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Abstract. Defining and composing mappings are fundamental operations re-
quired in any data sharing architecture (e.g. data warehouse, data integration).
Mapping composition is used to generate new mappings from existing ones and is
useful when no direct mapping is available. The complexity of mapping composi-
tion depends on the amount of syntactic and semantic information in the mapping.
The composition of mappings has proven to be inefficient to compute in many sit-
uations unless the mappings are simplified to binary relationships that represent
“similarity” between concepts. Our contribution is an algorithm for composing
metadata mappings that capture explicit semantics in terms of binary relation-
ships. Our approach allows the hard cases of mapping composition to be detected
and semi-automatically resolved, and thus reduces the manual effort required
during composition. We demonstrate how the mapping composition algorithm is
used to produce a direct mapping between schemas from independently produced
schema-to-ontology mappings. An experimental evaluation shows that compos-
ing semantic mappings results in a more accurate composition result compared
to composing mappings as morphisms.

Keywords: mapping, composition, integration, model management, semantics,
metadata.

1 Introduction

The focus of this work is the study of mappings between models. A model is a schema,
an ontology, or some other data representation construct. Mappings are designed to re-
late the information stored in models. There has been a wide variety of model and map-
ping representations [2,6,7,9,15,19] defined. Each representation has its own benefits
and characteristics related to expressability, applicability, and operability. The problem
of semi-automatically creating mappings can be divided into two steps. First, a match
between two schemas specifies semantic correspondences between their elements [18].
These correspondences can be as simple as inter-schema correspondences [16] (or mor-
phisms [15]) or they can convey certain semantic relationships (e.g. IsA, HasA) [8].
Second, these correspondences are elaborated to generate instance (data) level map-
pings (e.g. using a system such as Clio [16]). In this paper we are concerned with the
former, which we refer to as metadata level mappings.

Our contribution is an efficient algorithm for composing semantic mappings at the
metadata level that is able to focus human attention only on the potential problems ar-
eas in the composition result. Previous composition/reusing algorithms [2,4,5,12,15]
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did not use semantic mappings, and consequently, require the user to validate the entire
mapping. We propose a semantic mapping that can be easily expressed and constructed,
preserves semantics under composition, complements data level mappings defined us-
ing views and it is supported by the state of art matching algorithms [3,4,8,14]. We show
that by capturing explicit semantics in mappings, the composition result contains more
semantic information, and it is possible to quickly identify problems in the computed
mapping that require human intervention. We identify the composition issues both ana-
lytically and experimentally.

The organization of this paper is as follows. In Section 2, we overview existing meta-
data mapping representations and discuss the issues in capturing semantics and per-
forming composition. Our main contribution is in Sections 3 and 4 where we define se-
mantic metadata mappings between models and provide a set of rules for inverting and
composing mappings. An experimental evaluation in Section 5 shows that composing
semantic mappings, as opposed to morphisms, results in a better mapping composition
result. The paper closes with future work and conclusions.

2 Background

Various forms of metadata level mappings have been used to define model management
[2] operators and their semantics. In this setting, models are assumed to have the same
expressive characteristics as an EER model. We assume the same definition for models
in this work. Two different mapping representations have been proposed: morphisms
[15] and helper models [2,13].

Morphisms. are simple binary relationships between model elements [15,16] that
carry loose semantics about the actual relation of the concepts mapped. Formally, given
two models, A and B, a mapping map between them is defined as a morphism that
consists of a set of pairs < a, b >, where a ∈ A and b ∈ B, which implies that a and
b are similar. Composition of morphisms assumes similarity relation to be transitive.
That is, given a morphism, m1, between models A and O, and another morphism, m2,
between O and B, and if < a, o > ∈ m1 and < o, b > ∈ m2, then a is assumed to be
similar to b.

The composition of morphims has several problems. First, any time an m:1 mapping
is composed with an 1:n mapping, the composition result is a cross-product consisting
of m × n correspondences [4,5]. Many of these correspondences incorrectly specify a
relationship between the elements. Second, an even worse case occurs when there are
no direct correspondences between the concepts. For example, there are no direct rela-
tionships between {Street1, Street2} and {City, Country, State, Street}. These problems
arise due to the lack of an explicit semantic information in the mapping representation.

Mappings with helper models. [2,17] have also been defined for use in model man-
agement [2]. In this case, a mapping between two models A and B can be expressed
by using a model, map, and two morphisms, one between A and map and the other
between map and B. This mapping format allows a set of objects of A to be related
to a set of objects in B in complex ways. It uses the elements and the relationships
within the helper model to relate sets of objects in A and B (see [2] for a compre-
hensive description). A mapping composition algorithm is presented in [2,17] for use
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in model management. This composition algorithm is imperfect as it does not exploit
relationships in the helper model to yield a more accurate composition result. Conse-
quently, the algorithm may miss some of the relationships and second it may suggest
false relationships.

3 Mapping Representation

We aim to provide a mapping definition that subsumes most of the relationship kinds
that the state of the art matching algorithms discover and investigate operations over this
mapping definition. A mapping is a metadata level semantic correspondence between
elements in different models.

Definition 1. Given two models A and B, a mapping between them map consists of a
set of mapping elements. Each mapping element is a directed, kinded binary relation-
ship between a pair of elements not in the same model. That is, it is a set of triplets
< a, type, b >, where a ∈ A, b ∈ B, and type is the semantic type of the relation-
ship. The values of type ∈ {IsA, AKindOf, HasA, PartOf, =, Contains, ContainedBy,
Unknown, Complex, NoRel}.

Fig. 1. Mapping example

The mapping is directed from A to B. The
relationships used in our mapping repre-
sentation are well-known except for Un-
known, Complex, and NoRel which will
be defined later. We assume a set-theoretic
framework for defining the semantics of
the relations as in [8,19,22]. For instance,
a IsA b if the content of b contains the con-
tent of a, a HasA b if the content of b is
part of the content of a. An example map-
ping in our representation is in Figure 1.
The semantic relationship types are:

– Equality: An Equality relationship between two elements a and b, < a, =, b >,
means that the concept a is equivalent to b.

– IsA: An IsA relationship between two elements a and b, < a, IsA, b >, means
that the concept a is a specialization of b. As this is a binary relation its inverse
can be defined as in the algebra of relations [10]. That is, < b, a >∈ IsA−1 iff
< a, b >∈ IsA. We assign a more descriptive name to the inverse of IsA, i.e.
AKindOf. Since all remaining relations are binary, a similar approach is assumed
for the definition of their inverses.

– HasA: A HasA relationship between two elements a and b, < a, HasA, b >,
means that the concept a has a concept b as part of its representation. The inverse
of HasA relationship is HasA−1 and its descriptive name is PartOf .

– Contains: A Contains relationship between two elements a and b,
< a, Contains, b >, means that the concept a fully encapsulates concept b which
cannot independently exist without a. Contains is a stronger relationship than
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HasA. The inverse of Contains relationship is Contains−1 and its descriptive
name is ContainedBy.

– Complex: A Complex relationship between two elements a and b,
< a, Complex, b >, means that the relationship between concept a and b may
require a functional specification: f(a) = b. That is, two concepts related by
Complex do not have a direct equivalence relationship, but the equivalence re-
lationship can be revealed through a function, whose purpose is to “equalize” the
meaning of the two concepts. Complex is considered a Level 2 relationship in [6]
and it is the chief subject of the work in the iMap project [3].

– NoRel: A NoRel relationship between two elements a and b, < a, NoRel, b >,
means that there is no relationship between concept a and b. The inverse of the
NoRel relationship is still a NoRel relationship (i.e. it is symmetric).

– Unknown: An Unknown relationship between two elements a and b, < a, Un−
known, b >, means that the relationship between concept a and b is not known.
Unknown relationships often arise after composition and can be considered the
default relationship between all elements until a mapping is defined.

Our mapping relationships capture the semantics of the relationship between model
elements like using helper models, but retain the simplicity of inversion and composi-
tion given by algebra of relations [20,21]. The usefulness of relationship types besides
equality and similarity in specifying mappings is clear from the example in Figure 1.
For instance, the IsA relationship clearly captures the semantic relationship between
WorkPhone and HomePhone to Phone. It is evident that if morphisms were used then
we would have lost the semantic information between these concepts.

4 Invert and Compose Operators

The two fundamental operators required in integration scenarios is the ability to Invert
a mapping and the ability to Compose two mappings to produce another mapping. We
discuss how these operators are defined in this section.

Invert Operator: The Invert operator has been defined for morphisms [15] and
is simply the swapping of the left and right elements of the morphism. Such a simple
definition is possible since the similarity relationship is symmetric.

A mapping in our framework consists of a set of directed, kinded, binary relation-
ships. Thus, the semantic type of the relationship must also be inverted when applying
the Invert operator. The approach is very similar in spirit with other works that manip-
ulate relations, e.g. [1] in the field of temporal logic.

Definition 2. Consider two models A and B and a mapping, map, between them. Let
m be a mapping element whose expression is < a, type, b >, where type is one of the
types defined above. Then its corresponding inverted mapping element, denoted m−1,
is given by the following expression: < b, type−1, a >. Moreover, the invert of map,
denoted by map−1, is defined from B to A and its expression is given by: map−1 =
{< b, type−1, a >|< a, type, b >∈ map}.

For example, <HomePhone, IsA, Phone>−1 = <Phone, IsA−1, HomePhone>.
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Table 1. Composition rules

(a,b)
(b,c) = IsA IsA−1 Contains Contains−1 HasA HasA−1

= = IsA IsA−1 Contains Contains−1 HasA HasA−1

IsA IsA IsA Unknown Unknown Unknown Unknown Unknown
IsA−1 IsA−1 Unknown IsA−1 Contains Contains−1 HasA HasA−1

Contains Contains Contains Unknown Contains Unknown Contains Unknown
Contains−1 Contains−1 Contains−1 Unknown Unknown Contains−1 Unknown Contains−1

HasA HasA HasA Unknown Contains Unknown HasA Unknown
HasA−1 HasA−1 HasA−1 Unknown Unknown Contains−1 Unknown HasA−1

Compose Operator: Composing two mappings involves defining a composition
operation between the elements of the mappings (i.e. triplets of form < a, type, b >).
The relationship types that constitute the core of a mapping definition have well defined
composition properties. Table 1 provides the composition rules that govern our com-
position technique. This table can be read where a cell that has a row header of type
T , a column header of type U , and a cell value of V means that composing the map-
ping elements < a, T, b > with < b, U, c > results in a composed mapping element
of < a, V, c >. For instance, composing < a, =, b > with < b, IsA, c > results in a
composed mapping element of < a, IsA, c >.

Definition 3. Given two mappings mapAB between models A and B and mapBC be-
tween models B and C the Compose operator, denoted by ◦, produces a new mapping
mapAC = mapBC ◦ mapAB = mapBC(mapAB) between models A and C:

mapAC =df {< a, t, c > |∃b :< a, t1, b >∈ mapAB∧ < b, t2, c >∈ mapBC∧

t = T (t1, t2)}, where T (·, ·) is the entry in Table 1.

Some of the entries in the table were presented in other works. For instance, the com-
position between IsA, IsA−1, Equality and NoRel are presented in [6] and some of the
composition outcomes between IsA, Contains and HasA are reported in [17].

There are no entries for the Unknown, Complex and NoRel relationships in the
table because Unknown composed with any other type gives Unknown, Complex
composed with Equality preserves Complex and composed with any other type is
Unknown. We do not explicitly handle NoRel relation because we prefer Unknown
over NoRel since it helps us establish desirable indirect relationships, which would
have been lost employing NoRel. For instance, if we followed the directions of other
works that handle relations (e.g. [1,6]) we would have obtained No Info, which is
not a desirable outcome. An example (in Figure 2) has convergent IsA relationships
(<Shipper, IsA, Organization> and <Organization, IsA−1, Supplier>). For this case
it is desirable to retain the information that the two are IsA siblings. The motivation is
two fold: (1) it is hard, if not impossible, to define a direct relationship between such
concepts and (2) such information might prove valuable if a merge or an alignment [11]
operation is performed between the models.
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Fig. 2. An example of the problematic cases

Having relationship types that capture more semantics besides the generic similarity
relationship, we are able to create a composition result with better semantics and avoid
the false relationships that simple similarity can produce. Further, the cases where the
result is Unknown are especially important as they are direct indicators that the com-
position of these elements are not well-defined and should be investigated by the user.

The mappings in this system have the following desirable properties:

Proposition 1. Consider two models A and B and a mapping, map, between them. We
denote the invert of map by map−1. The following properties hold:

1. b ∈ (map(map−1))(b), b ∈ B,
2. a ∈ (map−1(map))(a), a ∈ A.

Proposition 2. Mapping composition is symmetric in our framework, i.e.

map−1
AC = (mapBC ◦ mapAB)−1 = map−1

AB ◦ map−1
BC = mapCA.

An important feature of the composition algorithm is that it only suggests correct di-
rected, kinded relationships in the composition result. This can be seen by examining
the table of composition rules. False results are not produced as transitivity is only
applied when it is safe to do so, and the Compose operator uses the Unknown rela-
tionship to indicate when it is not possible (in general) to suggest a relationship type
given only the information expressed in the two mappings. Thus, Unknown relation-
ship types are valuable as they are the ones that require semi-automatic resolution (e.g.
human intervation). Note that we do not claim to retrieve the set of all true relationships,
but state that the set of relationships we retrieve consists only of true relationships.

5 Experimental Evaluation

The experiment has two main goals: to show that our framework is robust when applied
to real world application and that we are able to correctly identify problematic cases.

Experiment Setup: We considered five real-world XML schemas in the purchase
order domain: CIDR, Excel, Noris, Paragon, and Apertum [14]. They are assigned
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Table 2. Mapping distribution

relations CIDR Excel Noris Paragon Apertum

equality 18 30 32 36 34
isa 6 11 24 2 13

hasa/part of 14 18 0 10 2
complex 0 0 2 2 2

overlap ratio 0.775 0.84 0.65 0.62 0.61

Fig. 3. Schema-to-Schema Mapping Statistics Fig. 4. Algorithm Output Breakdowns

numbers 1, 2, 3, 4, and 5 respectively in order to reference them in our graphs. We
also considered a reference ontology to which each XML schema is manually mapped.
The reference ontology (see [5]) was created such that it did not have all concepts in the
five schemas, such as unitOfMeasure, count, and VAT information. Table 2 shows in the
last row the ratio of schema elements that can be mapped to the ontology. These ratios
are an useful indicator of the inherent limitation in the performance of the composition
because the composition may miss some valid correspondences. Table 2 also shows the
mapping broken down in terms of the relationship types defined in this paper for each
of the schema-to-ontology mappings.

Measures for composition quality: We measure the performance of our system via
three metrics: Precision, Recall, and Overall [4,5,14]. Overall is defined as Overall =
Recall ∗ (2 − 1/Precision). We introduce a new metric, called User Effort, meant to
characterize the post-processing user effort after the composition algorithm is applied.

The Experiment: After we have manually defined the mappings between the five
schemas and the ontology we have applied the composition algorithm developed in this
work to compute the direct mappings between the schemas. We have also applied com-
position when the mappings are morphisms (using a natural join). The results are given
in terms of the Overall statistic in Figure 3. The first striped bar is our semantic ap-
proach, while the second bar is for morphisms. The results are shown for all 10 possible
schema-to-schema mappings.

Observe that overall our composition algorithm outperforms composition with mor-
phisms. In five cases, the performances of the two systems are comparable. These
cases are an indication that transitivity plays by the rules and both systems are able to
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correctly compute the composition. However, in the bad cases, where assuming tran-
sitivity is costly and produces many false matches, composing semantic mappings is
much better and results in much higher overall performance. For instance, the com-
posed mapping between schemas 1 and 4 produced using our approach has an overall
value double that of morphisms. This supports our statement that our composition rules
preserve the transitivity of composition as exhibited by morphisms only when it is safe
to do so.

Let’s consider the two cases when our composition is apparently outperformed, i.e.
1<–>3 and 2<–>3 in Figure 3. In order to understand the behavior of composition
in these situations we provide in Figure 4 a detail breakdown of the output of the two
composition algorithms. The result of our algorithm is divided into the percentage of
the correct and Unknown relationships suggested (as we do not produce incorrect rela-
tionships). The morphism output is divided into the percentage of correct and incorrect
relationships suggested. All percentages are relative to the total number of output re-
lationships. In these two cases our composition algorithm casts doubts on the set of
relationships that later turn out to be true. They are mostly the effect of composing
divergent HasA relationships.

Other interesting cases are 1<–>2 and 1<–>4. For these two cases the percentage
of the incorrect relationships among the set of all Unknowns is 64% and 89%, respec-
tively. Every time incorrect relationships are likely to be produced during composition
our algorithm is clearly better than the composition over morphisms.

User Effort: Define the User Effort metric as the ratio of the number of Unknown
relationships to the number of all produced relationships. These statistics are repre-
sented by the percentage of Unknown’s in Figure 4. This measure does not consider
the effort required to find the relationships missed by the composition operator. Within
the mapping composition frameworks presented in Section 2 (e.g. morphisms) the user
effort is at its peak since every proposed relationship needs to be investigated and vali-
dated.

In our experimental environment, on average the User Effort is only 19%, and even
lower rates of user involvement occur when transitivity can be safely applied and thus
no validation is required. The worst two cases that require a substantial user effort are
the computation of a direct mapping between CIDR and Excel, and CIDR and Paragon.

6 Future Work and Conclusions

Our contribution is a mapping representation that captures explicit semantics that can be
efficiently inverted and composed. Unlike morphisms, semantics are preserved during
composition and only correct mapping correspondences are retained. Unknown map-
pings formed during composition are highlighted for semi-automatic correction by the
user. We have shown using experiments that the mappings are efficient to construct and
the composition result is much improved as opposed to composing morphisms. This is
important as the mappings are simple enough such that it is realistic that they could be
semi-automatically generated, but also expressive enough to ensure that composition is
well-defined and produces correct results. The composition algorithm is closed under
the defined mapping relationships and composition rules and does not produce false
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relationships. In addition, we have provided sound arguments that this representation
system is able to isolate the hard composition cases, which significantly reduces user
effort in finding bad matches and validating the entire mapping produced.

Our future efforts will strive to further confine the cases captured by the Unknown
relationship and to find a set of heuristics that would allow us to efficiently suggest
relationships between model elements.
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