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Abstract 

Creating mappings between concepts in different 
ontologies is a critical step in facilitating data 
integration. In recent years, researchers have 
developed many elaborate algorithms that use graph 
structure, background knowledge, machine learning 
and other techniques to generate mappings between 
ontologies. We compared the performance of these 
advanced algorithms on creating mappings for 
biomedical ontologies with the performance of a 
simple mapping algorithm that relies on lexical 
matching. Our evaluation has shown that (1) most of 
the advanced algorithms are either not publicly 
available or do not scale to the size of biomedical 
ontologies today, and (2) for many biomedical 
ontologies, simple lexical matching methods 
outperform most of the advanced algorithms in both 
precision and recall.  Our results have practical 
implications for biomedical researchers who need to 
create alignments for their ontologies. 

Algorithms For Ontology Mapping 

Ontologies in biomedicine facilitate information 
integration, data exchange, search and query of 
heterogeneous biomedical data, and other critical 
knowledge-intensive tasks.1 The biomedical 
ontologies used today often have overlapping 
content. Creating mappings among ontologies by 
identifying concepts with similar meanings is a 
critical step in integrating data and applications that 
use different ontologies. With these mappings, for 
example, we can link resources annotated with terms 
in one ontology to resources annotated with related 
terms in another ontology. By doing so, we may 
discover new relations among the resources 
themselves (e.g., linking drugs and diseases).  
As part of the work in the National Center for 
Biomedical Ontologies (NCBO), we have developed 
BioPortal—an online repository of biomedical 
ontologies.* BioPortal provides access not only to 
ontologies, but also to mappings between them.2 
Other NCBO tools use the mappings for annotating 
resources with terms from different ontologies and 
for linking these resources to each other. Having high 

                                                             
* http://bioportal.bioontology.org 

quality mappings for BioPortal ontologies is 
therefore essential for the other tools. 
The Unified Medical Language System (UMLS) 
provides a large set of carefully constructed 
mappings between medical terminologies. However, 
UMLS provides these mappings only for a limited set 
of ontologies and terminologies. At the same time, 
researchers continue actively to extend existing 
ontologies and to develop new ones. In fact, most of 
the 130 ontologies in BioPortal are not in UMLS.  
Because identifying mappings among large 
ontologies manually is an enormous task, developing 
algorithms that automatically find candidate 
mappings is a very active area of research.3 In recent 
years, researchers in computer science have 
developed a large number of sophisticated algorithms 
that use a wide variety of methods, such as graph 
analysis, machine learning, and use of domain-
specific and background knowledge. The Ontology 
Alignment Evaluation Initiative (OAEI) is an annual 
competition, in which developers of mapping 
algorithms can compare the performance of their 
tools on the same set of ontologies.4 Participants 
compare their performance on different sets of 
ontologies, which vary in the domains they cover 
(e.g., anatomy, food) and in their structure (e.g., 
expressive ontologies, thesauri, or directory listings). 
The results of the evaluation demonstrate that the 
accuracy of the algorithms increases every year, with 
the best algorithms reaching the accuracy in the range 
of 80-85% for the ontologies in the tests (Figure 1). 
Participation in OAEI has become a de facto 
requirement for any researcher who claims to have a 
mapping algorithm that advances the state of the art. 
In order to generate mappings between biomedical 
ontologies in BioPortal, we decided to evaluate the 
tools that performed best in the OAEI competition 
and to use the best of the available tools. We also 
implemented a simple ontology-mapping algorithm, 
Lexical OWL Ontology Matcher (LOOM), to use as 
a baseline for comparison. 
Our evaluation has demonstrated that (1) most of the 
advanced algorithms are either not publicly available 
or do not scale to the size of biomedical ontologies 
today, and (2) for many biomedical ontologies, 
simple lexical matching methods outperform most of 
the advanced algorithms in both precision and recall.  



  

Methods 

Implementing the LOOM algorithm. In order to 
have a baseline for comparison, we have developed 
LOOM, a simple lexical algorithm for producing 
mappings. LOOM takes two ontologies represented 
in OWL,5 a Semantic Web ontology language, and 
produces pairs of related concepts from the two 
ontologies. In order to identify the correspondences, 
LOOM compares preferred names and synonyms of 
the concepts in both ontologies. It identifies two 
concepts from different ontologies as similar, if and 
only if their preferred names or synonyms are 
equivalent based on a modified string-comparison 
function. Our string-comparison function first 
removes all delimiters from both strings (e.g., spaces, 
underscores, parentheses, etc.). It then uses an 
approximate matching technique to compare the 
strings, allowing for a mismatch of at most one 
character in strings with length greater than four and 
no mismatches for shorter strings. 
Getting the OAEI tools. The OAEI competition had 
different tracks: each track had a specific set of 
ontologies that the tools needed to compare. In our 
experiments, we used the only track that had 
biomedical ontologies: the anatomy track. In the 
anatomy track, the tools had to provide mappings 
between the Mouse adult gross anatomy ontology 
and the human-anatomy part of the National Cancer 
Institute (NCI) Thesaurus. We tried to access, install, 
and run on BioPortal ontologies all the OAEI 2008 
tools that performed well on the anatomy track.  
Experiment 1: Using LOOM for OAEI 2008 
anatomy track. To compare LOOM performance to 
the performance of all the tools that participated in 
the OAEI competition, we used LOOM on the 
ontologies in the OAEI anatomy track. The OAEI 
organizers provided a manually created reference 
alignment between the two anatomy ontologies.6 
Figure 1 contains performance results for the OAEI 
tools, with this reference alignment used as a gold 
standard.† To compute the precision of LOOM results 
on the anatomy-track ontologies, we randomly 
selected 300 of the mappings returned by LOOM. 
With the help of a domain expert, we manually 
evaluated the correctness of these mappings. We did 
not use the reference alignment provided by the 
OAEI organizers in computing the precision because 
the reference alignment did not contain 4.8% of the 

                                                             
† Precision measures what fraction of the mappings 
returned by the algorithm was in the reference alignment 
(i.e. how many were correct). Recall measures what 
fraction of the mappings from the reference alignment was 
returned by the algorithm. F-measure is a combined 
measure of precision and recall (harmonic mean). 

correct mappings returned by LOOM. To be 
consistent with the OAEI performance results, we 
evaluated the recall of the LOOM results using the 
OAEI reference set of correct mappings.  
Experiment 2: Comparing LOOM performance to 
AROMA. As we discuss in the Results section, only 
one of the tools that participated in OAEI 2008, 
AROMA,7 was both available for us to use and 
scalable to the size of the ontologies in BioPortal. 
Thus, we compared the performance of LOOM and 
AROMA on several ontologies in BioPortal (Table 
2). We chose both pairs of ontologies where we 
expected to have high overlap, based on their domain 
of coverage, and pairs of ontologies where we 
expected low overlap. To compute the precision of 
LOOM and AROMA on these ontology pairs, we 
randomly selected 100 mappings for each ontology 
pair and each algorithm. With the help of a domain 
expert, we evaluated the correctness of each of the 
selected mappings by looking at the definitions of the 
concepts in the ontologies. Furthermore, we assessed 
the quality of the mappings that AROMA found, but 
that LOOM missed. To perform this assessment, once 
again we randomly selected 100 such mappings for 
each of the ontology pairs and evaluated the selected 
mappings manually. Because we did not have a 
complete set of mappings to use as a reference, we 
did not evaluate recall in experiment 2.  

Results 

Getting the OAEI tools. We attempted to access, 
install, and evaluate all the tools from the OAEI 2008 
anatomy track (Figure 1). For the tools that were not 
available for download, we contacted their authors 
requesting access to the tools. Of all OAEI tools, only 
RiMOM, Lily, and AROMA were publicly available 
or made available upon request. RiMOM was 
configured to run only on a benchmark data set. The 
available demo of Lily crashed due to extensive 
memory use when we ran it on two relatively small 
ontologies (fewer than 3,000 classes) on a computer 
with 2GB of RAM. Thus, of all the tools, we could 
use only the AROMA algorithm to produce mappings 
for the ontologies in our sample. AROMA uses 
statistical analysis to compare the vocabulary used to 
describe terms in the ontologies. 
Experiment 1: LOOM performance for the OAEI 
2008 anatomy track. Figure 1 compares precision, 
recall, and F-measure for LOOM to the tools that 
were used in the OAEI 2008 Anatomy track. LOOM 
identified 1136 mappings, with 99% precision. Its 
recall was 65%. The F-measure was 79%. Thus, only 
three of the OAEI tools—SAMBO, SAMBOdtf, and 
RiMOM—outperform LOOM with respect to F-
measure. No OAEI algorithm had better precision 



  

than LOOM. Though we might expect the recall of 
our algorithm to be low since other algorithms take 
advantage of methods other than lexical matching, 
LOOM’s recall was within 10% of all but the top two 
algorithms. 
Table 1 looks at the difference in results between 
LOOM and other tools. Specifically, column 4 shows 
the number of mappings found by each algorithm that 
LOOM missed. The percentage of the missed 
mappings that were correct varies widely, ranging 
from 15% to 70%, with a median of 53% (standard 
deviation 20%). In other words, about half of the 
mappings that LOOM missed and other tools found 
were correct.  
Experiment 2: LOOM versus AROMA on 
BioPortal ontologies. Table 2 compares the results 
of running both LOOM and AROMA on four pairs of 
BioPortal ontologies. There was significant 
variability in the number of mappings found by the 
two tools. For instance, for the S.Pombe cell cycle 
and A.Thaliana cell cycle ontologies, LOOM found 
almost ten times as many mappings as AROMA and 
LOOM’s precision on this pair of ontologies was 
78%. On the Mouse adult gross anatomy–Zebrafish 
anatomy and development pair, AROMA found many 
more mappings than LOOM. However, the precision 
of the mappings that AROMA found and LOOM did 
not was only 4% (i.e., almost all of these “extra” 
mappings found by AROMA were incorrect). 
Similarly, AROMA found 538 mappings to LOOM’s 
4 mappings on the Cell type–S.Pombe cell cycle pair 
of ontologies, all of which were incorrect. The two 
ontologies have very little overlap. 

The last two columns in Table 2 show the mappings 
found by LOOM, but not AROMA. For three out of 
four pairs, the precision for these mappings is 
essentially the same as the overall LOOM precision. 
In other words, the mappings found by LOOM but 
missed by AROMA were similar in accuracy as 
LOOM mappings overall. 

Discussion 

We found that the majority of ontology alignment 
tools are not readily available, and those that are 
available either (1) do not outperform simple lexical 
matching methods, or (2) do not scale well to the size 
of biomedical ontologies, or (3) lack sufficient 
documentation for proper use. Thus, researchers who 
want to use some of the best tools must be prepared 
to spend significant resources to get the tools and get 
them to run. 
We limited our search to the tools that participated in 
the OAEI competition for several reasons. First, most 
developers of ontology-mapping tools participate in 
the competition to position their tool among other 
tools. Second, the OAEI provides a rigorous 
comparison and evaluation framework and make all 
the data public. Third, using the tools and the test 
ontologies from the competition enabled us to 
compare our own algorithm to other available tools.  

Figure 1. Performance of LOOM and OAEI tools in the 
Anatomy track (Experiment 1). The graph shows the 
results for OAEI 2008 from the competition report4 along 
with LOOM results on the same set, ordered by the F-
measure. The tools produced mappings for the Mouse adult 
gross anatomy ontology and the human anatomy part of the 
NCI Thesaurus. A reference alignment was used as the 
basis for precision and recall.  

 

Overlap with 
LOOM 

Mappings missed 
by LOOM 

Tool 

# of 
results 
found 

# of 
results 

% of 
results 

# of 
results Precision 

LOOM 1,136 N/A N/A N/A N/A 
AROMA 964 732 76% 232 64% 
ASMOV 1,262 890 71% 372 32% 
RiMOM 1,205 1,084 90% 121 70% 
Lily 1,325 878 66% 447 50% 
DSSim 1,545 890 58% 655 14% 
SAMBO 1,465 1,065 73% 400 60% 
SAMBOdtf 1,527 1,065 70% 462 53% 
TaxoMap 2,533 1,053 42% 1480 15% 
aflood 1,187 950 80% 237 56% 

Table 1. Difference between mappings found by LOOM 
and other algorithms in the OAEI 2008 anatomy track 
(Experiment 1). The first column has the name of the 
algorithm; the second column shows the number of 
mappings the algorithm found. The third column is the 
number of mappings found by both the OAEI algorithm and 
LOOM. The fourth column is the percentage of overlap 
between LOOM and the algorithm (column 3 / column 2). 
The fifth column is the number of mappings found by an 
OAEI algorithm that LOOM did not find (column 2 – 
column 3). The last column is the percentage of mappings 
among the ones that LOOM missed that were correct. 



  

Our results on the anatomy test set from OAEI show 
that the performance of our simple algorithm is 
comparable to the performance of the best available 
advanced mapping algorithms. There are several 
possible explanations for this result. First, many of 
the advanced algorithms rely on their analysis of the 
structure of the ontology, and biomedical 
ontologies—while usually large in size—have 
relatively little structure, with only a few 
relationships. Second, biomedical ontologies often 
have rich terminological information, with many 
synonyms specified for each concept. Therefore, just 
using synonyms as a source for mappings provides 
good results. Third, there is probably less variability 
in the language used to name biomedical concepts 
compared to other domains. All these factors make 
lexical techniques effective. 
Our results from the evaluation of LOOM against 
AROMA support the hypothesis that lexical 
matching is an efficient method for generating 
mappings for biomedical ontologies. The low 
precision of AROMA on mappings missed by LOOM 
demonstrates that AROMA was not very useful for 
finding mappings that we were unable to find simply 
with lexical matching techniques. Additionally, the 
precision of mappings found by LOOM and missed 
by AROMA shows that LOOM can add, with high 
accuracy, a significant number of useful mappings 
for ontologies with a high degree of overlap. 
It is also instructive to analyze the mappings that 
LOOM missed or identified incorrectly. First, if a 
pair of concepts has identical preferred names or 
synonyms, LOOM always returns them as matches. 
However, there are cases where names or synonyms 
of classes match exactly but the classes are not 
equivalent. Consider the example in Figure 2. The 
concept “Respiratory_System” in NCI Thesaurus has 
synonym “respiratory tract”. The Mouse adult gross 
anatomy ontology has a concept named “respiratory 
tract”. However, “Respiratory_System” in NCI 

Thesaurus is not equivalent to “respiratory tract” in 
Mouse adult gross anatomy ontology because there is 
another class, “respiratory system”, in Mouse adult 
gross anatomy that is a better match for 
“Respiratory_System”.  
Second, LOOM allows for one-character mismatches. 
While in many ontologies this feature significantly 
increases recall without affecting precision, in some 
cases, one-character differences are critical. For 
instance, the only case where LOOM did not have 
near-perfect precision was for the Cell Cycle 
ontologies, where many names differ by one 
character and this difference is significant (e.g., 
“ATP binding” and “ADP binding”, “DNA helicase 
activity” and “RNA helicase activity”, etc.). 
More research is needed to understand better why 
such simple techniques as the ones that LOOM uses 
perform so well on biomedical ontologies and why 
advanced algorithms perform relatively poorly. One 
possible explanation is that developers of biomedical 
ontologies use a relatively controlled language. In 
fact, researchers performing term extraction from 
biomedical annotations observed a similar 

 

Figure 2 Example of incorrect mapping produced by 
lexical matching. The synonym of a class in NCI Thesaurus 
matches the preferred name for a class in Mouse adult gross 
anatomy. However, this match is misleading because there is 
a more precise match for the class Respiratory system. 

Number of 
results found  Precision 

Found by AROMA, 
but not LOOM 

Found by LOOM, 
but not AROMA 

Ontologies used AROMA LOOM AROMA LOOM 

Overlap,  
# of 

results 
# of 

results Precision 
# of 

results Precision 
Mouse adult gross anatomy–
Zebrafish anatomy and development 1,080 235 25% 99% 135 945 4% 100 98% 

Cell type–Fungal gross anatomy 34 12 24% 83% 8 26 0% 4 50% 
Cell cycle ontology (S. Pombe)–Cell 
cycle ontology (A. Thaliana) 1,571 15,178 94% 78% 1,533 38 0% 13,645 76% 

Cell type–Cell cycle ontology 
(S.Pombe) 538 4 0% 50% 0 538 0% 4 50% 

Table 2. Comparison of LOOM and AROMA performance (Experiment 2). There was wide variability in the number of 
matches found by LOOM and AROMA. LOOM’s precision exceeded AROMA’s precision for three out of four experiments. The 
table also presents the number of mappings and the precision of the mappings found by AROMA, but not LOOM, and vice versa. 



  

phenomenon to ours: very simple information-
extraction methods, such as simple string matching 
works surprisingly well in identifying ontology 
concepts in text.8, 9 At the same time, biomedical 
ontologies have relatively limited structural 
information, so algorithms that rely heavily on 
analyzing the structure do not have an advantage. 
In related work, Johnson and colleagues10 analyzed a 
number of lexical methods in finding relations among 
terms in biomedical ontologies. They have found that 
methods have a wide variety of correctness, 
depending on the ontologies that are being compared. 
However, their methods used more advanced 
techniques than LOOM did. For example, even when 
using exact string matching, they broke up preferred 
names and synonyms into separate words and 
matched them. This method performed very well on 
some ontologies but had low precision on others. By 
using only complete terms, LOOM ensures high 
precision, and our experiments show that it does not 
lose much in recall either.  
Other researchers have investigated mapping 
techniques that are specific to biomedical ontologies. 
For instance, Zhang and Bodenreider focused on 
anatomy ontologies and compared the performance 
of different mapping techniques, such as lexical 
mapping and the use of external reference sources.11 
We have intentionally chosen a spectrum of 
ontologies for our Experiment 2—with ontologies 
from both medicine and biology—to evaluate lexical 
matching on different types of biomedical ontologies. 
In general, we need to understand better what 
characteristics of ontologies may predict which 
algorithms will perform well and which will not in 
comparing the ontologies.  

Conclusions and Future Plans 

We have demonstrated that simple lexical matching 
can be very effective in creating mappings between 
biomedical ontologies. Their performance is 
comparable to the performance of the more advanced 
algorithms. LOOM is publicly available at 
http://bioontology.org/tools.html. 
Now that we have shown that LOOM performs quite 
well on biomedical ontologies, we plan to run LOOM 
on all pairs of ontologies in BioPortal to produce 
pair-wise mappings between them. Users and 
developers will be able to access the mappings via 
Web services and to download sets of mappings that 
they need. We will use these mappings in annotating 

biomedical resources and in other tools and services 
that NCBO provides.  
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