter is used to restrict the similarity values
between [0-weight]. This parameter enables to adjust the impact
of a given similarity method. For instance, a similarity method
that compares element names may have weight 0.8, and a
similarity method that compares types may have weight 0.2. This
means that the elements are considered more similar if they have
the same name than the same type.
This operation executes update transformations, i.e., it does not
create new links. Different matching transformations can be
executed to obtain a more accurate similarity value. We
implement element-to-element and structural methods. We
explain them below.

5.2.1 Element-to-element Similarities
Element-to-element similarities are calculated taking the source
and target elements of an Equivalent link and comparing the
element names (or identifiers) in different ways. We implement
different methods:

• String similarity: the names of the model elements are
considered strings. The names are compared using string

966

comparison methods such as Levenshtein distance, n-grams and
edit distance [5].

• Dictionary of synonyms: the names are compared using a
dictionary of synonyms (we use WordNet [11]). This dictionary
provides a tree of synonyms. The similarity between two terms
(element names) is calculated according to the distance between
these terms in the synonym tree. This way it is possible, for
example, to increase the similarity value between elements such
as Teacher and Professor, which does not yield good results if
using string comparison methods.

However, some of these methods are already implemented and
available in public APIs. We thus extend the ATL transformation
engine to be able to call methods from external APIs. The
transformation engine provides wrapper methods that can be
applied to every model element, this way we are capable to use
APIs such as the SimMetrics API [21] and the JWNL API [16].

5.2.2 Structural Similarity
Structural similarities are calculated using the internal properties
of the model elements, e.g., types, cardinality, and the
relationships between model elements, e.g., containment or
inheritance trees. These data are encoded in the metamodels.
We implement a structural method called metamodel-based
similarity. The metamodel-based similarity method is executed
after an element-to-element method to improve the accuracy of
these methods. The metamodel-based method calculates the
similarity using the internal properties and the relationships
between model elements.

5.2.2.1 Internal Properties
Model elements have a set of properties, such as type, cardinality,
order, length, etc. Consider two model elements a ∈ Ma and b ∈
Mb; Ma and Mb are different models, but conform to the same
metamodel. A matching transformation compares the properties
of a with the properties of b. If a given property has the same
value, it adds 1(one) to a temporary similarity value. This
temporary value is multiplied by the weight parameter and added
to the initial similarity value. However, this generic comparison is
valid only if Ma and Mb conform to the same metamodel. When
the metamodels are different, the operation is adapted for every
different property.
Consider two different metamodels, KM3 and SQL-DDL (the
complete metamodels can be found at [1]). We consider two
elements from these metamodels, Attribute from KM3 and
Column from SQL-DDL. An Attribute has properties such as type,
lower, upper, isOrdered, or isUnique. A Column has the
following properties: default, type, keys, canBeNull. These
properties cannot be directly compared if using a generic
heuristic, because their values are not compatible and there is no
name equivalence. For example, the transformation must take into
account that canBeNull is a Boolean. The same information is
captured analyzing the value of lower property.. We illustrate the
transformation rule for this case in Figure 7.
This rule calculates the similarity between KM3 and SQL-DDL
elements. It selects an Equal link that satisfies the following
condition: the source reference points to an Attribute of a KM3
model, and the target reference points to a Column of the SQL-
DDL model. The helper requiredSim compares the required

property with the CanBeNull property, and returns one (1) if they
satisfy the equality criteria.

rule UpdateStructuralSim {
 from mmw : MMw!Equal mmw.source.isTypeOf(KM3!Attribute)

and mmw.target.isTypeOf(SQLDDL!Column))
 to alink : MMw!Equal (
 similarity <- (mmw.similarity +
 mmw.source.requiredSim(mmw.target)) * weight
)
}
 helper context KM3!Attribute def: requiredSim
 (column : SQLDDL!Column) : Real =
 if (self.lower = 0 and column.canBeNull) or
 (self.lower = 0 and column.canBeNull)
 then 1
 else 0
 endif;

Figure 7. Structural similarity rule

5.2.2.2 Element Relationships
There are different kinds of relationships between elements of the
same metamodel, for instance containment or inheritance
relationships. Structural methods that exploit the element
relationships rely on the following assumption: if two model
elements are similar, the neighbors of these elements are likely to
be similar as well. For example, if two attributes from two models
have a high similarity value, the containing classes of these
attributes have a good probability to be similar.
We create a heuristic inspired in the Similarity Flooding (SF)
algorithm [18]. We implement a matching transformation that
propagates the similarities values between related elements using
the containment and the inheritance trees.

• Containment tree: it captures the containment relationships of a
model. Consider for example a class with references and
attributes. The nodes of the tree contain classes, attributes and
references. They are all linked by containment edges.

• Inheritance tree: it captures the generalization relationships
between the elements.

These methods can be executed in the same AssignSimilarity
operation. However, it is also possible to have separate operations
that are applied to specific models. For example, the inheritance
tree is not relevant when creating a weaving model between SQL-
DDL models that do not have native inheritance relationships.
These structures can be used to propagate the similarity between
elements of different metamodels. Consider again the SQL-DDL
and KM3 metamodels. The containment trees from both
metamodels are different. However, the containment relationship
between a Table and a Column is equivalent to the relationship
between a Class and an Attribute. The matching transformations
enable to build a containment tree of these two metamodels.

5.3 Selecting Best Links
The third kind of matching transformations selects only the links
that satisfy a set of conditions. The selected links are included in
the final weaving model. These matching transformations are
generalized by the operation Select<method>.
Mw : MMw = Select<condition> (Mw’ : MMw).
The operation takes a weaving model Mw’ as input and produce
another weaving model Mw as output. Both weaving models
conform to the same weaving metamodel MMw. The condition tag
denotes the selection criteria. Links are selected using two
methods: link filtering and link rewriting. These methods are
explained below.

967

5.3.1 Link Filtering
Link filtering methods selects only the links with the highest
similarity values for every source element. This is because in
model integration transformations it is necessary to translate all
the elements of the source model (or as most as possible) into the
target model. Thus, we want to obtain a link between every
element of the source metamodel with the elements of the target
metamodel. However, due to semantic differences, the target
metamodel cannot always represent all the information from the
sources.
We illustrate a matching transformation rule in Figure 8. This rule
is executed for all the source elements. It loops over all the
equivalence links (and inherited links) of a given source element
and it selects the link that has the highest similarity value.
The using part declares variables to store an auxiliary similarity
value and the selected link. The allInstances() method returns all
the instances of links conforming to the Equivalent class. The for
block selects the links that have the source reference equals to the
aSource parameter. Then the similarity values are compared with
a current similarity value. The maximum value and the
corresponding link are stored in the auxiliary variables.

rule getMaxLink (aSource : MMa!ModelElement) {
 using {
 newLink : MMw!Equivalent = null;
 maxSim : Real = 0;
 } do {
 for(e in MMw!Equivalent.allInstaces()->
 select (e.source = aSource)) {
 if (e.similarity > maxSim) {
 maxSim <- e.similarity;
 newLink <- e;
 }
 }
 return newLink;
}

Figure 8. Link filtering method

The output weaving model contains one link for each element of
the source model. This rule selects all the elements from the
source model, but the same target element may be selected several
times. The last adjustments are done by link rewriting methods.

5.3.2 Link Rewriting
Link rewriting methods analyze the relationships between links of
a filtered weaving model. These relationships are used to
transform simple links (e.g., Equivalent, Equal) into complex kind
of links that capture different transformation patterns. Common
patterns are nesting, inheritance, data conversions, concatenation,
splitting, etc. For instance, if more than one source element is
linked with the same target element through Equal links, this link
can be rewritten as a Concatenation link. The most common form
of link rewriting is the nesting between elements with
containment relationships, for example classes and attributes, or
tables and columns.
Consider a weaving model that links two KM3 metamodels, MMa
and MMb. After the execution of a link filtering transformation, it
contains a set of ElementMatch and AttributeBinding links. The
class ElementMatch contains links between classes, and
AttributeBinding contains links between attributes. However, they
are children of the root element. Now consider classes A ∈ MMa
and B ∈ MMb, attributes a ∈ A, b ∈ B, links ElementMatch (A, B)
and AttributeBinding (a, b). Since a is an attribute of A and b is an
attribute of B, the AttributeBinding link is rewritten as a link child
of ElementMatch. Note that the rewriting is not based on the
similarity values.

We illustrate the rewriting of nested links in Figure 9. This rule
matches AttributeBinding and ElementMatch links at the same
time and it checks if the owner of the attribute is the current
element. If the result is true, it executes the rule and assigns the
class_link element to the attr_link.parent reference.

rule NestedRewriting {
 from attr_link : MMw!AttributeBinding,
 class_link : MMw!ElemenentMatch (
 attr_link.source.owner = class_link.source and
 attr_link.target.owner = class_link.target)
 to link : MMw!AttributeBinding (
 parent <- class_link
)
}

Figure 9. Rewriting of attribute-binding links

6. TRANSFORMATION GENERATION
The transformation generation is the last phase in the production
of model transformations. This phase translates the weaving
model produced by the matching transformations into a
transformation model. We implement higher-order
transformations (HOT’s) to translate the extensions of WLink’s
into transformation rules and bindings. A higher-order
transformation is a transformation, such that the input and/or the
output models are transformation models.
We describe below the input links (from Section 4.1) and the
corresponding output transformation expressions (these
expressions are described based on the ATL metamodel [15]).
These HOT’s are extensions of the pattern described at [8]. We
illustrate them using the motivating example.

• Equal: these links are not translated into transformations. They
are always rewritten by a link rewriting method.

• ElementMatch: the source reference is translated into an input
pattern. An input pattern is the element after the from keyword.
The target reference is translated into the first output pattern
after the to keyword. For example, the transformation of class
Teacher into class Professor.

• <Type>Binding: the source reference is translated into the
source of a binding (i.e., the right expression after the “ ”
separator). The target reference is the target of a binding. For
example, the binding between SSN attributes or advisor
references.

• AttributeToRef: these links are translated into two bindings and
one output pattern. The target reference is translated as the
target expression of the first binding. The source of this binding
is the new output pattern. This output pattern has the type of the
target reference. This output pattern contains the second
binding. The source of the second binding is the source
reference, and the target is the targetAttribute reference. For
example, the transformation of the city, street and zip_code into
the Address class.

• ElementInheritance: the source and target references are
translated in the same way of an ElementMatch link, i.e., a new
transformation rule is created. If the element of the output
pattern of another rule (i.e., generated from an
ElementMatch.target reference) is referred by super, all the
bindings of this referred rule are copied to the current rule. For
example, the copy of SSN and name bindings into all the
transformation rules of the motivating example.

968

7. DISCUSSION
The matching transformations are executed with two variations of
the motivation example. In the first example, MM1 and MM2
conform to KM3. In the second example, MM1 conforms to KM3
and MM2 conforms to SQL-DDL. The weaving models are
translated into model transformations. The goal is to verify if the
transformations are generated correctly, and to verify if the
matching transformations can be easily adapted in both examples.
The motivating example has different transformation patterns,
such as class inheritance, nesting of elements, or classes with
different names. MM1 contains 17 elements and MM2 contains
18. The creation of links between every model element without
any type restriction yields a weaving model with 950 elements:
306 links, plus one right and one left element for each link, i.e.,
3x306, plus additional control elements. It is important to reduce
the number of initial links as early as possible in the process, to be
able to scale up the approach to match larger models.
The weaving model with the type-restricted Cartesian product
contains 273 elements, with 78 links. The name similarity method
enables to match elements such as SSN-SSN, name-name, or
zip_code-code. The dictionary of synonyms increases the
similarity of elements such as Professor and Teacher, Master and
Student. The containment tree enables to propagate the similarity
of the attributes of Master and Student.
We execute the propagation of similarities two times. The
propagation of the similarities more than two times increases the
similarity between the classes (e.g., Teacher and Professor), but
the values are not significantly different in our example. Several
propagation steps may be more useful in the case of model
comparison, where more accurate values are necessary.
The creation of links and the computation of similarities can be
applied for more generic examples, not only to generate
integration transformations. On the other side, the link filtering
and rewriting methods are more specific to the type of the output.
Consequently, link selection methods are very important to obtain
the final integration transformations. For example, the similarity
between the abstract class Person and class Professor is high.
This would produce a rule that transforms Person into Professor.
The filtering method does not select links with abstract classes.
Then, the link rewriting method copies the bindings of the
attributes of the class Person to the rules that transform the
inherited classes, i.e., Master, Teacher, Undergraduate.
The only link that is not generated correctly is Undergraduate-
Student. This is because none of the initial similarity methods can
find high similarity values. The values are not propagated,
because the inheritance relationships exist only in the source
model. We thus use the weaving engine to modify the weaving
model. After applying all the transformations and using the
weaving engine, the weaving model is reduced to 78 elements,
with 12 links.
Finally, the weaving model is used as input to higher-order
transformations. We created a HOT with 250 lines. It is relatively
complex compared to the generated transformation, with only
four ATL rules. However, this HOT and the matching heuristics
are implemented to be used many times in different applications.
In the second example, we evaluate if the matching
transformations can create weavings between models conforming

to different metamodels. The base algorithms of the matching
transformations are the same, leading to similar results. However,
we adjust the implementation of the containment tree, as well as
the metamodel-based heuristics. For example, we compare data
types such as String (in KM3) and char (in SQL-DDL). Thus, the
generic matching heuristics can be rapidly modified to match
models conforming to different metamodels. The weaving models
generated in both examples are equivalent.
To summarize, the use of matching transformations and weaving
models enables to semi-automate the production of model
transformations in an efficient manner. Matching transformations
enables to rapidly implement different heuristics that produce a
weaving model. These heuristics can be adapted to different
metamodels. The weaving model captures different
transformation patterns specified in a weaving metamodel. The
weaving model is translated into a model transformation
language.

8. RELATED WORK
To the best of our knowledge, our solution is the only complete
model driven approach that automates the production of model
transformations. However, there has been extensive work on how
to find relationships between schemas and ontologies. These
approaches have different goals, such as data and schema
integration [2] [6] [17], ontology merging and alignment [10] [19]
[20], or ontology integration [9]. Amongst these several
approaches, COMA++ [2] and the API of Euzenat [10] are the
solutions most similar to ours.
COMA++ implements a set of heuristics, using for instance
element-to-element methods or incremental matching. COMA++
provides an interactive user interface to combine these heuristics.
Matching transformations provide a more suitable mechanism for
adaptation, because the declarative nature of the transformations
allows abstracting implementation details, such as the creation of
new elements and the match of several elements.
The work of Euzenat factors out schema matching features and
proposes a generic API. The API provides interface methods used
to implement different matching heuristics and to combine
different matching results. The main drawback of this API is that
the new matching methods must be implemented almost from
scratch. The API does not provide interfaces for each different
matching phase. We implement these operations using model
transformations. This enables to create customized heuristics to
match different metamodels. However, we do not provide
operations to evaluate different matching results.
The solution from [9] proposes machine learning techniques to
select amongst a set of heuristics, and not to create heuristics as in
most part of solutions. We believe this is a complementary
approach. The machine learning techniques could be enhanced to
support our matching transformations as input.
iMAP [6] is one of the few approaches that creates complex links.
However, the links are all created in the beginning of a matching
(equivalent to our CreateWeaving operation). We create complex
mappings after filtering a weaving model. Our link rewriting
method creates a smaller number of complex links that are
targeted to produce model transformations.
Similarity Flooding (SF) [18] is a generic structural heuristic that
propagates the similarity of a pair of nodes through their
neighbors. However, as the author say in [18], it is not adapted to

969

match models conforming to different metamodels. This
algorithm is the basis of our metamodel-based matching
transformations. We improve this heuristic to support the
matching of different metamodels, with two different ways to
propagate the similarities through the neighbors’ elements.

9. CONCLUSIONS
In this paper, we have presented a solution to automate the
production of model transformations. We have proposed to use
matching transformations that create weaving models. These
transformations execute different matching heuristics. The
weaving models capture common transformation patterns between
model elements. The weaving model is translated into executable
model integration transformations.
We have shown that matching transformations are a practical
solution to implement new or to adapt matching heuristics. The
use of declarative transformation languages enabled to abstract
implementation details on how to apply these heuristics. The
separation of the whole matching process into different kinds of
matching transformations allowed combining different methods in
a straightforward way.
The matching transformations enabled the creation of weaving
models between models conforming to different metamodels, and
also the creation of links only between a restricted set of
elements. We proposed a new metamodel-based matching
transformation that takes advantage of every property of a given
metamodel. We have presented a new link rewriting operation
that analyzes the relationships between the links of a weaving
model. These links are transformed into complex kind of links.
This operation is particularly important to capture complex
transformation patterns.
We developed a weaving metamodel that captures common
transformation patterns. The weaving models conforming to this
metamodel were translated into transformations using higher-
order transformations. We were able to produce the
transformation model that performs the data translation from a
source into a target model.
The use of several matching transformations can cause
performance problems when generating transformations between
large models. Thus, the optimization of these operations is
becoming important and is a subject for future work. For instance,
after choosing a set of operations to create a weaving model, these
operations could be merged by a transformation engine to be
executed in a single rule.

10. ACKNOWLEDGMENTS
This work is partially supported by ModelPlex project. We would
like to thank the members of the ATLAS team.

11. REFERENCES
[1] AM3 Atlantic Zoo. Reference site:

http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/. Oct.
2006

[2] Aumueller, D, Do, H H, Massmann, S, Rahm, E. Schema
and ontology matching with COMA++. In proc. of SIGMOD
2005. pp 906-908

[3] Balogh, A, Németh, A, Schmidt, A, Ráth, I, Vágó, D, Varró,
D, Pataricza, A. The VIATRA2 model transformation
framework. In proc. of ECMDA 2005 - Tools Track, 2005

[4] Bernstein, P A. Applying Model Management to Classical
Meta Data Problems. In proc. of CIDR 2003, pp 209-220

[5] Cohen, W, Ravikumar, P, Fienberg, S E. A Comparison of
String Distance Metrics for Name-Matching Tasks. In proc.
of IIWeb 2003, pp 73-78

[6] Dhamanka, R, Lee Y, Doan, A, Halevy, A, Domingos P.
iMAP: Discovering Complex Semantic Matches between
Database Schemas. In proc. of SIGMOD 2004, pp 383-394

[7] Didonet Del Fabro, M, Bézivin, J, Jouault, F, Valduriez, P.
Applying Generic Model Management to Data Mapping. In
proc. of BDA 2005, Saint-Malo, France, pp 343-355

[8] Didonet Del Fabro, M, Bézivin, J, Valduriez, P. Model-
Driven Tool Interoperability: An Application in Bug
Tracking. In proc. of ODBASE'06, LNCS 4275, Nov. 2006,
pp 863-881

[9] Ehrig, M, Staab, S, Sure, Y. Bootstrapping Ontology
Alignment Methods with APFEL. In proc. of the 4th ISWC
2005, Galway, Ireland, volume 3729 of LNCS, pp 186-200

[10] Euzenat, J. An API for Ontology Alignment. In proc. of
ISWC 2004, pp 698-712

[11] Fellbaum, C. WordNet, an Electronic Lexical Database. MIT
Press, 1998. Reference site: http://wordnet.princeton.edu/

[12] Gardner, T, Griffin, C, Koehler, J, Hauser, R. A review of
OMG MOF 2.0 QVT submissions and recommendations
towards the final standard. 1st International Workshop on
Metamodeling for MDA, York, UK, 2003

[13] Jouault, F, Bézivin, J. KM3: a DSL for Metamodel
Specification. In proc. of 8th FMOODS, LNCS 4037,
Bologna, Italy, 2006, pp 171-185

[14] Jouault, F, Kurtev, I. On the Architectural Alignment of ATL
and QVT. In proc. of the 2006 ACM Symposium on Applied
Computing (SAC 06). ACM Press, Dijon, France, 2006,
chapter Model transformation, pp 1188-1195

[15] Jouault, F, Kurtev, I. Transforming Models with ATL. In
proc. of the Model Transformations in Practice Workshop at
MoDELS 2005, Montego Bay, Jamaica, pp 128-138

[16] JWNL (Java WordNet Library). Reference site:
http://sourceforge.net/projects/jwordnet. August 2006

[17] Madhavan, J, Bernstein, P A, Rahm, E. Generic Schema
Matching Using Cupid, In proc. of VLDB 2001, pp 49-58

[18] Melnik, S. Generic Model Management: Concepts and
Algorithms, Ph.D. Dissertation, University of Leipzig,
Springer LNCS 2967, 2004

[19] Mitra, P, Wiederhold, G, Kersten, M. A graph-oriented
model for articulation of ontology interdependencies. LNCS,
1777:86+, 2000

[20] Noy, N, Musen, M. PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment. In proc. of.
AAAI/IAAI, pp 450–455

[21] SimMetrics. Developed by Sam Chapman. Reference site:
http://sourceforge.net/ projects/simmetrics/. August 2006

[22] Shvaiko, P, Euzenat, J. A Survey of Schema-Based Matching
Approaches. JoDS IV, pp 146-171, 2005

970

