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Abstract

The data mapping problem is to discover effective map-
pings between structured representations of data. These
mappings are the basic ‘glue’ for facilitating large-scale
ad-hoc information sharing between autonomous peers in a
dynamic environment. Automating their discovery is one of
the fundamental unsolved challenges for information inte-
gration and sharing on the Web. We outline a general ap-
proach to automating the discovery of mappings between
relational data sources which leverages new perspectives
on the data mapping problem and report on a prototype im-
plementation. Our approach utilizes heuristic search within
a space delineated by basic relational transformation op-
erators. A further novelty of our approach is that these op-
erators include data to metadata transformations (and vice
versa), allowing a generalization of previous solutions such
as token-based schema matching.

1. Introduction

The vision of peer-to-peer database management sys-
tems (P2PDBMS) brings promise of ad-hoc dynamic in-
formation exchange, with support for richer semantics than
the current breed of simple file-sharing peer-to-peer sys-
tems [7, 12]. The complementary vision of the Semantic
Web also holds promise for intelligent complex informa-
tion exchange on the Web [2, 9]. These systems cannot and
should not be built from scratch, since a significant portion
of data on the Web resides in non-Semantic-Web-enabled
data sources [4, 9]. The participation of these data sources in
P2PDBMS and Semantic Web information sharing scenar-
ios requires new technologies which respect source auton-
omy while enabling ad-hoc complex information exchange.

A fundamental unsolved challenge in information inte-
gration and sharing on the Web is the Data Mapping Prob-
lem: automating the discovery of effective mappings be-
tween structured representations of data. These mappings
are the basic ‘glue’ for facilitating large scale ad-hoc in-
formation exchange between autonomous peers in a dy-
namic environment [9]. This is a central problem that is en-

Catharine M. Wyss
Computer Science & School of Informatics
Indiana University, Bloomington, USA
cmw@cs . indiana.edu

countered in many information management settings. Con-
sequently, many variants of the problem have been identi-
fied and investigated: schema mapping and query discovery
[19], schema matching [21], semantic mapping [6], ‘match-
ing’ on information models [17], data translation [20, 23],
and ontology matching [10]. The ubiquitous nature of the
problem is illustrated in Figure 1, where arrows indicate
mappings between data sources within or across peers. 71,
for example, maps a local data source to the global schema
of Peer A, and T'2 maps data from Peer A to data in Peer B.

We are investigating the data mapping problem in the
Modular Integration of Queryable Information Sources
(MIQIS) project at Indiana University [26], a formal frame-
work for data exchange on the Semantic Web and in
P2PDBMS. Among the distinguishing features of MIQIS is
a focus on the modular nature of information systems, en-
compassing XML, relational, text, ‘Deep Web’ [4], and
other data sources. The framework fully respects the au-
tonomy of peers to manage locally their schemata and con-
cepts. On the Semantic Web and P2PDBMS, global consen-
sus and monolithic architectures are unlikely and ultimately
infeasible. MIQIS fully accommodates the heterogene-
ity and autonomy of data sources in ad-hoc dynamically
evolving environments.

1.1. Contributions and Outline of Paper

This paper characterizes the general data mapping prob-
lem and presents a novel data mapping solution for rela-
tional data sources. We also report on a prototype imple-
mentation and give preliminary performance results. Our
approach leverages several perspectives on the data map-
ping problem which are highlighted in the MIQIS project
[26]:

e Rosetta Stone Principle: Small ‘critical instances’ of
source and target schemas provided by the user can be
effectively used to generate data maps.

e Tuple Normal Form: A standardized format for critical
instances allows for their uniform manipulation.
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Figure 1. Data mappings as inter- and intra-peer ‘glue’ for P2P and Web information systems.

e Data Mapping as a Search Problem: We view the data
mapping problem as search in a space of transforma-
tions on data in tuple normal form.

We briefly develop each of these points in this paper. We be-
gin with an introduction to the data mapping problem and
a discussion of our approach in Section 2. A prototype im-
plementation and performance results are then presented in
Section 3, followed by a discussion of related research in
Section 4. Finally, we give concluding remarks and indica-
tions for future work in Section 5.

2. The Data Mapping Problem

How can we facilitate the discovery of an appropri-
ate mapping between data structured under two distinct
schemas with minimal user input?

Example 1 Consider two tables containing the same stu-
dent grade information and a mapping T between them:

S:

Name Assignment Percentage
Saori Assignmentl 94
Saori Assignment2 97
Yukie Assignmentl 88
Yukie Assignment2 89

7
T:
Student Assignmentl Assignment2
Saori 94 97
Yukie 88 89

T must promote “Assignment” values in S to col-
umn names in T and match the “Name” and “Student”
columns.

Can the discovery of 7 be (semi) automated? We would
like our mapping language to be practical and declarative.
In the context of RDBMS, this means mappings must be
SQL compatible queries to maximize the use of underly-
ing RDBMS technology.

A general statement of this problem is as follows:

Definition 1 (Data Mapping Problem) Given source data
schema S, target data schema T, and query language L,
find a transformation T € L (if it exists) such that for any
instance s of S and corresponding instance t of T, s — t.

This definition encompasses all variants of the data map-
ping problem listed in Section 1. Note that S and 7 are not
assumed to be schemas of the same data model. It is not im-
mediately clear how to automate a solution to the general
problem; furthermore, it is generally believed that the full
problem is ‘Al-Complete’ [17]. In MIQIS, we focus on sub-
cases of the problem by following a modular approach to in-
formation exchange in P2PDBMS. In this paper we develop
the MIQIS module to generate SQL compatible transforma-
tions when S and 7 are both relational schemas.

Example 2 Suppose that three peers contain student grade
information within a larger network for managing student
information (Figure 2). As shown, there are many natural
ways to organize even the simplest datasets such as these.
To move between these representations of student data, both
schema matchings and data-metadata transformations must
be performed. In the previous example we saw that trans-
forming data in database G1 into data structured under
database G2 required that data values be promoted to col-
umn names and column names be matched. To move data
from G3 to G1, relation names must be demoted to data val-
ues.

2.1. Rosetta Stone Principle

A key component of our approach is the Rosetta Stone
Principle: user-provided small “critical’ instances of source
schema S and target schema 7 can be effectively used to
guide the discovery of 7 in a transformation space [26].
These canonical instances must illustrate all of the appro-
priate restructurings between source and target to guide the
search process, and the information ‘content’ of the target
must be contained in the source [23]. We also explicitly con-
sider the full data mapping space for relational DBs: schema
matchings (i.e., ‘traditional’ metadata-metadata mappings
between schema elements [21]) and data-metadata map-
pings where data elements in one structure serve as meta-
data components in the other (or vice versa) [13, 18]. It
is important to note that consideration of the full map-
ping space blurs the distinction between schema matching
and schema mapping [19], since data-metadata mapping
encompasses schema matching as a special case. To press
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Student Assignmentl Assignment2
Saori 94 97
Yukie 88 89
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Name Percentage

Grades:
Name Assignment Percentage
Saori Assignmentl 94
Saori Assignment2 97 Z:j
Yukie Assignmentl 88
Yukie Assignment2 89
G3
Assignmentl:
Name Percentage
Saori 94
Yukie 88

Saori 97
Yukie 89

Figure 2. Mappings between student grade representations.

the point, when metadata itself is seen as data, the entirety
of schema matching and schema mapping is encompassed
in data mapping. The output of the solution presented in
this paper is a data-to-data transformation that is parameter-
ized semantically by schema information. For example, the
transform generated for mapping G1 to G2 holds for any
number of assignment values in G1.

2.2. Tuaple Normal Form

Another key technical component of our approach is a
normal form for relational data, Tuple Normal Form (TNF),
first introduced by Litwin et al. [15]. This standardized for-
mat for representing relational data allows us to seamlessly
manipulate metadata alongside data using SQL. Further-
more, multiple input relations are represented in a single
TNF relation; thus TNF enables data mappings where the
source and/or target information may be split over more
than one relation (such as the transformations involving
database G3 in Figure 2).

For a given relation R, we compute TNF of R (denoted
R*) as follows. First, every tuple in the relation is given a
unique identifier. Then, R* is a four-column relation with
attributes TID, REL, ATT, and VALUE containing the data
in R in a piecemeal fashion. The TNF of an input database
D (denoted D*) is simply the union of R* for all R € D.
Note that the TNF of a database can be computed in SQL
using the system tables. We illustrate this with database G3.

Example 3 TNF of database G3:

G3*:

TID REL ATT VALUE
ty Assignmentl Name Saori
ty Assignmentl Percentage 94
to Assignmentl Name Yukie
[5) Assignmentl Percentage 88
3 Assignment2 Name Saori
t3 Assignment?2 Percentage 97
by Assignment2 Name Yukie
ty Assignment?2 Percentage 89

2.3. Relational Transformation Space

We consider a fixed set of simple transformations on data
in TNF. This allows us to consider data mapping discovery
as an exploration of the transformation space of these op-
erators on the source instance. Search terminates when the
TNF representation of the transformed source instance be-
comes a superset of the TNF representation of the target in-
stance. At this point, the transformational path is translated
to a parameterized map between instances of the source
schema and instances of the target schema.

In this approach, no assumptions of common domains,
global schema, underlying generative ontology, or other
simplifications are made. Data are treated simply as opaque
objects; the search process is purely syntactically and struc-
turally driven [3, 11]. As per the Rosetta Stone Principle,
the user-provided critical source and target instances pro-
vide the initial matches which drive the search process.

All transformations between the databases in Figure 2
can be performed using compositions of the simple, com-
positional, invertible transformations given in Table 1. We
omit a complete formal definition of the operators in this
paper; these operators mimic algebraic operators developed
elsewhere for federated relational systems [22, 24, 25].
These operators can be implemented in SQL on the TNF
representations of relational databases.

Example 4 Consider the basic transformations involved in
restructuring the information in G1 into the format of G2:

Ry := 1 (G1*, Assignment, Percentage)
Promote assignments to metadata.
Ry := »(R1, Assignment)
Drop column “Assignment”
R3 := »(R2, Percentage)
Drop column “Percentage”
R4 := p(R3, Name, Student)
Rename attribute “Name” to “Student”
Rs5 := ®(R4, Student)
Merge assignment grades for students.

The output TNF relation Ry is exactly G2*.
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Operation Effect

1 (R) Demote Metadata. Cartesian product of relation R with a binary table containing the metadata of R.
— (R, A, B) Dereference Column A on B.Vt € R, append a new column named B with value ¢[¢[A]].

1 (R, A, B) Promote Column A to Metadata. V't € R, append a new column named ¢[A] with value ¢[B].

P (R, A) Partition on Column A. Vv € w4 (R), create a new relation named v, where ¢ € v iff ¢ € R and t[A] = v.
L(R, A) Drop column A from relation R.

B(R, A) Merge tuples in relation R based on compatible values in column A.

p(R,R',A,A’) Rename relation R to R’ and column A to A’ .

Table 1. Basic transformations defining relational search space.

Note that the user is responsible for providing post-filters
such as “Drop all students with grades less than 707, if de-
sired. The search operators focus on bulk structural trans-
formations rather than selections. In fact, selection condi-
tions cannot in general be uniquely determined [12].

2.4. Data Mapping as Search

Considering the data mapping problem as a search prob-
lem is one of the main novel contributions of this paper.
The eight basic transformations shown in Table 1 define
a relational search space for data maps. Approaching the
data mapping problem as a search problem from TNF to
TNF representations allows us to leverage existing Artificial
Intelligence (AI) search techniques [16]. The search pro-
cess is depicted in Figure 3. As discussed above, the search
space is rooted at the critical source instance in TNF and
search proceeds by applying the transformations to generate
new states. The branching factor of this search space must
take into account the active domain in the Rosetta Stone in-
stances s and ¢, which means the (unoptimized) branching
factor is proportional to |s| + |t|. In spite of this daunting
search space size, traditional Al techniques can be success-
fully applied to prune the space of examined states.

3. Prototype Implementation

A prototype semi-automatic search module for relational
data mappings has been implemented in Scheme. In this
section we discuss our prototype implementation and pre-
liminary performance results.

3.1. Search Algorithms and Heuristics

The search routine takes as input canonical source and
target instances in TNF and performs the search for a trans-
formation from the source to the target as outlined above.
A wide range of search algorithms have been developed
in the AI literature. We have implemented the A* and It-
erative Deepening A* (IDA*) [16] search procedures. We

chose these procedures because of their simplicity and ef-
fectiveness. These search algorithms make use of a heuris-
tic measure to rank search states and selectively explore
the search space based on these rankings. The evaluation
function f for ranking a search state x is calculated as
f(x) = g(x) + h(x), where g(x) is the number of trans-
forms applied to the source instance to generate x and h(z)
is a heuristic measure of the distance of « from the target. In
brief, A* basically performs a breadth-first traversal of the
search space that at each step explores the lowest f-ranked
unexamined state on the search horizon, and IDA* performs
a depth-bounded depth-first traversal of the same space us-
ing the f-rankings of states as a bound that is iteratively in-
creased until the target is generated. In practice, it has been
shown that IDA* has performance asymptotic to A* with-
out the impractical space requirements [16] and hence we
focus on IDA* in our preliminary experimental results.

We have tested these routines with three simple heuris-
tic functions for a given search state = and target state ¢. In
brief, heuristic 21 measures the number of relation, column,
and data values in the target state ¢ which are missing in
state x, heuristic ho measures the minimum number of pro-
motions (T) and demotions (|) needed to transform z into
the target ¢, and heuristic h3 is simply max{hi(x), h2(x)}.

3.2. Experimental Results

Our initial experiments have shown that IDA* with these
heuristics performs quite well. The effectiveness of IDA*
search for discovering transformations between the exam-
ple student grade databases is illustrated in Figure 4 (A).
As these results indicate, the effectiveness of the individ-
ual heuristics relative to each other vary widely on the type
of transformation. For example, h; performs very well for
mapping G3 to G1. It performs poorly relative to the other
heuristics, however, for mapping G1 to G2. Overall, h; per-
formed quite well, while hs had varying success. This indi-
cates that more work needs to be done to find a good gen-
eral purpose heuristic for all transformation scenarios.

The effectiveness of this approach for basic schema
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Figure 3. The search for relational data map-
pings.

matching (i.e., metadata-to-metadata transformations [21])
was tested on synthetic data with source and target instances
with up to 60 column name matchings. This is illustrated
in Figure 4 (B) for IDA* with no heuristic (i.e., basic it-
erative deepening depth-first search) and with heuristic h;.
Note that matching 60 schema elements with heuristic h;
required exploring only ~ 36,000 states. Clearly the ap-
proach is effective with even such a simple heuristic. In
particular, under this approach token-based schema match-
ing is possible for hitherto unrealized scenarios, such as
multi-relation mappings between wide source and target in-
stances.

4. Related Work

The approaches to data mapping most closely related
to ours are the works of Bilke and Naumann [3] on us-
ing duplicate values to guide schema matching, the Sphinx
project [1] and Doan et al. [6] on leveraging machine learn-
ing techniques for schema matching and integration, Kang
and Naughton [11] on treating data as opaque objects dur-
ing schema matching, and the Clio project [19], Torlone and
Atzeni [23], and Milo and Zohar [20] on semi-automating
the discovery of schema mappings. To our knowledge, none
of these works have considered the full space of data-
metadata transformations, with only the Sphinx [1] and Clio
[19] projects considering any aspects of such mappings. Our
work complements and extends these works with a new per-
spective on the data mapping problem and a novel solution

to this problem for the complete relational transformation
space. To our knowledge, our approach is the first to encom-
pass the full data mapping problem for relational sources.
We emphasize, however, that the solution presented in this
paper is a complementary and exploratory addition to ap-
proaches to schema matching/mapping in the literature and
can be considered as a useful addition to a multi-strategy
data mapping approach [5, 6].

5. Conclusions and Future Work

In this paper we have developed a novel solution to the
data mapping problem for relational data sources address-
ing the full space of data-metadata transformations. This
solution was founded on a new perspective on the data
mapping problem. We reported on a prototype implemen-
tation of our solution and provided initial performance re-
sults which indicate that it is effective not only for schema
matchings but also for data-metadata transformations. The
general approach we have taken is applicable to the discov-
ery of mappings between other structured representations
of information such as XML and ‘Deep Web’ sources. One
of the overarching goals of MIQIS is the development of
modules for each of these transformation spaces. The re-
sults presented here are a first step in this project.

The prototype implementation developed is clearly ef-
fective even with the simplest of search procedures and
heuristics. It has served mainly as a proof-of-concept, how-
ever. To enhance performance, we will incorporate basic
improvements developed in the literature into our IDA* im-
plementation [16] and develop smarter heuristics. We are
also investigating other techniques such as genetic program-
ming [16] for exploring the space of relational transforma-
tions.

In future work, we will also explore the application of
our approach to a domain-independent framework for data
mapping on the ‘Deep Web’ [4, 8] and the extension of our
approach to a framework for data mapping that incorporates
statistical/probabilistic name matching [3, 8, 11], where the
equality check on atoms during the search process is re-
placed with an external similarity measure. We believe that
the approach outlined in this paper can be fruitfully applied
to these scenarios.

References

[1] Barbangon, Frangois and Daniel P. Miranker, “Interactive
Schema Integration with Sphinx,” in Proc. FQAS, Springer
Verlag LNCS 3055, pp. 175-190, Lyon, France, 2004.

[2] Berners-Lee, Tim, James Hendler, and Ora Lassila, “The Se-
mantic Web,” Scientific American 284(5):34-43, May 2001.

[3] Bilke, Alexander and Felix Naumann, “Schema Matching
using Duplicates,” in Proc. IEEE ICDE, pp. 69-80, Tokyo,
Japan, 2005.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI'05)
0-7695-2414-1/05 $20.00 © 2005 IEEE



Transformation

(A)

1e+10 T T T T T
No Heuristic &=x== No Heuristic —¥%—
Heuristic 1 —= Heuristic 1
1e+09 [ Heuristic 2 4
Heuristic 3 —— 1000000 4
1e+08 q
1es07 | ] 100000 E
° % o
15 o
£ 1e+06 | 5% ! £
€ % — € 10000 F B
5] % 5]
o K] @
» 100000 |- k] B @
e 054 2
] b g 1000 F R
e = %% - -
5 10000 K =
= 03¢ =
%94
1000 894 B
,:.: 100 E
%%
894
KX
100 | 5% E
054
5% o} 1
%
of 0
%
898
0%
1 2 R X 5 1 L L L L L
G1->G2 G2->G1 G2->G3 G3->G1 G3->t 0 10 20 30 40 50 60

# of Attributes

(B)

Figure 4. Number of states examined during search for (A) DB transformations (B) schema matching.

[4] Chang, K. C.-C., B. He, C. Li, and Z. Zhang, “Struc- [17] Melnik, Sergey, “Generic Model Management: Concepts and
tured Databases on the Web: Observations and Implications,” Algorithms,” Springer Verlag LNCS 2967, 2004.
UIUC Tech Report UIUCDCS-R-2003-2321, February 2003. [18] Miller, Renée J., “Using Schematically Heterogeneous
[5] Do, Hong-Hai, and Erhard Rahm, “COMA - A System for Structures,” in Proc. SIGMOD, pp. 189-200, Seattle, 1998.
Flexible Combination of Schema Matching Approaches,” in [19] Miller, Renée J., Laura M. Haas, and Mauricio
Proc. VLDB Conf., pp. 610-621, Hong Kong, China, 2002. A. Hernindez, “Schema Mapping as Query Discov-
[6] Doan, AnHai, Pedro Domingos, and Alon Halevy, “Learn- ery,” in Proc. VLDB Conf., pp. 77-88, Cairo, Egypt, 2000.
ing to Match the Schemas of Databases: A Multistrategy Ap- [20] Milo, Tova and Sagit Zohar, “Using Schema Matching to
proach,” Machine Learning 50(3):279-301, March 2003. Simplify Heterogeneous Data Translation,” in Proc. VLDB
[7] Halevy, A. Y., Z. G. Ives, D. Suciu, and I. Tatarinov, Conf., pp. 122-133, New York City, New York, USA, 1998.
“Schema Mediation in Peer Data Management Systems,” in [21] Rahm, E. and P. Bernstein, “A Survey of Approaches to Au-
Proc. IEEE ICDE, pp. 505-516, Bangalore, India, 2003. tomatic Schema Matching,” VLDB J. 10(4):334-350, 2001.
[8] He, Bin and Kevin Chen-Chuan Chang, “Statistical Schema [22] Sattler, Kai-Uwe, et al., “Interactive Example-Driven Inte-
Matching Across Web Query Interfaces,” in Proc. ACM SIG- gration and Reconciliation for Accessing Database Federa-
MOD, pp. 217-228, San Diego, CA, USA, 2003. tions,” Information Systems 28(5):393-414, July 2003.
[9] Ives, Zachary G., Alon Y. Halevy, Peter Mork, and Igor [23] Torlone, Riccardo and Paolo Atzeni, “A Unified Framework
Tatarinov, “Piazza: Mediation and Integration Infrastructure for Data Translation over the Web.” in Proc. IEEE WISE,
for Semantic Web Data,” J. of Web Sem. 1(2):155-175, 2004. pp. 350-358, Kyoto, Japan, 2001.
(10} Kalfoglou, Y- and M. Schorlemmer, “Ontology Mapping: the 1541 yyy<s Catharine M. and Dirk Van Gucht, “A Relational Al-
State of the Art,” Knowledge Eng. Review 18(1):1-31, 2003, gebra for Data/Metadata Integration in a Federated Database
[11] Kang, Jaewoo and Jeffrey F. Naughton, “On Schema Match- System,” in Proc. ACM CIKM, pp. 65-72, Atlanta, GA, 2001.
1;5) cw;tho.gI%]]L;Ogi)gl;;Og;TgSS:rlll(i)ilzg(;? C\f’lg%s(’)& m [25] Wyss, Catharine M. and Edwar§ Rcz}aertson, “RelatiOI.lal Lan-
T : . . : guages for Metadata Integration,” ACM Transactions on
[12] Kementsietsidis, Anastasu?s, et al., Map_pmg.Data in liee.r— Database Systems, to appear June 2005.
to-Peer Systems: Semantics and Algorithmic Issues,” in [26] Wyss, Catharine M., et al., “MIQIS: Modular Integration of

[13]

(14]

[15]

(16]

Proc. ACM SIGMOD, pp. 325-336, San Diego, CA, 2003.
Krishnamurthy, Ravi, et al., “Language Features for Inter-
operability of Databases with Schematic Discrepancies,” in
Proc. ACM SIGMOD, pp. 40-49, Denver, CO, USA, 1991.
Lenzerini, Maurizio, “Data Integration: A Theoretical Per-
spective,” in Proc. PODS, pp. 233-246, Madison, WI, 2002.
Litwin, Witold, Mohammad A. Ketabchi, and Ravi Krishna-
murthy, “First Order Normal Form for Relational Databases
and Multidatabases,” SIGMOD Record 20(4):74-76, 1991.
Luger, George F., Artificial Intelligence: Structures and
Strategies for Complex Problem Solving, 5th Edition,
Addison-Wesley, London, 2005.

Queryable Information Systems,” in Proc. VLDB Workshop
1IWeb, pp. 136-140, Toronto, Canada, 2004.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI'05)
0-7695-2414-1/05 $20.00 © 2005 IEEE



