
YAM: a Schema Matcher Factory

Fabien Duchateau, Remi Coletta, Zohra
Bellahsene

LIRMM, Univ. Montpellier 2
34392 Montpellier, France

firstname.name@lirmm.fr

Renée J. Miller
Univ. of Toronto

40 St. George Street
Toronto ON M5S 2E4, Canada

miller@cs.toronto.edu

ABSTRACT
In this paper, we present YAM, a schema matcher factory.
YAM (Yet Another Matcher) is not (yet) another schema
matching system as it enables the generation of a la carte
schema matchers according to user requirements. These re-
quirements include a preference for recall or precision, a
training data set (schemas already matched) and provided
expert correspondences. YAM uses a knowledge base that
includes a (possibly large) set of similarity measures and
classifiers. Based on the user requirements, YAM learns
how to best apply these tools (similarity measures and clas-
sifiers) in concert to achieve the best matching quality. In
our demonstration, we will let users apply YAM to build the
best schema matcher for different user requirements.
Classification: H.2. DATABASE MANAGEMENT

General Terms: Experimentation

1. OVERVIEW OF YAM
YAM (Yet Another Matcher) is a meta-matching tool,

which generates a dedicated schema matcher, i.e., a
schema matcher which is best suited, in terms of quality,
for a given schema matching scenario and according to user
inputs. The motivations leading to our work are:

• There is no schema matching tool which performs best
for all matching scenarios. Although matching tools en-
able the user to tune some parameters (strategies, weights,
thresholds, etc.), the algorithm used by the matching tool
stays the same, for instance, COMA++’s aggregation func-
tion [1] or Similarity Flooding’s graph propagation algo-
rithm [4]. eTuner [2] automatically tunes schema matching
tools by tuning the input parameters used by the matcher.
Specifically, eTuner finds the best parameter settings for a
given matching algorithm. On the contrary, YAM is able to
produce the best schema matcher for a given scenario. Each
generated schema matcher may use a different algorithm (an
aggregation function, Bayes network, decision tree, etc.) and
different similarity measures.

• YAM uses some user input(s), but of a different form.
Specifically, YAM can use an (optional) preference between
precision and recall, and some expert correspondences (that
is, a small number of correct matches). This small amount of
input enables the use of supervised learning to create a ded-
icated schema matcher. YAM is able to convert user time
spent to give preferences into better quality results. Indeed,

Copyright is held by the author/owner(s).
CIKM’09, November 2–6, 2009, Hong Kong, China.
ACM 978-1-60558-512-3/09/11.

most schema matching tools focus on a better precision, but
this is not the best choice in terms of post-matching effort,
i.e., the quantity of work required by an expert to correct dis-
covered correspondences. Technically speaking, it is easier
for the expert to validate (or not) a discovered correspon-
dence than to manually browse two large schemas for new
correspondences that the tool may have missed.

Figure 1: YAM Architecture

1.1 Architecture
Figure 1 depicts the YAM architecture. YAM has two

phases: a learning phase that produces a dedicated schema
matcher and a matching phase in which the dedicated matcher
is used over new input schemas. The learning process can
use a preference for precision and recall tradeoff and some
expert correspondences (from a domain of interest, or for the
schemas to be matched). The Knowledge Base (KB) stores
a set of classifiers, a set of similarity measures, and pairs
of schemas which have already been matched (with corre-
spondences). Thanks to these inputs and the KB, the learn-
ing process is able to generate a dedicated schema matcher.
This step is described with more details in Section 1.2. Note
that using the whole content of the KB enables learning of
a robust schema matcher, i.e., a default matcher that pro-
vides the best average results. This robust schema matcher
is useful when YAM must directly work as a generic schema
matcher, i.e., when the user has not provided any inputs.
The second phase performs the matching. It requires as in-
put the schemas to be matched, and the dedicated schema
matcher that has been previously generated. It outputs a
list of discovered correspondences between the schemas. The
current version of YAM includes 20 classifiers from the Weka
library1 and 30 similarity measures, including all the mea-
sures from the Second String project2. YAM is able to parse
edge-labeled trees (a simple abstraction that can be used for
XML schemas, web interfaces, etc.) and the knowledge base
contains a large set of real schemas from various domains

1http://www.cs.waikato.ac.nz/∼ml/weka
2http://secondstring.sourceforge.net

2079



(betting, hotel booking, dating, etc.) gathered from the
web [3]. The current KB contains more than 250 schemas,
among which 200 pairs have already been matched.

1.2 Learning Process
Similarly to machine learning classifiers, a matching tool

classifies each pair of schema elements (or correspondence),
by labelling them either as relevant or irrelevant. In YAM,
we train a large set of classifiers on schemas which have al-
ready been matched, i.e. training schemas. Two errors can
occur while training: discovering an irrelevant correspon-
dence (a.k.a. false positive) and missing a relevant corre-
spondence (a.k.a. false negative). The first error decreases
precision while the second one decreases recall. Classifiers
usually assign the same weight for both errors. But it is pos-
sible to promote one of them. Thus, YAM also takes as input
a user preference for either recall or precision. It is able to
generate a schema matcher that favors this preference.

Among the 20 classifiers that have been learned, the final
step consists of selecting the best one. To fulfill this goal,
a cross-validation is applied against the training schemas.
The classifier which manages to discover, between the train-
ing schemas, most of these expert correspondences and the
fewest irrelevant correspondences is selected as the dedicated
schema matcher.

2. DEMONSTRATION SCENARIOS
In this demo, we show the capability of our tool for gen-

erating a dedicated schema matcher, according to user in-
puts. We have used 10 scenarios from various domains (hotel
booking, currency, courses, etc.). We run our experiments
30 times to limit impact of randomness during learning.

Without input. Let us imagine that we would like
to match two hotel booking webforms. A user selects the
schemas to be matched by clicking on the add schemas but-
ton. In this first case, (s)he does not want to give more input
and (s)he clicks the learn and match button both to generate
a schema matcher and to use it to match the schemas. As the
user did not give any expert correspondences, YAM uses the
whole KB to learn the most robust schema matcher, which
is based on C4.5, a decision tree. First, this robust schema
matcher is displayed in the bottom left part of YAM’s inter-
face. Then, the discovered correspondences are shown in the
right part of YAM using lines between schema elements. The
robust schema matcher achieves an average 58% f-measure
on the 10 scenarios.

Promoting recall. Suppose the user thinks the recall

is too low. That is, (s)he feels the matcher has missed some
correspondences. (S)he adjusts the precision / recall slide
to promote recall and restarts the learning and matching
process. After that the matcher promoting recall, based on
NNge, a nearest-neighbor-like classifier, has been generated,
it discovers more relevant correspondences (13% increase for
recall). Promoting recall slightly decreases precision, but
average f-measure reaches 62%.

Training with similar schemas. Now, let us imagine
that the user has some similar schemas than the ones to
be matched, for instance other schemas dealing with hotel
booking, currency, courses, etc. domains. (S)he decides to
train on those similar scenarios instead of the whole KB by
clicking the choose training scenarios button. (S)he then se-
lects the similar scenarios and runs the learning and match-

ing. Another schema matcher has been generated, based on
JRip, a propositional rule learner. This matcher achieves
an average 66% f-measure. Thus, training the matchers on
similar schemas can improve the results.

Providing expert feedback. As the user is not satisfied
with these results, (s)he finally provides expert feedback

as input. Thus, (s)he selects some discovered correspon-
dences (5% in our experiments, which represents at most 2
correspondences to provide), and validates them by clicking
the validate button. These validated correspondences (along
with the schemas) are then added to the KB, and are also au-
tomatically added to the input expert correspondences panel.
The user then clicks the learn and match button. With this
new input3, YAM generates the dedicated schema matcher,
Bayes Network in this case, in 630 seconds. Since it does
not need to focus on the input expert correspondences, this
matcher enables an f-measure improvement up to 89%.

Table 1 sums up the results and provides a comparison
with other reputed matching tools, COMA++ and Similar-
ity Flooding (SF). We notice that YAM robust (without user
input) achieves similar results than those of COMA++ and
SF. However, when user spends some time to provide inputs,
YAM is able to strongly improve the matching quality.

Table 1: Average results of the different matchers

on the 10 scenarios

precision recall f-measure

YAM-robust 52% 65% 58%
YAM-recall 51% 78% 62%
YAM-similar 55% 81% 66%
YAM-feedback 88% 90% 89%
COMA++ 74% 45% 56%
Similarity Flooding 64% 54% 58%

3. CONCLUSION
In this paper, we have presented YAM, a factory of schema

matchers. The main contributions of our work are: (i) imple-
mentation of the first tool capable of producing a dedicated
schema matcher, and (ii) impact of various user inputs on
the quality. By means of demonstration, we will show how
YAM generates different schema matchers according to user
requirements. More information (scenarios and demo) can
be found at http://www.lirmm.fr/∼duchatea/yam.

4. REFERENCES
[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.

Schema and ontology matching with coma++. In
SIGMOD, Demo paper, pages 906–908, 2005.

[2] E. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal.
etuner: Tuning schema matching software using
synthetic scenarios. volume 16, pages 97–122, 2007.

[3] A. Marie and A. Gal. Boosting schema matchers. In
CooPIS, 2008.

[4] S. Melnik, H. G. Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, 2002.

3If there is not enough input expert correspondences to train
correctly, YAM adds some randomly training schemas from
the KB.

2080


