An Architecture for Managing Database
Evolution*®

Eladio Dominguez, Jorge Lloret, and Maria Antonia Zapata

Dpt. de Informética e Ingenieria de Sistemas, Facultad de Ciencias
Universidad de Zaragoza. E-50009 — Zaragoza, Spain
{noesis, jlloret,mazapata}@posta.unizar.es

Abstract. This paper presents an architecture for managing database
evolution when all the components of the database (conceptual schema,
logical schema and extension) are available. The strategy of evolution in
which our architecture is based is that of ‘forward database maintenance’,
that is, changes are applied to the conceptual schema and propagated
automatically down to the logical schema and to the extension. In order
to put into practice this strategy, each component of a database is seen
under this architecture as the information base of an information sys-
tem. Furthermore, a translation information system is considered in or-
der to manage the translation of conceptual elements into logical schema
elements. A current Oracle implementation of this architecture is also
presented.

Keywords: Information Systems, Database Evolution, Forward
Database Maintenance, Meta-modelling.

1 Introduction

The requirements of a database do not remain constant during its life time and
therefore the database has to evolve in order to fulfil the new requirements.
In general, database evolution activities are considered of great practical im-
portance since they normally consume a large amount of resources [10]. As a
consequence, much research has been focused on analysing ways of facilitating
this type of activity [IJ16].

Several problems related with databases evolution have been outlined in [6].
In particular, we are interested in the forward database maintenance problem
(‘redesign problem’ according to [16]), that is, how to reflect in the logical schema
and in the extension changes that have occurred in the conceptual schema of a
database. Although a lot of research papers have been written in relation with
this problem (see, for example, [16] and [I0]) no completely satisfactory solution
has been proposed.

* This work has been partially supported by DGES, projects TIC2000-1368-C03-01
and PB-96-0098-C04-01, and by University of Zaragoza, project UZ-00-TEC-04.

A. Olivé et al. (Eds.): ER 2002 Ws, LNCS 2784, pp. 63-[74] 2003.
© Springer-Verlag Berlin Heidelberg 2003

64 Eladio Dominguez et al.

As a contribution towards achieving a more satisfactory solution, in this pa-
per we propose an architecture for managing database evolution within the con-
text of forward engineering. The main difference with respect to other proposals
is that we consider a translation component besides the conceptual, logical and
extension components. The translation component stores information about the
way in which a concrete conceptual database schema is translated into a logi-
cal schema. This component plays an important role in enabling the automatic
propagation of the conceptual database schema evolution down to the logical
database schema making it possible to reflect in the extension of the database
the changes performed in its conceptual schema.

Another important difference with respect to other authors [16]8] is that a
meta-modelling approach [3/11] has been followed for the definition of the archi-
tecture. We have chosen this approach because it allows modelling knowledge to
be represented and because it has been proven that it facilitates the definition
of data model translations [11]. Within the architecture, three meta-models are
considered which capture, respectively, the conceptual, logical and translation
modelling knowledge. At the same time, the notion of information system, such
as is defined in [5], is brought into play not only at the model level (which is the
way in which it is normally used) but also at the meta-model level (like in [I0]).

So as to show a concrete application of our architecture, we present a current
Oracle implementation, which follows the common approach [L6/15] of modelling
the conceptual (logical) schema of the database by using the ER (relational)
model. It should be noted that we have chosen these concrete models only with
the aim of illustrating our architecture. However, the architecture is of general
applicability and therefore can also be applied to other approaches such as,
for example, within the context of object oriented databases [TJ2]. Like other
authors [10], we have chosen to represent the meta—schemas by means of UML
class diagrams [13] in the belief that they will be easily understood thanks to the
fact that UML is an increasingly widely accepted standard modelling language.

The remainder of the paper is organised as follows. Section 2 explains our
view of dealing with database evolution, presenting in Section 3 the architecture
we propose. Section 4 is devoted to showing a current Oracle implementation
of our architecture. In Section 5 we discuss related work and finally conclusions
and future work are outlined in Section 6.

2 The Database Evolution Issue

In order to design a database, users’ information requirements are represented
by means of a conceptual database schema S¢ (for example, an ER model or
a UML diagram). This schema is translated into a logical database schema Sy,
(see Figure [I)) which will be implemented by means of a DBMS. The database
is then populated to create a consistent database state o.

Within this framework, the database evolution issue can be stated in a gen-
eral way rephrasing the ideas explained in [I6] as follows. Due to varied reasons
(changes in the real world [16], optimisation procedures for improving the per-
formance of the system [7]...), the conceptual schema S¢ is modified generating

An Architecture for Managing Database Evolution 65

Sc S, c

SC SL c'
Fig. 1. Database Evolution

employee

‘E ‘name‘depanment‘

administrative

id_administrative ‘ specidlity ‘

L]

Proi#|pnamefid_administrative._1fid_administrative 2|

(b)
Fig. 2. Examples of Conceptual and Logical Database Schemas

a new conceptual schema S{,. Ideally this modification at the conceptual level
should be managed following the strategy of ‘forward database maintenance’ [6]
according to which changes at the conceptual level should be automatically prop-
agated down to the logical schema and its population. That is, the logical schema
S1, has to be modified in order to generate a new logical representation S7 and
the database state o has to be mapped into a new database state o’ consistent
with S%.

The changes to be performed in the conceptual database schema in order to
carry out the desired evolution can be expressed by means of schema transforma-
tions [7]. A schema transformation accomplishes modifications in the structure
of the database and maps the population of the source schema into an allowable
population of the resultant schema [2]7].

In order to illustrate an example of database evolution, we will use the schema
of Figure B{a) as the conceptual schema S¢, which has been obtained combining
different examples included in [9]. In this example the E/R model has been used
as the conceptual modelling technique and, as usual, entity types, relationship
types and attributes are represented, respectively, by rectangles, diamonds and
ovals. This schema represents a company where it is perceived that there are
employees and projects. The employees can be managers (managing projects) or
administrative staff (working for projects or auditing projects).

Traditionally the relational model has been used as the logical modelling
technique when the E/R model is used at the conceptual level. Following this
criteria, the proposed example of E/R schema has been translated into a rela-
tional model (see Figure2(b)) using the algorithm proposed in [4]. In Figure[2(b)
the foreign key constraints have been represented by means of arrows. With re-

66 Eladio Dominguez et al.

gard to this example we only want to emphasise that the n—n relationship type
manages has been translated into a relational table which is not the case with
the 1-n relationship types works_for and audits.

In the course of this paper we are going to consider two examples of evolu-
tion of the conceptual schema of Figure[J(a). One is the case in which the audits
relationship type, together with its instances, must be deleted. This example
seems to be very simple but we will see later on that it is more complex than
it appears. Moreover, it will serve to illustrate the suitability of the translation
component we include in our proposed architecture. As for the other example,
we are going to suppose that the attribute department of the entity type em-
ployee must be transformed into an entity type. This transformation (1) adds
to the conceptual schema an entity type department described by means of two
attributes (id_department and department), id_department being its primary key,
(2) adds a relationship type employee has department and, (3) deletes the at-
tribute department. With respect to the extension, this transformation maps
each distinct non—null value of the attribute department in the old schema into a
distinct ‘department’ entity in the new schema. Furthermore, the corresponding
‘employee has department’ relationships are added.

3 Database Evolution Architecture

The architecture we propose aims at providing a general framework which makes
it feasible to manage database evolution following a forward maintenance strat-
egy. Therefore, the architecture has to be defined in such a way that the changes
performed in the conceptual database schema can be reflected in the logical
schema and its extension. It is more or less obvious that some component has
to allow conceptual, logical and extensional information to be stored. Let us go
on to illustrate, by means of an example, the necessity of also storing knowl-
edge with regard to the translation process from the conceptual into the logical
schema.

Let us suppose that the audits relationship type must be deleted from the
conceptual schema of Figure [Z(a). This modification must be automatically re-
flected in the logical schema of Figure B(b) deleting some element. According
to the translation algorithm applied to the conceptual schema, it is known that
the audits relationship type has been translated into an attribute of the project
table, this attribute being a foreign key referencing the administrative table.
The problem is that this table contains two columns (id_administrative_1l and
id_administrative_2) verifying these conditions. If there is no information about
the specific process followed for obtaining the logical schema of Figure[2(b), it is
not known which attribute should be deleted. Our proposal is to store knowledge
about the translation process explicitly in a component of our architecture, in
the same way that the conceptual, logical and extensional information is stored.
This component will include, for example, information about the column which
the relationship type audits has been translated into.

A meta-modelling approach has been followed for the definition of the com-
ponents storing conceptual, translation and logical information (a modelling ap-

An Architecture for Managing Database Evolution 67
information
(schema (

4 /

information ¢ information /
processor \ base '\
\

Fig. 3. Components of an Information System

proach is used with regard to the extensional information). The meta-modelling
approach consists of representing modelling knowledge by means of a meta-
model, where a meta-model is a conceptual schema of the elements constituting
a data model or technique [3]. Following this approach the elements of a concep-
tual database schema, logical database schema or translation process are seen
as instances of the corresponding meta-model. In order to capture this fact, [10]
inspired us with the idea of bringing into play the notion of information system,
such as is defined in [5], not only at the model level (which is the way in which
it is normally used) but also at the meta-model level.

According to [B] an information system (see Figure[3)) consists of three com-
ponents: an information schema, an information base and an information proces-
sor. The information schemal defines all the knowledge relevant to the system,
the information base describes the specific objects perceived in the Universe of
Discourse, and the information processor receives messages reporting the occur-
rence of events in the environment. In order to respond to the events received,
the information processor can send structural events towards the information
base and/or towards the information schema and can generate internal events
that inform other information systems of the changes performed in it.

The notion of information system is used within our architecture giving rise
to four information systems which are used to store, respectively, the conceptual
modelling knowledge, the translation process, the logical modelling knowledge
and the extension. The corresponding components of each one of these informa-
tion systems as well as the way in which they are related appear in Figure @l
The name of each one of these components has been modified in an attempt to
capture the type of knowledge that they store (in any case the graphical symbol
that surrounds each component stands for the type of component it represents).

It must be noted that three different abstraction levels are involved in the
architecture. On the one hand, the information schemas of the three former
information systems are situated at the most abstract level (meta-model layer
according to [I3]) and, on the other hand, the information base which stores
the population of the database is situated at the least abstract level (user data
layer [13]). All the other elements are situated at the model layer [13]. Let us
now explain each one of the four information systems of the architecture.

! In fact, in [6] this component is called ‘conceptual schema’. However, with the aim
of avoiding misunderstandings, we have considered it inappropriate to use the term
‘conceptual’ since we are going to use this component not only at the conceptual
level of the database but also at the logical and physical levels.

68 Eladio Dominguez et al.

conceptua
meta-schemal

:) Z meta

logicd
meta-schemal model
layer

I

|

|

|

| Logical
| information system
|

|

|

|

———————— | - e :
conceptua /conceptud / trandation | 4 _ logicd
En:“nd—e informetion '« database | | | informetion <> tragéalonll information model
events processor \, schema Y | processor N ase \ processor layer
"""" I A |
| |
Extensional
) Cono_eptual ‘ Trandation ! information system
information system I information system ‘
| |
I | extensond | /7 77| user
| | informetion (<> gztaﬂabasme { data
| | processor N \ | layer

Fig. 4. Architecture for Database Evolution

3.1 Conceptual Information System

The population of this information system (that is, its information base) rep-
resents the constituent elements of a given conceptual database schema. For
example, with respect to the E/R schema of Figure 2a), facts such as that em-
ployee is an entity type and that department is an attribute have to be stored.
These facts will be stored following the structure established in the conceptual
meta-schema.

The conceptual information system has to react to external events received
from the environment. The type of events in which we are interested are those
related with database evolution. Each event issued from the environment is han-
dled by the information processor which checks its validity according to the
restrictions imposed by the conceptual meta—schema. If it is valid, the infor-
mation processor induces a collection of structural events necessary to change
the conceptual database schema (that is, the information base) according to
the semantics of the received event. The conceptual information processor also
generates a collection of internal events that inform the translation information
system of the changes performed in the conceptual database schema.

3.2 Translation Information System

The goal of this information system is to store all the information necessary to
enable any change performed in the conceptual database schema to be automat-
ically reflected in the logical schema. This goal is achieved by storing the way in
which conceptual schema elements are translated into logical schema elements.
In order to do this, the translation accomplished by the chosen translation algo-
rithm is specified as a set of elementary translations each of which represents the
translation of only one conceptual element into a logical element. For example,
the translation of the E/R schema of Figure 2(a) following the algorithm pro-
posed in [4] performs, among others, the elementary translations of transforming
the entity type employee into a table with the name employee, and transforming
the attribute department into a column with the same name. The elementary

An Architecture for Managing Database Evolution 69

translations are stored in the translation base (that is, the information base)
specifying the type of translation, the element of the conceptual schema it is
applied to and the element of the logical schema it gives place to.

The translation information system has to react to the internal events gener-
ated by the conceptual processor which inform it about the changes performed
in the conceptual database schema. In accordance with these events, the infor-
mation processor determines the elementary translations that must be added,
deleted or updated from the translation base. After these changes, the trans-
lation base contains the set of elementary translations that translates the new
conceptual schema (resulting from the evolution process) into a logical one. The
information processor also generates a collection of internal events that inform
the logical information system of the changes performed in the translation base.

It must be noted that the new set of elementary translations is determined
without it being necessary to apply once again the translation algorithm from
scratch. The knowledge stored in the translation information system avoids hav-
ing to recalculate the logical elements that result from the conceptual elements
that have not been modified. The idea of using an information system to store
the elements related with the translation process and the way in which this
knowledge is used during the database evolution process are, from our point of
view, a significant contribution of our work.

3.3 Logical and Extensional Information Systems

The logical information base stores the elements of the logical schema obtained as
a translation of a given conceptual database schema. For example, with respect
to the relational schema of Figure[2l(b), facts such as that employee is a table and
that department is a column of it have to be stored. These facts will be stored
following the structure established in the logical meta—schema.

The logical information processor receives a collection of internal events from
the translation information processor, according to which it generates the struc-
tural events necessary to change the logical database schema in order to reflect
the evolution performed at the conceptual level.

In Figure M, the information base of the logical information system is sur-
rounded with both the information base and information schema symbols. This
is because the logical database schema can be seen as the information base of the
logical information system (as we have explained) or as the information schema
of the extensional information system. For this reason two different components
of our architecture store the same information. This fact obliges us to define some
rules, called correspondence rules (in the same sense as in [10]). These rules gov-
ern the correspondence between the elements of each one of the two components.
In order to hold these rules, the logical information processor sends the inter-
nal events reporting the changes made in the logical database schema, and the
extensional information processor, according to the received events, changes the
database extension and the database schema (that is, the information schema).
This is the only case in which the information processor changes the information
schema of its information system.

70 Eladio Dominguez et al.

Conceptual Element Conceptual Element LogicalElement

AN (from conceptual A
meta-schema)

1
isAppliedTo
Relationship -
Type Elementary
Tran

0.1 s 1| 01 sation
W -

*
H

givesPlaceTo <isAttachedTo v

Datatype N . 1

5 - Datatype
Ll T— LogicalElement
IsParticipantOf » Participant | «HasParticipant (from logical
0.2 meta-schema) < Constraints

<Hasldentifier

(@) (b) (c)

Logical
Constraint

Fig. 5. Meta-models of the Information Systems

4 An Implementation of Our Architecture

In this section, we describe a concrete implementation of our architecture. This
implementation is based on the RDBMS Oracle 8i Release 8.1.7 and the pro-
gramming language PL/SQL Release 8.1.7 [17]. Within this implementation, the
E/R technique has been chosen as the conceptual modelling technique and the
relational as the logical modelling technique. We will use UML meta-schemas
in order to conceptually describe the structure of the three information schemas
that belong to the meta-model level. The graphical representation of these meta—
schemas appears in Figure [l in which only the name is included for each class
(its attribute compartment does not appear).

The meta—schema of the conceptual information system (see Figure[Bl(a))
conceptualises the different modelling elements of the E/R model (the version we
use is based on the E/R model proposed in [9]). For example, it is represented
that a relationship type is related with exactly two participants and that an
entity type is related with the attributes that conform to its primary key (PK).
This meta-schema also has several meta—constraints associated to it. For exam-
ple, two constraints (expressed by means of OCL [I3]) with context EntityType
are the following:

1. If an entity type is not a subtype of any entity type, then it must have one
primary key.

Subtype0f — size =0 implies HasPK — size >1

2. An entity type cannot be a subtype of itself.

SubtypeOf — forAll(e | e <> self)

In order to carry out database evolution tasks the external event types that
we have implemented appear in Table[ll (their arguments have been omitted). Six
of these external events are basic operations of addition or deletion of modelling
elements (entity type, attribute or relationship type), two of them allow the
modification of a primary key, one adds an entity type as a specialisation of
another entity type and, finally, one transforms an attribute into an entity type.

An Architecture for Managing Database Evolution 71

Table 1. External Event Types

For entity types For attributes For relationship types For primary keys
NewEntityType NewAttribute NewRelType AddAttrToPk
DropEntityType DropAttribute DropRelType DropAttrFromPk

NewEntitySubtype AttributeToEntityType

We are aware that this is a relatively small number of external events, and that
more are needed for facilitating the database evolution.

As an illustration of database evolution, the example of schema evolution
described at the end of Section 2, according to which the attribute department
is transformed into an entity type, will be performed using the external event:

AttributeToEntity Type(‘employee.department’)

This event has only one parameter which expresses the attribute that has to be
transformed into an entity type. As a consequence of this event the following
tasks have to be performed: (1) create a new entity type called department with
two attributes (id_department and department) and primary key id_department,
(2) create a new relationship type, called has, between employee and department,
and (3) delete the attribute department of the entity type employee.

The information processor of the conceptual information system has been
implemented as a set of PL/SQL procedures, one for each of the established
external event types. For example, there exists a procedure that is executed
when the event AttributeToEntityType occurs and this procedure accomplishes
the tasks associated with the event.

The meta—schema of Figure BIb) represents that the translation informa-
tion system stores the elementary translations that have to be applied to the
given conceptual database schema in order to be translated into a logical schema
(the elementary translations are determined following the translation algorithm
proposed in [4]). Each translation is related with the conceptual element to which
it is applied and with the logical element to which it gives rise.

The information processor of this information system is implemented as a
collection of PL/SQL triggers which are fired by the insert, delete or update op-
erations performed in the conceptual database. For example, the addition of the
entity type department fires a trigger which adds to the translation base an ele-
mentary translation that translates the entity type department into a table. The
deletion of the attribute department fires a trigger which deletes the elementary
translation that translates the attribute department into a column.

The meta—schema of the logical information system (see Figure Blc))
conceptualises the different elements that conform to a relational model. The in-
formation processor of this information system is also implemented as a collection
of PL/SQL triggers which are fired by the insert, delete or update operations
performed in the translation base. For example, the addition of the elementary
translation that translates the entity type department into a table fires a trigger
which adds the table department. In the same way, the deletion of the elementary

72 Eladio Dominguez et al.

Table 2. SQL sentences automatically generated and executed

1 CREATE TABLE department (department varchar2(30), id_department
integer) ;

2 INSERT INTO department (department) SELECT DISTINCT department

FROM employee WHERE department IS NOT NULL;

execute giveidvalues('department', 'id department', 'department');

ALTER TABLE department ADD (PRIMARY KEY (id_department)) ;

ALTER TABLE employee ADD id_department integer;

ALTER TABLE employee ADD (CONSTRAINT restr22 FOREIGN KEY

(id_department) REFERENCES department (id_department)) ;

o Ul W

7 execute matchvalues ('employee', 'id department', 'department',
'department', 'id_department', 'department');
8 ALTER TABLE employee DROP COLUMN department;

translation that translates the attribute department into a column fires a trigger
which deletes the column department.

The extensional information system stores the Oracle 8i database schema
and its data. The information processor of this information system is also imple-
mented as a collection of PL/SQL triggers which are fired by the insert, delete
or update operations performed in the logical database. These triggers automat-
ically generate and execute the SQL sentences that perform the changes that
have to be made in the Oracle 8i database in order to accomplish the corre-
spondence rules and to reach a consistent database state. For example, the SQL
sentences generated in order to transform the attribute department into an entity
type appear in Table 2l These sentences perform the following tasks:

1. Create the new table department with the values of attribute id_department

created by means of the procedure giveidvalues (lines 1-4).

2. Create the relational structures corresponding to the new relationship type

between entity types employee and department (lines 5-6).

3. Assign values to attribute employee.id_department using the procedure match-

values (line 7).

4. Drop attribute employee.department (line 8).

5 Related Work

Database evolution has been widely discussed in the literature and therefore
very varied approaches have been proposed. The evolution of object-oriented
databases and relational databases, including the propagation of changes auto-
matically down to the extension of the database, has received great attention and
the research results have been included in prototypes or in commercial DBMS
(see, for example [1]). However they lack the consideration of a conceptual level
which allows the designer to work at a higher level of abstraction [10)].

In [6] an abstract framework which takes into account both conceptual and
logical levels is presented and the necessity of automatically propagating down

An Architecture for Managing Database Evolution 73

(forward strategy) the changes performed at the conceptual level is stated. The
different papers dealing with forward engineering mainly differ in the way they
address the propagation of the conceptual changes down to the logical schema
and to the extension. For example, a taxonomical approach is followed in [15],
which proposes a taxonomy of changes for ER structures and the impact of these
changes on relational schemes is analysed. However this paper does not study
how to reflect the schema evolution in the extension of the database.

Other approaches, more similar to ours, propose various ways to capture
knowledge about the mappings performed to obtain the logical schema of a
conceptual schema. This information is used subsequently in order to obtain
the new logical schema associated to the changed conceptual schema. In [§], for
example, the sequence (called history) of mappings performed in order to obtain
the logical schema is stored. In this way the mappings affected by the changes
can be detected and modified, whereas the rest can be reexecuted without any
modification. Our approach has the same aim as this one but differs in that we
follow a meta-modelling approach.

A meta-modelling approach is also proposed in [I0], [T4] and [12]. In the
case of [I0] only a conceptual meta-model is considered whereas we also make
use of a logical and a translation meta-model. With respect to [I4], the authors
make use of a meta-modelling approach with a different goal since the paper
deals with the definition of a query language for evolving information systems.
In [12] a generalisation of the traditional information system notion similar to
ours has been proposed. However, some differences with respect to our proposal
are worth noting. Firstly, in [12] not only data modelling is taken into account
(as we do) but also process and behaviour specification. Secondly, in [12] only
the conceptual level is under consideration so that the proposed architecture
includes only one information system. Finally, the information processor of an
information system is concerned with the modification of the structure and also
of the population, instead of using different information processors for each one
of these processes as we propose.

6 Conclusions

In this paper we have presented an architecture for managing database evo-
lution with a forward strategy. The architecture consists of four information
systems whose information schema capture the relevant modelling elements. As
the main contribution, a translation information system is considered, which re-
flects the translations performed between the conceptual and logical schemas of
the database. Evolution changes performed in the conceptual database schema
are reflected in the logical schema and the extension of the database making use
of structural and internal events. An implementation of our architecture using
Oracle has also been presented.

As a direction of future work, the problems related with the evolution of
integrity constraints have to be analysed. Furthermore, a comprehensive support
within our architecture for relationship evolution, following the ideas of [2], is a
goal for further development.

74

Eladio Dominguez et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17

L. Al-Jadir, M. Léonard, Multiobjects to Ease Schema Evolution in an OODBMS,
in T. W. Ling, S. Ram, M. L. Lee (eds.), Conceptual modeling, ER-98, LNCS 1507,
Springer, 1998, 316-333.

K. T. Claypool, E. A. Rundensteiner, and G. T. Heineman, ROVER: A Framework
for the Evolution of Relationships, in A. H. F. Laender, S. W. Liddle, V. C. Storey
(eds), Conceptual modeling, ER-2000, LNCS 1920, Springer, 2000, 409-422.

E. Dominguez, M. A. Zapata, J. J. Rubio, A Conceptual Approach to Meta-
modelling, in A. Olivé, J. A. Pastor (Eds.), Advanced Information Systems En-
gineering, CAISE’97, LNCS 1250, Springer, 1997, 319-332.

R.A. Elmasri, S.B. Navathe, Fundamentals of Database Systems (3rd ed.), Addison-
Wesley, 2000.

J.J. van Griethuysen (ed.), Concepts and Terminology for the Conceptual Schema
and the Information Base, Publ. ISO/TC97/SV5-N695, Mars 1982.

. J.L. Hainaut, V. Englebert, J. Henrard, J.M. Hick, D. Roland, Database Evolution:

The DB-MAIN approach, in P. Loucopoulos (ed.), Entity-Relationship approach-
ER’94, Springer Verlag, LNCS 881, 1994, 112-131.

T.A. Halpin, H.A. Proper, Database Schema Transformation and Optimiza-
tion, in M. P. Papazoglou (ed.), Object—Oriented Entity-Relationship Modelling
Conference- ER’95, Springer Verlag, LNCS 1021, 1995, 191-203.

J.M. Hick , J.L. Hainaut, V. Englebert, D. Roland et al., Strategies pour ’evolution
des applications de bases de donnes relationelles: L’approche DB-MAIN, Proceed-
ings XVIII Congres Inforsid, La Garde, France, 1999.

. A.H.F. Laender, M.A. Casanova, A.P. de Carvalho, L. F.G.G.M. Ridolfi, An Anal-

ysis of SQL Integrity Constraints from an Entity-Relationship Perspective, Infor-
mation Systems, 10, 4, 1994, 331-358.

J.R. Lépez, A. Olivé, A Framework for the Evolution of Temporal Conceptual
Schemas of Information Systems, in B. Wangler, L. Bergman (eds.), Advanced
Information Systems Eng., CAiSE 2000, Springer, LNCS 1789, 2000, 369-386.

C. Nicolle, D. Benslimane, K. Yetongnon, Multi-Data Models Translations in In-
teroperable Information Systems, in J. Mylopoulos, Y. Vassiliou (Eds.), Advanced
Information Systems Eng., CAISE’96, LNCS 1080, Springer, 1996, 1-21.

J.L.H. Oei, H.A. Proper, E.D. Falkenberg, Evolving Information Systems: Meeting
the ever—changing environment, Information Systems Journal, 4, 3, 1994, 213-233.
OMG, UML specification version 1.4, formal/01-09-67, 2001, http://www.omg.org
H.A. Proper, Th. P. van der Weide, Information Disclosure in Evolving Information
Systems: Taking a Shot at a Moving Target, Data & Knowledge Engineering, 15,
1995, 135-168.

J.F. Roddick, N.G. Craske, T.J. Richards, A Taxonomy for Schema Versioning
Based on the Relational and Entity Relationship Models, in R. A. Elmasri, V.
Kouramajian, B. Thalheim (eds.), Proc. of the 12th Int. Conf. on the Entity-
Relationship Approach, Elsevier, LNCS 823, 1994, 137-148.

A.S. da Silva, A.H.F. Laender, M.A. Casanova, An Approach to Maintaining Opti-
mized Relational Representations of Entity-Relationship Schemas, in B. Thalheim
(ed.), Conceptual Modeling- ER’96, Springer Verlag, LNCS 1157, 1996, 292-308.
S. Urman, Oracle 9i PL/SQL Programming, Osborne, 2002.

http://www.omg.org

	Introduction
	The Database Evolution Issue
	Database Evolution Architecture
	Conceptual Information System
	Translation Information System
	Logical and Extensional Information Systems

	An Implementation of Our Architecture
	Related Work
	Conclusions

