
A Semantic Approach for Schema Evolution and Versioning
in Object-Oriented Databases

Enrico Franconi1, Fabio Grandi2 and Federica Mandreoli2

1 Dept. of Computer Science, University of Manchester, UK
http://www.cs.man.ac.uk/˜franconi/

franconi@cs.man.ac.uk
2 Dip. di Elettronica, Informatica e Sistemistica, Università di Bologna, Italy

{fgrandi |fmandreoli}@deis.unibo.it

Abstract. In this paper a semantic approach for the specification and the manage-
ment of databases with evolving schemata is introduced. It is shown how a general
object-oriented model for schema versioning and evolution can be formalized; how
the semantics of schema change operations can be defined; how interesting reasoning
tasks can be supported, based on an encoding in description logics.

1 Introduction

The problems of schema evolution and versioning arose in the context of long-lived database
applications, where stored data were considered worth surviving changes in the database
schema [25]. According to a widely accepted terminology [19], a database supports schema
evolution if it permits modifications of the schema without the loss of extant data; in addi-
tion, it supports schema versioning if it allows the querying of all data through user-definable
version interfaces. For the sake of brevity, we will consider the schema evolution as a special
case of the schema versioning where only the current schema version is retained.

With schema versioning, different schemata can be defined and selected by means of
a suitable “coordinate system”: symbolic labels are often used in design systems to this
purpose, whereas time values are the elective choice for temporal applications. In a gen-
eralized versioning model [14, 15], as required by advanced applications (e.g. CAD/CAM,
software engineering and GIS), the support of both temporal and design schema versions
should be taken into account. In this context, object-oriented data models are usually con-
sidered, though schema versioning in relational databases [11] has also been studied deeply.
In particular, the adoption of an object-oriented data model is the most common choice in
the literature concerning schema evolution.

The contribution of this paper concerns the introduction of a semantic approach for the
specification and the management of evolving database schemata. The proposal is based
on a formal framework which consists of an object-oriented data model extended with
schema versions and its encoding in a description logics which supports complex reason-
ing tasks. The proposed model extends the “snapshot” object-oriented model introduced in
[1] and developed in [8], which is consistent with all the static features of UML/OMT and
ODMG models. Moreover, it provides full support for the taxonomy of primitive schema
changes usually considered in the literature [4]. Formal semantics for the schema (version)
and for the supported schema change operations is introduced. It is then proved how both the
schemata and the schema changes can be encoded as inclusion dependencies in a suitable
description logics, based on ALCQI [8]. Furthermore, it is shown how several interesting
tasks concerning evolving schemata can be solved using existing description logics reason-
ing procedures.

2 E. Franconi, F. Grandi, and F. Mandreoli

In particular, the adoption of our semantic approach for the solution of schema evolu-
tion and versioning problems is aimed at enhancing the global functionalities of a system
supporting evolving schemata as follows:

– The complexity of schema changes becomes potentially unlimited: in addition to the
classical schema change primitives, our approach enables the definition of complex and
articulated schema changes by means of powerful interschema assertions [10].

– Techniques for consistency checking and classification can be automatically applied to
any resulting schema. We define different notions of consistency, related to existence of
a legal database for the global schema or for a single schema version, or related to the
consistency of single classes within a consistent schema (version). Classification tasks
we define involve the discovery of implicit inclusion/inheritance relationships between
classes (e.g. subsumption [5]).

– The process of schema transformation can be formally checked. The provided seman-
tics of the various schema change operations makes it possible to reduce the correctness
proof to solvable reasoning tasks. As far as we know, this problem has not been consid-
ered before.

The paper is organized as follows. After a survey of the current status of the field, Sec-
tion 3 first introduces the syntax and the semantics of the object-oriented model for evolving
schemata and then formally defines the relevant reasoning problems supporting the design
and the management of an evolving schema. Section 4 provides a provably correct encoding
of the object-oriented model for evolving schemata into a description logic, so that theo-
retical results from the description logic field can be reused for the object-oriented model.
Conclusions are finally drawn in Sec. 5.

2 Related Work

The problems of schema evolution and schema versioning support have been diffusely stud-
ied in relational and object-oriented database papers: [25] provides an excellent survey on
the main issues concerned. The introduction of schema change facilities in a system in-
volves the solution of two fundamental problems: the semantics of change, which refers to
the effects of the change on the schema itself, and the change propagation, which refers
to the effects on the underlying data instances. The former problem involves the check-
ing and maintenance of schema consistency after changes, whereas the latter involves the
consistency of extant data with the modified schema.

In the relational field [26, 11], the two problems are solved by specifying a precise se-
mantics of the schema changes at intensional and extensional levels, for example via alge-
braic operations on catalogue and base tables. However, the related consistency problems
have not been considered so far. The correct use of schema changes is completely under the
database designer/administrator’s responsibility, without automatic system aid and control.

In the object-oriented field, several solutions have been proposed for the “semantics
of change” and for the “change propagation”, and also the properties of complex schema
changes and the consistency problems have been investigated to a certain extent.

In particular, two main approaches were followed to ensure consistency in pursuing the
“semantics of change” problem. The first approach is based on the adoption of invariants
and rules, and has been used, for instance, in the ORION [4] and O2 [12] systems. The
second approach, which was proposed in [24], is based on the introduction of axioms. In
the former approach, the invariants define the consistency of a schema, and definite rules

A Semantic Approach for Schema Evolution and Versioning 3

must be followed to maintain the invariants satisfied after each schema change. Invariants
and rules are strictly dependent on the underlying object model, as they refer to specific
model elements. In the latter approach, a sound and complete set of axioms (provided with
an inference mechanism) formalizes the dynamic schema evolution, which is the actual
management of schema changes in a system in operation. The approach is general enough
to capture the behaviour of several different systems and, thus, is useful for their comparison
in a unified framework. The compliance of the available primitive schema changes with the
axioms automatically ensures schema consistency, without need for explicit checking, as
incorrect schema versions cannot actually be generated.

For the “change propagation” problem, several solutions have been proposed and imple-
mented in real systems, which can be ascribed to four main approaches:

1. Immediate conversion (coercion): changes are propagated via immediate object conver-
sion – used for instance in GemStone [23];

2. Deferred conversion (lazy updates, screening): changes are propagated via deferred ob-
ject conversion – used for instance in ORION [4];

3. Filtering: changes are never propagated: objects are assigned to different schema ver-
sions according to their semantics indeed – used for instance in CLOSQL [21];

4. Hybrid: uses or combines two or more of the previous approaches – used for instance
in Sherpa [22] and O2 [12].

In any case, simple default mechanisms can be used or user-supplied conversion functions
must be defined for non-trivial extant object updates.

As far as complex schema changes are concerned, [20] considered sequences of schema
change primitives to make up high-level useful changes, solving the propagation to objects
problem with simple schema integration techniques. However, with this approach, the con-
sistency of the resulting database is not guaranteed nor checked. In [6], high-level primitives
are defined as well-ordered sets of primitive schema changes. Consistency of the resulting
schema is ensured by the use of invariants’ preserving elementary steps and by ad-hoc
constraints imposed on their application order. In other words, consistency preservation is
dependent on an accurate design of high-level schema changes and, thus, still relies on the
database designer/administrator’s skills.

This paper deals with the “semantics of change” problem, and tries to give a general an-
swer to the problem of deciding the consistency-preserving property of any given sequence
of elementary schema changes. The semantic and computational foundation of a general
framework are laid down, which allows for a natural extension to consider also the “change
propagation” problem (see Section 3.2).

3 An Object-Oriented Data Model for Evolving Schemata

In this Section we will define a general object-oriented model for evolving schemata which
supports the taxonomy usually adopted for schema changes. To this end, we will first for-
mally introduce the syntax and the semantics for the schema (version) and for the supported
schema changes, and then formulate some interesting reasoning problems. To the best of
our knowledge, this is the first attempt to formally define the semantics of schema changes
based on the semantics of the underlying data model for the single schemata.

3.1 Syntax and Semantics

The object-oriented model we propose allows for the representation of multiple schema ver-
sions. It is an expressive version of the “snapshot” – i.e., single-schema – object-oriented

4 E. Franconi, F. Grandi, and F. Mandreoli

model introduced by [1] and further extended and elaborated in its relationships with de-
scription logics by [8, 9]; in this paper we borrow the notation from [8]. The language em-
bodies the features of the static parts of UML/OMT and ODMG and, therefore, it does not
take into account those aspects related to the definition of methods. At the end of section 4
suggestions will be given on how to extend even more the expressiveness of the data model,
both at the level of the schema language for classes and types and at the level of the schema
change language.

The definition of an evolving schema S is based on a set of class and attribute names
(CS andAS respectively) and includes a partially ordered set of schema versions. The initial
schema version of S contains a set of class definitions having one of the following forms:

(S1) Class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T .
View-class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T .

A class definition introduces just necessary conditions regarding the type of the class – this
is the standard case in object-oriented data models – while views are defined by means
of both necessary and sufficient conditions. The symbol T denotes a type expression built
according to the following syntax:

(S2) T → C |
Union T1, . . . ,Tk End | (union type)
Set-of [m,n] T | (set type)
Record A1:T1, . . . ,Ak:Tk End . (record type)

where C ∈ CS , Ai ∈ AS , and [m,n] denotes an optional cardinality constraint.
A schema version in S is defined by the application of a sequence of schema changes to

a preceding schema version. The schema change taxonomy is built by combining the model
elements which are subject to change with the elementary modifications, add, drop and
change, they undergo. In this paper only a basic set of elementary schema change operators
will be introduced; it includes the standard ones found in the literature (e.g., [4]); however,
it is not difficult to consider the complete set of operators with respect to the constructs of
the data model.

(S3) M → Add-attribute C, A, T End |
Drop-attribute C, A End |
Change-attr-name C, A, A’ End |
Change-attr-type C, A, T ’ End |
Add-class C, T End |
Drop-class C End |
Change-class-name C, C’ End |
Change-class-type C, T ’ End |
Add-is-a C, C’ End |
Drop-is-a C, C’ End .

In a framework supporting schema versioning, a mechanism for defining version co-
ordinates is required. Such coordinates will be used to reference distinct schema versions
which can then be employed as interfaces for querying extant data or modified by means
of schema changes. We require that different schema versions have different version coor-
dinates. At present, we omit the definition of a schema version coordinate mechanism and
simply reference distinct schema versions by means of different subscripts.

A Semantic Approach for Schema Evolution and Versioning 5

Definition 1. An evolving object-oriented schema is a tuple S = (CS ,AS ,SV0,MS),
where:

– CS is a finite set of class names;
– AS is a finite set of attribute names;
– SV0 is the initial schema version, which includes class definitions of the form specified

in (S1) for some C ∈ CS ;
– MS is a set of modificationsMij , where i, j denote a pair of version coordinates. Each

modification is a finite sequence of schema changes of the form specified in (S3).

The set MS induces a partial order SV over a finite and discrete set of schema ver-
sions with minimal element SV0. Hence SV0 precedes every other schema version and
the schema version SVj represents the outcome of the application of Mij to SVi. S is
called elementary if every Mij in MS contains only one elementary modification, and ev-
ery schema version SVi has at most one immediate predecessor. Without loss of generality,
in the following we will consider only elementary evolving schemata.

Let us now introduce the meaning of an evolving object-oriented schema S. Informally,
the semantics is given by assigning to each schema version a possible legal database state –
i.e., a legal instance of the schema version – conforming to the constraints imposed by the
sequence of schema changes starting from the initial schema version.

Formally, an instance I of S is a tuple I =(OI , ρI , (I0, . . . , In)), consisting of a finite
set OI of object identifiers, a function ρI : OI
→ VOI giving a value to object identifiers,
and a sequence of version instances Ii, one for each schema version SVi in S. The set
VOI of values is defined by induction as the smallest set including the union of OI with all
possible “sets” of values and with all possible “records” of values. Although the set VOI is
infinite, we consider for an instance I the finite set VI of active values, which is the subset
of VOI formed by the union of OI and the set of values assigned by ρI ([8]).

A version instance Ii =(πIi , ·Ii) consists of a total function πIi : CS
→ 2O
I

, giving
the set of object identifiers in the extension of each class C ∈ CS for that version, and of
a function ·Ii (the interpretation function) mapping type expressions to sets of values, such
that the following is satisfied:

CIi = πIi(C)

(Union T1, . . . ,Tk End)Ii = T Ii
1 ∪ . . . ∪ T Ii

k

(Set-of [m,n] T)Ii = {{| v1, . . . , vk |} | m ≤ k ≤ n, vj ∈ T Ii ,

for j ∈ {1, . . . , k}}
(Record A1:T1, . . . ,Ak:Tk End)Ii = {[[A1 : v1, . . . , Ak : vk, . . . , Ah : vh]] | h ≥ k,

vj ∈ T Ii
j , for j ∈ {1, . . . , k},

vj ∈ VOI , for j ∈ {k + 1, . . . , h}}

where an open semantics for records is adopted (called *-interpretation in [1]) in order to
give the right semantics to inheritance. In a set constructor if the minimum or the maximum
cardinalities are not explicitly specified, they are assumed to be zero and infinite, respec-
tively.

A legal instance I of a schema S should satisfy the constraints imposed by the class def-
initions in the initial schema version and by the schema changes between schema versions.

6 E. Franconi, F. Grandi, and F. Mandreoli

Add-attribute C, A, T End πIj (C) = πIi(C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]] ∧ v ∈ TIj},

πIi(D) = πIj (D) for all D �= C

Drop-attribute C, A End πIi(C) = πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]},

πIi(D) = πIj (D) for all D �= C

Change-attr-name C, A, A′ End πIi(C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]} =

πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A′ : v, . . .]]},

πIi(D) = πIj (D) for all D �= C

Change-attr-type C, A, T′ End πIi(C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]] ∧ v ∈ T′Ij} =

πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]},

πIi(D) = πIj (D) for all D �= C

Add-class C, T End πIi(C) = ∅, ρI(πIi(C)) ⊆ TIj , πIi(D) = πIj (D) for all D �= C

Drop-class C End πIj (C) = ∅, πIi(D) = πIj (D) for all D �= C

Change-class-name C, C′ End πIi(C) = πIj (C′), πIi(D) = πIj (D) for all D �= C, C′

Change-class-type C, T′ End πIj (C) = πIi(C) ∩ {o ∈ OI | ρI(o) ∈ T′Ij},

πIi(D) = πIj (D) for all D �= C

Add-is-a C, C′ End πIj (C) = πIi(C) ∩ πIi(C′), πIi(D) = πIj (D) for all D �= C

Drop-is-a C, C′ End πIi(C) = πIj (C) ∩ πIj (C′), πIi(D) = πIj (D) for all D �= C

Table 1. Semantics of the schema changes.

Definition 2. An instance I of a schema S is said to be legal if

– for each class definition Class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T in
SV0 it holds that:
CI0 ⊆ CI0

j for each j ∈ {1, . . . , h},
CI0 ∩ CI0

j = ∅ for each j ∈ {h+ 1, . . . , k},
{ρI(o) | o ∈ πI0(C)} ⊆ T I0;

– for each view definition View-class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T
in SV0 it holds that:
CI0 ⊆ CI0

j for each j ∈ {1, . . . , h},
CI0 ∩ CI0

j = ∅ for each j ∈ {h+ 1, . . . , k},
{ρI(o) | o ∈ πI0(C)} = T I0;

– for each schema change Mij in M, the version instances Ii and Ij satisfy the equa-
tions of the corresponding schema change type at the right hand side of Tab. 1.

3.2 Reasoning Problems

According to the semantic definitions given in the previous section, several reasoning prob-
lems can be introduced, in order to support the design and the management of an evolving
schema.

Definition 3. Reasoning problems:

A Semantic Approach for Schema Evolution and Versioning 7

a. Global/local Schema Consistency: an evolving schema S is globally consistent if it
admits a legal instance; a schema version SVi of S is locally consistent if the evolving
schema S↓i– obtained from S by reducing the set of modifications MS↓i

to the linear
sequence of schema changes in MS which led to the version SVi from SV0– admits a
legal instance. In the following, a global reasoning problem refers to S, while a local
one refers to S↓i.

b. Global/local Class Consistency: a class C is globally inconsistent if for every legal
instance I of S and for every version SVi its extension is empty, i.e., ∀i. πIi(C) = ∅;
a class C is locally inconsistent in the version SVi if for every legal instance I of S↓i

its extension is empty, i.e., πIi(C) = ∅.
c. Global/local Disjoint Classes: two classes C,D are globally disjoint if for every legal

instance I of S and for every version SVi their extensions are disjoint, i.e., ∀i. πIi(C)∩
πIi(D) = ∅; two classes C,D are locally disjoint in the version SVi if for every legal
instance I of S↓i their extensions are disjoint, i.e., πIi(C) ∩ πIi(D) = ∅.

d. Global/local Class Subsumption: a class D globally subsumes a class C if for every
legal instance I of S and for every version SVi the extension of C is included in the
extension of D, i.e., ∀i. πIi(C) ⊆ πIi(D); a class D locally subsumes a class C in
the version SVi if for every legal instance I of S↓i the extension of C is included in the
extension of D, i.e., πIi(C) ⊆ πIi(D).

e. Global/local Class Equivalence: two classes C,D are globally/locally equivalent if C
globally/locally subsumes D and viceversa.

Please note that the classical subtyping problem – i.e., finding the explicit representation
of the partial order induced on a set of type expressions by the containment between their
extensions – is a special case of class subsumption, if we restrict our attention to view
definitions.

As to the change propagation task, which is one of the fundamental task addressed in
the literature (see Sec. 2), it is usually dealt with by populating the classes in the new version
with the result of queries over the previous version. The same applies for our framework: a
language for the specification of views can be defined for specifying how to populate classes
in a version from the previous data. Of course, at this point the problem of global consistency
of an evolving schema S becomes more complex, since it involves the additional constraints
defined by the data conversions: an instance would therefore be legal if it satisfies not only
the constraints of Definition 2 but also the constraints specified by the views. Obviously,
a schema S involving a schema change for which the corresponding semantics expressed
by the equation in Tab. 1 and the associated data conversions are incompatible would never
admit a legal instance. In general, the introduction of data conversion views makes all the
reasoning problems defined above more complex. In this paper we do not deal with the
change propagation task.

We will try to explain the application of the reasoning problems through an example.
Let us consider an evolving schema S describing the employees of a company. The schema
includes an initial schema version SV0 defined as follows:

Class Employee type-is Union Manager, Secretary, Worker End;
Class Manager is-a Employee disjoint Secretary, Worker ;
Class Secretary is-a Employee disjoint Worker ;
Class Worker is-a Employee;
View-class Senior type-is Record has staff: Set-of [2,n] Worker End;
View-class Junior type-is Record has staff: Set-of [0,1] Worker End;

8 E. Franconi, F. Grandi, and F. Mandreoli

/Senior/ /Junior/

/Everybody/

Worker Secretary Manager

Employee

Executive

{complete} {disjoint,complete}

{disjoint}

0..1

has-staff

2..�

has-staff

Fig. 1. The Employee initial schema version in UML notation.

Class Executive disjoint Secretary, Worker;
View-class Everybody type-is Union Senior, Junior End End;

Figure 1 shows the UML-like representation induced by the initial schema SV0; note that
classes with names between slashes represent the views. The evolving schema S includes a
set of schema modificationsMS defined as follows:

(M01) Add-is-a Secretary, Manager End;
(M02) Add-is-a Everybody, Manager End;
(M23) Add-is-a Everybody, Secretary End;
(M04) Add-is-a Executive, Employee End;
(M45) Add-attribute Manager, IdNum, Number End;
(M56) Change-attr-type Manager, IdNum, Integer End;
(M67) Change-attr-type Manager, IdNum, String End;
(M68) Drop-class Employee End;

Let us analyse the effect of each schema change Mij by considering the schema version
SVj it produces.

First of all, it can be noticed that in SV0 the Junior and Senior classes are disjoint
classes and that Everybody contains all the possible instances of the record type. In fact,
Everybody is defined as the union of view classes which are complementary with respect
to the record type: any possible record instance is the value of an object belonging either to
Senior or Junior.

Secretary is inconsistent in SV1 since Secretary and Manager are disjoint:
its extension is included in the Manager extension only if it is empty (for each version
instance I1, SecretaryI1 = ∅). Therefore, Secretary is locally inconsistent, as it is
inconsistent in SV1 but not in SV0.

The schema version SV3 is inconsistent because Secretary and Manager, which
are both superclasses of Everybody, are disjoint and the intersection of their extensions
is empty: no version instance I3 exists such that EverybodyI3 ⊆ ∅. It follows that S is
locally inconsistent with respect to SV3 and, thus, globally inconsistent (although is locally
consistent wrt the other schema versions).

A Semantic Approach for Schema Evolution and Versioning 9

In SV4, it can be derived that Executive is locally subsumed by Manager, since it
is a subclass of Employee disjoint from Secretary and Worker (Manager, Secre-
tary and Worker are a partition of Employee).

The schema version SV5 exemplifies a case of attribute inheritance. The attribute Id-
Num which has been added to the Manager class is inherited by the Executive class.
This means that every legal instance of S should be such that every instance of Executive
in SV5 has an attribute IdNum of type Number, i.e., ExecutiveI5 ⊆ {o | ρI(o) =
[[. . . ,IdNum : v, . . .]] ∧ v ∈ NumberI5}. Of course, there is no restriction on the way
classes are related via subsumption, and multiple inheritance is allowed as soon as it does
not generate an inconsistency.

The Change-attr-type elementary schema change allows for the modification of the type
of an attribute with the proviso that the new type is not incompatible with the old one, like
in M56. In fact, the semantics of elementary schema changes as defined in Tab. 1 always
refer to an evolution of the objects through the various versions; the only elementary change
that can refer to new objects is Add-class. Notice that, for this reason, M67 leads to an
inconsistent version if Number and String are defined to be non-empty disjoint classes.
Thus, in order to specify a schema change involving a restructuring of the data and the
creation of new objects – like in the case of the change of the type of an attribute with
an incompatible new type – a sequence of Drop-class and Add-class should be specified,
together with a data conversion view specifying how the data is converted from one version
to the other.

The deletion of the class Employee in SV8 does not cause any inconsistency in the
resulting schema version. In SV8 the Employee extension is empty and the former Em-
ployee subclasses continue to exist (with the constraint that their extensions are subsets
of the extension of Employee in SV6). Notice that, in a classical object model where the
class hierarchy is explicitly based on a DAG, the deletion of a non-isolated class would
require a restructuring of the DAG itself (e.g. to get rid of dangling edges).

4 Reasoning with an Evolving Schema

In this section we establish a relationship between the proposed model for evolving schemata
and the ALCQI description logic. To this end, we provide an encoding from an evolving
schema into anALCQI knowledge base Σ, such that the reasoning problems mentioned in
the previous section can be reduced to corresponding description logics reasoning problems,
for which extensive theories and well founded and efficient implemented systems exist. The
encoding is grounded on the fact that there is a correspondence between the models of the
knowledge base and the legal instances of the evolving schema.

We give here only a very brief introduction to the ALCQI description logic; for a full
account, see, e.g., [7]. The basic types of a description logic are concepts and roles. A
concept is a description gathering the common properties among a collection of individuals;
from a logical point of view it is a unary predicate ranging over the domain of individuals.
Inter-relationships between these individuals are represented by means of roles (which are
interpreted as binary relations over the domain of individuals). The syntax rules at the left
hand side of Figure 2 define valid concept and role expressions. Concepts are interpreted as
sets of individuals—as for unary predicates—and roles as sets of pairs of individuals—as
for binary predicates. Formally, an interpretation is a pair I = (∆I , ·I) consisting of a set
∆I of individuals (the domain of I) and a function ·I (the interpretation function of I)
mapping every concept to a subset of ∆I and every role to a subset of ∆I ×∆I , such that
the equations at the right hand side of Figure 2 are satisfied.

10 E. Franconi, F. Grandi, and F. Mandreoli

C,D→ A |
� | �I = ∆I

⊥ | ⊥I = ∅
¬C | (¬C)I = ∆I \ CI

C �D | (C �D)I = CI ∩DI

C �D | (C �D)I = CI ∪DI

∀R.C | (∀R.C)I = {i ∈ ∆I | ∀j. RI(i, j) ⇒ CI(j)}
∃R.C | (∃R.C)I = {i ∈ ∆I | ∃j. RI(i, j) ∧ CI(j)}
≥nR.C | (≥nR.C)I = {i ∈ ∆I | �{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≥ n}
≤nR.C (≤nR.C)I = {i ∈ ∆I | �{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≤ n}

R,S→ P |
R− (R−)I = {(i, j) ∈ ∆I ×∆I | RI(j, i)}

Fig. 2. ALCQI concept and role expressions and their semantics.

A knowledge base is a finite set Σ of axioms of the form C �̇ D, involving concept
expressions C,D; we write C ≡ D as a shortcut for both C �̇ D and D �̇ C. An interpre-
tation I satisfiesC �̇ D if and only if the interpretation ofC is included in the interpretation
of D, i.e., CI ⊆ DI ; it is said that C is subsumed by D. An interpretation I is a model
of a knowledge base Σ iff every axiom of Σ is satisfied by I. If Σ has a model, then it
is satisfiable; thus, checking for KB satisfiability is deciding whether there is at least one
model for the knowledge base. Σ logically implies an axiom C �̇ D (written Σ |= C �̇ D)
if C �̇ D is satisfied by every model of Σ. Reasoning in ALCQI (i.e., deciding knowl-
edge base satisfiability and logical implication) is decidable, and it has been proven to be an
EXPTIME-complete problem [7].

As in [8], the encoding of an object-oriented schema in an ALCQI knowledge base
is based on the reification of type expressions – i.e., explicit individuals exist to denote
values of complex types. We introduce the concept AbstractClass to represent the classes,
the concepts RecType, SetType to represent types, the role value to model the association
between classes and types, and the role member to specify the type of the elements of a set.
In particular, a record is represented as an individual connected by means of (functional)
roles – corresponding to attributes – to the fillers of its attributes. The mapping function ψi

translates type expressions into ALCQI concepts as follows:

ψi(C) = Ci

ψi(Union T1, . . . ,Tk End) = ψi(T1) � . . . � ψi(Tk)
ψi(Set-of [m,n] T) = SetType � ∀member.ψi(T)�

≥mmember.� �≤nmember.�
ψi(Record A1:T1, . . . ,Ak:Tk End) = RecType � ∃A1.ψi(T1) � . . . � ∃Ak.ψi(Tk)

The translation function ψi is contextualised to the ith schema version, since a class in dif-
ferent schema version may have different extensions, and it is mapped into distinct concepts.

Definition 4. TheALCQI knowledge baseΣ = ψ(S) corresponding to the object-oriented
evolving schema S = (CS ,AS ,SV0,MS) is composed by the following axioms:

– Axioms on basic types:
AbstractClass � ∃value.� �≤1value.�

RecType � ∀value.⊥
SetType � ∀value.⊥ � ¬RecType

A Semantic Approach for Schema Evolution and Versioning 11

Add-attribute C, A, T End ψj(C) ≡ ψi(C) � ∀value.(RecType � ∃A.ψj(T)),

ψi(D) ≡ ψj(D) for all D �= C

Drop-attribute C, A End ψi(C) ≡ ψj(C) � ∀value.(RecType � ∃A.�),

ψi(D) ≡ ψj(D) for all D �= C

Change-attr-name C, A, A′ End ψi(C) � ∀value.(RecType � ∃A.�) ≡
ψj(C) � ∀value.(RecType � ∃A′.�),

ψi(D) ≡ ψj(D) for all D �= C

Change-attr-type C, A, T′ End ψi(C) � ∀value.(RecType � ∃A.ψj(T
′)) ≡

ψj(C) � ∀value.(RecType � ∃A.�),

ψi(D) ≡ ψj(D) for all D �= C

Add-class C, T End ψi(C) ≡ ⊥, ψj(C) � AbstractClass � ∀value.ψj(T),

ψi(D) ≡ ψj(D) for all D �= C

Drop-class C End ψj(C) ≡ ⊥, ψi(D) ≡ ψj(D) for all D �= C

Change-class-name C, C′ End ψi(C) ≡ ψj(C
′), ψi(D) ≡ ψj(D) for all D �= C, C′

Change-class-type C, T′ End ψj(C) ≡ ψi(C) � ∀value.ψj(T
′),

ψi(D) ≡ ψj(D) for all D �= C

Add-is-a C, C′ End ψj(C) ≡ ψi(C) � ψi(C
′), ψi(D) ≡ ψj(D) for all D �= C

Drop-is-a C, C′ End ψi(C) ≡ ψj(C) � ψj(C
′), ψi(D) ≡ ψj(D) for all D �= C

Table 2. The axioms induced by the schema changes.

– For each class definition Class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T in
SV0:
ψ0(C) � AbstractClass � ψ0(C1) � . . . � ψ0(Ch) � ∀value.ψ0(T)
ψ0(C) � ¬ψ0(Ch+1) � . . . � ¬ψ0(Ck)

– For each view definition View-class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T
in SV0:
ψ0(C) � AbstractClass � ψ0(C1) � . . . � ψ0(Ch)
ψ0(C) � ¬ψ0(Ch+1) � . . . � ¬ψ0(Ck)
ψ0(C) ≡ ∀value.ψ0(T)

– For each attribute in AS :
∃Ai.� � ≤1Ai.�

– For each schema modificationMij ∈MS a corresponding axiom from Tab. 2.

Based on the results of [9], we prove that the translation is correct, in the following sense.
A precise correspondence between legal instances of S and models of the derived knowl-
edge base Σ exists. The semantic correspondence is exploited to devise a correspondence
between reasoning problems at the level of evolving schemata and reasoning problems at
the level of the description logic.

Theorem 1. A schema S is globally consistent – i.e., it admits a of legal instance – if and
only if the corresponding ALCQI knowledge base Σ is satisfiable.

In order to prove this theorem, we need to prove a lemma stating the correspondence
between legal instances of an evolving schema and description logics models. As already

12 E. Franconi, F. Grandi, and F. Mandreoli

pointed out in [9], the ALCQI knowledge base ψ(S) resulting from the translation of an
object-oriented schema S may admit models that do not have a counterpart among legal
instances of S. In particular, in a model of ψ(S) there may be bad cycles involving only
instances of SetType and RecType which can not be put in correspondence with a legal in-
stance. Since the set of possible active values associated with each object identifier is bound
by the depth of the schema, bad cycles can be unfolded obtaining individuals having a finite
representation of the same depth of the schema. Therefore, given a schema S and its trans-
lation ψ(S), the m-unfolded version I|m of a finite interpretation I of ψ(S) corresponds to
the interpretation obtained by truncating at depth m each infinite representation generated
in the process of unfolding.

Lemma 1. For each object-oriented schema S of depth m, the following mappings exist:

1. αS from instances of S into finite interpretations of ψ(S) and αV from active values of
instances of S into domain elements of the finite interpretation of ψ(S) such that:
For each legal instance I of S, αS(I) is a finite model of ψ(S), and for each type
expression T of S and each v ∈ VI , v ∈ T Ii iff αV(v) ∈ (ψi(T))αS(I), where Ii

denotes the version instance of the schema version SVi ∈ SV .
2. βS from finite interpretations of ψ(S) into instances of S, βSVi from finite interpre-

tations of ψ(S) into instances of SVi ∈ SV and βV from domain elements of the
m-unfolded versions of the finite interpretations of ψ(S) into active values of instances
of S, such that:
For each finite model I of ψ(S), βS(I) is a legal instance of S, and for each concept
ψi(T), which is the translation of a type expression T of S with respect to the schema
version SVi, and each d ∈ (∆)I|m , d ∈ (ψi(T))I|m if and only if βV(d) ∈ T βSVi(I).

Due to space limitations, the proof is only sketched in the following (it can be found in
complete form in [13]).

Proof. (1) Given a legal instance I we define an interpretationαS(I) = ((∆)αS(I), (·)αS(I))
as follows:

– ∆αS(I) = {αV(v) | v ∈ VI} where αV : VI → ∆αS(I) maps every VI element
into a distinct element of ∆αS(I). We denote with ∆id, ∆rec and ∆set the elements of
(∆)αS(I) corresponding to object identifiers, record and set values, respectively.

– The interpretation of atomic concepts is defined as follows:
(ψi(C))αS(I) = {αV(o) | o ∈ πIi(C)}, for every ψi(C) corresponding to C ∈ CS
where SVi ∈ SV , (AbstractClass)αS(I) = ∆id, (RecType)αS(I) = ∆rec, (SetType)αS(I) =
∆set.

– The interpretation of atomic roles is defined as follows:
(A)αS(I) = {(d1, d2) | d1 ∈ ∆rec and α−

V (d1) = [[. . . , A : α−
V (d2), . . .]]}, for ev-

ery A corresponding to an attribute name A ∈ AS , (member)αS(I) = {(d1, d2) |
d1 ∈ ∆set and α−

V (d1) = {. . . , A : α−
V (d2), . . . }}, (value)αS(I) = {(d1, d2) |

(α−
V (d1), α−

V (d2)) ∈ ρI}

Then, we can prove by induction on their structure that for each type expression T of S
and each v ∈ VI , v ∈ T Ii iff αV(v) ∈ (ψi(T))αS(I). From the second part of the thesis
and since I is legal, we can also prove that αS(I) is a finite model of ψ(S).

(2) Given a finite model I of ψ(S) of depth m, we define a legal instance βS(I) as
follows:

A Semantic Approach for Schema Evolution and Versioning 13

– βV : (∆)I|m → VβS(I) maps every (∆)I|m element into a distinct element of VβS(I)

such that the following conditions are satisfied:

• OβS(I) ⊆ VβS(I) is the set {βV(d) | d ∈ (AbstractClass)I|m};
• if d ∈ (RecType)I|m , (d, di) ∈ (Ai)I|m for i ∈ {1, . . . , k} where k is the greatest

arity, then βV(d) = [[A1 : βV(d1), . . . , Ak : βV(dk)]];
• if d ∈ (SetType)I|m , (d, di) ∈ (member)I|m for i ∈ {1, . . . , k} where k is the

greatest arity, then βV(d) = {βV(d1), . . . , βV(dk)};
– for each C ∈ CS , for each SVi ∈ SV , πβSVi(I)(C) = {βV(d) | d ∈ (ψi(C))I|m};
– ρβS(I) = {(o, v) | βV(d1) = o, βV(d2) = v, (d1, d2) ∈ (value)I|m}.

Then, we can prove by induction on the structure of the concept expression that for
each concept ψi(T), which is the translation of a type expression T of S with respect to
the schema version SVi, and each d ∈ (∆)I|m , d ∈ (ψi(T))I|m if and only if βV(d) ∈
T βSVi(I). From the second part of the thesis and since I is a finite model of depth m of
ψ(S) we can also prove that βS(I) is a legal instance of S. �

Using standard techniques in description logics, it is possible to reduce the reasoning
problems at the level of the evolving schema (as defined in Definition 3) to knowledge base
satisfiability problems in the description logic.

Corollary 1. Given S, the reasoning problems defined in Definition 3 can be polynomially
reduced to knowledge base satisfiability problems on ψ(S). The complexity of the above
reasoning problems in S is thus in EXPTIME.

Please note that this decidability result does not contrast with the undecidability results with
functional and inclusion dependencies, since only unary dependencies are involved in this
formalism. Moreover, the worst case complexity in EXPTIME does not imply bad practical
computational behaviour in the real cases: in fact, a preliminary experimentation with the
description logic system FaCT [18, 17] shows that reasoning problems in realistic scenarios
of evolving schemata are solved very efficiently.

As a final remark, it should be noted that the high expressiveness of the description logic
constructs can capture an extended version of the presented object-oriented model, which
includes not only taxonomic relationships, but also arbitrary boolean constructs, inverse
attributes, n-ary relationships, and a large class of integrity constraints expressed by means
of ALCQI inclusion dependencies [8].

The last point suggests that axioms modelling schema changes can be freely combined
in order to transform a schema in a new one. Some combination can be defined at database
level by introducing new non-elementary primitives. For the sake of brevity, we list some
interesting examples we have considered:

Generalisation/Specialisation of an Attribute. The attribute A of a class C becomes an
attribute of a C’s superclass (generalisation) or of a subclass (specialisation).

Split of an Attribute. In class C the attribute A is split into two attributes A′ and A′′.
Split of a Class. The class C is split into two classes C′ and C′′.
Union of Attributes/Classes. Dual of the corresponding split operations.
Intersection/Difference of Classes. The new class C is the intersection (difference) of

classes C′ and C′′.
Decomposition of a class into a set of classes. One or more attributes in a class C are re-

placed by references to newly defined classes built from the substituted attributes [6].

14 E. Franconi, F. Grandi, and F. Mandreoli

5 Conclusions and Further Work

This paper deals with the support of database schema evolution and versioning by intro-
ducing a general framework based on a semantic approach. The reducibility of a general
object-oriented conceptual model to the proposed framework made it possible to provide
a sound foundation for the purposes stated in the Introduction. In particular, the adoption
of a description logic for the framework specification implies the availability of powerful
services which can be proved decidable.

We are currently working to extend the framework to include a view language for data
conversion, for which the evaluation, consistency, and containment problems (under the
constraints given by the evolving schema) could still be proved decidable. Once this view
language is available, it would be possible to use it also for accessing the data through
the schema versions, in both the case when the schema evolves but a single database is
maintained, and the more general case when a different database is associated to every
schema version [11]. Legacy applications could reuse the same query formulation related to
a version of the schema different from the one modelling the actual data.

More complex is the case when a query – possibly over more than one conceptual
schema – requires an answer from more than one pool of data. This is the case when a par-
ticular object maintains its identity over different version – i.e., it evolves with the schema
by varying its structural properties – and it is requested to have an overview of its evolution
over time [3, 2]. In this case an explicit treatment of time is required in the formal frame-
work. By adopting a temporally extended conceptual data model with implicit time [16],
and by assuming that objects in the same database have implicitly always the same times-
tamp – the one labelling the database version, the framework proposed in this paper easily
lifts up to cover the case of having multiple pools of data. In fact, the set of pools can be
considered as a unique temporal database where each pool represents a temporal snapshot1,
and queries involving several schemata are encoded as temporal queries involving terms in
different time points.

References

1. S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. Journal of the
ACM, 45(5):798–842, 1998. A first version appeared in SIGMOD’89.

2. Alessandro Artale and Enrico Franconi. Schema integration of temporal databases. Technical
report, University of Manchester, 1999.

3. Alessandro Artale and Enrico Franconi. Temporal ER modeling with description logics. In Proc.
of the International Conference on Conceptual Modeling (ER’99). Springer-Verlag, November
1999.

4. J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In Proc. of the ACM-SIGMOD Annual Conference,
pages 311–322, San Francisco, CA, May 1987.

5. S. Bergamaschi and B. Nebel. Automatic Building and Validation of Multiple Inheritance Com-
plex Object Database Schemata. International Journal of Applied Intelligence, 4(2):185–204,
1994.

6. P. Brèche. Advanced Principles of Changing Schema of Object Databases. In Proc. of the 8th Int’l
Conf. on Advanced Information Systems Engineering (CAiSE), pages 476–495, Crete, Greece,
May 1996.

1 The case corresponds to the multi-pool solution for temporal schema versioning of snapshot data
in the [11] taxonomy.

A Semantic Approach for Schema Evolution and Versioning 15

7. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi. Reasoning in
expressive description logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning. Elsevier, 1999. To appear.

8. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for conceptual data
modeling. In Jan Chomicki and Günter Saake, editors, Logics for Databases and Information
Systems, pages 229–263. Kluwer Academic Publisher, 1998.

9. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based representation
formalisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

10. T. Catarci and M. Lenzerini. Representing and Using Interschema Knowledge in Cooperative
Information Systems. Journal of Intelligent and Cooperative Systems, 2(4):375–398, 1993.

11. C. De Castro, F. Grandi, and M. R. Scalas. Schema Versioning for Multitemporal Relational
Databases. Information Systems, 22(5):249–290, 1997.

12. F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec. Schema and Database Evolution in
the O2 Object Database System. In Proc. of the 21st Int’l Conf. on Very Large Databases (VLDB),
pages 170–181, Zurich, Switzerland, September 1995.

13. Enrico Franconi, Fabio Grandi, and Federica Mandreoli. A semantic ap-
proach for schema evolution and versioning – proof of lemma. Available at
http://www.cs.man.ac.uk/˜franconi/proof-0200.ps.

14. F. Grandi and F. Mandreoli. ODMG Language Extensions for Generalized Schema Versioning
Support. In Proc. of ECDM’99 Workshop (in conj. with ER), Versailles, France, November 1999.

15. F. Grandi, F. Mandreoli, and M. R. Scalas. A Generalized Modeling Framework for Schema
Versioning Support. In Proc. of 11th Australasian Database Conference (ADC 2000), Canberra,
Australia, January 2000.

16. H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models - A Survey. IEEE Trans-
action on Knowledge and Data Engineering, 11(3):464–497, 1999.

17. I. Horrocks. FaCT and iFaCT. In Proceedings of the International Workshop on Description
Logics (DL’99), pages 133–135, 1999.

18. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the 6th International
Conference on Logic for Programming and Automated Reasoning (LPAR’99), number 1705 in
Lecture Notes in Artificial Intelligence, pages 161–180. Springer-Verlag, 1999.

19. C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jajodia et al. The Consensus Glossary of
Temporal Database Concepts - February 1998 Version. In O. Etzion, S. Jajodia, and S. Sripada,
editors, Temporal Databases - Research and Practice, pages 367–405. Springer-Verlag, 1998.
LNCS No. 1399.

20. S.-E. Lautemann. A Propagation Mechanism for Populated Schema Versions. In Proc. of the 13th
International Conference on Data Engineering (ICDE), pages 67–78, Birmingham, U.K., April
1997.

21. S. Monk and I. Sommerville. A Model for Versioning of Classes in Object-Oriented Databases.
In Proc. of the 10th British National Conf. of Databases (BNCOD), pages 42–58, Aberdeen,
Scotland, July 1992.

22. G. T. Nguyen and D. Rieu. Schema Evolution in Object-oriented Database Systems. Data and
Knowledge Engineering, 4:43–67, 1989.

23. D. J. Penney and J. Stein. Class Modification in the GemStone object-oriented DBMS. In Proc.
of the Int’l Conf. on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 111–117, Orlando, FL, December 1987.

24. R. J. Peters and M. T. Özsu. An Axiomatic Model of Dynamic Schema Evolution in Objectbase
Systems. ACM Transaction on Database Systems, 22(1):75–114, 1997.

25. J. F. Roddick. A Survey of Schema Versioning Issues for Database Systems. Information and
Software Technology, 37(7):383–393, 1996.

26. J. F. Roddick and R. T. Snodgrass. Schema Versioning. In The TSQL2 Temporal Query Language,
pages 427–449. Kluwer, 1995.

