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A schema mapping is a specification that describes how data structured under one schema (the

source schema) is to be transformed into data structured under a different schema (the target

schema). Although the notion of an inverse of a schema mapping is important, the exact definition

of an inverse mapping is somewhat elusive. This is because a schema mapping may associate many

target instances with each source instance, and many source instances with each target instance.

Based on the notion that the composition of a mapping and its inverse is the identity, we give a

formal definition for what it means for a schema mapping M′ to be an inverse of a schema mapping

M for a class S of source instances. We call such an inverse an S-inverse. A particular case of

interest arises when S is the class of all source instances, in which case an S-inverse is a global

inverse. We focus on the important and practical case of schema mappings specified by source-

to-target tuple-generating dependencies, and uncover a rich theory. When S is specified by a set

of dependencies with a finite chase, we show how to construct an S-inverse when one exists. In

particular, we show how to construct a global inverse when one exists. Given M and M′, we show

how to define the largest class S such that M′ is an S-inverse of M.
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1. INTRODUCTION

Data exchange is the problem of materializing an instance that adheres to a
target schema, given an instance of a source schema and a schema mapping
that specifies the relationship between the source and the target. This is a very
old problem [Shu et al. 1977] that arises in many tasks where data must be
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transferred between independent applications that do not have the same data
format.

Because of the extensive use of schema mappings, it has become important
to develop a framework for managing schema mappings and other metadata,
and operators for manipulating them. Bernstein [2003] has introduced such a
framework, called model management. Melnik et al. [2005] have developed a
semantics for model-management operators that allows applying the operators
to executable mappings. One important schema mapping operator, at least in
principle, is the inverse operator. What do we mean by an inverse of a schema
mapping? This is a delicate question, since in spite of the traditional use of
the name mapping, a schema mapping is not simply a function that maps an
instance of the source schema to an instance of the target schema. Instead,
for each source instance, the schema mapping may associate many target in-
stances. Furthermore, for each target instance, there may be many correspond-
ing source instances.

As in Fagin et al. [2005a, 2005b, 2005c], we study the relational case where
a schema is a sequence of distinct relational symbols. A schema mapping is a
triple M = (S, T, �), where S (the source schema) and T (the target schema)
are sequences of distinct relation symbols with no relation symbols in common
and � is a set of formulas of some logical formalism over 〈S, T〉. We say that �

specifies the schema M. As in Fagin et al. [2005a, 2005b, 2005c], our main focus
is on the important and practical case of schema mappings where � is a finite set
of source-to-target tuple-generating dependencies (which we shall call s-t tgds or
simply tgds). These are formulas of the form ∀x(ϕ(x) → ∃yψ(x, y)), where ϕ(x)
is a conjunction of atoms1 over S, and where ψ(x, y) is a conjunction of atoms
over T.2 They have been used to formalize data exchange [Fagin et al. 2005a].
They have also been used in data integration scenarios under the name of
GLAV (global-and-local-as-view) assertions [Lenzerini 2002]. Note that tgds do
not contain equality, or any other “built-in relation symbols.” When we consider
egds (equality-generating dependencies), we shall of course treat equality as a
built-in relation symbol that appears in the conclusion. Later (in Section 15), we
shall extend the language of tgds so that the premise may include inequalities,
and also a relation symbol Constant that represents constants.

Intuitively, we would expect invertibility of a schema mapping to correspond
to “no loss of information.” As an example, assume that the source schema has
only the binary relation symbol P, and the target schema has only the unary
relation symbol Q. Consider the projection schema mapping that is specified by
the s-t tgd P(x, y) → Q(x).3 It is clear that information is lost by this mapping,
and, indeed, the projection schema mapping turns out not to have an inverse.
Now assume that the source schema has only the binary relation symbol P, and
the target schema has only the ternary relation symbol R. Consider the schema

1An atom over S is a formula of the form P(v1, . . . , vm), where P is a relation symbol of S, and

v1, . . . , vm are variables; similarly, we define an atom over T.
2There is also a safety condition, which says that every variable in x appears in ϕ. However, not

all of the variables in x need to appear in ψ .
3We will often drop the universal quantifiers in front of a tgd, and implicitly assume such quantifi-

cation. However, we will write down all existential quantifiers.
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mapping that is specified by the s-t tgd P(x, y) → ∃zR(x, y , z). It is clear that
no information is lost by this mapping, and indeed, this schema mapping turns
out to have an inverse. One such inverse is specified by the tgd that results
by “reversing the arrows,” namely, R(x, y , z) → P(x, y). However, it turns out
that “reversing the arrows” does not always produce an inverse, even when one
exists.

There are other flavors of “schema mappings” that have been studied in the
literature, such as view definitions, where there is a unique target instance
associated with each source instance. In such cases, a schema mapping is a
function in the classical sense, and so it is quite clear and unambiguous as to
what an inverse mapping is. An example of such work is Hull’s [1986] seminal
research on information capacity of relational database schemas. Although our
schema mappings are not actually functions, they have the advantage of be-
ing simpler and more flexible. LAV (local-as-view) mappings, which have been
widely used in data integration, are special cases of schema mappings specified
by s-t tgds, where we simply add the restriction that the premise of each tgd
must be a single atom rather than a conjunction of atoms.

Let us now consider how to define the inverse in our context, where schema
mappings are not actually functions. Let us associate with the schema mapping
M12 = (S1, S2, �12) the set S12 of ordered pairs 〈I, J〉 such that I is a source
instance, J is a target instance, and the pair 〈I, J〉 satisfies �12 (written 〈I, J〉 |=
�12). Perhaps the most natural definition of the inverse of the schema mapping
M12 would be a schema mapping M21 that is associated with the set S21 =
{〈J, I〉 : 〈I, J〉 ∈ S12}. This reflects the standard algebraic definition of an
inverse, and is the definition that Melnik [2004] and Melnik et al. [2005] gave
for the inverse. In those articles, this definition was intended for a generic model
management context, where mappings can be defined in a variety of ways,
including as view definitions, relational algebra expressions, etc. However, this
definition does not make sense in our context. This is because S12, by being
associated with a schema mapping specified by s-t tgds, is automatically “closed
down on the left and closed up on the right.” This means that if 〈I, J〉 ∈ S12

and if I ′ ⊆ I (that is, I ′ is a subinstance of I ) and J ⊆ J ′, then 〈I ′, J ′〉 ∈ S12.
However, instead of being closed down on the left and closed up on the right,
S21 is closed up on the left and closed down on the right. This is inconsistent
with a schema mapping that is specified by a set of s-t tgds, which is the case we
focus on in this article. In fact, the “language of inverse” (that is, the language
needed to specify inverses for schema mappings specified by s-t tgds) turns out,
as we shall discuss in Section 15, to be given by a generalization of s-t tgds that
are also closed down on the left and closed up on the right.

Our notion of an inverse of a schema mapping is based on another algebraic
property of inverses, that the composition of a function with its inverse is the
identity mapping. In our context, the identity mapping is specified by tgds that
“copy” the source instance to the target instance. Our definition of inverse says
that the schema mapping M21 is an inverse of the schema mapping M12 for the
class S of source instances if the schema mapping specified by their composition
is equivalent on S to the identity mapping. We refer then to M21 as an S-inverse
of M12. When S is the class of all source instances, then M21 is said to be a
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global inverse of M12. When S is a singleton set containing only the source
instance I , then M21 is said to be a local inverse, or simply an inverse, of M12

for I . Note that our definition of what it means for M21 to be an inverse of
M12 corresponds exactly to what we would like an inverse mapping to do in
data exchange: if after applying M12, we then apply M21, the resulting effect of
M21 is to “undo” the effect of M12. Fortunately, because of work by Fagin et al.
[2005c], we now understand very well the composition of schema mappings,
and so we are in a good position to study our notion of inverse. This article is
the first step in exploring the very rich theory that arises.

This article is an expanded version of a conference article [Fagin 2006]. The
most significant difference between the two is that this article contains the
proofs that were missing in Fagin [2006].

2. OVERVIEW OF RESULTS

If M12 = (S1, S2, �12) is a schema mapping, I is a source instance, and J is a
target instance, then J is a solution for I if 〈I, J〉 |= �12. A simple necessary con-
dition for M12 to have a global inverse is the unique-solutions property, which
says that no two distinct source instances have the same set of solutions. For
a fixed choice of M12, let f be the set-valued function where f (I ) is the set of
solutions for the source instance I . The unique-solutions property is equivalent
to the condition that f be one-to-one. The fact that this condition is necessary
for there to be a global inverse is analogous to the standard algebraic condi-
tion that an invertible function be one-to-one. We show that, surprisingly and
pleasingly, in the important special case of LAV schema mappings, the unique-
solutions property is not only necessary for M12 to have a global inverse but
also sufficient.

Assume that M is a schema mapping specified by a finite set of s-t tgds, and I
is a source instance. We derive a canonical candidate tgd local inverse, which is
a schema mapping specified by a finite set of s-t tgds that is an inverse of M for
I if there is any such inverse. We also derive a canonical candidate tgd global
inverse, which is a schema mapping specified by a finite set of s-t tgds that is a
global inverse of M if there is any such global inverse. In fact, we do something
a little more general than this. Let S be a class of source instances specified (as
source integrity constraints) by a set � of tgds and egds that always have a finite
chase.4 We generalize the notion of a canonical candidate tgd global inverse
to that of a canonical candidate tgd S-inverse, which is a schema mapping
specified by a finite set of s-t tgds that is an S-inverse of M if there is any such
S-inverse. (When � is the empty set, then S is the class of all source instances,
and we obtain the canonical candidate tgd global inverse.) It might seem that
the canonical candidate tgd local inverse is of theoretical interest only: after all,
we typically care only about an inverse that “works” for a large class, not for
a single instance. However, it turns out that the canonical candidate tgd local
inverse plays a key role in the proof of correctness of the canonical candidate
tgd global inverse (and the canonical candidate tgd S-inverse).

4As usual, an egd, or equality-generating dependency, has the same form as a tgd, except that the

conclusion must be an equality of variables.
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Our canonical candidate tgd inverses are each specified by finite sets of full
tgds (those with no existential quantifiers). This is not an accident: we show
that if M12 and M21 are schema mappings that are each specified by a finite
set of s-t tgds, S is a class of source instances, and M21 is an S-inverse of M12,
then there is a schema mapping specified by a finite set of full s-t tgds and that
is an S-inverse of M12.

It is folk wisdom that an inverse can be obtained by simply “reversing the
arrows” in a tgd. We show that even a weak form of this folk wisdom is false.
Instead, our canonical candidate tgd inverses are obtained by a slightly more
complicated but still very natural procedure.

Since a local inverse may be quite tailored to a particular instance, it is
natural to ask whether it is possible for a schema mapping specified by a finite
set of s-t tgds to have an inverse for every source instance yet not have a global
inverse. We show that this can indeed happen.

Given schema mappings M12 and M21 that are each specified by a finite set
of s-t tgds, an analyst might want to investigate when (that is, for which source
instances) M21 is an inverse of M12. (We give an example later, where M12

does projections and M21 joins the projections.) If we hold M12 and M21 fixed,
then we show that the problem of deciding whether M21 is an inverse of M12

for I is in the complexity class NP. It therefore follows from Fagin’s Theorem
[Fagin 1974] that the class S of source instances such that M21 is an inverse
of M12 for precisely the class S can be defined by a formula � in existential
second-order logic. Remarkably, we are able to obtain such a formula � by a
purely syntactical transformation of the formula that specifies the composition
of the schema mappings. Furthermore, when M12 is specified by full s-t tgds,
this formula is first-order.

Finally, we obtain other complexity results about deciding local or global
invertibility.

3. APPLICATIONS OF INVERSE MAPPINGS

There are potentially a number of applications for inverse mappings, especially
in schema evolution. For example, assume that data has been migrated from
one schema to another with a schema mapping M. At some point, we might
decide to “roll back” to the original schema, and so we might want to apply an
inverse schema mapping M−1. In fact, if we think this scenario is probable, we
might deliberately choose a schema mapping M that has an inverse M−1.

As a more intricate example, assume that there are two different schema
mappings from schema S1: the schema mapping M1 from schema S1 to schema
T1, and the schema mapping M′

1 from S1 to S′
1. Assume that there is also a

schema mapping M2 from T1 to T′
1. If there is an “inverse schema mapping”

M′
1
−1 of M′

1, then these schema mappings can be composed to give a schema
mapping directly from S′

1 to T′
1, by taking the composition of the schema map-

ping M′
1
−1 (from S′

1 to S1) with the schema mapping M1 (from S1 to T1) and
composing the result with the schema mapping M2 (from T1 to T′

1).
There are several obstacles to practicality for inverse schema mappings. One

obstacle to practicality is that the notion of an inverse of a schema mapping is
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rather restrictive, since it is rare that a schema mapping possesses an inverse.
There are several ways to possibly mitigate this problem. One way, as noted
earlier, is to strive to design a schema mapping to be invertible. Another way is
to relax the notion of an inverse. One such relaxed notion is the “quasi-inverse”
[Fagin et al. 2007]; practical applications of the quasi-inverse are discussed in
Fagin et al. [2007].

Perhaps an even more serious obstacle to practicality is the complexity of
even deciding if a schema mapping has a global inverse. If M12 is specified by
a finite set of s-t tgds, we show (Corollary 14.10) that the problem of deciding
whether M12 has a global inverse is coNP-hard. In fact, for all we know, this
problem is undecidable! Possibly there is a natural class of schema mappings
that arise in practice where this complexity is greatly reduced, but that remains
to be seen.

4. BACKGROUND

We now review basic concepts from data exchange.
A schema is a finite sequence R = 〈R1, . . . , Rk〉 of distinct relation symbols,

each of a fixed arity. An instance I (over the schema R) is a sequence 〈RI
1, . . . , RI

k〉
such that each RI

i is a finite relation of the same arity as Ri. We call RI
i the

Ri-relation of I . We shall often abuse the notation and use Ri to denote both the
relation symbol and the relation RI

i that interprets it.
Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas with no relation

symbols in common. We write 〈S, T〉 to denote the schema that is the result of
concatenating the members of S with the members of T. If I is an instance over
S and J is an instance over T, then we write 〈I, J〉 for the instance K over the
schema 〈S, T〉 such that SK

i = SI
i and TK

j = TJ
j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

If K is an instance and σ is a formula in some logical formalism, then we
write K |= σ to mean that K satisfies σ . If � is a set of formulas, then we write
K |= � to mean that K |= σ for every formula σ ∈ �.

Given a tuple (t1, . . . , tr ) occurring in a relation R, we denote by R(t1, . . . , tr )
the association between (t1, . . . , tr ) and R, and call it a fact. We will iden-
tify an instance with its set of facts. We call each ti in the tuple (t1, . . . , tr )
a value. We refer to the set of values that appear in an instance as its
active domain. We assume that we have a fixed infinite set Const of con-
stants and an infinite set Var of nulls that is disjoint from Const. We shall
assume that the active domain of every source instance consists only of con-
stants. We will sometimes emphasize this by referring to source instances
as ground instances. Of course, it is possible for a “source instance” to arise
that contains nulls, by chasing a source instance with s-t tgds from S to T,
and then chasing again with s-t tgds from T to S. But we shall think of
these “source instances” that contain nulls as simply artifacts, or “canonical
instances.”

If K is an instance with values in Const ∪ Var, then Var(K ) denotes the set
of nulls appearing in relations in K . Let K1 and K2 be two instances over the
same schema with values in Const ∪ Var. A homomorphism h : K1 → K2 is a
mapping from Const ∪ Var(K1) to Const ∪ Var(K2) such that (1) h(c) = c, for every
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c ∈ Const; and (2) for every fact R(t) of K1, we have that R(h(t)) is a fact of K2

(where, if t = (t1, . . . , ts), then h(t) = (h(t1), . . . , h(ts))).
Consider a schema mapping (S, T, �), as defined in the Introduction. Recall

that if I is a ground instance, and J is a target instance, then J is a solution
for I if 〈I, J〉 |= �. If I is a ground instance, then a universal solution for
I is a solution J for I such that for every solution J ′ for I , there exists a
homomorphism h : J → J ′. When � is a finite set of s-t tgds, and I is a ground
instance, then the result of chasing I with � is a universal solution for I [Fagin
et al. 2005a].

LetM12 = (S1, S2, �12) andM23 = (S2, S3, �23) be two schema mappings such
that the schemas S1, S2, S3 have no relation symbol in common pairwise. The
composition formula [Fagin et al. 2005c], denoted by �12◦�23, has the semantics
that, if I is an instance of S1 and J is an instance of S3, then 〈I, J〉 |= �12 ◦�23

precisely if there is an instance J∗ of S2 such that 〈I, J∗〉 |= �12 and 〈J∗, J〉 |=
�23. It was proven in [Fagin et al. 2005c] that, when �12 and �23 are finite sets
of s-t tgds, then the composition formula is given by a second-order tgd (SO tgd).
We give the definition of SO tgds later (Definition 12.1). We now give an example
(from Fagin et al. [2005c]) of an SO tgd that defines the composition formula.

Example 4.1. Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a single unary relation symbol Emp of employees. Schema S2 con-
sists of a single binary relation symbol Mgr1 that associates each employee with
a manager. Schema S3 consists of a similar binary relation symbol Mgr that is
intended to provide a copy of Mgr1, and an additional unary relation symbol
SelfMgr that is intended to store employees who are their own manager. Con-
sider now the schema mappings M12 = (S1, S2, �12) and M23 = (S2, S3, �23),
where �12 consists of the tgd Emp(e) → ∃mMgr1(e, m), and �23 consists of the two
tgds Mgr1(e, m) → Mgr(e, m) and Mgr1(e, e) → SelfMgr(e). Then the composition
formula �12 ◦ �23 is defined by the following second-order tgd:

∃ f (∀e(Emp(e) → Mgr(e, f (e))) ∧ ∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e))). (1)

Intuitively, f (e) is the manager of employee e.

We now give a lemma that corresponds to our statement in the Introduction
that the set 〈I, J〉 of pairs that satisfy an s-t tgd is “closed down on the left and
closed up on the right.”

LEMMA 4.2. Let � be a finite set of s-t tgds. Assume that 〈I, J〉 |= �, and
I ′ ⊆ I and J ⊆ J ′. Then 〈I ′, J ′〉 |= �.

PROOF. This follows easily from the definitions.

COROLLARY 4.3. Let �12 and �23 be finite sets of s-t tgds. Assume that 〈I, J〉 |=
�12 ◦ �23 and I ′ ⊆ I and J ⊆ J ′. Then 〈I ′, J ′〉 |= �12 ◦ �23.

PROOF. Since 〈I, J〉 |= �12 ◦ �23, there is J∗ such that 〈I, J∗〉 |= �12 and
〈J∗, J〉 |= �23. Since 〈I, J∗〉 |= �12 and I ′ ⊆ I , it follows from Lemma 4.2 that
〈I ′, J∗〉 |= �12. Since 〈J∗, J〉 |= �23 and J ⊆ J ′, it follows from Lemma 4.2
that 〈J∗, J ′〉 |= �23. Since 〈I ′, J∗〉 |= �12 and 〈J∗, J ′〉 |= �23, it follows that
〈I ′, J ′〉 |= �12 ◦ �23, as desired.
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5. WHAT IS AN INVERSE MAPPING?

Assume thatM12 = (S1, S2, �12) is a schema mapping. For each relation symbol
R of S1, let R̂ be a new relation symbol (different from any relation symbol of S1
or S2) of the same arity as R. Define Ŝ1 to be

{̂
R : R ∈ S1

}
. Thus, Ŝ1 is a schema

disjoint from S1 and S2 that can be thought of as a copy of S1. If I is an instance
of S1, define Î to be the corresponding instance of Ŝ1. Thus, R̂ Î = RI for every R
in S1.

Let M21 = (S2, Ŝ1, �21) be a schema mapping, where the source schema S2
is the target schema of M12, and where the target schema is Ŝ1. The issue we
are concerned with is: what does it mean for M21 to be an inverse of M12, and
what can we say about such inverse mappings? We are most interested in the
case where �12 and �21 are finite sets of s-t tgds. We now introduce an example
that we shall use as a running example to demonstrate some of the issues that
arise.

Example 5.1. Let S1 consist of the ternary relation symbol EDL (Employee-
Department-Location). Let S2 consist of the binary relation symbol ED
(Employee-Department) and the binary relation symbol DL (Department-
Location). Let �12 consist of the s-t tgd EDL(x, y , z) → ED(x, y) ∧ DL( y , z) that
corresponds to projecting EDL onto ED and DL. Let �21 consist of the s-t tgd
(ED(x, y) ∧ DL( y , z)) → ÊDL(x, y , z), where the source schema is S2 and the tar-
get schema is Ŝ1, that corresponds to taking the join of the projections. Let
M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21).

Let � be the multivalued dependency5

EDL(x, y , z ′) ∧ EDL(x ′, y , z)) → EDL(x, y , z). (2)

It is known [Fagin 1977] that, if we project the EDL relation onto ED and DL and
then join the resulting projections, we obtain the original EDL relation precisely
if the multivalued dependency � holds for the EDL relation. We want our defini-
tion of inverse to have the property that the schema mapping M21 is an inverse
of M12 for precisely those ground instances I that satisfy �.

Let us now define some preliminary notions that will allow us to define what
it means for the mapping M21 = (S2, Ŝ1, �21) to be an S-inverse of the mapping
M12 = (S1, S2, �12). (In Example 5.1, the class S would consist of those ground
instances that satisfy �.) Define �Id (where Id stands for identity) to consist
of the tgds R(x1, . . . , xk) → R̂(x1, . . . , xk), where x1, . . . , xk are distinct variables,
when R is a k-ary relation symbol of S1. Define the identity mapping to be
MId = (S1, Ŝ1, �Id ). Note that J is a solution for I under the identity mapping
if and only if Î ⊆ J . The reason we have Î ⊆ J rather than simply Î = J is that
�Id is a set of s-t tgds, and hence whenever J is a solution, then so is every J ′

with J ⊆ J ′. Let us say that two schema mappings with source schema S1 and
target schema Ŝ1 are equivalent on I if they have the same ground instances
as solutions for I .6

5Note that � is not an s-t tgd, since the premise and conclusion use the same relation symbol EDL.

Of course, � is a tgd in the classical sense of Beeri and Vardi [1984].
6Technically, a ground instance is an instance of S1 whose active domain consists only of constants.
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We are now ready to define the notion of inverse. Let M12 = (S1, S2, �12)
and M21 = (S2, Ŝ1, �21) be schema mappings. Let σ be the composition formula
�12 ◦�21 of M12 and M21, and let M11 = (S1, Ŝ1, σ ). Let I be a ground instance
of S1. Let us say that M21 is an inverse of M12 for I if M11 and the identity
mapping MId are equivalent on I . Thus, M21 is an inverse of M12 for the
ground instance I precisely if for every ground instance J ,

〈I, J〉 |= σ if and only if Î ⊆ J. (3)

We note that in the case where �12 and �21 are each a finite set of s-t tgds
(the case we shall mainly consider in this article), (3) holds for every ground
instance J if and only if (3) holds for every instance J (ground or not) of Ŝ1
(this can be shown by replacing each null by a new constant; if a null appears
several times, then it is replaced by the same constant each time). However,
this is not necessarily true when either �12 or �21 is not a finite set of s-t tgds.

If S is a class of ground instances, then we say that M21 is an S-inverse of
M12 if M21 is an inverse of M12 for I , for each I in S. A particularly important
case arises when S is the class of all ground instances. In that case, we say that
M21 is a global inverse of M12.

We now discuss further the fact that there is an inclusion rather than an
equality in the right-hand side of (3). On the face of it, this seems to be an
artifact that arises because the identity schema mapping �Id , as we have given
it, is specified by s-t tgds, and so the results are “closed up on the right,” as in
Lemma 4.2. We now show that the reason for the inclusion rather than an
equality in the right-hand side of (3) is more fundamental. Assume that we are
considering a global inverse of a schema mapping M12 = (S1, S2, �12), where
�12 is a finite set of s-t tgds. The next proposition implies that no matter how
rich a language we are able to use to define �Id , there still must be an inclusion
rather than an equality in the right-hand side of (3).

PROPOSITION 5.2. Let M12 = (S1, S2, �12) be a schema mapping, where �12

is a finite set of s-t tgds. Assume that �21 is an arbitrary formula (not necessarily
a finite set of s-t tgds), such that 〈I, Î〉 |= �12 ◦ �21, for every ground instance I.
Then 〈I, J〉 |= �12 ◦ �21 whenever J is a ground instance with Î ⊆ J.

PROOF. Assume that Î ⊆ J . Find I ′ such that Î ′ = J . So I ⊆ I ′. By assump-
tion, 〈I ′, Î ′〉 |= �12 ◦ �21, that is, 〈I ′, J〉 |= �12 ◦ �21. Therefore, by definition
of �12 ◦ �21, there is J ′ such that 〈I ′, J ′〉 |= �12 and 〈J ′, J〉 |= �21. Since
I ⊆ I ′ and 〈I ′, J ′〉 |= �12, and since �12 is a finite set of s-t tgds, it follows from
Lemma 4.2 that 〈I, J ′〉 |= �12. Since 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �21, it follows
that 〈I, J〉 |= �12 ◦ �21. This was to be shown.

We now return to our running example of Example 5.1 to further investigate
the question of when (that is, for which ground instances) one schema mapping
is an inverse of another.

But we may also refer to an instance of Ŝ1 whose active domain consists only of constants as a

ground instance.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 25, Publication date: November 2007.



25:10 • R. Fagin

Example 5.3. We said in Example 5.1 that we want our definition of inverse
to have the property that the schema mapping M21 is an inverse of M12 for
precisely those ground instances I that satisfy �. We now show that satisfying
� is a sufficient condition for M21 to be an inverse of M12. In Example 12.8, we
shall show that � is also a necessary condition.

If we apply the composition algorithm of Fagin et al. [2005c], we find that
the composition formula �12 ◦ �21, which we denote by σ , is

EDL(x, y , z ′) ∧ EDL(x ′, y , z)) → ÊDL(x, y , z). (4)

Let I be a ground instance of S1 satisfying �. We must show that (3) holds
for every ground instance J . Assume first that 〈I, J〉 |= σ ; we must show that
Î ⊆ J . Now �Id consists of the tgd EDL(x, y , z) → ÊDL(x, y , z). It is clear that
σ logically implies �Id (we let the roles of x ′ and z ′ be played by x and z,
respectively). Therefore, since 〈I, J〉 |= σ , it follows that 〈I, J〉 |= �Id . So Î ⊆ J ,
as desired.

Assume now that Î ⊆ J ; we must show that 〈I, J〉 |= σ . Since σ is given
by (4), this means that we must show that if EDL(x, y , z ′) and EDL(x ′, y , z) hold
in I , then ÊDL(x, y , z) holds in J . So assume that EDL(x, y , z ′) and EDL(x ′, y , z)
hold in I . Since I |= �, it follows that EDL(x, y , z) holds in I . Since Î ⊆ J , it
follows that ÊDL(x, y , z) holds in J , as desired.

Note the unexpected similarity of the composition formula (4) and � (the mul-
tivalued dependency (2)). We shall explain this surprising connection between
the composition formula and � later (in Example 12.8).

The next example shows that there need not be a unique inverse. Therefore,
we refer to “an inverse mapping” rather than “the inverse mapping.”

Example 5.4. Let M12 = (S1, S2, �12), where S1 consists of the unary re-
lation symbol R, where S2 consists of the binary relation symbol S, and where
�12 consists of the tgd R(x) → S(x, x). Let �21 consist of the tgd S(x, x) → R̂(x),
and let �′

21 consist of the tgd S(x, y) → R̂(x). Let M21 = (S2, Ŝ1, �21), and let

M′
21 = (S2, Ŝ1, �′

21). In both cases (for M21 and for M′
21), the composition for-

mula is R(x) → R̂(x), which specifies the identity mapping. So both M21 and
M′

21 are global inverses of M12, and so there is not a unique global inverse of
M12.

Let M12 = (S1, S2, �12), where �12 is a finite set of s-t tgds. Assume that
M12 has a global inverse that is specified by a finite set of s-t tgds. Later,
we show (Corollary 9.4) that there is then a schema mapping (“the canonical
candidate tgd global inverse”) M21 = (S2, Ŝ1, �21), where �21 is a finite set
of s-t tgds, that is, the “most general” global inverse of M12 that is specified
by s-t tgds, in the sense that �′

21 logically implies �21 for every global inverse

M′
21 = (S2, Ŝ1,�′

21) of M12 where �′
21 is a finite set of s-t tgds. In the case of

Example 5.4, the schema mapping M21 is the canonical candidate tgd global
inverse of M12 (note in particular that �′

21 logically implies �21).
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The notion global inverse is not symmetric. Thus, in Example 5.4, although
M21 is a global inverse ofM12, it is not true thatM12 is a global inverse ofM21.7

In fact, it is straightforward to show that M21 has no inverse for the instance
consisting of the single fact S(0, 1), and hence M21 has no global inverse.

The final example of this section shows that, in some cases, we may get
uniqueness.

Example 5.5. Let M12 = (S1, S2, �12), where S1 consists of the unary rela-
tion symbol R, where S2 consists of the unary relation symbol S, and where �12

consists of the tgd R(x) → S(x). Let �21 consist of the tgd S(x) → R̂(x), and let
M21 = (S2, Ŝ1, �21). It is not hard to see that M21 is the unique global inverse
of M12 (up to logical equivalence of �21) specified by s-t tgds.

6. THE UNIQUE-SOLUTIONS PROPERTY

Unlike the rest of this article, in this section we do not restrict our attention
to schema mappings (S, T, �) where � is a finite set of s-t tgds. Instead, we
may allow � to be an arbitrary constraint between source and target instances.
Our only requirement is that the satisfaction relation between formulas and
instances be preserved under isomorphism. This means that, if 〈I, J〉 |= �, and
if 〈I ′, J ′〉 is isomorphic to 〈I, J〉, then 〈I ′, J ′〉 |= �. This is a mild condition that
is true of all standard logical formalisms, such as first-order logic, second-order
logic, fixed-point logics, and infinitary logics.

Let M12 = (S1, S2, �12) be a schema mapping, and let I be a ground instance.
Intuitively, as far as S2 is concerned, the only information about I is the set
of solutions for I , that is, the set of target instances J such that 〈I, J〉 |= �12.
Therefore, we would expect that, if M21 is an inverse of M12 for two distinct
instances I1 and I2, then I1 and I2 would have different sets of solutions. Oth-
erwise, intuitively, there would not be enough information to allow M21 to re-
construct I1 after applying M12. We now give a theorem (Theorem 6.1), which
says that this intuition is correct. We then give three corollaries of Theorem 6.1,
each of which provides a useful necessary condition for the existence of local
inverses, and each of which we shall utilize later. As an amusing application of
Theorem 6.1, we show that there is a schema mapping specified by a finite set
of s-t tgds that has an inverse for every ground instance yet does not have a
global inverse. We conclude this section by considering global rather than local
properties. Specifically, we say that a schema mapping has the unique-solutions
property if no two distinct instances have the same set of solutions. We show that
the unique-solutions property is a necessary condition for a schema mapping to
have a global inverse. Furthermore, in the case of LAV schema mappings, we
show that the unique-solutions property is not only necessary but also sufficient
for the existence of a global inverse.

THEOREM 6.1. Let M12 and M21 be schema mappings. Assume that M21 is
an inverse ofM12 for distinct ground instances I1 and I2. Then the set of solutions
for I1 under M12 is different from the set of solutions for I2 under M12.

7To even make sense syntactically of the question as to whether M12 is a global inverse of M21,

we must first rename Ŝ1 in M21 to be S1, and rename S2 in M12 to be Ŝ2.
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PROOF. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21). Let σ be
the composition formula of M12 and M21. Assume that I1 and I2 are ground
instances such that the set of solutions for I1 under M12 equals the set of
solutions for I2 under M12, that is,

{
J ′ : 〈I1, J ′〉 |= �12

} = {
J ′ : 〈I2, J ′〉 |= �12

}
. (5)

We shall show that I1 = I2. We have (where we always take J to be ground)
the following:

{
J : Î1 ⊆ J

}
= {J : 〈I1, J〉 |= σ } (by (3) with I1 for I )

= {J : There exists J ′ such that 〈I1, J ′〉 |= �12 and 〈J ′, J〉 |= �21}
(by definition of the composition formula)

= {J : There exists J ′ such that 〈I2, J ′〉 |= �12 and 〈J ′, J〉 |= �21} (by (5))

= {J : 〈I2, J〉 |= σ } (by definition of the composition formula)

= {
J : Î2 ⊆ J

}
(by (3) with I2 for I ).

We just showed that
{

J : Î1 ⊆ J
} = {

J : Î2 ⊆ J
}
. Since Î1 ∈ {

J : Î1 ⊆ J
}
, it

follows that Î1 ∈ {
J : Î2 ⊆ J

}
, that is, Î2 ⊆ Î1. Identically, we have Î1 ⊆ Î2, and

so Î1 = Î2. Therefore, I1 = I2, as desired.

The reader might wonder why we are considering this property, which says
that distinct instances have distinct solution sets, rather than considering a
stronger property that says that distinct instances should not even have a so-
lution in common. Let M12 be a schema mapping specified by a finite set of s-t
tgds, and let I1 and I2 be distinct ground instances. We now show that I1 and
I2 always have a solution in common, whether or not M12 is invertible. This is
because if J1 is an arbitrary solution of I1, and J2 is an arbitrary solution of
I2, then Lemma 4.2 implies that J1 ∪ J2 is a solution of both I1 and I2 (where
J1 ∪ J2 is the target instance whose set of facts consists of the union of the facts
of J1 and J2).

As a corollary of Theorem 6.1, we obtain a necessary condition forM12 to have
an inverse for a fixed ground instance. (The proof depends on our assumption
of preservation under isomorphism.)

COROLLARY 6.2. Let M12 be a schema mapping, and let I1 and I2 be distinct
but isomorphic ground instances. Assume that there is an inverse of M12 for I1.
Then the set of solutions for I1 under M12 is different from the set of solutions
for I2 under M12.

PROOF. Assume that M12 = (S1, S2, �12), and that M21 = (S2, Ŝ1, �21) is
an inverse of M12 for I1. Let σ be the composition formula �12 ◦ �21, and let
M11 = (S1, Ŝ1, σ ). Since M21 is an inverse of M12 for I1, it follows by definition
of inverse that M11 and the identity mapping are equivalent on I1. Since I1

and I2 are isomorphic, it follows in a straightforward way from our assumption
of preservation under isomorphism that M11 and the identity mapping are
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equivalent on I2. Hence, M21 is an inverse of M12 for I2. So by Theorem 6.1,
the set of solutions for I1 and I2 are different.

We now give a simple example of the use of Corollary 6.2.

Example 6.3. Let S1 consist of the unary relation symbols R and R′, let S2
consist of the unary relation symbol S, and let �12 = {R(x) → S(x), R′(x) → S(x)}.
Assume that the facts of I1 are precisely R(0) and R′(1); we now show that M12

does not have an inverse for I1. Let I2 be the ground instance whose facts are
precisely R(1) and R′(0). Let J be the target instance whose facts are precisely
S(0) and S(1). Then the solutions under �12 for I1 are exactly those J ′ where
J ⊆ J ′. But these are also exactly the solutions for I2. Since I1 and I2 are
distinct isomorphic ground instances with the same set of solutions, it follows
from Corollary 6.2 that M12 does not have an inverse for I1.

We now give two more corollaries of Theorem 6.1, both of which give nec-
essary conditions for the existence of an inverse of schema mappings specified
by s-t tgds. Both corollaries make use of the fundamental notion of the chase.
Let M12 = (S1, S2, �12), where �12 is a finite set of s-t tgds. Assume that I
is an instance of S1. If the result of chasing 〈I, ∅〉 with �12 is 〈I, J〉, then we
define chase12(I ) to be J .8 We may say loosely that J is the result of chasing I
with �12.

COROLLARY 6.4. Let M12 = (S1, S2, �12) be a schema mapping, where �12 is
a finite set of s-t tgds. Assume that some schema mapping M21 is an inverse of
M12 for distinct ground instances I1 and I2. Then chase12(I1) �= chase12(I2).

PROOF. It follows from results in Fagin et al. [2005a] that the solutions for a
ground instance I are exactly the homomorphic images of chase12(I ). Therefore,
if chase12(I1) = chase12(I2), then I1 and I2 have the same solutions. But this is
a contradiction, by Theorem 6.1.

Let I be a ground instance. Let us say that the schema mapping M12 =
(S1, S2, �12) has the constant-propagation property for I if every member of
the active domain of I is a member of the active domain of chase12(I ). If M12

has the constant-propagation property for every ground instance I , then we
say simply that M12 has the constant-propagation property. The next corollary
says that the constant-propagation property for I is a necessary condition for
invertibility for I .

COROLLARY 6.5. Let M12 = (S1, S2, �12) be a schema mapping, where �12 is
a finite set of s-t tgds. If M12 has an inverse for I (not necessarily specified by s-t
tgds), then M12 has the constant-propagation property for I .

PROOF. Assume that the constant a in the active domain of I is not in
the active domain of chase12(I ); we shall derive a contradiction. Let a′ be
a new constant that does not appear in I , and let I ′ be the result of re-
placing every occurrence of a in I by a′. Then I and I ′ are isomorphic, and

8For definiteness, we use the version of the chase as defined in Fagin et al. [2005c], although it does

not really matter.
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chase12(I ) = chase12(I ′). Hence, as in the proof of Corollary 6.4, it follows that I
and I ′ have the same solutions. But this is a contradiction of Corollary 6.2.

The next proposition is an amusing application of Theorem 6.1.

PROPOSITION 6.6. There is a schema mapping M12 specified by a finite set of
full s-t tgds that has no global inverse, but where, for every ground instance I,
there is a schema mapping specified by a finite set of s-t tgds that is an inverse
of M12 for I .

PROOF. Let S1 consist of the unary relation symbols P and Q, and let S2
consist of the binary relation symbol R and the unary relation symbol S. Let
�12 = {P(x)∧Q( y) → R(x, y), P(x) → S(x), Q(x) → S(x)}. Let M12 = (S1, S2, �12).

We now show that for every ground instance I , the schema mapping M12

has an inverse that is specified by a finite set of s-t tgds. There are three cases:

—PI is empty. Then an inverse is S(x) → Q̂(x).

—QI is empty. Then an inverse is S(x) → P̂(x).

—Neither PI nor QI is empty. Then an inverse is R(x, y) → P̂(x) ∧ Q̂( y).

Now we will show that M12 does not have a global inverse. Let I1 = {P (0)},
and let I2 = {Q(0)}. Then the set of solutions for I1 under M12 equals the set of
solutions for I2 under M12 (both equal the set of target instances J that contain
{S(0)}). It then follows from Theorem 6.1 that there is no schema mapping M21

that is an inverse of M12 for both I1 and I2. Therefore M12 does not have a
global inverse.

Let us say that M12 = (S1, S2, �12) has the unique-solutions property if
whenever I1 and I2 are distinct ground instances, then the set of solutions for
I1 is distinct from the set of solutions for I2. In the case where �12 is a finite set
of s-t tgds, it follows from results of Fagin et al. [2005a] that I1 and I2 have the
same set of solutions if and only if they share a universal solution. Therefore,
when �12 is a finite set of tgds, the unique-solutions property is equivalent
to the unique-universal-solution property, which says that whenever I1 and I2

are distinct ground instances, then no universal solution for I1 is a universal
solution for I2.

In this section, the result of greatest interest is the following important spe-
cial case of Theorem 6.1.

THEOREM 6.7. Every schema mapping with a global inverse satisfies the
unique-solutions property.

Recall that a LAV (local-as-view) schema mapping is a schema mapping
M12 = (S1, S2, �12) where �12 is a finite set of s-t tgds all with a singleton
premise. The next theorem says that, for LAV schema mappings, the unique-
solutions property is not only necessary for global invertibility but also suffi-
cient. This shows robustness of our notion of inverse, since (at least in the case
of LAV mappings) our notion of global invertibility is equivalent to the unique-
solutions property, which is another natural notion. Before we state and prove
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this theorem, we need two simple lemmas. The first lemma, which is standard,
gives the key property of the chase.

LEMMA 6.8. Let (S1, S2, �12) be a schema mapping, where �12 is a finite set
of s-t tgds. Let I be a ground instance and J a target instance. Then 〈I, J〉 |= �12

if chase12(I ) ⊆ J. If the s-t tgds in �12 are all full, then 〈I, J〉 |= �12 if and only
if chase12(I ) ⊆ J.

The next lemma gives a sufficient condition for an instance to be a universal
solution.

LEMMA 6.9. Let M12 = (S1, S2, �12) be a schema mapping, where �12 is a
finite set of s-t tgds. Let J be a universal solution for I , and let J ′ be a subinstance
of J that is also a homomorphic image of J. Then J ′ is also a universal solution
for I .

PROOF. Since J ′ is a homomorphic image of the universal solution J , and
since �12 is a finite set of s-t tgds, it follows that J ′ is a solution for I . Let J ′′

be an arbitrary solution for I . Since J is universal, there is a homomorphism
from J into J ′′. But this homomorphism, when restricted to the subinstance J ′

of J , is a homomorphism from J ′ into J ′′. So J ′ is indeed a universal solution
for I .

THEOREM 6.10. A LAV schema mapping has a global inverse if and only if
it has the unique-solutions property.

PROOF.9 By Theorem 6.7, we know that when a schema mapping (LAV or
otherwise) has a global inverse, then it has the unique-solutions property. As-
sume now that the LAV schema M12 = (S1, S2, �12) has the unique-solutions
property; we must show that it has a global inverse.

Define �21 to have the meaning that it defines all pairs (chase12(I ′), Î ′) where
I ′ is a ground instance. That is, 〈J2, J1〉 |= �21 precisely if there is a ground
instance I ′ such that J1 = Î ′ and J2 = chase12(I ′). Let M21 = (S2, Ŝ1, �21). We
now show that M21 is a global inverse of M12. We must show that, for every
ground instance J ,

〈I, J〉 |= �12 ◦ �21 if and only if Î ⊆ J. (6)

We first show that if Î ⊆ J , then 〈I, J〉 |= �12 ◦ �21. By Proposition 5.2,
we need only show that 〈I, Î〉 |= �12 ◦ �21 for every ground instance I . Let
J∗ = chase12(I ). Then 〈I, J∗〉 |= �12 by Lemma 6.8. By definition of �21, it
follows that 〈J∗, Î〉 |= �21. Since 〈I, J∗〉 |= �12 and 〈J∗, Î〉 |= �21, it follows
that 〈I, Î〉 |= �12 ◦ �21, as desired.

Assume now that 〈I, J〉 |= �12◦�21; we must show that Î ⊆ J . Since 〈I, J〉 |=
�12◦�21, there is J∗ such that 〈I, J∗〉 |= �12 and 〈J∗, J〉 |= �21. Since 〈J∗, J〉 |=
�21, it follows by definition of �21 that there is I ′ such that J∗ = chase12(I ′)
and J = Î ′. Let I ′′ = I ∪ I ′ (that is, the set of facts of I ′′ consists of the union of
the facts of I and I ′). Let I ′′′ = I \ I ′ (that is, the set of facts of I ′′′ consists of

9Catriel Beeri simplified the proof.
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those facts in I that are not in I ′). So I ′′ = I ′′′ ∪ I ′. Since �12 is LAV, it follows
that

chase12(I ′′) = chase12(I ′′′) ∪ chase12(I ′), (7)

that is, the chase of the union is the union of the chases. This follows immedi-
ately from the fact that the premise of every member of �12 is a singleton.

In chasing I ′′ with �12, we can first chase I ′′′ with �12 and then chase I ′

with �12. Let X ′′′ be the set of nulls introduced in chasing I ′′′ with �12, and
let X ′ be the set of nulls introduced in chasing I ′ with �12. Then X ′′′ and X ′

are disjoint. It was shown in Fagin et al. [2005a] that chase12(I ) is a universal
solution for I under M12. Therefore, since J∗ is a solution for I under M12,
there is a homomorphism h such that h(chase12(I )) ⊆ J∗. Combining this with
the fact that J∗ = chase12(I ′), we obtain

h(chase12(I )) ⊆ chase12(I ′). (8)

Since I ′′′ ⊆ I , we have chase12(I ′′′) ⊆ chase12(I ). So

h(chase12(I ′′′)) ⊆ h(chase12(I )). (9)

By (8) and (9), it follows that

h(chase12(I ′′′) ⊆ chase12(I ′). (10)

Define h′′ on chase12(I ′′) by letting h′′(x) = h(x) if x ∈ X ′′′, and h′′(x) = x if
x ∈ X ′. By (7), we have

h′′(chase12(I ′′)) = h′′(chase12(I ′′′)) ∪ h′′(chase12(I ′)). (11)

But h′′(chase12(I ′′′)) = h(chase12(I ′′′)), and h′′(chase12(I ′)) = chase12(I ′). So
from (11), we see that h′′(chase12(I ′′)) = h(chase12(I ′′′)) ∪ chase12(I ′). Hence,
by (10), it follows that h′′(chase12(I ′′)) = chase12(I ′). Since I ′ ⊆ I ′′, we know
chase12(I ′) ⊆ chase12(I ′′). We have shown that chase12(I ′) is both a subin-
stance of chase12(I ′′) and (under h′′) a homomorphic image of chase12(I ′′). But
chase12(I ′′) is a universal solution for I ′′. So by Lemma 6.9, chase12(I ′) is a
universal solution for I ′′.

Hence, chase12(I ′) is a universal solution for both I ′ and I ′′. So I ′ and I ′′

share a universal solution. We noted earlier that, for schema mappings spec-
ified by a finite set of s-t tgds, the unique-solutions property is equivalent to
the unique-universal-solution property. By assumption, M12 has the unique-
solutions property, and hence it has the unique-universal-solution property.
Therefore, since I ′ and I ′′ share a universal solution, it follows that I ′ = I ′′,
that is, I ′ = I ∪ I ′. But this implies that I ⊆ I ′, and so Î ⊆ Î ′. Since J = Î ′,
this implies that Î ⊆ J . This was to be shown.

It was shown in Fagin et al. [2007] that there is a schema mapping specified
by a finite set of s-t tgds that has the unique-solutions property, but does not
have a global inverse. Hence, the LAV assumption is needed in the statement
of Theorem 6.10.

The schema mapping that is a global inverse in our proof of Theorem 6.10 is
(at least on the face of it) not defined in terms of s-t tgds, and might require an
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infinitary logic to specify. For the rest of this article, we shall focus only on the
important and practical case of schema mappings M12 and M21 that are each
specified by a finite set of s-t tgds.

7. CHARACTERIZING INVERTIBILITY

In this section, we give a useful characterization of invertibility in terms of
the chase (Theorem 7.3). As a corollary (Corollary 7.4), we give an especially
simple characterization when the schema mappings are full. We then show
(Proposition 7.5) that, in the nonfull case, a weakened version of this condition
provides a necessary condition for invertibility. We also show (Proposition 7.6)
that this necessary condition is not sufficient. As a tool to help prove these
results, we give a proposition (Proposition 7.2) that gives an explicit universal
solution for the composition of schema mappings. Some of the results of this
section (in particular, Corollary 7.4) are interesting in their own right. But this
section is mainly here to provide a useful set of tools for inverses. We shall make
use of these tools a number of times.

We begin with a lemma. This lemma gives us a different viewpoint of compo-
sition. It will be used to prove the subsequent proposition.10 Note that in this
lemma, when we write 〈I1, 〈I2, I3〉〉 |= �12 ∪ �23, we are thinking of �12 as con-
sisting of s-t tgds and �23 as consisting of target tgds. Although in this article,
we do not allow target tgds in our schema mappings, they are allowed in Fagin
et al. [2005a].

LEMMA 7.1. Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23) be schema
mappings, with S1, S2, and S3 pairwise disjoint. Let I1 be an instance of schema
S1 and I3 an instance of schema S3. Then 〈I1, I3〉 |= �12 ◦�23 if and only if there
is an instance I2 of schema S2 such that 〈I1, 〈I2, I3〉〉 |= �12 ∪ �23.

PROOF. Assume first that 〈I1, I3〉 |= �12 ◦ �23. This means that there is I2

such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23. Since S1, S2, and S3 are pairwise
disjoint, it follows easily that 〈I1, 〈I2, I3〉〉 |= �12 ∪ �23. Conversely, assume
that 〈I1, 〈I2, I3〉〉 |= �12 ∪ �23. So 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23. Therefore,
〈I1, I3〉 |= �12 ◦ �23.

For the next proposition, we define chase23 based on M23 = (S2, S3, �23) just
as we defined chase12 based on M12 = (S1, S2, �12).

PROPOSITION 7.2. Assume that M12 = (S1, S2, �12) and M23 = (S2, S3, �23)
are schema mappings, where S1, S2, and S3 are pairwise disjoint, and where
�12 and �23 are finite sets of s-t tgds. Let M13 = (S1, S3, �12 ◦ �23). Then
chase23(chase12(I )) is a universal solution for I under M13.

PROOF. We prove this by making use of the change in viewpoint given by
Lemma 7.1. Let M = (S1, 〈S2, S3〉, �12 ∪ �23), where we are now thinking of S1
as the source schema, 〈S2, S3〉 as the target schema, �12 as s-t tgds, and �23

as target tgds. Let I1 = I , let I2 = chase12(I1), and let I3 = chase23(I2). Then
I3 = chase23(chase12(I1)). It is easy to see that 〈I1, 〈I2, I3〉〉 is a result of chasing

10Lemma 7.1 and Proposition 7.2 are due to Lucian Popa and Wang-Chiew Tan.
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〈I1, ∅〉 with �12 ∪ �23. It then follows from results in Fagin et al. [2005a] that
〈I2, I3〉 is a universal solution for I1 under M.

We must show that I3 is a universal solution for I1 under M13. First, we
show that I3 is a solution. By Lemma 6.8, it follows that 〈I1, I2〉 |= �12 and
〈I2, I3〉 |= �23. Therefore, 〈I1, I3〉 |= �12 ◦ �23. So I3 is a solution for I1 under
M13.

We now show that I3 is a universal solution for I1 under M13. Let I ′
3 be an

arbitrary solution for I1 under M13. By Lemma 7.1, there is an instance I ′
2 of

schema S2 such that 〈I1, 〈I ′
2, I ′

3〉〉 |= �12 ∪ �23. Since, as we showed, 〈I2, I3〉 is a
universal solution for I1 under M, there is a homomorphism h from 〈I2, I3〉 to
〈I ′

2, I ′
3〉. Since also S2 and S3 are disjoint, it follows that h gives a homomorphism

from I3 to I ′
3. So I3 is a universal solution for I1 under M13, as desired.

Our next theorem gives a useful characterization of when one schema map-
ping is the inverse of another schema mapping for a given ground instance. We
define chase21 based on M21 = (S2, Ŝ1, �21) just as we defined chase12 based on
M12 = (S1, S2, �12).

THEOREM 7.3. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21) are
schema mappings where �12 and �21 are finite sets of s-t tgds. Then M21 is an
inverse of M12 for I if and only if 〈I, Î〉 |= �12 ◦�21 and Î ⊆ chase21(chase12(I )).

PROOF. Assume first that M21 is an inverse of M12 for I . Thus, (6) holds
for every ground instance J . It follows immediately that 〈I, Î〉 |= �12 ◦ �21, as
desired. Let J1 = chase12(I ) and J2 = chase21(J1). Let J ′

1, J ′
2 be obtained from

J1, J2 by replacing each null by a new constant (as before, if a null appears sev-
eral times, then it is replaced by the same constant each time). By Lemma 6.8,
we know that 〈I, J1〉 |= �12 and 〈J1, J2〉 |= �21. Therefore, 〈I, J ′

1〉 |= �12 and
〈J ′

1, J ′
2〉 |= �21. Hence, 〈I, J ′

2〉 |= �12◦�21. So by (6), where the role of J is played

by J ′
2, it follows that Î ⊆ J ′

2. Therefore, Î ⊆ J2. That is, Î ⊆ chase21(chase12(I )),
as desired.

Conversely, assume that 〈I, Î〉 |= �12 ◦ �21 and that Î ⊆ chase21(chase12(I ));
we must show that (6) holds for each J . Assume first that 〈I, J〉 |= �12 ◦�21; we
must show that Î ⊆ J . Let M11 = (S1, Ŝ1, �12 ◦ �21). By Proposition 7.2,
we know that chase21(chase12(I )) is a universal solution for I under M11,
and so there is a homomorphism from chase21(chase12(I )) to J . Since Î ⊆
chase21(chase12(I )), and since homomorphisms map values in I onto them-
selves, it follows that Î ⊆ J , as desired.

Assume now that Î ⊆ J ; we must show that 〈I, J〉 |= �12 ◦�21. Since 〈I, Î〉 |=
�12 ◦ �21 and Î ⊆ J , it follows from Corollary 4.3 that 〈I, J〉 |= �12 ◦ �21, as
desired.

As a corollary, we obtain a particularly simple characterization when �12

and �21 consist of full tgds.

COROLLARY 7.4. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of full s-t tgds. Then M21

is an inverse of M12 for I if and only if Î = chase21(chase12(I )).

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 25, Publication date: November 2007.



Inverting Schema Mappings • 25:19

PROOF. Assume first that Î = chase21(chase12(I )). By Lemma 6.8, we know
that 〈I, chase12(I )〉 |= �12 and 〈chase12(I ), chase21(chase12(I ))〉 |= �21. But
because chase21(chase12(I )) = Î , we know that 〈chase12(I ), Î〉 |= �21. From
the facts that 〈I, chase12(I )〉 |= �12 and 〈chase12(I ), Î〉 |= �21, it follows that
〈I, Î〉 |= �12◦�21. Since also Î = chase21(chase12(I )), it follows from Theorem 7.3
that M21 is an inverse of M12 for I .

Conversely, assume that M21 is an inverse of M12 for I . By Theorem 7.3,
〈I, Î〉 |= �12 ◦�21 and Î ⊆ chase21(chase12(I )). Since 〈I, Î〉 |= �12 ◦�21, we know
that there is J such that 〈I, J〉 |= �12 and 〈J, Î〉 |= �21. Since 〈I, J〉 |= �12, it
follows from Lemma 6.8 that chase12(I ) ⊆ J . Since chase12(I ) ⊆ J and 〈J, Î〉 |=
�21, we know from Lemma 4.2 that 〈chase12(I ), Î〉 |= �21. It follows from
Lemma 6.8 that chase21(chase12(I )) ⊆ Î . Since also Î ⊆ chase21(chase12(I )),
we have Î = chase21(chase12(I )), as desired.

Proposition 7.2, Theorem 7.3, and Corollary 7.4 are all useful tools that we
shall make use of in later proofs. The next result11 (Proposition 7.5) is not used
later, but is interesting in that it gives a necessary condition for invertibility,
in the spirit of Corollary 7.4, but that holds even when the tgds are not full. We
will then conclude the section by proving (Proposition 7.6) that this necessary
condition is not sufficient.

Two instances I1 and I2 are homomorphically equivalent if there is a homo-
morphism from I1 into I2 and a homomorphism from I2 into I1.

PROPOSITION 7.5. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of s-t tgds. If M21 is
an inverse of M12 for I , then Î and chase21(chase12(I )) are homomorphically
equivalent.

PROOF. Assume thatM21 is an inverse ofM12 for I . Let σ be the composition
formula �12 ◦�21, and let M11 = (S1, Ŝ1, σ ). By Theorem 7.3, 〈I, Î〉 |= σ and Î ⊆
chase21(chase12(I )). Since 〈I, Î〉 |= σ and since chase21(chase12(I )) is a universal
solution for I underM11 (by Proposition 7.2), it follows that there is a homomor-
phism from chase21(chase12(I )) to Î . Since Î ⊆ chase21(chase12(I )), we know that
the identity function is a homomorphism from Î to chase21(chase12(I )). Hence,
Î and chase21(chase12(I )) are homomorphically equivalent, as desired.

The next theorem implies that the necessary condition for invertibility in
Proposition 7.5 is not sufficient. Thus, the next theorem implies that, even
if Î and chase21(chase12(I )) are homomorphically equivalent, then M21 is not
necessarily an inverse of M12 for I . In fact, this theorem says even more: it
says that, even if Î and chase21(chase12(I )) are homomorphically equivalent for
every I , there can be an I such that M21 is not inverse of M12 for I .

PROPOSITION 7.6. There are schema mappings M12 = (S1, S2, �12) and
M21 = (S2, Ŝ1, �21), where �12 and �21 are finite sets of s-t tgds, such that
Î and chase21(chase12(I )) are homomorphically equivalent for every instance I
of S1, but M21 is not an inverse of M12 for some instance I of S1.

11This result is due to Lucian Popa.
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PROOF. Let S1 consist of the binary relation symbol R, let S2 consist of the
binary relation symbol S, let �12 consist of the s-t tgd R(a, b) → ∃x(S(a, x) ∧
S(x, b)), and let �21 consist of the s-t tgd S(a, x) ∧ S(x, b) → R̂(a, b). Let M12 =
(S1, S2, �12) and let M21 = (S2, Ŝ1, �21).

We first show that Î and chase21(chase12(I )) are homomorphically equiva-
lent for every instance I of S1. Let I be an arbitrary instance of S1. It is clear
that we have Î ⊆ chase21(chase12(I )). Therefore, the identity function is a ho-
momorphism from Î to chase21(chase12(I )). We now show that there is a homo-
morphism from chase21(chase12(I )) to Î . Each null x in chase21(chase12(I )) is a
null in chase12(I ), which is obtained by applying �12 to a fact R(a, b) to obtain
the facts S(a, x) and S(x, b). Let h be the function that is the identity on I , and
which maps such a null x to a.

What are the facts that appear in chase21(chase12(I ))? First, there are the
facts R̂(a, b) such that R(a, b) is a fact of I . For such facts, R̂(h(a), h(b)) is sim-
ply R̂(a, b), which is consistent with h being a homomorphism. The other facts
of chase21(chase12(I )) are facts R̂(x, y) such that S(x, a) and S(a, y) appear in
chase12(I ), where x and y are nulls, and where a is a constant (a value in I ).
We must show that R̂(h(x), h( y)) is a fact of Î .

Since S(x, a) appears in chase12(I ), there is a constant c such that R(c, a) is a
fact of I , and S(c, x) is a fact of chase12(I ). Then h(x) = c, and h( y) = a. Since
R(c, a) is a fact of I , we know that R̂(c, a) is a fact of Î , that is, R̂(h(x), h( y)) is
a fact of Î , as desired. This completes the proof that Î and chase21(chase12(I ))
are homomorphically equivalent.

We now show that there is an instance I of S1 such that M21 is not an
inverse of M12 for I . Let I consist of the facts R(0, 1) and R(1, 0). We need only
show that 〈I, Î〉 �|= �12 ◦ �21. Assume that 〈I, Î〉 |= �12 ◦ �21; we shall derive a
contradiction. Then there is J such that 〈I, J〉 |= �12 and 〈J, Î〉 |= �21. Since
〈I, J〉 |= �12, there is some X (either a null or a constant) such that S(0, X ) and
S(X , 1) are facts of J . Similarly, there is some Y (either a null or a constant)
such that S(1, Y ) and S(Y , 0) are facts of J . Since S(X , 1) and S(1, Y ) are facts of
J , and since 〈J, Î〉 |= �21, it follows that R̂(X , Y ) is a fact of Î , that is, R(X , Y )
is a fact of I . But I contains only the facts R(0, 1) and R(1, 0), so either X = 0
and Y = 1, or X = 1 and Y = 0. Assume that X = 0 and Y = 1 (a symmetric
proof works if X = 1 and Y = 0). Now S(0, X ) is a fact of J , that is, S(0, 0) is a
fact of J . Since 〈J, Î〉 |= �21, it follows that R̂(0, 0) is a fact of Î (this is because
we apply the tgd (S(a, x) ∧ S(x, b)) → R̂(a, b) to J where the roles of a, x, and b
are all played by 0). But this is a contradiction, since R̂(0, 0) is not a fact of Î .

8. THE CANONICAL CANDIDATE TGD LOCAL INVERSE

Let M be a schema mapping specified by a finite set of s-t tgds, and let I be
a ground instance. In this section, we give a schema mapping (the canonical
candidate tgd local inverse) that is guaranteed to be an inverse of M for I if
there is any inverse at all that is specified by a finite set of s-t tgds. There are two
reasons why this result is useful for us. First, given a schema mapping M and
an instance I , we can answer the question about whether M has an inverse
for I that is specified by a finite set of s-t tgds by simply checking whether
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the canonical candidate tgd local inverse is an inverse of M for I . Second, the
canonical candidate tgd local inverse will help us in our real interest, which is
in finding a global inverse. In particular, in the next section, we shall develop a
schema mapping that is guaranteed to be a global inverse of M if there is any
global inverse at all that is specified by a finite set of s-t tgds. A key tool in the
proof of correctness of this global inverse is the canonical candidate tgd local
inverse.

We begin with a definition. Assume that I and J are instances (of different
schemas) where every member of the active domain of I is in the active domain
of J . Define βJ, I to be the full tgd where the premise is the conjunction of the
facts of J , and the conclusion is the conjunction of the facts of I (we are treating
the values in J as universally quantified variables in the tgd).

Assume that M12 = (S1, S2, �12) is a schema mapping where �12 is a finite
set of s-t tgds. Assume that there is a schema mapping M21 = (S2, Ŝ1,�21) that
is an inverse ofM12 for I , where �21 is a finite set of s-t tgds. Let J∗ = chase12(I ).
It follows from Corollary 6.5 that every member of the active domain of I (and
hence of the active domain of Î ) is in the active domain of J∗, and so βJ∗, Î is
a full tgd. Define the canonical candidate tgd local inverse of M12 for I to be
(S2, Ŝ1,

{
βJ∗, Î

}
). For example, assume that I consists of the facts P(c1, c2) and

P(c2, c3), where c1, c2, c3 are constants. Assume that � consists of the s-t tgd

P(x1, x2) ∧ P(x2, x3) → ∃ y(Q(x1, x2, x3) ∧ R(x3, y)).

Then J∗ consists of the facts Q(c1, c2, c3) and R(c3, y), where y is being treated
as a null , and βJ∗, Î is the full tgd

Q(c1, c2, c3) ∧ R(c3, y) → (̂P(c1, c2) ∧ P̂(c2, c3)), (12)

where c1, c2, c3, y are treated in (12) as universally quantified variables.
We call M21 the most general tgd inverse of M12 for I if �′

21 logically implies

�21 for every inverse M′
21 = (S2, Ŝ1,�′

21) of M12 for I where �′
21 is a finite set

of s-t tgds.
Before we show that the canonical candidate tgd local inverse has its desired

properties, we must prove a simple lemma.

LEMMA 8.1. Assume that �′
23 logically implies �23. Then �12 ◦ �′

23 logically
implies �12 ◦ �23.

PROOF. Assume that 〈I, J〉 |= �12◦�′
23. We must show that 〈I, J〉 |= �12◦�23.

Since 〈I, J〉 |= �12 ◦ �′
23, there is J ′ such that 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �′

23.
Since �′

23 logically implies �23. and 〈J ′, J〉 |= �′
23, it follows that 〈J ′, J〉 |= �23.

Since 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �23, it follows that 〈I, J〉 |= �12 ◦ �23, as
desired.

THEOREM 8.2. Let M be a schema mapping specified by a finite set of s-t
tgds, and let I be a ground instance. Assume that M has an inverse for I that is
specified by a finite set of s-t tgds. Then the canonical candidate tgd local inverse
of M for I is an inverse of M for I , and in fact the most general tgd inverse of
M for I .
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PROOF. Assume that M12 = (S1, S2, �12), and that M′
21 = (S2, Ŝ1, �′

21)
is an inverse of M12 for I , where �12 and �′

21 are finite sets of s-t tgds. Let

M21 = (S2, Ŝ1, �21) be the canonical candidate tgd local inverse of M12 for I .
We first prove that �′

21 logically implies �21. Let J∗ = chase12(I ). By Lemma 6.8,
we know that 〈I, J∗〉 |= �12. Let J ′ be the result of chasing J∗ with �′

21, and let
J ′′ be the result of replacing each null in J ′ by a new, distinct constant. So J ′′ is a
ground instance isomorphic to J ′, where the isomorphism maps constants into
themselves. By Lemma 6.8, we know that 〈J∗, J ′〉 |= �′

21, and so 〈J∗, J ′′〉 |= �′
21.

Since 〈I, J∗〉 |= �12 and 〈J∗, J ′′〉 |= �′
21, it follows that 〈I, J ′′〉 |= �12 ◦�′

21. Since

M′
21 is an inverse of M12, it follows that Î ⊆ J ′′. Therefore, Î ⊆ J ′, since the

constants introduced into J ′′ when constructing J ′′ from J ′ were new. Thus, the
result of chasing J∗ with �′

21 necessarily contains Î . It follows from standard
results in dependency theory that �′

21 logically implies βJ∗, Î and hence �21, as
desired.

We now show that M21 is an inverse of M12 for I . We know that 〈I, Î〉 |=
�12 ◦ �′

21, since M′
21 is an inverse of M12 for I . Since �′

21 logically implies �21,

it follows from Lemma 8.1 that 〈I, Î〉 |= �12 ◦�21. When we chase J∗ with βJ∗, Î

we clearly obtain at least Î . That is, Î ⊆ chase21(chase12(I )). So by Theorem 7.3,
it follows that M21 is an inverse of M12 for I , as desired.

In the next section, we make use of the canonical candidate tgd local inverse
(and the fact that it is most general).

9. THE CANONICAL CANDIDATE TGD GLOBAL INVERSE

Let M12 = (S1, S2, �12) be a schema mapping, where �12 is a finite set of s-t
tgds. In this section, we shall define the canonical candidate tgd global inverse
of M12, which is a schema mapping specified by a finite set of s-t tgds, and show
that it is a global inverse of M12 if there is any such global inverse. In fact, we
shall do something a little more general. We shall consider certain classes S of
ground instances, and show how to define a canonical candidate tgd S-inverse
of M12, which is a schema mapping specified by a finite set of s-t tgds that is
an S-inverse of M12 if there is any such S-inverse. When S is the class of all
ground instances, we obtain the canonical candidate tgd global inverse.

Let us say that a set � of tgds and egds (all on the source schema) is finitely
chasable if for every (finite) ground instance I , some result of chasing I with �

is a (finite) instance, or else some chase of I with � fails (by trying to equate two
distinct values in I ). It follows from results in Fagin et al. [2005a] that, when
� is the union of a weakly acyclic set of tgds (as defined in Fagin et al. [2005a])
with a set of egds, then � is finitely chasable. We now give a simple example
where the converse fails.

Example 9.1. Let �′ consist of the single tgd R(x, y) → ∃zR( y , z). It follows
easily from the definition of weak acyclicity that �′ is not weakly acyclic, and
in fact not finitely chasable. Let �′′ consist of the single egd R(x, y) → (x = y).
Now let � be �′ ∪ �′′. Then � is finitely chasable (since in this case, we need
only chase with �′′ alone).
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Let � be a finitely chasable set of tgds and egds, and let S be the class of all
ground instances that satisfy �. Assume thatM21 = (S2, Ŝ1,�21) is an S-inverse
of M12, and �21 is a finite set of s-t tgds. For each relational symbol R of S1, let
IR be a one-tuple instance that contains only the fact R(x), where the variables
in x are distinct. Note that IR is not an instance in the usual sense, because
the active domain consists of variables, not constants or nulls. Instead, it is a
type of canonical instance. Let I�

R be a finite instance that is a result of chasing
IR with �, where it is all right to allow distinct variables in x to be equated by
the chase. In our case of greatest interest, where � is the empty set, we have
I�
R = IR. Let J�

R be chase12(I�
R ), a result of chasing I�

R with �12.12

Since M21 is an S-inverse of M12, in particular M21 is a local inverse of M12

for I�
R (this is because I�

R is a member of S). It follows from Corollary 6.5 that
every member of the active domain of I�

R (and hence of the active domain of

Î�
R ) is in the active domain of J�

R . Therefore, βJ, Î is a full tgd, where I is I�
R ,

and J is J�
R , with β·,· as defined in Section 8. Let us denote this full tgd by δ�

R ,
and let �S

21 consist of all of the tgds δ�
R , one for every relation symbol R of S1.

Define the canonical candidate tgd S-inverse of M12 to be MS
21 = (S2, Ŝ1, �S

21).
In the case where S is the class of all ground instances, we may write �c

21 for
�S

21, and Mc
21 for MS

21, where c stands for “canonical.” We call M21 the most
general tgd S-inverse of M12 if �′

21 logically implies �21 for every S-inverse

M′
21 = (S2, Ŝ1,�′

21) of M12 where �′
21 is a finite set of s-t tgds.

Example 9.2. Let M12 = (S1, S2, �12). Assume that S1 consists of the
binary relation symbol R and the unary relation symbol S, and that S2 con-
sists of the binary relation symbols T and U. Let �12 consist of the s-t tgds
R(x1, x2) → ∃ y(T(x1, y) ∧ U( y , x2)), R(x, x) → U(x, x), and S(x) → ∃ yU(x, y). Let
� consist of the egd R(x1, x2) → (x1 = x2).

Now IR consists of the fact R(x1, x2), and so I�
R consists of the fact R(x1, x1).

Then J�
R consists of the facts T(x1, y), U( y , x1), and U(x1, x1). So δ�

R is the tgd

T(x1, y) ∧ U( y , x1) ∧ U(x1, x1) → R̂(x1, x1).

Also, IS and I�
S each consist of the fact S(x1), and J�

S consists of the fact

U(x1, y). So δ�
S is the tgd U(x1, y) → Ŝ(x1). Finally, MS

21 = (S2, Ŝ1, �S
21), where

�S
21 consists of the tgds δ�

R and δ�
S .

THEOREM 9.3. Let M be a schema mapping specified by a finite set of s-t tgds.
Let � be a finitely chasable set of tgds and egds, and let S be the class of ground
instances that satisfy �. Assume that M has an S-inverse that is specified by
a finite set of s-t tgds. Then the canonical candidate tgd S-inverse of M is an
S-inverse of M, and in fact the most general tgd S-inverse of M.

PROOF. Let M′
21 = (S2, Ŝ1, �′

21) be an S-inverse of M12, where �′
21 is s finite

set of s-t tgds. Let MS
21 = (S2, Ŝ1, �S

21) be the canonical candidate tgd S-inverse
of M12.

12Even though J�
R depends not just on R and �, but also on �12, for simplicity we do not reflect the

dependency on �12 in the notation J�
R .
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Let R be a relational symbol of S1. Since M′
21 is an S-inverse of M12, and

since I�
R is in S, certainly M′

21 is an inverse of M12 for I�
R . Now (S2, Ŝ1,

{
δ�
R

}
) is

the canonical candidate tgd local inverse of M12 for I�
R , so, by Theorem 8.2, we

know that �′
21 logically implies δ�

R . Since R is an arbitrary relational symbol of
S1, it follows that �′

21 logically implies �S
21, which was one thing to be shown.

Since M′
21 is an S-inverse of M12, we know that, for every I that satisfies �,

we have

〈I, J〉 |= �12 ◦ �′
21 if and only if Î ⊆ J. (13)

We wish to show that MS
21 is an S-inverse of M12. Thus, we must show that,

for every I that satisfies �, we have

〈I, J〉 |= �12 ◦ �S
21 if and only if Î ⊆ J. (14)

Assume first that I satisfies �, and 〈I, J〉 |= �12 ◦ �S
21. Then there is J ′ such

that 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �S
21. Let R(c) be a fact of I . Then each of the

equalities among members of c that are “forced” by chasing the database whose
only fact is R(c) with the set � necessarily already holds in c, since I satisfies
�. Let J∗ be an instance that is obtained by replacing x by c in J�

R . Then a
homomorphic image of J∗ appears in J ′ (under a homomorphism that maps
each member of c onto itself). Therefore, there is a homomorphism from the
premise of δ�

R into J ′ that maps x onto c. Hence, since 〈J ′, J〉 |= δ�
R (because δ�

R

is in �S
21), it follows that R̂(c) is in J . Since R(c) is an arbitrary fact of I , this

implies that Î ⊆ J , as desired.
Assume now that Î ⊆ J . By (13), we know that 〈I, J〉 |= �12 ◦ �′

21. Since
〈I, J〉 |= �12 ◦�′

21 and �′
21 logically implies �S

21, it follows from Lemma 8.1 that
〈I, J〉 |= �12 ◦ �S

21. This was to be shown.

COROLLARY 9.4. Let M be a schema mapping specified by a finite set of s-t
tgds. Assume that M has a global inverse that is specified by a finite set of s-t
tgds. Then the canonical candidate tgd global inverse of M is a global inverse
of M, and in fact the most general tgd global inverse of M.

PROOF. This follows from Theorem 9.3 by letting � be the empty set.

10. FULL TGDS SUFFICE

The canonical candidate tgd local inverse and the canonical candidate tgd global
inverse (and more generally the canonical candidate tgd S-inverse) are each
specified by a finite set of full tgds. In this section, we show that this is no
accident: if M12 and M21 are schema mappings that are each specified by a
finite set of s-t tgds, S is an arbitrary class of ground instances (not necessarily
defined by a set �, or even closed under isomorphism), and M21 is an S-inverse
of M12, then there is a schema mapping M f

21 specified by a finite set of full s-t
tgds and that is an S-inverse of M12. While the canonical candidate tgd local
inverse is tailored to a particular instance I , the mapping M f

21 is, as we shall
see, constructed only from M21. From a technical point of view, this contrasts
also with the canonical candidate tgd global inverse, which is constructed only
from M12.
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Let M12 be a schema mapping that is specified by a finite set of s-t tgds. It is
important to note that (in the case of a global inverse) we are not claiming that,
if M12 has a global inverse, then M12 has a global inverse that is specified by
a finite set of full s-t tgds. Instead, in this section we show that, if M12 has a
global inverse that is specified by a finite set of s-t tgds, then M12 has a global
inverse that is specified by a finite set of full s-t tgds. The question of “the
language of inverses,” which tells how rich a language needs to be to specify
a global inverse of M12, was resolved in Fagin et al. [2007]. The results are
summarized in Section 15 of this article.

We begin with some definitions. Let γ be an s-t tgd. Assume that γ is
∀x(ϕS(x) → ∃yψT(x, y)), where ϕS(x) is a conjunction of atoms over S and
ψT(x, y) is a conjunction of atoms over T. Assume also that all of the variables in
x appear in ϕS(x) (but not necessarily in ψT(x, y)). Let ψ

f
T (x) be the conjunction

of all atoms in ψT(x, y) that do not contain any variables in y (the f stands for
“full”). Define γ f (the full part of γ ) to be the full tgd ∀x(ϕS(x) → ψ

f
T (x)). As

an example (where we do not bother to write the universal quantifiers), if γ is
P(x, y) → ∃z(Q(x, x)∧Q( y , z)), then γ f is P(x, y) → Q(x, x). If ψ

f
T (x) is an empty

conjunction, then γ f is a dummy tgd where the conclusion is “Truth” (and so
the dummy tgd itself is “Truth”).

Let ψn
T(x) be the conjunction of all atoms in ψT(x, y) that contain some

variable in y (the n stands for “nonfull”). Define γ n (the nonfull part of γ )
to be the tgd ∀x(ϕS(x) → ∃yψn

T(x, y)). If we again take γ to be P(x, y) →
∃z(Q(x, x) ∧ Q( y , z)), then γ n is P(x, y) → ∃zQ( y , z). As before, if ψn

T(x) is an
empty conjunction, then γ n is a dummy tgd where the conclusion is “Truth”(and
so the dummy tgd itself is “Truth”). If � is a set of tgds, let � f be the set of γ f

where γ ∈ � and where γ f is not a dummy tgd. Similarly, let �n be the set of
γ n where γ ∈ � and where γ n is not a dummy tgd. It is easy to see that � is
logically equivalent to � f ∪ �n. The next theorem tells us that only full tgds
play a role in the inverse.

THEOREM 10.1. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of s-t tgds. Let M f

21 =
(S2, Ŝ1, �

f
21). Let S be an arbitrary class of ground instances (not necessarily

closed under isomorphism). If M21 is an S-inverse of M12, then so is M f
21.

PROOF. Assume that M21 is an S-inverse of M12, and that I is in S. Since
M21 is an inverse of M12 for I , we know that (6) holds. We must show that

〈I, J〉 |= �12 ◦ �
f

21 if and only if Î ⊆ J. (15)

Assume that Î ⊆ J . From (6), we know that 〈I, J〉 |= �12 ◦ �21. Therefore,
there is J ′ such that 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �21. Since 〈J ′, J〉 |= �21, and
also �21 logically implies �

f
21, it follows that 〈J ′, J〉 |= �

f
21. Since 〈I, J ′〉 |= �12

and 〈J ′, J〉 |= �
f

21, it follows that 〈I, J〉 |= �12◦�
f

21. This proves the “if” direction
of (15).

Conversely, assume that 〈I, J〉 |= �12 ◦�
f

21; we must prove that Î ⊆ J . Since

〈I, J〉 |= �12 ◦ �
f

21, there is J ′ such that 〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �
f

21. Let
J ′′ be the result of chasing J ′ with �n

21, and let J ′′′ be the result of replacing
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each null in J ′′ by a new constant. Then 〈J ′, J ′′〉 |= �n
21 by Lemma 6.8, and

so 〈J ′, J ′′′〉 |= �n
21. Since 〈J ′, J〉 |= �

f
21 and 〈J ′, J ′′′〉 |= �n

21, it follows that

〈J ′, J ∪ J ′′′〉 |= �
f

21 ∪�n
21. Since �21 is logically equivalent to �

f
21 ∪�n

21, it follows
that 〈J ′, J ∪ J ′′′〉 |= �21. Since also 〈I, J ′〉 |= �12, it follows that 〈I, J ∪ J ′′′〉 |=
�12 ◦ �21. So by (6), where the role of J is played by J ∪ J ′′′, we know that
Î ⊆ J ∪ J ′′′.

Every tuple introduced by doing the chase of J ′ with �n
21 necessarily contains

nulls, by construction of �n
21. That is, every tuple in J ′′ contains nulls. So every

tuple in J ′′′ contains some new constant. Since also Î ⊆ J ∪ J ′′′, it follows that
Î ⊆ J , which was to be shown.

The following corollary is immediate (by letting �′
21 in the corollary be �

f
21).

COROLLARY 10.2. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of s-t tgds. Let S be an
arbitrary class of ground instances (not necessarily closed under isomorphism).
Assume that M21 is an S-inverse of M12. Then there is a finite set �′

21 of full
tgds such that M′

21 = (S2, Ŝ1, �′
21) is an S-inverse of M12.

11. REVERSING THE ARROWS (NOT!)

It is folk wisdom that simply “reversing the arrows” gives an inverse. In this
section, we show even a weak form of this folk wisdom is not true.

What does “reversing the arrows” mean in our context? Let us call a full tgd
reversible if the same variables appear in the premise as the conclusion. If γ is
a reversible tgd ϕ → ψ , define rev(γ ) to be the full tgd ψ → ϕ̂, where ϕ̂ is the
result of replacing every relational symbol R by R̂. Since γ is reversible, rev(γ )
is indeed a full tgd. We think of rev(γ ) as the result of “reversing the arrow” of
γ .

Example 11.1. We now give a simple example that shows that the schema
mapping (S2, Ŝ1,

{
rev(γ ) : γ ∈ �12

}
) is not necessarily a global inverse of M12 =

(S1, S2, �12), even when �12 consists of a finite set of reversible tgds and M12

has a global inverse that is specified by a finite set of s-t tgds. Let S1 consist
of the unary relation symbols R1 and R2. Let S2 consist of the unary relation
symbols S1, S2, and S3. Let �12 = {R1(x) → S1(x), R2(x) → S2(x), R1(x) → S3(x),
R2(x) → S3(x)}. LetM12 = (S1, S2, �12). Let �21 = {S1(x) → R̂1(x), S2(x) → R̂2(x)}.
Let M21 = (S2, Ŝ1, �21). It is easy to see that M21 is a global inverse of M12.

Now let �′
21 = {

rev(γ ) : γ ∈ �12

}
. Thus �′

21 = {S1(x) → R̂1(x), S2(x) → R̂2(x),

S3(x) → R̂1(x), S3(x) → R̂2(x)}. Let M′
21 = (S2, Ŝ1, �′

21). It is easy to verify that
M′

21 is not a global inverse of M12. So simply “reversing the arrows” does not
necessarily give a global inverse, even when there is a global inverse.

Note that although
{
rev(γ ) : γ ∈ �12

}
in Example 11.1 does not specify a

global inverse, some subset of it (namely, �21) does. The next theorem says that
there is an example where there is no subset of

{
rev(γ ) : γ ∈ �12

}
that specifies

a global inverse. The example is “normalized” by making each (full) tgd that
appears have a singleton conclusion.
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THEOREM 11.2. There is a schema mapping M12 = (S1,S2, �12) where each
member of �12 is a reversible tgd with a singleton conclusion that has a global
inverse specified by a finite set of s-t tgds, but where there is no subset X of �12

such that (S2, Ŝ1,
{
rev(γ ) : γ ∈ X

}
) is a global inverse of M12.

PROOF. Let S1 consist of the binary relation symbol R and the unary relation
symbol V. Let S2 consist of the binary relation symbols S and T, and the unary
relation symbol U. Let �12 consist of the tgds R(x, y) → S(x, y), R(x, y) →
T(x, y), V(x) → U(x), R(x, x) ∧ R( y , y) → S(x, y), and V(x) → T(x, x). Let M12 =
(S1, S2, �12).

Let �21 consist of the tgds S(x, y) ∧ T(x, y) → R̂(x, y) and U(x) → V̂(x). Let
M21 = (S2, Ŝ1, �21). We now show that M21 is a global inverse of M12.13

It is straightforward to verify that, when we apply the composition algorithm
of Fagin et al. [2005c] to compute �12 ◦�21, we obtain R(x, y) → R̂(x, y), R(x, x)∧
V (x) → R̂(x, x), R(x, x)∧R( y , y)∧R(x, y) → R̂(x, y), and V(x) → V̂(x). It is easy to
see that the second and third tgds are logical consequences of the first tgd. So the
composition �12◦�21 is (logically equivalent to)

{
R(x, y) → R̂(x, y), V(x) → V̂(x)

}
.

But this set of tgds specifies the identity mapping. It follows that M21 is a global
inverse of M12.

We conclude by showing that there is no subset X of �12 such that the tgds{
rev(γ ) : γ ∈ X

}
specify a global inverse of �12. Define �X

21 to be
{
rev(γ ) : γ ∈ X

}
.

Let MX
21 = (S2, Ŝ1, �X

21). Assume that MX
21 is a global inverse of M12.

We first show that the set X cannot contain R(x, y) → S(x, y). Assume that
it does. Then �X

21 contains S(x, y) → R̂(x, y). Let I contain only the facts R(0, 0)

and R(1, 1). Then chase12(I ) contains the fact S(0, 1). So chaseX
21(chase12(I )), the

result of chasing chase12(I ) with �X
21, contains the fact R̂(0, 1). Therefore, Î �=

chaseX
21(chase12(I )). It then follows from Corollary 7.4 that MX

21 is not an inverse
of M12 for I , and hence MX

21 is not a global inverse of M12, a contradiction.
We now show that the set X cannot contain R(x, y) → T(x, y). Assume that

it does. Then �X
21 contains T(x, y) → R̂(x, y). Let I contain only the fact V(0).

Then chase12(I ) contains the fact T(0, 0). So chaseX
21(chase12(I )) contains the fact

R̂(0, 0). Therefore, Î �= chaseX
21(chase12(I )). It then follows from Corollary 7.4

that MX
21 is not an inverse of M12 for I , and hence MX

21 is not a global inverse
of M12, a contradiction.

All that is left for X now is to consist of some subset of the three tgds V(x) →
U(x), R(x, x) ∧ R( y , y) → S(x, y), and V(x) → T(x, x). In this case, �X

21 consists of
some subset of the tgds U(x) → V̂(x), S(x, y) → R̂(x, x) ∧ R̂( y , y), and T(x, x) →
V̂(x). Let I contain only the fact R(0, 1). Then chaseX

21(chase12(I )) (and in fact,

chaseX
21(J ) for an arbitrary J ) does not contain the fact R̂(0, 1), since the only

facts about R̂ that can be generated by chasing with �X
21 are of the form R̂(x, x).

Therefore, Î �= chaseX
21(chase12(I )). It then follows from Corollary 7.4 that MX

21

is not an inverse of M12 for I , and hence MX
21 is not a global inverse of M12, a

contradiction.

13This mapping M21 is not the same as the canonical candidate tgd global inverse in Theorem 9.3.
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12. CHARACTERIZING THE CLASS S
Given schema mappings M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21), we might
want to know the class S of ground instances I such that M21 is an inverse
of M12 for I . For example, this is a problem posed in our running example
(Example 5.1). Let M11 be the schema mapping (S1, Ŝ1, σ ), where σ is the
composition formula �12 ◦ �21. The class S we are seeking is the class of all
ground instances I such that M11 and the identity mapping are equivalent on
I . Therefore, the class S is determined completely by the composition formula σ .
In this section, we show that, remarkably, there is a syntactic transformation of
σ that produces a formula � that actually defines S! We now begin our develop-
ment, with the formal definition of second-order tgds from Fagin et al. [2005c].

Given a collection x of variables and a collection f of function symbols, a term
(based on x and f) is defined recursively as follows: (1) every variable in x is a
term, and (2) if f is a k-ary function symbol in f and t1, . . . , tk are terms, then
f (t1, . . . , tk) is a term. We now define a second-order tgd.

Definition 12.1. Let S be a source schema and T a target schema. A second-
order tuple-generating dependency (SO tgd) is a formula of the form

∃f((∀x1(ϕ1 → ψ1)) ∧ · · · ∧ (∀xn(ϕn → ψn))),

where (1) each member of f is a function symbol; (2) each ϕi is a conjunction
of (a) atoms S( y1, . . . , yk), where S is a k-ary relation symbol of schema S,
and y1, . . . , yk are variables in xi, not necessarily distinct, and (b) equalities
of the form t = t ′ where t and t ′ are terms based on xi and f; (3) each ψi is a
conjunction of atoms T (t1, . . . , tl ), where T is an l -ary relation symbol of schema
T and t1, . . . , tl are terms based on xi and f; and (4) each variable in xi appears
in some atom of ϕi.

It was shown in Fagin et al. [2005c] that the composition of schema mappings,
each specified by a finite set of s-t tgds, is specified by an SO tgd (but not
necessarily by a finite set of s-t tgds). In particular, our composition formula
�12 ◦ �21, which we are denoting by σ , is given by an SO tgd.

If γ is an SO tgd, or a set of (first-order) tgds, from S to Ŝ, define γ 
 to be
the source constraint that is the result of replacing each relational symbol R̂ in
γ by R. For example, if γ is the s-t tgd (4), then γ 
 is (2). The next proposition
follows easily from the definitions of Î and of γ 
.

PROPOSITION 12.2. Let γ be an SO tgd, or a set of s-t tgds with source schema
S and target schema Ŝ, and let I be an instance of S. Then I |= γ 
 if and only if
〈I, Î〉 |= γ .

We need some more definitions. Let γ be an SO tgd. We now define the
equality-free reduction14 γ ∗ of γ . The intuition is that we think of the func-
tion symbols as representing Skolem functions, so that the only way that
two “Skolem terms” f (t) and g (t′) can be equal is if the function symbols
f and g are the same, and if t = t′. Beginning with γ , in order to obtain

14A similar notion appears in Yu and Popa [2005] under the name mapping reduction.
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the equality-free reduction γ ∗ of γ , we first recursively replace each equality
f (t1, . . . , tk) = f (t ′

1, . . . , t ′
k) by (t1 = t ′

1) ∧ · · · ∧ (tk = t ′
k). We replace each equality

f (t) = g (t′) where f and g are different function symbols by “False.” Similarly,
we replace each equality f (t) = x, where x is a variable, by “False.” We then
“clean up” by deleting each “tgd” that appears as a conjunct of γ and that con-
tains “False.” The remaining equalities are all of the form x = y , where x and y
are variables. Within each “tgd,” we form equivalence classes of variables based
on these equalities (where two variables are in the same equivalence class if
they are forced to be equal by these equalities), replace each occurrence of each
variable by a fixed representative of its equivalence class, and delete the equal-
ities. The final result γ ∗ is an SO tgd that contains no equalities.

For example, the equality-free reduction of the SO tgd (1) is ∃ f (∀e(Emp(e) →
Mgr(e, f (e))), the result of dropping the second clause of (1). As another example,
consider the following SO tgd:

∃ f (∀x∀ y(R(x, y) ∧ ( f (x) = f ( y)) → S(x, f (x)) ∧ T(x, y))). (16)

Its equality-free reduction is ∃ f (∀x(R(x, x) → S(x, f (x)) ∧ T(x, x))), which is
obtained by replacing f (x) = f ( y) by x = y and simplifying.

We now define fulltgd(γ ), which is a set of full tgds that we associate with
the SO tgd γ . To obtain fulltgd(γ ), we first find the equality-free reduction γ ∗ of
γ . We then rewrite γ ∗ so that each conclusion is a singleton. Thus, we replace
ϕ → (ψ1 ∧ · · · ∧ ψr ), where ψ1, . . . , ψr are atoms, by (ϕ → ψ1) ∧ · · · ∧ (ϕ → ψr ).
We then delete each “tgd” ϕ → ψ where the conclusion ψ contains a function
symbol. Then fulltgd(γ ) is the set of s-t tgds that remain. These are real tgds,
since there are no function symbols present. By construction, fulltgd(γ ) is a set
of full tgds with singleton conclusions.

As an example, when γ is the SO tgd (1), then fulltgd(γ ) is the empty set. As
another example, when γ is the SO tgd (16), then fulltgd(γ ) contains the single
tgd R(x, x) → T(x, x).

For each SO tgd γ where the source schema is S and the target schema is Ŝ,
we now define γ †. As we shall see, if σ is the composition formula, then σ † plays
a complementary role to σ 
. For each k and each k-ary relational symbol R of S,
take x1, . . . , xk to be k distinct variables that do not appear in fulltgd(γ ). Let AR

be the set of all tgds of fulltgd(γ ) where the relational symbol in the conclusion
is R̂. For each α ∈ AR, assume that α is ν(y) → R̂( y1, . . . , yk), where y1, . . . , yk

are not necessarily distinct (since α is full, every yi appears in y). Define μα to
be the first-order formula ∃y(ν(y) ∧ (x1 = y1) ∧ · · · ∧ (xk = yk)). Define ψR to be
R(x1 . . . , xk) → ∨ {μα : α ∈ AR}. Since the empty disjunction represents “False,”
it follows that, if AR = ∅, then ψR is equivalent to ¬R(x1 . . . , xk). Now define γ † to
be the conjunction of the formulas ψR (over all relational symbols R of S). Note
that γ † is a first-order formula.

Example 12.3. Assume that there are two source relation symbols R and S,
and assume that fulltgd(γ ) consists of the following tgds, which we denote by
α1, α2:

(α1) : R( y2, y1, y3) ∧ S( y2, y3, y3) → R̂( y1, y1, y2);

(α2) : S( y1, y2, y2) → R̂( y1, y2, y1).
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So μα1
, μα2

are as follows:

(μα1
) : ∃ y1∃ y2∃ y3(R( y2, y1, y3) ∧ S( y2, y3, y3) ∧ (x1 = y1) ∧ (x2 = y1) ∧ (x3 = y2));

(μα2
) : ∃ y1∃ y2∃ y3(S( y1, y2, y2) ∧ (x1 = y1) ∧ (x2 = y2) ∧ (x3 = y1)).

Then ψR is R(x1, x2, x3) → (μα1
∨μα2

). Further, ψS is ¬S(x1, x2, x3), since AS = ∅.
Finally, γ † is (R(x1, x2, x3) → (μα1

∨μα2
))∧¬S(x1, x2, x3). (Of course, this formula

is universally quantified with ∀x1∀x2∀x3, but we suppress this as usual.)

LEMMA 12.4. Let γ be an SO tgd. Then

(1) each tgd in fulltgd(γ ) is logically implied by γ , and
(2) if I is a ground instance, and if S(a) is a fact obtained by chasing15 I with

γ , where each member of a is a constant, then S(a) is obtained by chasing I
with some member of fulltgd(γ ).

PROOF. It is straightforward to verify that γ logically implies its equality-
free reduction γ ∗, which in turn logically implies each tgd in fulltgd(γ ). Then
(1) follows.

We now prove (2). It follows from the definition of the chase with SO tgds in
Fagin et al. [2005c] that the result of chasing I with γ is the same as the result
of chasing I with γ ∗. It is easy to see that the only chase steps in chasing with
γ ∗ that can generate a fact S(a) where each member of a is a constant is by
chasing with members of fulltgd(γ ).

We now have the following proposition.

PROPOSITION 12.5. Let γ be an SO tgd with source schema S and target
schema Ŝ, and let I be a ground instance of S. The following are equivalent:

(1) I |= γ †.
(2) 〈I, J〉 |= γ implies that Î ⊆ J, for every ground instance J.

PROOF. We first show that (1) ⇒ (2). Assume that I |= γ † and 〈I, J〉 |= γ ;
we must show that Î ⊆ J . Let R(a1, . . . , ak) be a fact of I . Since I |= γ †, we
know that I |= ψR. Since I |= ψR and R(a1, . . . , ak) is a fact of I , we know
that ψR is not equivalent to ¬R(x1 . . . , xk). So AR �= ∅. Since I |= ψR, there
is α in AR such that I satisfies μα when the roles of x1, . . . , xk are played by
a1, . . . , ak , respectively. Assume that α is ν(y) → R̂( y1, . . . , yk). So I satisfies
∃y(ν(y) ∧ (x1 = y1) ∧ · · · ∧ (xk = yk)) when the roles of x1, . . . , xk are played
by a1, . . . , ak , respectively. But also 〈I, J〉 |= α; this is because 〈I, J〉 |= γ and
hence (by part (1) of Lemma 12.4) 〈I, J〉 |= fulltgd(γ ) and so 〈I, J〉 |= α (since
α ∈ fulltgd(γ )). Therefore, R̂(a1, . . . , ak) is a fact of J . So Î ⊆ J , as desired.

We now show that (2) ⇒ (1). Assume that (2) holds. We must show that
I |= γ †. Let R be an arbitrary relational symbol of S; thus, we must show that
I |= ψR. There are two possibilities, depending on whether RI , the R relation
of I , is empty or not. If RI is empty, then clearly I |= ψR. So assume that RI is
nonempty. Let 〈I, J∗〉 be the result of chasing 〈I, ∅〉 with γ . Then 〈I, J∗〉 |= γ .

15There is a notion of chasing with SO tgds [Fagin et al. 2005c] that is very similar to the notion of

chasing with s-t tgds.
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Let J ′ be the result of replacing each distinct term in J∗ by a new constant.
Since 〈I, J∗〉 |= γ , it is not hard to see that 〈I, J ′〉 |= γ . Since (2) holds by
assumption, it follows that Î ⊆ J ′. Therefore, Î ⊆ J∗. Let R(a1, . . . , ak) be a
fact of I . So R̂(a1, . . . , ak) is a fact of J∗. By part (2) of Lemma 12.4, R̂(a1, . . . , ak)
is obtained by chasing I with some member α of fulltgd(γ ). So μα holds in I
when the roles of x1, . . . , xk are played by a1, . . . , ak , respectively. Therefore, ψR

holds for I when the roles of x1, . . . , xk are played by a1, . . . , ak , respectively.
Since R(a1, . . . , ak) is an arbitrary fact of I of the form R(x1, . . . , xk), it follows
that I |= ψR, as desired.

The next theorem gives a formula that defines the largest class S of ground
instances where M21 is an S-inverse of M12.

THEOREM 12.6. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of s-t tgds. Let σ be
�12 ◦ �21. Then M21 is an inverse of M12 for the ground instance I if and only
if I |= σ 
 ∧ σ †.

PROOF. Assume first that M21 is an inverse of M12 for I ; we must show that
I |= σ 
∧σ †. By definition of inverse, (3) holds. So 〈I, Î〉 |= σ . By Proposition 12.2
it follows that I |= σ 
. Furthermore, by (3), we know that whenever I and
J are ground instances and 〈I, J〉 |= σ , necessarily Î ⊆ J . Therefore, by
Proposition 12.5, it follows that I |= σ †. So I |= σ 
 ∧ σ †, as desired.

Conversely, assume that I |= σ 
 ∧ σ †; we must show that (3) holds for every
ground instance J . Let J be a ground instance. Since I |= σ 
, we know from
Proposition 12.2 that 〈I, Î〉 |= σ . So by Corollary 4.3, we know that 〈I, J〉 |= σ

whenever Î ⊆ J . Since I |= σ †, it follows from Proposition 12.5 that Î ⊆ J
whenever 〈I, J〉 |= σ . So (3) holds for every ground instance J .

From our earlier Theorem 7.3, we can prove that, if M12 and M21 are each
specified by a finite set of s-t tgds and held fixed, then the problem of deciding,
given I , whether M21 is an inverse of M12 for I is in NP. (Complexity results
appear in Section 14.) So by Fagin’s Theorem [Fagin 1974], the class S of ground
instances I such thatM21 is an inverse ofM12 for I can be specified by a formula
� in existential second-order logic. What is remarkable is that, as Theorem 12.6
says, there is such a formula �, namely, σ 
 ∧ σ †, that can be obtained from the
composition formula σ by a purely syntactical transformation.

The following corollary gives an important case where S is first-order defin-
able.

COROLLARY 12.7. Assume that M12 and M21 are schema mappings that are
each specified by a finite set of s-t tgds, and the s-t tgds of M12 are full. There is a
first-order formula ϕ such that M21 is an inverse of M12 for the ground instance
I if and only if I |= ϕ.

PROOF. Let M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21) be schema map-
pings where �12 and �21 are finite sets of s-t tgds, and the s-t tgds in �12 are full.
Then the composition formula �12 ◦�21, which we are denoting by σ , is defined
by a finite set of s-t tgds [Fagin et al. 2005c]. In particular, σ is first-order. So σ 
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is first-order. Also, σ † is always first-order. So σ 
 ∧ σ † is first-order. The result
now follows from Theorem 12.6.

Example 12.8. We continue with our running example (from Examples 5.1
and 5.3). We shall fulfill our promise to show that the schema mapping M21

is an inverse of M12 for precisely those ground instances I that satisfy �. We
noted that � (as given by (2)) looks mysteriously similar to the composition
formula (as given by (4)). We shall explain this mystery.

We observed in Example 5.3 that σ logically implies �Id . We now show that
this implies that σ † is valid. Let I be an arbitrary instance of S1; we must
show that I |= σ †. We can assume without loss of generality that I is a ground
instance. By Proposition 12.5, we need only show that 〈I, J〉 |= σ implies that
Î ⊆ J when J is a ground instance. Let J be an arbitrary ground instance
such that 〈I, J〉 |= σ . Since σ logically implies �Id , it follows that 〈I, J〉 |= �Id .
Therefore, Î ⊆ J , as desired. So indeed, σ † is valid.

Therefore, by Theorem 12.6, we know that M21 is an inverse of M12 for I if
and only if I |= σ 
. But in the case we are considering, σ 
 is exactly �. This not
only proves our claim that the schema mapping M21 is an inverse of M12 for
precisely those ground instances I that satisfy �, but also explains the mystery
of the resemblance of σ and �. In fact, this mysterious resemblance in this
example is what inspired us to search for and discover Theorem 12.6.

13. SMALL MODEL THEOREM

A small model theorem says that, when there is an instance with certain proper-
ties, then there is a “small” (polynomial-size) instance with the same properties.
In this section, we give a small model theorem, which says that for a schema
mapping M12 specified by a finite set of full tgds, if there is an instance I such
that M12 does not have an inverse for I , then there is a small such instance
I . We use this result to prove an upper bound on complexity in Section 14. In
the case of schema mappings specified by tgds that are not necessarily full, the
small model theorem fails because of a recent undecidability result by Arenas
[2006]. In this case, we give a concrete example that demonstrates the failure
of the methodology (a “small submodel theorem”) used to prove the small model
theorem. We now state and prove our small submodel theorem.

THEOREM 13.1 (SMALL SUBMODEL THEOREM). Let M12 = (S1, S2, �12) and
M21 = (S2, Ŝ1, �21) be schema mappings where �12 and �21 are finite sets
of full s-t tgds. Let I be a ground instance. Assume that M21 is not an inverse of
M12 for I . Then there is a subinstance I ′ of I , with size polynomial in the size
of �12 and �21, such that M21 is not an inverse of M12 for I ′.

PROOF. Let us denote chase21(chase12(I )) by J . By Corollary 7.4, Î �= J .
There are two cases.

Case 1: Î is not a subinstance of J. Then there is a fact R(t) of I such that
R̂(t) is not in J . Let I ′ be the one-tuple subinstance that contains only the fact
R(t). By monotonicity of the chase, R̂(t) is not in chase21(chase12(I ′)), Hence,
Î ′ �= chase21(chase12(I ′)), and so, by Corollary 7.4, we know that M21 is not an
inverse of M12 for I ′.
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Case 2: Î is a subinstance of J. So Î is a proper subinstance of J . Let k12

be the maximum, over all members ψ of �12, of the number of conjuncts that
appear in the premise of ψ . Similarly, let k21 be the maximum, over all members
ψ of �21, of the number of conjuncts that appear in the premise of ψ . Since Î is
a proper subset of J , there is a fact R̂(t) that is in J but not in Î . Note that the
members of t are all constants, since all of the tgds under consideration are full.
Now R̂(t) was generated in one chase step when chasing chase12(I ) with a tgd γ

in �21. There is a set W of at most k21 facts of chase12(I ) such that the conjuncts
in the premise of γ map to members of W in order to obtain R̂(t) with a chase
step. Each member w of W was obtained from I by chasing with a member γw

of �12. There is a subinstance Iw of at most k12 facts of I that the conjuncts in
the premise of γw each map to in order to obtain w by chasing I with γw. Let I ′

be the union over all w ∈ W of Iw. The number of facts in I ′ is at most k12k21,
which is polynomial in the size of �12 and �21. By definition of I ′, it follows
easily that chase21(chase12(I ′)) contains the fact R̂(t). Since R̂(t) is not in Î , it
follows that R̂(t) is not in Î ′. Since R̂(t) is not in Î ′ but is in chase21(chase12(I ′)),
it follows that Î ′ �= chase21(chase12(I ′)). By Corollary 7.4, we know that M21 is
not an inverse of M12 for I ′.

As an immediate corollary of the small submodel theorem, we obtain the
following small model theorem.

THEOREM 13.2 (SMALL MODEL THEOREM). Let M12 = (S1, S2, �12) and M21 =
(S2, Ŝ1, �21) be schema mappings where �12 and �21 are finite sets of full s-t
tgds. Assume that M21 is not a global inverse of M12. Then there is an instance
I, with size polynomial in the size of �12 and �21, such that M21 is not an inverse
of M12 for I .

The small model theorem (and hence the small submodel theorem) fails when
the tgds are not necessarily full. This follows easily from a recently announced
result of Arenas [2006] that the problem of deciding whether M21 is a global
inverse of M12, when M12 and M21 are each specified by a finite set of s-t tgds,
is undecidable.

The next theorem gives a concrete example that demonstrates a dramatic
failure of the small submodel theorem when the tgds are not necessarily full.

THEOREM 13.3. There are schema mappings M12 = (S1, S2, �12) and M21 =
(S2, Ŝ1, �21), where �12 is a finite set of s-t tgds, and �21 is a finite set of full s-t
tgds, and where, for arbitrarily large n, there is an instance I of S1 consisting
of n facts, such that M21 is not an inverse of M12 for I , but M21 is an inverse of
M12 for every proper subinstance I ′ of I .

PROOF. The source schema S1 has binary relation symbols P and D. The
target schema S2 has binary relation symbols P′, D′, and C. The set �12 consists
of the tgds P(x, y) → P′(x, y), D(u, v) → D′(u, v), and P(x, y) → ∃u∃v(C(x, u) ∧
C( y , v)).

The set �21 consists of the tgds P′(x, y) → P̂(x, y), D′(u, v) → D̂(u, v), and
P′(x, y) ∧ P′( y , x) ∧ D′(w, z) ∧ D′(z, w) ∧ C(x, u) ∧ C( y , v) → D̂(u, v).
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We now define I . We let PI , the P relation of I , be an undirected cycle of odd
length 2m+1. Specifically, define i⊕1 to be i+1 mod 2m+1, and let PI consist of
all tuples (i, i⊕1) and (i⊕1, i), for 0 ≤ i ≤ 2m. We let DI consist of the two tuples
(g , b), (b, g ), where g and b are distinct (and intuitively represent “green” and
“blue,” since we will be considering 2-colorings). Then the number n of facts of
I is 4m + 4, which can be made arbitrarily large by taking m arbitrarily large.

We now show that M21 is not an inverse of M12 for I . Assume that it were;
we shall derive a contradiction. Since M21 is an inverse of M12, it follows that
〈I, Î〉 |= �12 ◦ �21. Hence, there is J such that 〈I, J〉 |= �12 and 〈J, Î〉 |= �21.
Since 〈I, J〉 |= �12, it follows that, for each i with 0 ≤ i ≤ 2m, there is u such
that C(i, u) holds in J . For each i with 0 ≤ i ≤ 2m, define c(i) to be some such
u. Since P and D are copied into P′ and D′, respectively (according to the first
two tgds in �12), and since 〈J, Î〉 |= �21, the third tgd in �21 tells us (when the
roles of x, y , w, z, u, v are played by, respectively, i, i ⊕ 1, g , b, c(i), c(i ⊕ 1)) that
(c(i), c(i ⊕ 1)) is in D̂ Î , which equals DI . Hence, c(i) and c(i ⊕ 1) are each either
g or b and are distinct. Therefore, c is a 2-coloring of the odd cycle PI . But this
is impossible, since an odd cycle does not have a 2-coloring.

Let I ′ be a proper subinstance of I . We now show that M21 is an inverse of
M12 for I ′. Because of the first two tgds of �12 and the first two tgds of �21, it
is clear that Î ′ ⊆ chase21(chase12(I ′)). Therefore, by Theorem 7.3, we need only
show that 〈I ′, Î ′〉 |= �12 ◦ �21. There are two cases.

Case 1: DI ′
is a proper subset of DI . Define the S2 instance J by letting

P
′ J = PI ′

and D
′ J = DI ′

, and defining CJ to consist of the tuples (i, g ), for 0 ≤
i ≤ 2m. It is clear that 〈I ′, J〉 |= �12. So we need only show that 〈J, Î ′〉 |= �21.
Clearly 〈J, Î ′〉 satisfies the first two tgds of �21. Let γ be the third tgd of �21.
Then 〈J, Î ′〉 satisfies γ also, since there are no w, z such that (w, z) and (z, w)
are each tuples of D

′ J .
Case 2: DI ′ = DI . Since I ′ is a proper subinstance of I , there is a tuple

(i0, i0 ⊕ 1) of PI that is not in PI ′
. Define c :

{
0, . . . , 2m

} → {g , b} by letting
c(i0) = c(i0 ⊕1) = g , and having c(i) �= c(i ⊕1) if i �= i0. Intuitively, the points on
the cycle are alternately colored g or b, except that i0 and i0 ⊕1 are both colored
g . This is possible, since the cycle is of odd length. Define the S2 instance J
by letting P

′ J = PI ′
and D

′ J = DI ′
, and defining CJ to consist of the tuples

(i, c(i)), for 0 ≤ i ≤ 2m. It is clear that 〈I ′, J〉 |= �12. So we need only show
that 〈J, Î ′〉 |= �21. Clearly 〈J, Î ′〉 satisfies the first two tgds of �21. We now
show that 〈J, Î ′〉 satisfies the third tgd γ also. If (x, y) is either (i0, i0 ⊕ 1) or
(i0 ⊕ 1, i0), then the premise of γ fails (since P′(x, y) ∧ P′( y , x) fails), and hence
γ holds. Otherwise (if (x, y) is not (i0, i0 ⊕ 1) and not (i0 ⊕ 1, i0)), then again γ

holds. So in all cases, γ holds.

14. COMPLEXITY RESULTS

This section presents complexity results dealing with both local and global in-
vertibility. We do not consider complexity issues for S-invertibility except when
S is a singleton (local invertibility) or when S is the class of all ground instances
(global invertibility). It might be interesting to consider complexity issues for
other choices of S. The results are summarized in Tables I and II. In both tables,
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Table I. Local Invertibility: Input Is Ground Instance I

Held fixed Complexity

M12 and M21 NP; may be NP-complete

Full M12 and M21 polytime

M12 �P
2

; may be coNP-hard

Full M12 coNP; may be coNP-complete

Table II. Global Invertibility

Input Complexity

M12 and M21 undecidable17

Full M12 and M21 DP-complete

M12 coNP-hard

Full M12 coNP-complete

we consider separately the cases where the tgds that define M12 and M21 are
full. In Table I, the input is a ground instance I . The first line of the table says
that, if M12 and M21 are fixed schema mappings each specified by a finite set of
s-t tgds, then the problem of deciding if M21 is an inverse of M12 for I is in NP,
and there is a choice of M12 and M21 where the problem is NP-complete.16 The
second line deals with the same problem as the first line, but where M12 and
M21 are each specified by a finite set of full tgds. Then the complexity drops
to polynomial time (in fact, by Corollary 12.7, the problem is even definable
in first-order logic, which makes it logspace computable). The third line deals
with the problem of whether M12 has an inverse for I specified by a finite set
of s-t tgds. Since we have shown how to obtain a canonical candidate tgd local
inverse that is an inverse for I if there is any inverse for I specified by a finite
set of tgds, the reader may be puzzled as to why this problem does not reduce to
the problem in the first line, where M12 and M21 are given. The reason is that
the size of �21 that defines the canonical candidate tgd local inverse grows with
I , unlike the situation in the first line where �21 is given and so of fixed size.
The fourth line deals with the same problem as the third line, but where M12

is specified by a finite set of full tgds. The problem is then in coNP, and there
is a choice of M12 where the problem is coNP-complete. The third line inherits
its lower bound from the full case (the fourth line). There is a complexity gap
in the third line, where we have an upper bound of �P

2 in the polynomial-time
hierarchy, and a lower bound of coNP-hardness.

In the first line of Table II, the input consists of schema mappings M12 and
M21 that are each specified by a finite set of s-t tgds, and the problem is deciding
whether M21 is a global inverse of M12. Arenas [2006] has recently announced
that this problem is undecidable. The second line deals with the same problem
as the first line, but where M12 and M21 are each defined by a finite set of
full tgds, and the problem is then DP-complete.18 The third line deals with the
problem of whether M12 has a global inverse specified by a finite set of s-t tgds.

16The NP-hardness result was obtained by Phokion Kolaitis.
17This result is due to Arenas [2006].
18The class DP consists of all decision problems that can be written as the intersection of an NP

problem and a coNP problem.
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The fourth line deals with the same problem as the third line, but where M12

is defined by a finite set of full tgds, and the problem is then coNP-complete. In
fact, this problem is coNP-complete even when M12 is also LAV, that is, when
the tgds that define M12 are not only full but each has a singleton premise. The
third line inherits its lower bound from the full case (the fourth line). There
is a large complexity gap in the third line, since it is open as to whether this
problem is even decidable.

Let M12 be a schema mapping specified by a finite set of s-t tgds. Note that
we do not consider the natural problem of computing a global inverse of M12

specified by a finite set of s-t tgds, but instead we consider the problem of
simply deciding whether M12 has a global inverse specified by a finite set of s-t
tgds. This is good enough, since we already know how to compute such a global
inverse if one exists: namely, such a global inverse is the canonical tgd global
inverse. A similar comment applies to local inverses.

Although the focus in this article is on schema mappings and their inverses
when both are specified by a finite set of s-t tgds, we obtain “for free” a complexity
result even when we do not restrict possible inverses to be specified by a finite
set of s-t tgds. Specifically, let G be the problem of deciding whether a schema
mapping specified by a finite set of full s-t tgds has a global inverse specified
by a finite set of s-t tgds, and let G ′ be the problem of deciding whether a
schema mapping specified by a finite set of full s-t tgds has a global inverse (not
necessarily specified by a finite set of s-t tgds). A minor modification of our proof
that G is a coNP-complete problem shows that G ′ is a coNP-hard problem.

In the remainder of the section, we prove our complexity results.

14.1 Local Complexity

In this subsection, we shall consider the complexity of two problems:

(1) Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21) are schema map-
pings where �12 and �21 are finite sets of s-t tgds. What is the complexity
of deciding, given an instance I of S1, whether M21 is an inverse of M12 for
I?

(2) Assume that M12 = (S1, S2, �12) is a schema mapping where �12 is a finite
set of s-t tgds. What is the complexity of deciding, given an instance I of S1,
whether M12 has an inverse for I that is specified by a finite set of s-t tgds?

We shall consider these problems also when we restrict to full tgds.
We begin with a lemma. This lemma was proven in Fagin et al. [2005c], with

the proof we now give, although it was not stated explicitly (it appeared in the
middle of another proof).

LEMMA 14.1. Assume that M12 = (S1, S2, �12) and M23 = (S2, S3, �23) are
schema mappings, where S1, S2, and S3 are pairwise disjoint, and where �12

and �23 are finite sets of s-t tgds. Then 〈I1, I3〉 |= �12 ◦ �23 if and only if there
is an instance I2 of size polynomial in the size of I1, where the degree of the
polynomial depends only on �12, such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.
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PROOF. The proof of the “if” direction follows immediately from the definition
of composition (where the size of I2 is irrelevant). We now prove the “only if”
direction. Assume that 〈I1, I3〉 |= �12 ◦ �23. Then there is J such that 〈I1, J〉 |=
�12 and 〈J, I3〉 |= �12. It was shown in Fagin et al. [2005a] that there is a
universal solution U for I with respect to �12 that is of size polynomial in
the size of I , where the degree of the polynomial depends only on �12 (in fact,
chase12(I ) is such a universal solution U ). So there is a homomorphism h : U →
J . Let I2 = h(U ). Clearly, I2 has size at most the size of U , and I2 ⊆ J . Now
〈I1, I2〉 |= �12, since the homomorphic image I2 of a solution U is a solution. Also,
since 〈J, I3〉 |= �23 and I2 ⊆ J , it follows from Lemma 4.2 that 〈I2, I3〉〉 |= �23.
This concludes the proof.

THEOREM 14.2. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are finite sets of s-t tgds. The problem
of deciding, given I, whether M21 is an inverse of M12 for I is in NP, and can
be NP-complete.

PROOF. By Theorem 7.3, M21 is an inverse of M12 for I if and only if
〈I, Î〉 |= �12 ◦ �21 and Î ⊆ chase21(chase12(I )). Doing the chase is a polynomial-
time procedure (for a fixed finite set of s-t tgds). So there is a polynomial-time
procedure for deciding if Î ⊆ chase21(chase12(I )). Therefore, we need only show
that the problem of deciding, given I , whether 〈I, Î〉 |= �12 ◦ �21 is in NP. By
Lemma 14.1, we know that 〈I, Î〉 |= �12 ◦ �21 if and only if there is an instance
J of size polynomial in the size of I such that 〈I, J〉 |= �12 and 〈J, Î〉 |= �21.
Therefore, the problem of deciding, given I , whether 〈I, Î〉 |= �12 ◦ �21 is in
NP: intuitively, we simply “guess” the intermediate instance J and verify that
〈I, J〉 |= �12 and 〈J, Î〉 |= �21.

We now show that there is a choice of M12 = (S1, S2, �12) and M21 = (S2, Ŝ1,
�21) where the problem is NP-complete.19

The source schema S1 has binary relation symbols P and D. The target schema
S2 has binary relation symbols P′, D′, and C. The set �12 consists of the tgds
P(x, y) → P′(x, y), D(u, v) → D′(u, v), and P(x, y) → ∃uC(x, u).

The set �21 consists of the tgds P′(x, y) → P̂(x, y), D′(u, v) → D̂(u, v), and
P′(x, y) ∧ C(x, u) ∧ C( y , v) → D̂(u, v).

Let H be an undirected graph (thus, (x, y) is an edge of H precisely if ( y , x)
is an edge of H). Let VH be the vertices of H. Let g , b, r be three distinct
symbols (which intuitively represent green, blue, and red). Define the ground
instance IH by letting P contain all of the edges of H, and letting D be the
inequality relation on g , b, r. Thus, the D relation consists of the six tuples
(g , b), (g , r), (b, r), (b, g ), (r, g ), (r, b). We now show that H is 3-colorable if and
only if M21 is an inverse of M12 for IH . Since 3-colorability is an NP-complete
problem, this is sufficient to prove the NP-hardness result. We assume without
loss of generality that every member of VH lies on an edge of H.

Because of the first two tgds of �12 and the first two tgds of �21, necessarily
ÎH ⊆ chase21(chase12(IH )) for every H. So by Theorem 7.3, it follows that M21

19This proof is due to Phokion Kolaitis. His proof inspired our (similar) proof of Theorem 13.3.
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is an inverse of M12 for IH if and only if 〈IH , ÎH〉 |= �12 ◦ �21. Therefore, we
need only show that H is 3-colorable if and only if 〈IH , ÎH〉 |= �12 ◦ �21.

Assume first that H is 3-colorable. Let c : VH → {g , b, r} be a 3-coloring of H.
Define J to be the S2 instance whose P′ relation is the P relation of IH , whose D′

relation is the D relation of IH , and where C(x, c(x)) holds for each node x of H.
It is easy to see that 〈IH , J〉 |= �12 and 〈J, ÎH〉 |= �21. So 〈IH , ÎH〉 |= �12 ◦ �21,
as desired.

Conversely, assume that 〈IH , ÎH〉 |= �12 ◦ �21. Then there is J such that
〈IH , J〉 |= �12 and 〈J, ÎH〉 |= �21. Since 〈IH , J〉 |= �12, and since by assumption
every member of VH lies on an edge of H, it follows that, for each member x
of VH , there is some u such that C(x, u) holds in J . For each member x of VH ,
define c(x) to be some such u. When (x, y) is an edge of P I (and hence of P

′ J ),
the third tgd in �21 tells us that (c(x), c( y)) is in D̂ Î , which equals DI . Hence,
c(x) and c( y) are each in {g , b, r} and are distinct. Therefore, c is a 3-coloring
of H, as desired.

We now consider the case when �12 and �21 are restricted to being finite sets
of full tgds.

THEOREM 14.3. Assume that M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21)
are schema mappings where �12 and �21 are each finite sets of full s-t tgds.
The problem of deciding, given I, whether M21 is an inverse of M12 for I is
polynomial-time solvable.

PROOF. The theorem follows from Corollary 7.4, since there is a polynomial-
time test for deciding if Î = chase21(chase12(I )).

Corollary 12.7 actually gives a stronger result than Theorem 14.3.
Corollary 12.7 says that the problem is not only polynomial-time solvable, but
even expressible in first-order logic (and therefore is solvable in logspace).

We now consider the second problem, where M21 is not given. Note that
Corollary 6.5 and Theorem 8.2 give us a decision procedure for deciding if there
is a schema mapping specified by a finite set of s-t tgds that is an inverse of
M12 for I . We simply check whether the active domain of chase12(I ) contains the
active domain of I . If not, we reject. If so, we produce the canonical candidate
tgd local inverse M21, and verify whether M21 is an inverse of M12 for I . We
can decide whether M21 is an inverse of M12 for I by using the same procedure
as in the proof of Theorem 14.2. However, unlike Theorem 14.2, it does not
follow that this problem is in NP, since, unlike the situation in Theorem 14.2,
the schema mapping M21 is not fixed, but depends on I . We now obtain an
upper bound on the complexity.

THEOREM 14.4. Assume thatM12 = (S1, S2, �12) is a schema mapping where
�12 is a finite set of s-t tgds. The problem of deciding, given I, whether there is a
schema mapping specified by a finite set of s-t tgds that is an inverse of M12 for
I is in the complexity class �P

2 in the polynomial-time hierarchy.

PROOF. Let J∗ = chase12(I ). Compute J∗ (this is a polynomial-time proce-
dure), and check whether the active domain of J∗ contains the active domain
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of I . If not, then we know by Corollary 6.5 that there is no inverse of M12 for
I . So assume that the active domain of J∗ contains the active domain of I . Let
M21 be the canonical candidate tgd local inverse. By Theorem 8.2, we know
that there is a schema mapping specified by a finite set of s-t tgds that is an
inverse of M12 for I precisely if M21 is an inverse of M12 for I . Therefore, the
theorem is proven if we show that the statement

“M21 is an inverse of M12 for I” (17)

is in �P
2 . By Theorem 7.3, we know that (17) holds precisely if 〈I, Î〉 |= �12 ◦�21

and Î ⊆ chase21(chase12(I )). So we need only show that the problem of deciding
if 〈I, Î〉 |= �12 ◦ �21 and the problem of deciding if Î ⊆ chase21(chase12(I )) are
each in �P

2 .

Lemma 14.1 tells us that 〈I, Î〉 |= �12 ◦ �21 if and only if there exists a
polynomial-size J such that 〈I, J〉 |= �12 and 〈J, Î〉 |= �21. Given J , the state-
ment that 〈I, J〉 |= �12 is a 
P

1 statement, since 〈I, J〉 |= �12 precisely if there
is no application of a member of �12 to selected facts in I that obtains a result
outside of J . Similarly, the statement that 〈J, Î〉 |= �21 is a 
P

1 statement. So

the problem of deciding if 〈I, Î〉 |= �12 ◦ �21 is in �P
2 .

We now show that deciding if Î ⊆ chase21(chase12(I )) is a problem in NP,
and hence in �P

2 . Let k be the maximum number of conjuncts in premises of

members of �21. To verify that Î ⊆ chase21(chase12(I )), we do the following
NP procedure. For each fact F in Î , we guess k applications of members of
�12 to facts of I to produce k facts of chase12(I ). We then guess an applica-
tion of a member of �21 to these k facts in chase12(I ) to produce the fact F in
chase21(chase12(I )).

If ϕ1 and ϕ2 are each conjunctions of atoms over the schema S, then a homo-
morphism from ϕ1 to ϕ2 is a homomorphism h : I1 → I2, where I1 is the instance
of S whose facts are the conjuncts of ϕ1, and I2 is the instance of S whose facts
are the conjuncts of ϕ2.20 Each value in I1 is treated as being a member of Var,
and so the restriction on homomorphisms that h(c) = c for c ∈ Const does not
arise. Similarly, if I is an instance of S, then a homomorphism from ϕ1 to I
is a homomorphism from I1 to I . We shall make use of the following standard
lemma.

LEMMA 14.5. Assume that �12 consists of the full s-t tgd γ1 → γ2. Then
chase12(I ) consists precisely of facts S(h(x)) such that h is a homomorphism
from γ1 to I and S(x) is a conjunct of γ2.

We now give a technically useful characterization in terms of homomor-
phisms and the chase, of when M12 has a local inverse specified by s-t tgds,
when M12 is specified by full tgds.

Define a weak endomorphism of an instance K to be a mapping h : K → K
such that, for every fact R(t) of K , we have that R(h(t)) is a fact of K . Thus,
intuitively, a weak endomorphism is a homomorphism from an instance into
itself that is not required to map constants into themselves.

20As before, these are not actual instances, but “canonical instances.”
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THEOREM 14.6. Let M12 = (S1, S2, �12) be a schema mapping where �12 is a
finite set of full s-t tgds, and let I be an instance of S1. Then M12 has an inverse
for I by a schema mapping specified by a finite set of s-t tgds if and only if (1)M12

has the constant-propagation property for I and (2) every weak endomorphism
of chase12(I ) is a weak endomorphism of I .

PROOF. Let J∗ = chase12(I ). Assume first that there is a schema mapping
specified by a finite set of s-t tgds that is an inverse of M12 for I . Corollary 6.5
tells us that condition (1) of the theorem must hold, and Theorem 8.2 tells
us that the canonical candidate tgd local inverse M21 is an inverse of M12

for I . Since M21 is specified by a finite set �21 of full s-t tgds, it follows from
Corollary 7.4 that Î = chase21(J∗), and in particular chase21(J∗) ⊆ Î .

Let h be a weak endomorphism of J∗. Let us write the full tgd βJ∗, Î as γ1 → γ2,
where γ1 is a conjunction of the facts of J∗, and γ2 is a conjunction of the facts of
Î . Let γ ′

1 be the result of replacing each constant x by h(x) in γ1, and similarly
for γ ′

2. For example, if P(x, y) is a conjunct of γ1, and h(x) = x ′ and h( y) = y ′,
then P(x ′, y ′) is a conjunct of γ ′

1. Since h is a weak endomorphism of J∗, we

know that γ ′
1 is a conjunction of (some of the) facts of J∗. Since chase21(J∗) ⊆ Î ,

it follows that each conjunct of γ ′
2 is a fact of Î . But this means that h is a weak

endomorphism of Î , and hence of I , as desired.
Conversely, assume that conditions (1) and (2) of the theorem hold. Since

condition (1) holds, it follows that βJ∗, Î is a full tgd. Define �21 to be a set

consisting only of this tgd, and, as before, let M21 = (S2, Ŝ1, �21). When we
chase J∗ with βJ∗, Î , we clearly obtain at least Î . So Î ⊆ chase21(J∗). It follows
easily from Lemma 14.5 that chase21(J∗) consists precisely of facts R̂(h(x)) such
that h is a weak endomorphism of J∗ and R̂(x) is a fact of Î . But by condition (2)
of the theorem, R̂(h(x)) is then in Î . So chase21(J∗) ⊆ Î . Hence, Î = chase21(J∗).
So by Corollary 7.4, M21 is an inverse of M12 for I .

THEOREM 14.7. Assume thatM12 = (S1, S2, �12) is a schema mapping where
�12 is a finite set of full s-t tgds. The problem of deciding, given I, whether there
is a schema mapping specified by a finite set of s-t tgds that is an inverse of M12

for I is in coNP, and can be coNP-complete.

PROOF. The fact that the problem is in coNP follows easily from
Theorem 14.6.

We now give a schema mapping M12 = (S1, S2, �12) where �12 is a finite
set of full tgds and where the problem is coNP-complete. We shall reduce non-
3-colorability, a coNP-complete problem, to our problem. The source schema
S1 has a binary relation symbol P and three unary relation symbols G, B, and
R (which stand for green, red, and blue). The target schema S2 has a binary
relation symbol P′ and three unary relation symbols G′, B′, and R′. The set �12

consists of the tgds P(x, y) → P′(x, y), G(x) → G′(x), B(x) → B′(x), R(x) → R′(x),
G(x)∧R( y) → P′(x, y), G(x)∧R( y) → P′( y , x), G(x)∧B( y) → P′(x, y), G(x)∧B( y) →
P′( y , x), R(x) ∧ B( y) → P′(x, y), and R(x) ∧ B( y) → P′( y , x).

Let H be an undirected graph that is connected and that has at least one
edge (note that non-3-colorability is coNP-complete even when we restrict
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our attention to such graphs H). Let g , b, r be new symbols not appearing
as vertices of H. Let V denote the nodes of H and let C = {g , b, r}. Define
the ground instance IH by letting P contain all of the edges of H, and let-
ting G contain the singleton tuple (g ), letting B contain the singleton tuple
(b), and letting R contain the singleton tuple (r). We now show that there is
a schema mapping specified by a finite set of s-t tgds that is an inverse of
M12 for IH if and only if H is not 3-colorable. This is sufficient to prove the
theorem.

Let J = chase12(IH ). Thus, the P′ relation of J consists of the tuples that
are edges of H, along with the six tuples (g , b), (g , r), (b, r), (b, g ), (r, g ), (r, b).
Assume first that H is 3-colorable, under a coloring c that maps each ver-
tex of H to {g , b, r}. Extend c to have domain V ∪ C by letting c(x) = x for
x ∈ C.

We now show that c is a weak endomorphism of J . If (x) is a tuple of the G′

relation of J , then h(x) is a tuple of the G′ relation of J , since x is necessarily
g , and h(g ) = g . The same hold for the B′ relation of J and the R′ relation of J .
Finally, whenever (x, y) is a tuple of the P′ relation of J , then (c(x), c( y)) is one
of the six tuples (g , b), (g , r), (b, r), (b, g ), (r, g ), (r, b), all of which are tuples of
the P′ relation of J . So indeed, c is a weak endomorphism of J .

We now show that c is not a weak endomorphism of IH . Let (x, y) be an edge
of H (by assumption, H has at least one edge). Then P(x, y) is a fact of IH .
However, P(c(x), c( y)) is not a fact of IH , since c(x) is either g , b, or r, and the P
relation of IH has no tuples that contains the values g , b, or r. Therefore, c is
not a weak endomorphism of IH ,

Since c is a weak endomorphism of J , but not a weak endomorphism of IH ,
it follows from Theorem 14.6 that there is no schema mapping specified by a
finite set of s-t tgds that is an inverse of M12 for IH .

Assume now that H is not 3-colorable. Let c be a weak endomorphism of J .
We first show that c must map V to V . Assume not. Then c maps some member
of V to C. If (x, y) is an edge of H, and if c maps x to C, then necessarily c
maps y to C, since there is no tuple (a, b) of the P′ relation of J where a is in
V and b is in C. So since H is connected, it follows that c maps every member
of V to C. For each edge (x. y) of H, we have that P′(x, y) is a fact of J , and
so P′(c(x), c( y)) is a fact of J (because c is a weak endomorphism of J ). Since c
maps every member of V to C, it follows that the tuple (c(x), c( y)) is one of the
six tuples (g , b), (g , r), (b, r), (b, g ), (r, g ), (r, b), and so c(x) �= c( y). This implies
that H is 3-colorable, which is a contradiction. So c maps every member of V
to V . Furthermore, c(x) = x for x ∈ C, since the G′ relation of J contains only
(g ), and similarly for B′ and R′. Therefore, c is a weak endomorphism of IH . We
have shown that every weak endomorphism of J is a weak endomorphism of
IH . Since also M12 has the constant-propagation property for I , it follows from
Theorem 14.6 that there is a schema mapping specified by a finite set of s-t tgds
that is an inverse of M12 for IH .

We have now proven the complexity bounds in Table I (the coNP-hardness
result in the third line is inherited from the coNP-completeness result in the
fourth line).
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14.2 Global Complexity

In this subsection, we shall consider the complexity of two problems:

(1) What is the complexity of deciding, given schema mappings M12 = (S1, S2,
�12) and M21 = (S2, Ŝ1, �21), where �12 and �21 are finite sets of s-t tgds.
whether M21 is a global inverse of M12?

(2) What is the complexity of deciding, given a schema mapping M12 = (S1, S2,
�12), where �12 is a finite sets of s-t tgds, whether M12 has a global inverse
that is specified by a finite set of s-t tgds?

We shall consider these problems also when we restrict to full tgds.

LEMMA 14.8. Let M12 = (S1, S2, �12), where �12 is a finite set of s-t tgds.
Assume that M12 has the constant-propagation property. Let Mc

21 = (S2, Ŝ1,�c
21)

be the canonical candidate tgd global inverse of M12. If 〈I, J〉 |= �12 ◦ �c
21, then

Î ⊆ J. In particular, Î ⊆ chasec
21(chase12(I )), where chasec

21 represents the result
of chasing with �c

21.

PROOF. Assume that 〈I, J〉 |= �12 ◦ �c
21. Then there is J ′ such that

〈I, J ′〉 |= �12 and 〈J ′, J〉 |= �c
21. Let R(a1, . . . , ak) be an arbitrary fact of I .

Since 〈I, J ′〉 |= �12, it follows that J ′ contains a homomorphic image J ′′ of the
result of chasing R(a1, . . . , ak) with �12. Since 〈J ′, J〉 |= �c

21, it follows that J
contains a homomorphic image of the result of chasing J ′′ with �c

21. There-
fore, by construction of �c

21, we see that J contains the fact R̂(a1, . . . , ak). Since

R(a1, . . . , ak) is an arbitrary fact of I , it follows that Î ⊆ J , as desired.
As for the “in particular,” let J = chasec

21(chase12(I )). So 〈I, J〉 |= �12 ◦ �c
21,

since by Lemma 6.8, we know that 〈I, chase12(I ))〉 |= �12 and 〈chase12(I ), J〉 |=
�c

21.

THEOREM 14.9. The problem of deciding, given a schema mapping M12 =
(S1, S2, �12) with �12 a finite set of full s-t tgds, whether M12 has a global inverse
that is specified by a finite set of s-t tgds, is coNP-complete. It is coNP-complete
even if M12 is also LAV, that is, the members of �12 are full tgds each of which
has a singleton premise.

PROOF. We first show membership in coNP. As before, for each relational
symbol R of S1, let IR be a one-tuple instance that contains only the fact R(x),
where the variables in x are distinct. Do a polynomial-time check to verify
that for each relational symbol R of S1, we have that M12 has the constant-
propagation property for IR, and if not, then reject (it is safe to reject, since
by Corollary 6.5, we know that there is no global inverse of M12). Since we
have that M12 has the constant-propagation property for IR for each relational
symbol R of S1, it follows easily thatM12 has the constant-propagation property.
Let Mc

21 = (S2, Ŝ1,�c
21) be the canonical candidate tgd global inverse. We know

from Theorem 9.3 that there is a schema mapping specified by a finite set of
s-t tgds that is a global inverse of M12 if and only if Mc

21 is a global inverse of
M12.

We now show that the problem of determining if Mc
21 is not a global inverse

of M12 is in NP. By Theorem 13.2, we know that Mc
21 is not a global inverse
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of M12 if and only if there is a small model I such that Mc
21 is not an inverse

of M12 for I . Since M12 has the constant-propagation property, it follows from
Lemma 14.8 that Î ⊆ chasec

21(chase12(I )). Let us denote chasec
21(chase12(I )) by

Ī . Hence, by Corollary 7.4, we know that Mc
21 is not an inverse of M12 for I if

and only if Ī is a proper superset of Î .
We have shown that Mc

21 is not a global inverse of M12 if and only if there

is a small model I such that Ī is a proper superset of Î . But this property is in
NP: we simply guess the small model I and verify that Ī is a proper superset of
Î by guessing applications of members of �12 and �c

21 that generate a member

of Ī that is not in Î .
So indeed, the problem of determining if M12 has a global inverse is in coNP.

We now show that the problem is coNP-hard. We shall show that the problem of
determining if M12 does not have a global inverse is NP-hard. We shall reduce
SAT to this problem.

Let ϕ be a propositional formula involving n propositional symbols A1, . . . , An

that is in conjunctive normal form C1 ∧· · ·∧Ck , where each Ci is a disjunction of
propositional literals (either a propositional symbol Aj or the negation ¬Aj of a
propositional symbol). Let us write Ci as Yi,1 ∨· · ·∨Yi, f (i) ∨¬Zi,1 ∨· · ·∨¬Zi, g (i),
where each Yi, j and each Zi, j is in {A1, . . . , An}. Thus, there are f (i) proposi-
tional symbols that appear positively in Ci and g (i) propositional symbols that
appear negatively in Ci, for 1 ≤ i ≤ k.

We now show how to construct in polynomial time from ϕ a LAV schema
mapping M12 = (S1, S2, �12), where the s-t tgds in �12 are full, that we shall
prove has a global inverse specified by a finite set of s-t tgds if and only if ϕ

is not satisfiable. Since SAT is NP-complete, this is sufficient to prove coNP-
hardness, The source schema S1 consists of a 2n-ary relational symbol R, along
with 2n-ary relational symbols Ui,1, . . . , Ui, j for 1 ≤ i ≤ k and 1 ≤ j ≤ f (i). The
target schema S2 contains 2n-ary relational symbols U′

i,1, . . . , U′
i, j for 1 ≤ i ≤ k

and 1 ≤ j ≤ f (i). Thus, for each of the relational symbols Ui, j of S1, there
is a corresponding relational symbol U′

i, j in S2. Furthermore, S2 has 2n-ary
relational symbols S1, . . . , Sk .

Let x be the 2n-tuple (x1, . . . , x2n). For 1 ≤ m ≤ n, let x=m be the tuple that
is the result of replacing x2m in x by x2m−1. Thus, x=m is the tuple

(x1, . . . , x2m−1, x2m−1, x2m+1, . . . x2n).

For 1 ≤ m ≤ n, let xm be the tuple that is the result of interchanging x2m−1 and
x2m in x. Thus, xm is ( y1, . . . , y2n), where y2m−1 is x2m and y2m is x2m−1, and
where yr is xr for r �∈ {

2m − 1, 2m
}
.

Assume that Yi, j is the propositional symbol Am. Let yi, j be the full tgd
Ui, j (x=m) → Si(x=m). Assume that Zi, j is the propositional symbol Am. Let zi, j

be the full tgd R(x) → Si(xm). The set �12 consists of the following full tgds. First,
it has the “copying” tgds Ui, j (x) → U′

i, j (x) for each Ui, j in S1. It also contains the
tgds R(x) → Si(x) for 1 ≤ i ≤ k. Finally, it contains the tgds yi, j (for 1 ≤ i ≤ k
and 1 ≤ j ≤ f (i)) and zi, j (for 1 ≤ i ≤ k and 1 ≤ j ≤ g (i)).

We now prove that if ϕ is satisfiable, then there is no global inverse ofM12. As-
sume that ϕ is satisfiable. Let us fix a truth assignment Tr to the propositional
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variables that satisfies ϕ, and let P be the subset of the propositional variables
A1, . . . , A2n that are assigned true under the truth assignment Tr. Let a1, . . . , a2n

be distinct values. Let t be the 2n-ary tuple (t1, . . . , t2n), defined as follows. If
1 ≤ m ≤ n, and if Am is in P , then let t2m−1 and t2m both be a2m−1. If 1 ≤ m ≤ n,
and if Am is not in P , then let t2m−1 be a2m−1 and let t2m be a2m. For 1 ≤ m ≤ n,
let tm be the tuple that is the result of interchanging t2m−1 and t2m in t.

Define the ground instance I1 to consist of the facts Ui, j (t) for each of the
relational symbols Ui, j of S1. Furthermore, if Am is not in P , then let I1 also
contain the fact R(tm), for 1 ≤ m ≤ n. Note that I1 does not contain the fact R(t),
since tm �= t when Am is not in P .

Let It be the one-tuple instance that contains only the fact R(t). Define the
ground instance I2 to consist of the union of the facts of I1 and It. Since I2

contains the fact R(t) but I1 does not, we see that I1 �= I2. We now show that
chase12(I1) = chase12(I2). It then follows from Corollary 6.4 that there is no
global inverse of M12. Since every member of �12 has a singleton premise, we
need only show that chase12(It) ⊆ chase12(I1).

The only tgds that may generate a tuple when we chase It with �12 are the
tgds R(x) → Si(x) and the tgds R(x) → Si(xm). Consider first the result of
applying the tgds R(x) → Si(x) to It. The result is Si(t). We must show that
Si(t) is in chase12(I1). Since the clause Ci is satisfied by the truth assignment Tr,
either there is some j such that Yi, j ∈ P , or there is some j such that Zi, j �∈ P .
Assume first that Yi, j ∈ P . Say Yi, j is the propositional symbol Am. So Am ∈ P .
Therefore, t2m−1 = t2m. Since Yi, j is a disjunct of Ci, the tgd Ui, j (x=m) → Si(x=m)
is in �12. The result of applying this tgd to the fact Ui, j (t) of I1 generates Si(t),
as desired. Assume now that Zi, j �∈ P . Say Zi, j is the propositional symbol Am.
So Am �∈ P . Therefore, I1 contains the fact R(tm). Since Zi, j is a disjunct of Ci,
the tgd R(x) → Si(xm) is in �12. Then the result of applying this tgd to the fact
R(tm) of I1 generates Si(t), as desired.

Consider now the result of applying the tgd R(x) → Si(xm) to It. The result
is Si(tm). We must show that Si(tm) is in chase12(I1). Since the clause Ci is
satisfied by the truth assignment Tr, either there is some j such that Yi, j ∈ P ,
or there is some j such that Zi, j �∈ P . Assume first that Yi, j ∈ P . Say Yi, j

is the propositional symbol Am. So Am ∈ P . Therefore, t2m−1 = t2m. Since Yi, j

is a disjunct of Ci, the tgd Ui, j (x=m) → Si(x=m) is in �12. Since t2m−1 = t2m,
the result of applying this tgd to the fact Ui, j (t) of I1 generates Si(t), which is
the same as the fact Si(tm), as desired. Assume now that Zi, j �∈ P . Say Zi, j is
the propositional symbol Am. So Am �∈ P . Therefore, I1 contains the fact R(tm).
Then the result of applying the tgd R(x) → Si(x) to the fact R(tm) of I1 generates
Si(tm), as desired. This concludes the proof that if ϕ is satisfiable, then there is
no global inverse of (S1, S2, �12).

We now prove that, if ϕ is not satisfiable, then there is a schema mapping
specified by a finite set of s-t tgds that is a global inverse of M12. Assume that
ϕ is not satisfiable. Let �21 contain precisely the copying tgds U′

i, j (x) → Ûi, j (x)

for each Ui, j in S1 and the tgd S1(x) ∧ · · · ∧ Sk(x) → R̂(x). Let M21 = (S2, Ŝ1,
�21). We now show that M21 is a global inverse of M12. Assume not; we shall
derive a contradiction.
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Since by assumption M21 is not a global inverse of M12, it follows from
Corollary 7.4 that there is a ground instance I such that Î �= chase21(chase12(I )).
Because of the copying tgds Ui, j (x) → U′

i, j (x) of �12 and the copying tgds

U′
i, j (x) → Ûi, j (x) of �21, and because of the tgds R(x) → Si(x) (for 1 ≤ i ≤ k)

of �12 and the tgd S1(x) ∧ · · · ∧ Sk(x) → R̂(x) of �21, it follows that Î ⊆
chase21(chase12(I )). So Î is a proper subset of chase21(chase12(I )). It is clear
that every fact Ûi, j (t) in chase21(chase12(I )) is in Î . Hence, there is t such that
the fact R̂(t) is in chase21(chase12(I )) but not in Î . Now the only way that this
fact can arise in chase21(chase12(I )) is for Si(t) to be a fact of chase12(I ), for
1 ≤ i ≤ k. Since R̂(t) is not a fact of Î , it follows that R(t) is not a fact of I .
Therefore, the only way that Si(t) can be a fact of chase12(I ) is for it to arise
as a result of applying one of the tgds we denoted by yi, j or one of the tgds we
denoted by zi, j . Let Yi, j be the event that Si(t) arises in chase12(I ) as a result
of applying the tgd yi, j , and let Zi, j be the event that Si(t) arises in chase12(I )
as a result of applying the tgd zi, j . From what we have said, it follows that for
each i (with 1 ≤ i ≤ k), either there is j such that the event Yi, j holds, or there
is j such that the event Zi, j holds.

Assume that t = (t1, . . . , t2n). Define a truth assignment Tr to the proposi-
tional symbols A1, . . . , An by letting Am be assigned true if and only if t2m−1 = t2m.
Let us temporarily fix i (for 1 ≤ i ≤ k). We now show that the clause Ci is true
under Tr. Recall that Ci is Yi,1 ∨ · · · ∨ Yi, f (i) ∨ ¬Zi,1 ∨ · · · ∨ ¬Zi, g (i), where each
Yi, j and each Zi, j is in {A1, . . . , An}. We know that either there is j such that
the event Yi, j holds, or there is j such that the event Zi, j holds. Assume that
the event Yi, j holds. Now Yi, j is one of A1, . . . , An. Assume that Yi, j is Am. Then
yi, j is the tgd Ui, j (x=m) → Si(x=m). Since the event Yi, j holds, that is, Si(t)
arises in chase12(I ) as a result of applying the tgd yi, j , necessarily t2m−1 = t2m,
and so Am is true under Tr. Therefore, Yi, j is true under Tr, and so Ci is true
under Tr, as desired. Assume now that the event Zi, j holds. Now Zi, j is one of
A1, . . . , An. Assume that Zi, j is Am. Then zi, j is the tgd R(x) → Si(xm). Now the
event Zi, j holds, that is, Si(t) arises in chase12(I ) as a result of applying the tgd
zi, j . To obtain Si(t) by chasing with the tgd zi, j , this tgd must be applied to the
fact R(tm), which must therefore be in I . Since R(tm) is in I but R(t) is not in I ,
it follows that t2m−1 �= t2m, and so Am is false under Tr. Therefore, Zi, j is false
under Tr, and so Ci is true under Tr, as desired.

We have shown that the clause Ci is true under the truth assignment Tr.
Since i is arbitrary, it follows that ϕ, which is the conjunction of the clauses Ci, is
true under Tr. But this is impossible, since by assumption ϕ is not satisfiable.

Although the focus in this article is on schema mappings and their inverses
when both are specified by a finite set of s-t tgds, we note that the proof of
Theorem 14.9 gives us a hardness result even when we do not restrict possible
inverses to be specified by a finite set of s-t tgds. Specifically, we have the
following corollary of the proof.

COROLLARY 14.10. The problem of deciding, given a schema mapping M12 =
(S1, S2, �12) with �12 a finite set of full s-t tgds, whether M12 has a global inverse
(not necessarily specified by a finite set of s-t tgds) is coNP-hard. It is coNP-hard
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even if �12 is also LAV, that is, the members of �12 are full tgds each of which
has a singleton premise.

PROOF. In the proof of coNP-hardness in the proof of Theorem 14.9, we
showed, given a propositional formula ϕ in conjunctive normal form, how to
construct in polynomial time a LAV schema mapping M12 = (S1, S2, �12), where
the s-t tgds in �12 are full, with the following properties: (1) if ϕ is satisfiable,
then there is no global inverse of M12, and (2) if ϕ is not satisfiable, then there
is a schema mapping specified by a finite set of s-t tgds that is a global inverse
of M12. We concluded that M12 has a global inverse specified by a finite set of
s-t tgds if and only if ϕ is not satisfiable. But we can also conclude that M12 has
a global inverse (not necessarily specified by a finite set of s-t tgds) if and only
if ϕ is not satisfiable. Since SAT is NP-complete, this latter result is sufficient
to prove coNP-hardness of the problem stated in the corollary.

We now give two technical lemmas that will be useful in establishing the
complexity of the problem of deciding, given two schema mappings M12 and
M21 that are each specified by a finite set of s-t tgds, whether M21 is a global
inverse of M12,

LEMMA 14.11. Assume that M′
12 = (S′

1, S′
2, �′

12) and M′′
12 = (S′′

1, S′′
2, �′′

12)
are schema mappings, where S′

1, S′
2, S′′

1, S′′
2 are pairwise disjoint, and where

�′
12 and �′′

12 are finite sets of s-t tgds. Let S1 = S′
1 ∪ S′′

1 and S2 = S′
2 ∪ S′′

2.
Let �12 = �′

12 ∪ �′′
12 and M12 = (S1, S2, �12). Let I ′, I,′′ J ′, J ′′ be instances of

S′
1, S′′

1, S′
2, S′′

2, respectively. Then 〈(I ′ ∪ I ′′), (J ′ ∪ J ′′)〉 |= �′
12 ∪ �′′

12 if and only if
〈I ′, J ′) |= �′

12 and 〈I ′′, J ′′) |= �′′
12.

PROOF. Clearly 〈(I ′ ∪ I ′′), (J ′ ∪ J ′′)〉 |= �′
12 ∪ �′′

12 if and only if 〈(I ′ ∪ I ′′), (J ′ ∪
J ′′)〉 |= �′

12 and 〈(I ′ ∪ I ′′), (J ′ ∪ J ′′)〉 |= �′′
12. Since �′

12 does not contain any
relational symbols in S′′

1 or S′′
2, it follows easily that 〈(I ′ ∪ I ′′), (J ′ ∪ J ′′)〉 |= �′

12

if and only if 〈I ′, J ′〉 |= �′
12. Similarly, 〈(I ′ ∪ I ′′), (J ′ ∪ J ′′)〉 |= �′′

12 if and only if
〈I ′′, J ′′〉 |= �′′

12. The lemma then follows.

LEMMA 14.12. Assume thatM′
12 = (S′

1, S′
2, �′

12),M′
21 = (S′

2, Ŝ′
1, �′

21),M′′
12 =

(S′′
1, S′′

2, �′′
12), and M′′

21 = (S′′
2, Ŝ′′

1, �′′
21), are schema mappings, where S′

1, S′
2, Ŝ′

1,
S′′

1, S′′
2, and Ŝ′′

1 are pairwise disjoint, and where �′
12, �′

21, �′′
12, and �′′

21 are finite
sets of s-t tgds. Let S1 = S′

1 ∪ S′′
1 and S2 = S′

2 ∪ S′′
2. Let �12 = �′

12 ∪ �′′
12 and

�21 = �′
21 ∪ �′′

21. Let M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21), Then M21 is
a global inverse of M12 if and only if M′

21 is a global inverse of M′
12 and M′′

21 is
a global inverse of M′′

12.

PROOF. Each instance I of S1 can be written uniquely in the form I ′ ∪ I ′′,
where I ′ is an instance of S′

1 and I ′′ is an instance of S′′
1. Similarly, each instance

J of S2 can be written uniquely in the form J ′ ∪ J ′′, where J ′ is an instance of
S′

2 and J ′ is an instance of S′′
2. We now show that

〈I, J〉 |= �12 ◦ �21 if and only if 〈I ′, J ′〉 |= �′
12 ◦ �′

21 and 〈I ′′, J ′′〉 |= �′′
12 ◦ �′′

21.

(18)
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Now 〈I, J〉 |= �12 ◦ �21 if and only if there is an instance J1 of S2 such
that 〈I, J1〉 |= �12 and 〈J1, J〉 |= �21. This holds if and only if there is an
instance J ′

1 of S′
2 and an instance J ′′

1 of S′′
2 such that 〈I, (J ′

1 ∪ J ′′
1 )〉 |= �12 and

〈(J ′
1 ∪ J ′′

1 ), J〉 |= �21.
By Lemma 14.11, we know that 〈I, (J ′

1∪J ′′
1 )〉 |= �12 if and only if 〈I ′, J ′

1〉 |= �′
12

and 〈I ′′, J ′′
1 〉 |= �′′

12. Similarly, 〈(J ′
1 ∪ J ′′

1 ), J〉 |= �21 if and only if 〈J ′
1, J ′〉 |= �′

21

and 〈J ′′
1 , J ′′〉 |= �′′

21.
It follows that 〈I, J〉 |= �12 ◦ �21 if and only if there are J ′

1 and J ′′
1 such that

〈I ′, J ′
1〉 |= �′

12, 〈I ′′, J ′′
1 〉 |= �′′

12, 〈J ′
1, J ′〉 |= �′

21 and 〈J ′′
1 , J ′′〉 |= �′′

21. Then (18)
follows easily.

We now show that M21 is a global inverse of M12 if and only if M′
21 is a global

inverse of M′
12 and M′′

21 is a global inverse of M′′
12. Assume first that M21 is

a global inverse of M12; we shall show that M′
21 is a global inverse of M′

12 (a
similar argument shows that M′′

21 is a global inverse of M′′
12). Since M21 is a

global inverse of M12, it follows that (6) holds. We must show that

〈I ′, J ′〉 |= �′
12 ◦ �′

21 if and only if Î ′ ⊆ J ′. (19)

Let I ′′, J ′′
1 , and J ′′ be empty instances. Let I = I ′ and J = J ′. Then 〈I ′′, J ′′

1 〉 |=
�′′

12 and 〈J ′′
1 , J ′′〉 |= �′′

21. Hence, 〈I ′′, J ′′〉 |= �′′
12 ◦ �′′

21. So from (18) we see that

〈I, J〉 |= �12 ◦ �21 if and only if 〈I ′, J ′〉 |= �′
12 ◦ �′

21. Furthermore, Î ⊆ J if and

only if Î ′ ⊆ J ′, since I = I ′ and J = J ′. From (6), it therefore follows that (19)
holds, as desired.

Assume now that M′
21 is a global inverse of M′

12, and M′′
21 is a global inverse

of M′′
12; we shall show that M21 is a global inverse of M12. Thus, we shall show

that (6) holds.
Assume that 〈I, J〉 |= �12 ◦ �21. Let I ′ and I ′′ be the facts of I involving S′

1
and S′′

1, respectively. Similarly, let J ′ and J ′′ be the facts of J involving S′
2 and

S′′
2, respectively. By (18) we know that 〈I ′, J ′〉 |= �′

12 ◦�′
21. Since M′

21 is a global

inverse of M′
12, it follows that Î ′ ⊆ J ′. Similarly, Î ′′ ⊆ J ′′. Since Î = Î ′ ∪ Î ′′ and

J = J ′ ∪ J ′′, it follows that Î ⊆ J , as desired.
Assume that Î ⊆ J . As before, let I ′ and I ′′ be the facts of I involving S′

1
and S′′

1, respectively, and let J ′ and J ′′ be the facts of J involving S′
2 and S′′

2,

respectively. Since Î ⊆ J , it follows that Î ′ ⊆ J ′. Since M′
21 is a global inverse

of M′
12, it follows that 〈I ′, J ′〉 |= �′

12 ◦ �′
21. Similarly, 〈I ′′, J ′′〉 |= �′′

12 ◦ �21. So
by (18), it follows that 〈I, J〉 |= �12 ◦ �21, as desired.

THEOREM 14.13. The problem of deciding, given schema mappings M12 =
(S1, S2, �12) and M21 = (S2, Ŝ1, �21), where �12 and �21 are finite sets of full
s-t tgds, whether M21 is a global inverse of M12, is DP-complete.

PROOF. We first show that the problem is in DP. As in the definition of the
canonical candidate tgd S-inverse, let R be an arbitrary relational symbol of
S1, and let IR be a one-tuple instance that contains only the fact R(x1, . . . , xk),
where x1, . . . , xk are distinct. We now show that M21 is a global inverse of M12

if and only if the following two properties hold:

(*) ÎR ⊆ chase21(chase12(IR)) for every relational symbol R of S1.

(**) chase21(chase12(I )) ⊆ Î for every small instance I of S1.
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By “small” in (**), we mean that I contains at most k12k21 facts, as in the proof
of Theorem 13.1.

We now show that, if M21 is a global inverse of M12, then (*) and (**) hold.
If (*) did not hold, then by Corollary 7.4, it would follow that M21 is not an
inverse of M12 for IR. If (**) did not hold, then by Corollary 7.4, it would follow
that M21 is not an inverse of M12 for some (small) instance I .

We now show that if (*) and (**) hold, then M21 is a global inverse of
M12. Assume that, (*) and (**) hold. Let I be an arbitrary instance of S1. By
Corollary 7.4, we need only show that Î = chase21(chase12(I )). Let R(c1, . . . , ck)
be an arbitrary fact of I , and let I ′ be a one-tuple instance that contains only
this fact. It follows easily from (*) that Î ′ ⊆ chase21(chase12(I ′)). Therefore,
Î ⊆ chase21(chase12(I )). As for the reverse inclusion, assume that it were to fail,
so that chase21(chase12(I )) is not a subinstance of Î . By the argument given in
the proof of Case 2 of Theorem 13.1, we would have a violation of (**).

We have shown that M21 is a global inverse of M12 if and only if (*) and
(**) hold. For each R in S1, we see that (*) is an NP property (we simply guess
the chase steps and verify that the result of these chase steps is not in Î ). So
(*) is an NP property. To show that (**) is a coNP property, we must show that
its negation is an NP property. The negation of (**) says that there is a small
instance I such that chase21(chase12(I )) is not a subset of Î . This is indeed
an NP property: we simply guess the small instance I and guess the chase
steps. This shows that the property that M21 is a global inverse of M12 is a DP
property.

We now show that the problem is DP-hard. Let CLIQUE be the problem
where the input is an undirected graph G with no self-loops, along with an
integer k, and the question is whether G has a clique of size at least k (a
clique is a set of nodes such that there is an edge between every pair of distinct
nodes). Let SAT be the problem where the input is a propositional formula ϕ

in conjunctive normal form, and the question is whether the formula is not
satisfiable. We shall show that, given G, k, and ϕ as above, we can construct,
in polynomial time, schema mappings M12 = (S1, S2, �12) and M21 = (S2, Ŝ1,
�21), where �12 and �21 are finite sets of full s-t tgds, such that M12 is a global
inverse of M12 if and only if (a) G has a clique of size at least k and (b) ϕ is
not satisfiable. Since CLIQUE is an NP-complete problem and SAT is a coNP-
complete problem, this is sufficient to prove DP-hardness.

The way our proof will proceed is that we will show the following:

(A) Given G and k, we can construct, in polynomial time, schema mappings
M′

12 = (S′
1, S′

2, �′
12) and M′

21 = (S′
2, Ŝ′

1, �′
21), where �′

12 and �′
21 are finite

sets of full s-t tgds, such that M′
21 is a global inverse of M′

12 if and only if
G has a clique of size at least k.

(B) Given ϕ, we can construct, in polynomial time, schema mappings M′′
12 =

(S′′
1, S′′

2, �′′
12) and M′′

21 = (S′′
2, Ŝ′′

1, �′′
21), where �′′

12 and �′′
21 are finite sets of

full s-t tgds, such that M′′
21 is a global inverse of M′′

12 if and only if ϕ is not
satisfiable.
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If necessary, rename the relational symbols so that S′
1, S′

2, Ŝ′
1, S′′

1, S′′
2, and Ŝ′′

1
are pairwise disjoint. Let S1 = S′

1 ∪ S′′
1 and S2 = S′

2 ∪ S′′
2. Let �12 = �′

12 ∪ �′′
12

and �21 = �′
21 ∪ �′′

21. Let M12 = (S1, S2, �12) and M21 = (S2, Ŝ1, �21), By
Lemma 14.12, we know that M21 is a global inverse of M12 if and only if M′

21

is a global inverse of M′
12 and M′′

21 is a global inverse of M′′
12. Therefore, if we

fulfill (A) and (B), then it follows that M21 is a global inverse of M12 if and only
if G has a clique of size at least k and ϕ is not satisfiable. So fulfilling (A) and
(B) is sufficient to prove DP-hardness.

For part (B), we take M′′
12 and M′′

21 to be the schema mappings defined in
the proof of Theorem 14.9 under the names M12 and M21, respectively. We
showed in that proof that M′′

21 is a global inverse of M′′
12 if and only if ϕ is not

satisfiable.
So we need only prove part (A). Assume that the graph G has n distinct

nodes a1, . . . , an. Let S′
1 consist of the n-ary relational symbol D, and let S′

2
consist of the the n-ary relational symbol D′ and the binary relation symbol E.
Let x1, . . . , xn be distinct variables, and let ψ be the conjunction of all formulas
E(xi, x j ) such that (ai, aj ) is an edge of the graph G. Let �12 consist of the
copying tgd D(x1, . . . , xn) → D′(x1, . . . , xn) and the tgd D(x1, . . . , xn) → ψ . Let
y1, . . . , yk be k distinct new variables, and let α( y1, . . . , yk) be the conjunction
of all formulas E( yi, y j ) where 1 ≤ i ≤ k, 1 ≤ j ≤ k, and i �= j . Let �′

21 consist

of the tgd D′(x1, . . . , xn) ∧ α( y1, . . . , yk) → D̂(x1, . . . , xn). Note that each of the
tgds in �′

12 and �′
21 are full. We now show that G has a clique of size at least k if

and only if M′
21 is a global inverse of M′

12. By Corollary 7.4, we need only show
that G has a clique of size at least k if and only if, for every ground instance
I , we have Î = chase′

21(chase′
12(I )). By chase′

12, we mean the result of chasing
with �′

12, and similarly for chase′
21.

Note first that, if h is a homomorphism from α( y1, . . . , yk) to the edge
relation E of G, then h is one-to-one. This is because if i �= j , then
(h( yi), h( y j )) is necessarily an edge of G, since h is a homomorphism and
since E( yi, y j ) is a conjunct of α( y1, . . . , yk). Since G has no self-loops, it fol-
lows that h( yi) �= h( y j ), as desired. Therefore if h is a homomorphism from
α( y1, . . . , yk) to the edge relation E of G, then G must have a clique of size at
least k.

Assume that G does not have a clique of size at least k; we must show
that there is a ground instance I such that Î �= chase′

21(chase′
12(I )). Let I be

the ground instance with the single fact D(a1, . . . , an). Then the E relation of
chase′

12(I ) is the edge relation of G. So chase′
21(chase′

12(I )) is empty: this is
because, as we noted, if there is a homomorphism from α( y1, . . . , yk) to the
edge relation E of G, then G must have a clique of size at least k. Hence
Î �= chase′

21(chase′
12(I )), as desired.

Assume that G has a clique of size at least k; we must show that for ev-
ery ground instance I , we have Î = chase′

21(chase′
12(I )). Let I be an arbitrary

ground instance. Let J∗ = chase′
12(I ) and let I∗ = chase′

21(J∗). We must show
that Î = I∗. Thus, we must show that DI = D̂I∗

. Clearly D̂I∗ ⊆ D
′ J∗ = DI ,

so D̂I∗ ⊆ DI , Therefore, we need only show that DI ⊆ D̂I∗
. Assume that

(b1, . . . , bn) ∈ DI ; we must show that (b1, . . . , bn) ∈ D̂I∗
. Now (b1, . . . , bn) ∈ D

′ J∗
.
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Furthermore, (bi, bj ) ∈ E J∗
whenever (ai, aj ) is an edge of G. Since G has a

clique of size at least k, there is a set C ⊆ {1, . . . , n} of size k such that (ai, aj )
is an edge of G whenever i and j are distinct members of C. So (bi, bj ) ∈ E J∗

whenever i and j are distinct members of C. Assume that i1, . . . , ik are the
distinct members of C. By letting b1, . . . , bn play the roles of x1, . . . , xn, re-
spectively, and letting bi1 , . . . , bik play the roles of y1, . . . yk , respectively, in
the tgd D′(x1, . . . , xn) ∧ α( y1, . . . , yk) → D̂(x1, . . . , xn) of �′

21, it follows that

(b1, . . . , bn) ∈ D̂I∗
, as desired.

We have now proven the complexity bounds in Table II (the coNP-hardness
result in the third line is inherited from the coNP-completeness result in the
fourth line).

15. SUBSEQUENT WORK

Fagin et al. [2007] is a followup to this article. Its main focus is a relaxed notion
of the global inverse, called a quasi-inverse. In addition, Fagin et al. [2007]
resolves two problems that were left open in the preliminary version [Fagin
2006] of this article. One of these problems was the “language of inverse,” as we
now discuss. In this article, we focus on inverses that are specified by a finite
set of s-t tgds. For example, let M be a schema mapping specified by a finite set
of s-t tgds, and let M′ be the canonical candidate tgd global inverse of M. Then
M′ is specified by a finite set of s-t tgds. Furthermore, M′ is a global inverse of
M if there is any global inverse of M that is specified by a finite set of s-t tgds.
This leaves open the question as to how rich a language is needed to specify a
global inverse of M. The answer, as shown in Fagin et al. [2007], is full tgds
with constants and inequalities, which we now define.

Let Constant be a new relation symbol. A tgd (from T to Ŝ) with constants and
inequalities is a first-order formula of the form ∀x(ϕ(x) → ∃yψ(x, y)), where

—the formula ϕ(x) is a conjunction of
(1) atoms over T, such that every variable in x occurs in at least one of them;
(2) formulas Constant(x), where x is a variable in x;
(3) inequalities x �= x ′, where x and x ′ are variables in x;

—The formula ψ(x, y) is a conjunction of atoms over Ŝ (not all of the variables
in x need to appear in ψ(x, y)).

Naturally, an atomic formula Constant(x) evaluates to true if and only if x is
interpreted by a value in Const. A tgd with constants and inequalities is full
if there are no existential quantifiers. An example of a tgd with constants and
inequalities is ∀x∀ y∀z((P(x, y , z) ∧ Constant(x) ∧ Constant( y) ∧ (x �= y)) →
∃wQ(x, y , w)).

THEOREM 15.1 [FAGIN ET AL. 2007]. Let M be a schema mapping specified by
a finite set of s-t tgds. If M has a global inverse then the following hold.

1. M has a global inverse M′ specified by a finite set of full tgds with constants
and inequalities.

2. There is an exponential-time algorithm for producing M′.
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3. Statement (1) is not necessarily true if we disallow either constants or inequal-
ities in the premise, even if we allow existential quantifiers in the conclusion
(and so allow nonfull dependencies to specify M′).

The second problem that was left open in the preliminary version [Fagin
2006] and was resolved in Fagin et al. [2007] was the question of whether
the unique-solutions property is a necessary and sufficient condition for the
existence of a global inverse of those schema mappings that are specified
by a finite set of s-t tgds. (By Theorem 6.7, it is a necessary condition, and
by Theorem 6.10, it is a necessary and sufficient condition for LAV schema
mappings.) It was shown in Fagin et al. [2007] that the condition is not suffi-
cient. Instead, it was shown that a strictly stronger condition, called the sub-
set property (or, under the notation of Fagin et al. [2007], the (=, =)-subset
property), is necessary and sufficient. This condition says that if I1 and I2

are two ground instances such that every solution for I2 is a solution for I1,
then I1 ⊆ I2.

16. SUMMARY AND OPEN PROBLEMS

We have given a formal definition for one schema mapping to be an inverse of
another schema mapping for a class S of ground instances. We have obtained
a number of results about our notion of inverse, and some of these results are
surprising.

In Section 15, we discussed two problems that were left open in the pre-
liminary version [Fagin 2006] of this article and were resolved in Fagin et al.
[2007]. There are still many open problems, as we would expect from a “first
step” article like this.

—In Section 14, there are two complexity gaps (in line 3 of Table I and in
line 3 of Table II). These complexity gaps deal with inverses that are specified
by a finite set of s-t tgds. Furthermore, in Corollary 14.10, it was shown that
the problem of deciding if a schema mapping specified by a finite set of s-t
tgds has a global inverse (not necessarily specified by a finite set of s-t tgds)
is coNP-hard. As we noted in Section 3, it is not even known whether this
problem is undecidable! This is perhaps the most natural and interesting
remaining open problem. Another problem, as mentioned also in Section 3,
is to find a natural class of schema mappings that arise in practice where
this complexity is greatly reduced.

—We have focused most of our attention on schema mappings M12 specified
by a finite set of s-t tgds. What about more general schema mappings than
those specified by s-t tgds? What if we allow target dependencies, such as
functional dependencies?

—We have focused on right inverses, where we are given M12 and want to find
a right inverse M21. It might be interesting to study the left inverse, where
we are given M21 and we wish to find M12.

—In Example 5.5 we showed an example of a schema mapping specified by s-t
tgds that has a unique inverse specified by s-t tgds. It might be interesting
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to examine the question of when there is a unique inverse mapping specified
in a given language.

—Our next open problem is somewhat imprecise, but is important in prac-
tice. Assume that we are given M12. How do we find a large class S and
a schema mapping M21 such that M21 is an S-inverse of M12? In fact,
there might be several such large classes S and corresponding inverse map-
pings. How do we find them? This problem is imprecise, because it is not
clear what we mean by a “large class” S. We should not necessarily restrict
our attention to classes S defined by a finitely chasable set � of tgds and
egds.

—It might be interesting to explore more fully the unique-solutions property,
which is an interesting notion in its own right.

—We might explore the property of Î and chase21(chase12(I )) being homomor-
phically equivalent. By Propositions 7.5 and 7.6, this notion is implied by but
strictly weaker than M21 being an inverse of M12 for I .

This article is, we think, simply the first step in a fascinating journey!
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